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Abstract: Telematic musical performance, in which performers at two or more sites collaborate via networked audio
and video, suffers significantly from latency. In the extreme case, performers at all sites slow to match their delayed
counterparts, resulting in a steadily decreasing tempo. Introducing video of a conductor does not immediately solve
the problem, as conductor video is also subjected to network latencies. This article lays the groundwork for an
alternative approach to mitigating the effects of latency in distributed orchestral performances, based on generation
of a predicted version of the conductor’s baton trajectory. The prediction step is the most fundamental problem in
this scheme, for which we propose the use of conventional machine learning techniques. Specifically, we demonstrate
a particle filter and an extended Kalman filter that each track the location of the baton’s tip and predict it multiple
beats into the future; we compare these with a conventional feature-based method. We also describe a generic two-part
framework that prescribes the incorporation of rehearsal data into a probabilistic model, which is then adapted during
live performance. Finally, we suggest a framework and experimental methodology for establishing perceptually based
metrics for predicted baton paths. Note that the perceptual efficacy of the presented methods requires experimental
confirmation beyond the scope of this article.

A conductor is tasked with coordinating all the
players in an orchestral performance, controlling
the group like a sort of meta-instrument. Though
first introduced for synchronization of players in a
large performance, the conductor’s role has evolved
to include significant influence over how a piece is
interpreted, with fine-grained control over sections
of performers or even individuals, in dynamics,
tempo, and articulation. Automated interpretation
of the complex vocabulary of gestures utilized by
a conductor is an ongoing problem, with previous
work showing methods of tracking the interpretive
content of gestures (Ilmonen and Takala 2005) and
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predicting the temporal location of an impending
musical beat (Murphy 2004).

The present work is focused on establishing
the viability of predicting the conductor’s gestures
multiple beats into the future, as relevant in the
context of telematic performance, i.e., distributed
musical performance over computer networks. In
the case of distributed networked performance, as
depicted in Figure 1, a major challenge is dealing
with network lag between sites. It is well established
that network latency can have serious deleterious
effects on the quality of a performance (Willey 1990;
Bartlette et al. 2006; Chafe, Cáceres, and Gurevich
2010). In the worst case, each musician will slow to
match the other players across the network, leading
to a steadily decreasing tempo as the performers
attempt to synchronize.
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Figure 1. Using gesture
prediction to mitigate
delay in distributed
orchestral performance:
The delays D normally

experienced between sites
are canceled, through
prediction, for the
conductor’s gestures.

Following from the similar rationale for intro-
ducing a conductor to synchronize the performance
of copresent musicians, we might assume that
this same approach would be beneficial in the
distributed context. Network delay does not dis-
tinguish between audio and video data, however;
both are subject to significant latencies, and thus
the video of a remote conductor does not necessar-
ily improve synchronization. A partially improved
solution would be to provide all sites with video of
the conductor’s gestures simultaneously. Note that
performers would continue to perceive their remote
counterparts as lagging by the amount of network
latency, but the hope is that they would rely on the
conductor’s gestures for synchronization, as in the
co-localized case, eliminating problems with drifting
tempo. In practice, musicians are more inclined to
attend to the audio cues, but with effort, can focus
on the conductor’s lead (Olmos et al. 2009).

Synchronized conductor video can be created
by using prediction to counteract the conductor-
to-performer lag, as depicted by the predict paths
in Figure 1. In this scenario, a motion capture
system encodes the movements of the conductor’s
baton and arm, and a prediction system generates
an estimated pose, with the prediction range set
to counteract the exact network latency on the
uplink paths. Once received, the estimated pose
is used to render an animated baton and arm, and
this rendering is blended, using techniques from
computer graphics, with the (non-predicted) live
feed of the rest of the conductor. It is hoped that,
because the bulk of the time-critical information is
associated with the baton’s movements, the network
lag between predicted and live elements will not

prove unacceptably distracting. The result of this
setup is that the performers perceive the conductor
with zero delay, and the conductor perceives the
performance delayed by only the one-way network
latency associated with the return network path.
Still more ambitious scenarios might introduce
further prediction, counteracting even this one-way
delay.

The most fundamental problem in combating
latency in this way is in the prediction step, and
the key contribution of this article is to establish
the viability of performing such prediction using
conventional machine learning techniques. Specifi-
cally, it makes use of particle filters for tracking and
prediction of the baton tip’s location, and lays out
a generic two-part framework that prescribes the
incorporation of rehearsal data into a probabilistic
model, which is then adapted during live perfor-
mance. We make no claims as to the optimality
of particle filters for this purpose, and expect that
other methods from machine learning would also be
applicable. As an example, we include experimental
confirmation that the extended Kalman filter (EKF)
is capable of replacing the particle filter for tracking
and prediction. Note that our primary concern is
establishing the feasibility of machine learning
techniques in general, as they provide a flexible and
robust alternative to existing approaches. As such,
we focus primarily on the particle filter for its ease
of implementation and robustness.

To facilitate evaluation, the article also suggests
a framework and experimental methodology for es-
tablishing perceptually based metrics for predicted
baton paths. Taken together, these contributions lay
the groundwork for mitigating latency in distributed
orchestral performances using prediction of con-
ductor’s baton movements. It should be noted that
the perceptual efficacy of these methods requires
experimental confirmation beyond the scope of this
article.

Background

Conductors follow a set of rules that both dictate the
rough shape of the path taken by the tip of their baton
and that prescribe ways of manipulating those shapes
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Figure 2. Feature locations
shown on a generic 4/4
conducting gesture. Note
that A, B, C, and D
correspond to four easily

tracked features of the
gesture, and do not
correspond exactly to beat
locations.

in order to communicate intent to the performers.
A typical conducting gesture for a 4/4 beat pattern
(Rudolf 1995) is shown in Figure 2. The shape of
the gesture, and the time spent at its extremities,
communicate articulation (how smoothly a piece is
played) and the scale of the gesture communicates
dynamics (how loudly a performer should play).
Translation of the gesture can be used to indicate
that it is directed toward individual performers or
sections of performers, and the rate at which the
gesture is traversed communicates tempo, with
individual beats indicated by vertical extrema.
We refer to such communicative elements of the
gestures as their interpretive or perceptual content.

Previous work has focused on tracking and
interpretation of conductor’s gestures (Morita,
Hashimoto, and Ohteru 1991; Lee et al. 2006;
Nijholt et al. 2008). Prediction has been concerned
primarily with the timing of an impending beat
(Murphy 2004) rather than with predicting the
trajectory of the baton. Much of this previous work
has relied on recognizing characteristic features of
the conducting gesture, such as inflection points,
changes of direction, and axis crossings. Although
such recognition can yield good results, it relies on
accurate placement of the features on the gesture,
which can be sensitive to noise and ambiguity in
the baton’s path. Moreover, the feature extraction
process implies that some or all of the baton’s
motion is ignored between features.

Other novel work has included the use of neural
networks for interpreting hand gestures in music
control (Modler and Myatt 2004) and for interpreting
the emotional content of conducting gestures

(Ilmonen and Takala 2005). Meanwhile, particle
filters have been applied successfully to more
general forms of gesture recognition (Black and
Jepson 1998; Visell and Cooperstock 2007; Lee
2008). Similarly, effective prediction of quasi-
periodic heartbeat signals using EKFs has been
demonstrated (Yuen, Novotny, and Howe 2008),
and hidden Markov models have been applied to
gesture following and recognition (Bevilacqua et al.
2010; Kolesnik and Wanderley 2004). The EKF is
a generalization of the Kalman filter, capable of
coping with nonlinear system dynamics through the
addition of a linearization step (Welch and Bishop
1995). For such tasks, the EKF is an attractive option
because it is well understood and easy to implement,
with reference implementations readily available.

This article seeks to utilize a particle filter for
tracking and predicting baton trajectories. The
challenges to doing this are formidable, and we
therefore limit our scope to the prediction of two-
dimensional (2-D) baton motion, and assume that
this motion is available from a computer vision or
motion capture system. We specifically ignore, for
the moment, the problems associated with start
up and long pauses. Once a gesture is underway,
predicting the baton’s path is feasible, but in the
moments of stillness preceding a performance, or
during long pauses, accurate prediction is difficult
or impossible without additional information. A
potential approach, in the context of combating
network latency, is to begin a performance with
no prediction in place, then slowly increase the
prediction range to the desired level. Alternatively,
the conductor may be asked to provide additional
cues, for example a preparatory indicator prior to
the first “real” gesture. This problem will require
further experimentation to address fully.

Particle Filter

The particle filter performs tracking and prediction
based on a Bayesian framework, modeling the
posterior probability density of a system’s state
with a set of weighted state estimates (particles).
For this work, we encode in a state vector a set of
high-level properties of the conductor’s gestures,
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such as position and scale. A population of particles
is generated, with each particle representing a
hypothesis regarding the true value of the state
vector. This population of particles is culled and
resampled over time according to how well each one
predicts certain directly observable variables—in
our case, the position of the tip of the conductor’s
baton. This process is iterative, such that over time
the particles converge to a population that does a
good job of representing the true state of the system.
If the system state changes, the particle population
will also evolve to reflect this change, and as such,
the particles effectively track the values in the state
vector, without ever being able to observe them
directly. The remainder of this section details how
the particle filter is constructed and extended to
effect prediction.

We implemented a classic sampling importance
resampling filter, also know as a weighted bootstrap
filter (Gordon, Salmond, and Smith 1993). Supposing
xk and zk denote the system state and observation
at time k, the probability distribution of the system
state Pr(xk|z0 . . k) is estimated by a weighted particle
set Xk = {xi

k, qi
k}, i = 1, . . . , N, where N is the total

number of particles, xi
k is the hypothetical state of

the system represented by particle i at time k, and
qi

k is the particle’s weight.
An estimate of the system state is formed prior to

each observation by propagating the previous state
estimate forward via a motion model

xk+1 = f(xk) + wk (1)

where f() is the system transition function and w is
a random variable approximating the system noise.
Observations are related to the state vector via the
observation model

zk = h(xk) + vk (2)

where zk is the observation, v is the observation
noise, and h() is the measurement function, which
encodes state as an observable quantity. When
each new observation arrives, the particle set is
re-weighted by evaluating the likelihood of each

prior sample

qi
k = Pr(zk|xi

k)∑N
i=1 Pr(zk|xi

k)
(3)

Finally, a new set of particles X∗
k is drawn from the

set Xk, such that the probability of finding a given
particle in the resampled set is proportional to its
weight, i.e., for any j, Pr(x j

k = x∗i
k ) = qi.

There are a number of possible approaches to
applying a particle filter to the task of predicting a
conductor’s gestures. Our proposed approach is to
encode prior knowledge of conducting gestures in
the observation model, favoring an extremely simple
motion model, while encoding the system state in
just enough dimensions to maintain the expressive
content of the gestures. We further propose using the
particle filter in two stages: training and prediction.
In the training stage, no prediction is performed, but
a set of generic gestural templates is used to track
the baton’s motion and create adapted templates
specific to the conductor and the piece of music.
Then, in the prediction stage, the adapted gestural
templates are used to track and predict the baton’s
movements.

State Vector

The number of particles required for stable operation
of a filter grows exponentially with the dimension-
ality of the state vector (Khan, Balch, and Dellaert
2004). Keeping in mind the goal of real-time opera-
tion, the choice of state vector is therefore extremely
important, as we must retain sufficient information
for following and predicting the conductor’s baton
movements, while representing that information
with a minimum of dimensions.

A straightforward state vector might track the
2-D position and velocity of the baton tip, yielding
a simple four-dimensional model, and exploiting
momentum to predict future states. This approach
would likely exhibit weak predictive ability, how-
ever, as it ignores all prior knowledge of conducting
technique. A more powerful approach needs to
incorporate prior knowledge of the conducting
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Table 1. State Vector x

Variable Encodes Interpretation

φ Phase Temporal position in piece, gesture
φ′ Phase Rate Tempo
M Scale Dynamics
bx, by x, y bias Emphasizing and directing gestures

gestures, but avoid unnecessarily increasing the
dimensionality of the state vector.

As mentioned, our proposed approach is to encode
the path associated with the conducting gesture in
the observation model, ideally tracking only the
interpretive or perceptual content of the gesture in
the state vector. The intent is to track the underlying
message being communicated by the conductor,
independent of the specific language (gestures) used
to convey it. This gives us sufficient information
for tracking and prediction, while shifting the
complexity of encoding specific conducting paths
to the observation model. Of course, extracting per-
ceptual content from conducting gestures is an open
problem. For the purposes of this work we propose to
track the subset of perceptual content summarized
by the five-dimensional state vector depicted in
Table 1. In this representation, phase encodes
temporal position both within the musical piece
and within the current gesture as a single variable.

Articulation information is deliberately absent
from our state vector as we have chosen to encode
this in the gestural templates, following the ap-
proach of Murphy (2004). Recall that articulation
is expressed in the shape of the gesture and the
time spent at its extremities, both of which will be
encoded in our gestural templates, as shape and knot
density, respectively. The result is that articulation
will mostly be predetermined during the training
stage. Extension of our method to tracking and
predicting articulation at performance time would
involve the addition of variable articulation to the
state vector, as discussed in the Conclusions.

Observation Model

The observation model (Equation 2) is the mech-
anism that relates observed positions to the state

vector. In our case, the measurement function h()
must transform a given state vector to a position
z. This is done by first mapping a given phase to
a spatial location via a gestural template T(), then
applying scaling and bias to yield a final position, as
in

h(xk) = Mk · T(φk) + bk (4)

where it is understood that the specific template
utilized depends on the temporal position in the
musical score.

Ideally, the template function T() will be suffi-
ciently flexible to be easily adapted during training.
We chose to implement our template as a circular
cubic spline, for which the first and last knots,
and derivatives at those knots, are forced to be
equal. This generates a seamless, repeating gesture,
which can be modified using straightforward spline
manipulation techniques. An example template was
shown in Figure 2.

Motion Model

When a new observation arrives, the motion model
(Equation 1) generates a prior estimate of the system
state, which is then subjected to resampling based
on the observation. We base our formation of the
prior on the concept of coherence: given a certain
tempo, scale and bias, we assume the best estimate
is that these variables will remain unchanged at the
next observation. This introduces momentum to
the system, and will limit the predictive range of the
filter to the coherence time of the state variables,
except phase. This should prove acceptable for
the relatively short prediction ranges required for
latency compensation.

Note that although we leave most of the state
variables unchanged in the motion model, they
do evolve over time to correspond to the observed
performance, through the processes of roughening
and resampling, discussed subsequently.

For the state vector described above, the motion
model is therefore extremely simple: all variables
propagate forward unchanged, except φ, for which

φk+1 = φk + φ′
k�t (5)
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More complex models, incorporating momentum
into the translation and scale dimensions, for exam-
ple, may yield superior predictive ability, although
this comes at the cost of a higher-dimensional state
vector, as discussed in the Conclusions.

Likelihood Function and Resampling

The likelihood function (Equation 3) is used to
reweight and ultimately resample the population
of particles based on the most recent observation,
so that they better represent the probability density
of the system state. We use a standard uncorre-
lated Gaussian likelihood function, which in two
dimensions simplifies to

Pr(zk|xi
k) = 1

2πσ 2
v

exp
(−||zk − h(xi

k)||2
2σ 2

v

)
(6)

where σv is an estimate of the standard deviation of
the observation noise, assumed to be identical in all
directions, and || · || denotes Euclidean distance. Re-
sampling is performed using the standard algorithm
presented by Gordon, Salmond, and Smith (1993).

The observation noise estimate σv in the resam-
pling process controls the selectivity with which
particles propagate forward in time. For low noise
estimates, only those particles closely surrounding
the tracked system state survive, while higher es-
timates allow a more spread-out set of particles to
survive. As discussed below, there is an interplay
between selection of observation noise, particle
count, and roughening constants.

Roughening and Noise

Roughening mutates the set of particles into novel
portions of the state space, giving the particle filter
its ability to track changes in the system state. The
amount of noise added to the particles controls the
extent to which the filter is capable of diverging from
its previously tracked state. Excessive roughening
spreads the particles too thinly, resulting in a loss of
precision in the tracked state, whereas insufficient
roughening makes the filter incapable of tracking
novel changes.

Empirically, we have found that zero-mean
independent additive Gaussian noise works well
with our chosen state vector. Different amounts of
roughening are required in training and prediction:
Training must tolerate a high level of novelty, and
so large roughening constants and a high estimate of
observation noise are used, allowing the system to
diverge significantly from the anticipated state. This
necessitates the use of more particles in maintaining
statistical significance and stability, but because
training can be performed offline, the increased
complexity is tolerable. During prediction, the use
of templates specifically adapted to the conductor
and the musical piece reduces the amount of novelty
required; therefore roughening and observation
noise can be reduced, as can the number of particles,
reducing the computational burden.

An easily implemented optimization that we
have pursued is to reshape the noise applied to each
dimension such that out-of-bounds values are disal-
lowed. Tempo, for example, must always be positive,
thus any roughening value that yields a non-positive
tempo is replaced. A similar logic applies to changes
in phase. Although it is possible for the system to
overestimate phase, thus necessitating a negative
phase change to correct itself, we find that this never
actually occurs if the rest of the system is correctly
tuned.

Training

In training mode, the system takes a set of universal
gestural templates and adapts them to the specific
gestural style of the given conductor and piece of
music. There is no prediction involved, and the
process can be carried out offline, based on a video
recording.

The first step is to break the music into sections,
such that each one is well represented by a specific
beat pattern and articulation. In future, even this
step might be automated by running concurrent
particle populations, each representing a compet-
ing hypothesis, and selecting the one that most
accurately tracks the performance. In the present
implementation the music is divided into relatively
large sections, each containing many repetitions of
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the same gestural template, i.e., many measures of
music.

Next, the training filter is run over each section
of music, modifying the generic template to a
new, adapted one. This starts by forming a prior
estimate of the system state xk+1 using the motion
model (Equation 5), applying the observation model
(Equation 4) to obtain a spatial estimate, and
correcting nearby spline knots in the direction of
the error with respect to the observation zk, as in

tφ

k+1 = tφ

k + λdφ [zk − h(xk+1)] (7)

where tφ

k+1 is a set of spline knots centered on the
current phase φ, λ is an adaptation rate constant,
and dφ is a window limiting the effect of the
adaptation on knots far from the current phase.
This has the effect of deforming the template with
a vector proportional to the error between the
prior estimate and the newly observed data. The
strength of the deformation, and the extent of its
influence on the spline, are tuned to achieve stable
but responsive behavior. A further spline-smoothing
step ensures that the spline remains well formed.
This process may be repeated over the same section
of music several times in order to form a stable,
representative template.

The adapted template contains all the expressive
elements described by the state vector x (see Table 1).
This is undesirable, as we wish to maximize
expressive freedom during performance. If such
expressive elements were retained from training,
prediction would be inferior when the conductor
deviates from the training performance. Finding the
optimal balance between training and spontaneity
is an open question, although allowing maximum
spontaneity seems a prudent starting point.

Removal of expressive content from the adapted
templates is already accomplished in part by virtue
of learning over extended time spans: Changes of
short duration relative to the training period are aver-
aged out. Content that exists over longer timescales
may remain, however, as in the example of an
extended period of high dynamics. As such, we have
maintained the overall gesture shape, but normal-
ized the scale and bias in order to ensure that both
short- and long-timescale expressive elements are

removed. The normalization is carried out straight-
forwardly by dividing by the standard deviation
of the spline knot positions and subtracting their
mean. Note that we have not removed articulation
from the adapted templates, in that the shape of the
gesture and the amount of time spent at its extrem-
ities is learned and not normalized, and as a result
this element is not varied at performance time. An
extension to do so is discussed in the Conclusions.

Finally, the set of adapted templates must be
processed such that their endpoints align. This
ensures that major transitions in the music (e.g.,
transitions between beat patterns) can be carried
out smoothly and without pauses. This may be
performed using spline smoothing, applied over
the template function sequence, or by introducing
a gradual translation to the gestural template,
which, over the course of a section of music, aligns
its endpoint with the starting point of the next
template. We have not evaluated either of these
techniques experimentally.

Prediction

With the particle filter tracking the state of the
baton using an adapted template, prediction is a
simple matter of projecting the system state into
the future by the required amount of time. Given
a state vector xk, the predicted state vector is
found using the motion model (Equation 5) with
the desired prediction range as �t. Recall that
we have proposed a very simple motion model,
in which scale, translation and tempo remain
unchanged, while phase is updated based on tempo.
Because this motion model is linear, we need not
carry out prediction on all particles individually,
but can rather obtain the average system state
and project that into the future in a single step,
saving considerable computational effort. The
predicted position of the baton tip is found from the
predicted system state using the observation model
(Equation 4) and the adapted template. A simple
recursive low-pass filter on the predicted position
takes the mean value of the present prediction and
the previous filtered prediction, yielding a smoother
predicted trajectory.

34 Computer Music Journal



Table 2. Tracked Features in the 4/4 Beat Pattern

Point Velocity zero-crossing Position bounds

A −/+ in vy |px − bx| < M · Kx

B −/+ in vx px − bx < −M · Kx

C +/− in vx px − bx > M · Kx

D +/− in vy py − by > M · Ky

Feature-based Prediction

For the sake of comparison we also implemented
a simple feature-based prediction system. Prior
work has established a method for prediction of
beat location while tracking scale, translation, and
tempo (Murphy 2004). Extension to prediction of
trajectory over arbitrary durations based on these
tracked variables is relatively straightforward.

We again restrict our focus to a 4/4 beat pattern,
assume access to a suitable gestural template, and
track the system state in the same five dimensions
as for the particle filter, shown in Table 1. Tracking
relies on recognizing features as they occur in the
conductor’s gestures. Because we are not interested
in exact beat locations, we chose to track features
based entirely on their suitability for automated
detection. Zero crossings of velocity, for example,
can be detected simply, and have the added benefits
of being independent of scale and translation, and
of representing well-defined points on the gestural
template.

The four features we track are listed in Table 2.
An additional constraint on position is added
to improve robustness, although this introduces
a dependence on scale and translation, which are
taken from the current state estimate. A simple state
machine is added to constrain the order in which
the features may arise, and for greater robustness
a minimum duration is introduced to each state,
based on prior knowledge of the tempo of the piece.
The features’ locations were shown on a generic
four-beat template in Figure 2.

As each new sample arrives, the tracked phase is
incremented using the current estimate of tempo.
When a feature is recognized, a temporal ratio
is found between the observed duration between
features and the expected duration based on the

template. As each gesture is completed, an estimate
of the instantaneous tempo is updated based on
the average values of the temporal ratios over the
gesture. Translation is estimated as the mean of
the baton’s position over the gesture, and scale is
based on the absolute value of the baton’s position
relative to its translated center. Note that these
definitions of translation and scale are somewhat
arbitrary, in that they do not correspond to any
physically significant quantities, but were chosen
for computational simplicity and robustness to
noise. Note also that we are using data from the
entire gesture to find scale and translation.

Based on the tracked state, a prediction is synthe-
sized from the template, as

p(φk, �t) = Mk/MT · T(φk + φ′
k�t) + bk (8)

where p() is the predicted position for a given starting
phase and prediction range �t, Mk/MT is the ratio
of tracked scale to that of the template, T() is the
template function with zero mean, and φk, φ′

k, and
bk are the tracked phase, tempo, and translation.

Evaluation Criteria

The final measure of the impact of a conductor’s
gestures is in the musicians’ response to them in a
real performance context. The challenge here is that
orchestral performances can vary significantly, even
when presented with identical gestures. Moreover,
evaluation of performance is difficult, requiring
experienced, skilled experts, whose evaluations are
necessarily at least partially subjective. Moreover,
such evaluations tend towards qualitative rather
than quantitative information. An automated
approach producing objective, quantitative results
is desirable.

Unfortunately, even in our very specialized case
of comparing two ideally identical performances,
automated evaluation is difficult. Establishing
the time shift between performances should be
relatively easy using methods from musical score
following (Orio, Lemouton, and Schwarz 2003),
but the other aspects of a conductor’s influence
on the performers—articulation and dynamics, in
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Table 3. Mathematical Estimators of Perceptual Metrics

Shorthand Metric Notes

p ‖pA − pB‖2 Position, in a sense, encompasses all metrics, but is sensitive to absolute scale and
translation

|v| (|vA| − |vB|)2 Speed is useful for tempo, articulation and scale, but is sensitive to absolute scale
p/ |v| ‖pA−pB‖2

|vA| Position normalized to speed, no scale dependency
v ‖vA − vB‖2 Velocity mostly represents tempo, direction, and scale, but is sensitive to absolute

scale
a ‖aA − aB‖2 Acceleration mostly represents curvature and changes in tempo and scale, but is

sensitive to absolute scale
|a| (|aA| − |aB|)2 Magnitude of acceleration is useful for curvature, articulation, and scale, but is

sensitive to absolute scale

v/ |v|
∥∥∥ vA

|vA| − vB
|vB |

∥∥∥2
Direction of travel, no dependency on absolute scale or translation

a/ |a|
∥∥∥ aA

|aA| − aB
|aB |

∥∥∥2
Direction of acceleration, (partially) represents curvature, with no dependency on

absolute scale or translation

particular—would be very difficult to evaluate in
an autonomous manner. For these reasons, we have
foregone evaluation of orchestral performance for
the time being, in favor of working directly with
baton trajectories.

As a first attempt at establishing perceptually
based metrics for conducting gestures, we have
attempted to identify a set of quantifiable concepts
that encapsulate the salient content of a conductor’s
performance. These include absolute tempo, changes
in tempo near extrema (articulation), curvature near
beats and extrema (beat location, articulation),
direction of travel, changes in scale (dynamics), and
changes in translation. It should be stressed that
these metrics exceed the level of detail expressed
in our particle filter’s state vector (described in
Table 1), as appropriate for the purpose of providing
a meaningful evaluation.

Absolute scale and translation are of course
important, but we believe these to be less critical
than changes in these dimensions. If a conductor
starts a performance with slightly larger gestures,
for example, and effectively scales the rest of his or
her performance to match, the resulting orchestral
performance may be generally unchanged.

We wish to approximate these concepts with a
set of metrics that may be applied directly to the
baton’s trajectory. Thus, we present a somewhat

exhaustive set of potential metrics (see Table 3)
with the intention of evaluating them and selecting
the most informative. Note that the labels A and B
refer to the two performances to compare, and the
shorthand nomenclature is used to label plots in the
following sections.

We operate exclusively on the instantaneous posi-
tion p, velocity v, and acceleration a of the baton tip,
with the last two easily estimated as the first and
second difference of position, respectively. Although
it would be possible to use more-complex schemes
that attempt to compare segments of trajectories
rather than instantaneous points, the added com-
plexity does not appear to be justified by the limited
additional information such an approach would
provide. In conducting gestures, timing is essential,
after all, and thus introducing tolerance to temporal
error into our metrics is undesirable. Note also that
the metrics may be applied uniformly across the
gesture, as is our intent, or weighting may be applied
so as to emphasize the importance of some metrics
near beat locations and extrema in the gesture.
Exploration of these options is left for future devel-
opment. At present, all metrics are computed as an
unweighted mean across the full set of observations
of the baton tip’s position available on each trial.

Establishing an overall performance metric for
the conductor’s baton paths may be as simple
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as formulating a weighted sum of the metrics
listed here. The most meaningful way of doing
this would involve a set of experiments asking
a number of expert conductors and musicians to
rank the similarities of sets of conducting gestures.
By presenting the test group with appropriately
varied gestures, estimates of the perceptual impact
of each metric may be formed and applied to an
overall perceptually based metric. For the purposes
of this article, however, we will simply present the
individual metrics.

Simulation Results

A number of trials were performed using simulated
data to verify correct operation of the particle
filter, operating only as a tracker, i.e., with no
prediction. Simulated baton trajectories were created
by replaying a motion template with modulated
tempo, bias and scale. Both scale and tempo were
varied sinusoidally around nominal values of 1.0;
completing two full cycles over the sequence, and
with modulated values falling between 0.9 and 1.1.
We use normalized tempo, such that a value of 1.0
corresponds to 20 repetitions of the gesture over the
45-sec sequence.

Using a normalized template of one spatial unit
in amplitude, bias followed a circular path, with
a radius of 0.3 spatial units, also completing two
full cycles over the sequence. Initially, the generic
motion template depicted in Figure 2 was utilized,
but the more relevant results shown here make use
of the motion template adapted to motion-capture
data. This is described in the following section,
along with the process of tuning the filter.

Validation via simulation is particularly appealing
in this case, as ground-truth values are available
for the entire state vector. In contrast, for real-
world data, such perfect knowledge of tempo,
scale, and bias, which serve to confirm that the
filter is correctly adapting to the input sequence,
is not available. Figure 3 depicts the results of the
simulation, showing that the filter is indeed adapting
to variations in the performance. Root-mean-square
(RMS) errors are indicated in the figure. Phase and
position results are omitted because, in the absence

of noise or deviation from the motion model, the
tracked and ideal results are nearly identical, with
RMS errors in x and y positions of 0.0191 and 0.0244
spatial units, respectively, and in phase of 0.0421
gesture repetitions.

These results do not establish the viability of this
technique for real-world data—that is left to the
following section. Rather, it shows that the filter is
capable of correct operation over a nontrivial range
of potential inputs.

Results

In the previous section we established the viability
of the particle filter approach using synthetic data.
Here we test the particle filter on motion capture
data of a real conductor, comparing the filter with
EKF and feature-based approaches.

Data Collection

Two sets of data were collected using a Vicon motion
capture system operating at 120 Hz. Several motion
markers were included in the capture, but only the
marker on the tip of the baton was used in the
experiment. These sessions involved a conductor
“performing” with a recording of Mozart’s opera
Don Giovanni, playing at 180 bpm. The use of a
recording rather than a live responsive orchestra was
a concern, the worry being that the static nature of
the performance might yield unrealistically consis-
tent conducting gestures. To alleviate this concern
the recordings were separated by several days,
with the goal of increasing variation between perfor-
mances. Indeed, a manual inspection of the resulting
data reveals significant variations between the two
performances in terms of translation, scale, shape of
trajectory, and even phase. A sample starting 16 sec
into the piece and showing variations in vertical ba-
ton movement for the two performances is shown in
Figure 4. In the results that follow, the first of the two
captures was treated as training data, and the second
as a performance to be predicted. In both cases, the
first 30 sec of performance were used. Source data
and sample videos of the particle filter in training
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Figure 3. Particle filter
tracking a simulated baton
trajectory with modulated
tempo, scale, and bias:
(a) normalized tempo

(RMS error 0.0337),
(b) scale (RMS error
0.0611), and (c) x, y bias
(RMS error 0.02882 and
0.02516).

Figure 3

Figure 4. Typical
differences in vertical
baton motion for two
performances of Don
Giovanni. The solid line
depicts the first perfor-
mance and the dashed line
depicts the second.

Figure 4

and prediction modes are available online from
www.cim.mcgill.ca/sre/projects/worldopera/baton
and on the DVD that will accompany Computer
Music Journal 37:4.

Figure 5. Template adapted
using training data. The
dashed line depicts the
generic template and the
solid line depicts the
adapted one.

Figure 5

Training

The particle filter was applied in training mode to
the generic template of Figure 2, with parameters
tuned as described in the following. During the
first 30 sec of the training data, the particle filter
generated the adapted template shown in Figure 5.
The adapted template is representative of the mean
of the baton’s trajectory, which varied over the entire
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Figure 6. Prediction error
of particle filter as a
function of particle count:
(a) position, (b) velocity,
(c) acceleration, and
(d) direction error.

30 sec. Training over shorter durations yields a more
accurately adapted template, at the risk of over-
training to a specific segment of the performance,
and thus reducing the expressive capability of the
prediction system.

Tuning the Particle Filter

The roughening constants, observation noise esti-
mate, and number of particles associated with the
particle filter must be chosen. This presents an
opportunity to utilize and validate the metrics de-
scribed in Table 3: Plots of error as a function of each
parameter should reveal useful trends in selecting
their values. Initially, 4,000 particles were used, and
the remaining parameters roughly hand-tuned to
obtain stable results. Next, plots of each metric as a
function of the individual variables were produced
and utilized to refine the settings. The procedure

was repeated over a few iterations, as the variables in
play are not independent, and each iteration brings
performance closer to a global optimum.

Plots of each error metric as a function of the
number of particles and observation noise estimate
are shown in Figures 6 and 7, respectively, and the
parameters selected for the particle filter are given
in Table 4. For all parameters, there is a region of
instability associated with lower values, meaning
that the filter was unable to track the baton’s motion
(e.g., in Figure 6 with fewer than 800 particles and
in Figure 7 for observation noise less than about
1.7). In the case of the roughening parameters and
noise estimate, the region of instability is followed
by a global minimum, then a region of decreasing
performance as the parameter value increases. The
decrease in performance as roughening increases is
due to the spreading of hypotheses over the state
space, which results in a less accurate represen-
tation of the correct hypothesis. Parameters were
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Figure 7. Prediction error
of particle filter as a
function of estimated
standard deviation of
observation noise:
(a) position, (b) velocity,
(c) acceleration, and
(d) direction error.

Table 4. Particle Filter Parameters

Particle Count 1020
Observation Noise (std. dev.) 4.0
Roughen φ 1.4 × 10−3 rad
Roughen φ′ 1.3 × 10−4 rad/sec
Roughen M 1.7 × 10−3

Roughen bx 0.27
Roughen by 0.19

empirically chosen to balance error and stability, and
did not generally correspond to the error minima.

The error metrics were consistent, providing
similar trends in the regions explored. Some metrics
proved to be more useful, displaying more gradual
and smoother variation. In particular, acceleration
and direction metrics exhibited steady variation
over the parameter range. In contrast, position
metrics exhibited little variation beyond the region
of instability in the plots of particle count vs.

error. Because all the metrics conveyed some useful
information, we consider the full set in evaluating
prediction methods.

Comparing Predictors

The adapted gestural template formed by the
training particle filter was used with both particle-
and feature-based predictors—this maximizes the
performance of the feature-based method, and
simulates tailoring a generic template to better
match the conductor’s style. For a prediction range
of 200 msec, the predictors generated the paths
shown in Figures 8 and 9. In these and the plots
that follow, the actual performance is shown for
reference, time-shifted by the prediction range to
align with the predicted results.

The results demonstrate both predictors success-
fully tracking changes in translation, scale, and
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Figure 8. Section of
predicted paths (prediction
range of 200 msec) during
an increase in scale and
translation along positive x.

phase, although it is clear that the particle filter is
adapting more quickly and fluidly to these changes.
Note, for example, the abrupt discontinuity in the
feature-based trace in Figure 8, where an update of
parameters leads to a sudden jump in the output of
the predictor. Such discontinuities are less likely
with the particle filter, for which parameters are
continually updated with each new input sample.
This has the drawback, however, of yielding a
rougher trajectory, a shortcoming that is partially
addressed by the smoothing filter on the predicted
baton position.

Next, prediction error was evaluated as a function
of prediction range, for both filter types, with the
results shown in Figure 10. Notably, neither method
demonstrates a clear advantage over the entire
prediction range. For most metrics, the particle
filter offers better predictions for less than one or
two seconds, and the feature-based method shows
a clear advantage for a range of two seconds or
more. We suspect this is a function of the temporal
coherence of the state variables for the specific
musical selection. A gesture at a given scale has
a high probability of staying at that scale in the
immediate future, but that probability falls off with
time. Because the particle filter responds more
quickly, it is better at dealing with effects with
short coherence times. As the prediction range
increases, however, closely tracking changes with
short coherence times presents less of an advantage,
and may indeed be detrimental: The scale of the

gesture in four seconds may not correlate well with
its present scale, and may indeed show a negative
correlation. This is the case in the musical selection
utilized in evaluating these methods, as there is
a section of alternating high and low dynamics.
Because the particle filter more accurately follows
the scale of the gestures, it actually suffers for
prediction ranges that correspond to these regions
of negative correlation, whereas the feature-based
method has a longer response time, and so acts as a
sort of low-pass filter over the alternating scale. This
is most clearly seen in Figure 10d, in which the error
associated with the particle filter increases beyond
that of the feature-based method, then begins to level
off, and finally re-approaches the performance of the
feature-based method. For prediction ranges below
one second, the particle filter offers superior results
by all metrics. This makes the particle filter the
more appropriate method for our applications, which
call for prediction ranges on the order of 100 msec.
In terms of computational efficiency, the feature-
based method is significantly simpler, though both
methods operate in real-time on modern computers.
If substantially more particles were required by the
particle filter (as, for example, necessitated by a
more complex state vector), real-time operation may
become difficult.

As confirmation that other machine learning
techniques might apply, we tested an EKF in the
roles of tracking and prediction. Replacing the
tracking and prediction particle filter with an
EKF was straightforward, making use of the same
state vector, observation model, and motion model
as the particle filter. Despite its simplicity, the
EKF actually outperformed the particle filter on
short prediction intervals in all metrics, as seen
in Figure 11. The main shortcoming of the EKF
is that, unlike the particle filter, it is unable to
simultaneously track multiple hypotheses of the
system state. Because of this shortcoming, we were
unable to utilize the EKF in the training role in
a straightforward manner: It lost track of baton
movements more easily than the particle filter,
making training impossible. This shortcoming may
also partially explain the loss of performance in the
EKF at higher prediction ranges, seen most clearly
in the acceleration metrics in Figure 11c.
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Figure 9. Predicted paths
in (a) x and (b) y
dimensions (prediction
range of 200 msec).

Figure 9

Figure 10. Prediction error
as a function of prediction
range, comparing particle
filter and feature-based
method: (a) position,
(b) velocity, (c) acceleration,
and (d) direction error.

Figure 10
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Figure 11. Prediction error
as a function of prediction
range, comparing particle
filter and EKF: (a) position,
(b) velocity, (c) acceleration,
and (d) direction error.

Qualitative Assessment

As a preliminary qualitative assessment of the
predictive methods, a conductor was asked to blindly
rank and assess five short performances, comprising
particle filter and feature-based predictions 50
and 100 msec into the future, and the original
recording. Each sample consisted of the trajectory
of the baton tip and the corresponding audio
track, temporally aligned with the prediction look-
ahead where relevant. The conductor ranked the
original performance as the best, followed by the
particle filter at 100 msec, then at 50 msec (this
result due to slight phase variations throughout
the piece), and finally the feature-based method
at 50 msec and 100 msec. The most obviously
distracting element of the predicted paths was
the discontinuities in the feature-based method.
Dynamics tracking was evaluated as muted, even

in the best cases. The conductor observed that
the predictions were imperfect, but promising in
establishing the viability of prediction in general.
Note that the smoothing output filter was not yet
in place when this evaluation was performed.

Conclusions and Future Work

The results indicate that for relatively low prediction
ranges—one second or less, in the case of our specific
musical selection—our particle filter-based predictor
outperforms the feature-based predictor. The results
were assessed qualitatively by a conductor, and again
the particle filter outperformed the feature-based
methods. A number of concerns were raised by the
conductor, including insufficient responsiveness in
the dynamics and variations in phase even over a
subset of the piece.
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With respect to the intended application, the
output achieved from both methods is likely suffi-
cient for the purposes of carrying out an initial set
of experiments in combating latency in distributed
orchestral performances. Because these applications
will likely require a prediction range of less than
one second, the particle filter is a natural choice.

As evidence that other machine learning tech-
niques might apply, we also demonstrated an EKF
taking the place of the particle filter in tracking and
prediction over short intervals. Its inability to track
multiple hypotheses makes use of the EKF in the
training task less straightforward, however.

An obvious next step is to repeat the experiments
presented here on a range of musical pieces, with
a number of different conductors. Doing so with
data collected under real performance conditions
would better validate the utility of the system in
real-world conditions. To address the issues raised in
the qualitative assessment, the particle filter might
be adjusted to maximize performance with respect
to perceptually based metrics. For example, the filter
could be re-tuned to exhibit greater responsiveness
to acceleration and velocity changes in areas where
the dynamics were considered to be muted.

One might further increase the predictive accu-
racy and range of both methods through the use
of a more comprehensive state space. Including
articulation as a state variable, for example, would
increase the flexibility of the system significantly.
Similarly, adding velocity to the translation and rate
of change to the scale dimensions should increase
the predictive ability of the system. Each of these
enhancements necessitates more particles, however,
posing a challenge to real-time implementation. The
use of Rao-Blackwellization (Khan, Balch, and Del-
laert 2004) to exploit redundancy in the state space
might simplify the filter sufficiently for real-time
operation, even with this higher dimensionality.

Additional work is needed in addressing the
problems of starting a performance, automated
segmentation for training, and automatic determi-
nation of model, some of which could be derived
directly from the input data. Looking further ahead,
these techniques might be applied to a more com-
plex motion model, including the 3-D structure of
the conductor’s arm. As these problems are solved,

we look forward to testing the predictive tech-
niques to combat latency in an actual distributed
performance.
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