ANGVEC2DCM gets the direction cosine matrix from the Euler angles. ANGVEC2DCM gets the direction cosine matrix from the Euler angles. CONVENTION: Let Ri be the rotation matrix that rotates the 'axes' about axis i. Then phi=Rz*Ry*Rx. See angvec2dcm for further details. INPUTS: rot: 3x1 vector of Euler angles. OUTPUTS: phi: 3x3 rotation matrix. phix: x rotation matrix. phiy: y rotation matrix. phiz: z rotation matrix. dphix: x differential rotation matrix. dphiy: y differential rotation matrix. dphiz: z differential rotation matrix. Abdallah Kassir 1/3/2010
0001 function [phi,phix,phiy,phiz,dphix,dphiy,dphiz]=angvec2dcm(rot) 0002 % ANGVEC2DCM gets the direction cosine matrix from the Euler angles. 0003 % 0004 % ANGVEC2DCM gets the direction cosine matrix from the Euler angles. 0005 % 0006 % CONVENTION: 0007 % Let Ri be the rotation matrix that rotates the 'axes' about axis i. 0008 % Then phi=Rz*Ry*Rx. See angvec2dcm for further details. 0009 % 0010 % INPUTS: 0011 % rot: 3x1 vector of Euler angles. 0012 % 0013 % OUTPUTS: 0014 % phi: 3x3 rotation matrix. 0015 % 0016 % phix: x rotation matrix. 0017 % 0018 % phiy: y rotation matrix. 0019 % 0020 % phiz: z rotation matrix. 0021 % 0022 % dphix: x differential rotation matrix. 0023 % 0024 % dphiy: y differential rotation matrix. 0025 % 0026 % dphiz: z differential rotation matrix. 0027 % 0028 % Abdallah Kassir 1/3/2010 0029 0030 phix=[1,0,0; 0031 0,cos(rot(1)),sin(rot(1)); 0032 0,-sin(rot(1)),cos(rot(1))]; 0033 phiy=[cos(rot(2)),0,-sin(rot(2)); 0034 0,1,0; 0035 sin(rot(2)),0,cos(rot(2))]; 0036 phiz=[cos(rot(3)),sin(rot(3)),0; 0037 -sin(rot(3)),cos(rot(3)),0; 0038 0,0,1]; 0039 0040 if nargout>1 0041 dphix=[0,0,0; 0042 0,-sin(rot(1)),cos(rot(1)); 0043 0,-cos(rot(1)),-sin(rot(1))]; 0044 dphiy=[-sin(rot(2)),0,-cos(rot(2)); 0045 0,0,0; 0046 cos(rot(2)),0,-sin(rot(2))]; 0047 dphiz=[-sin(rot(3)),cos(rot(3)),0; 0048 -cos(rot(3)),-sin(rot(3)),0; 0049 0,0,0]; 0050 end 0051 0052 % phi=angle2dcm(rot(1),rot(2),rot(3),'xyz'); % requires aerospace toolbox 0053 phi=phiz*phiy*phix; 0054 end