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Abstract

Donald Gilbert Dansereau Doctor of Philosophy
The University of Sydney January, 2014

Plenoptic Signal Processing for Robust

Vision in Field Robotics

This thesis proposes the use of plenoptic cameras for improving the robustness and simplicity
of machine vision in field robotics applications. Dust, rain, fog, snow, murky water and
insufficient light can cause even the most sophisticated vision systems to fail. Plenoptic
cameras offer an appealing alternative to conventional imagery by gathering significantly
more light over a wider depth of field, and capturing a rich 4D light field structure that
encodes textural and geometric information.

The key contributions of this work lie in exploring the properties of plenoptic signals and
developing algorithms for exploiting them. It begins by laying the groundwork for the
deployment of plenoptic cameras in field robotics applications by proposing a novel cam-
era model and schemes for decoding, calibration and rectification appropriate to compact,
lenslet-based devices.

The frequency-domain shape of plenoptic signals is elaborated as the intersection of a highly
selective 4D hypercone and a 2D fan. This fundamentally four-dimensional hyperfan shape
informs the construction of efficient linear filters which maintain depth of field by focusing
on a volume rather than a plane. We show these filters to improve contrast in low light
and through attenuating media such as murky water and fog, while reducing the impact of
occluders such as snow, rain and underwater particulate matter.

The properties of a static scene as seen by a mobile plenoptic camera are considered. A ge-
ometric derivation yields a series of methods for performing featureless 6-degree-of-freedom
visual odometry, generating 3D scene models as a useful by-product. The derivation culmi-
nates in a closed-form generalization of optical flow which directly estimates camera motion
from first-order plenoptic derivatives. An elegant adaptation of this so-called plenoptic flow
to lenslet-based imagery is demonstrated, as well as a simple, additive method for rendering
novel views.

Finally, the isolation of dynamic elements from a static background is considered, a task
complicated by the non-uniform apparent motion caused by a mobile camera. An elegant
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Abstract iii

closed-form solution is presented which, through an adaptation of plenoptic flow, identi-
fies dynamic objects as those breaking the rules of parallax motion. A second solution
demonstrates an application of light field principles to conventional imagery, co-registering
spatially co-linear but temporally disjointed monocular images into a plenoptic signal. This
allows distractor isolation and removal using a linear filter and its inverse.

This work emphasizes non-iterative, noise-tolerant, closed-form, linear methods with pre-
dictable and constant runtimes, making them suitable for real-time embedded implementa-
tion in field robotics applications.
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Chapter 1

Introduction

“The sea is everything! It covers seven tenths of the terrestrial globe. Its breath

is pure and healthy. It is an immense desert, where man is never lonely, for he

feels life stirring on all sides. The sea is but the embodiment of a supernatural

and wonderful existence; it is but movement and love; it is living infinity...”

– Jules Verne

Computer vision is a broad and challenging field. Since it was first assigned as a summer

student project in 1966 [37], impressive inroads have been made by an ever-expanding team

of researchers. Whether the original student is still involved is unclear.

1.1 Motivation

A vision system depends intimately on its input, and it is noteworthy that in so well-

established a field as photography, three important technologies have recently come into

prominence. Depicted in Figure 1.1, these are the time of flight camera, which employs

the finite propagation rate of light to measure depth; the structured light camera, which

employs known projected patterns of light to estimate depth; and the plenoptic (also light

field) camera, which employs multiple-aperture optics to implicitly encode texture and

depth.

This work is concerned with exploring the third of these, plenoptic cameras, as a means

of simultaneously enabling greater robustness and simplicity in computer vision. The key

1
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(a) (b) (c)

Figure 1.1 – Three camera technologies enjoying recent prominence: (a) time of flight, (b)
structured light, and (c) plenoptic.

motivations for this lie in field robotics, including the challenging environments, limited

platforms, and an opportunity to closely couple optics and computing in a powerful inte-

grated sensor.

1.1.1 Robustness in Computer Vision

Working solutions have been demonstrated across a range of domains for many of the

major problems in computer vision, including mapping, modelling, localization, tracking,

classification and recognition [8, 38, 92, 118, 154, 155, 201]. The unveiling of Google’s

driverless car in 2011, and subsequent issuing of a license for it to operate on Nevada’s

streets in 2012, are testament to the strength of modern computer vision technologies,

amongst others.

However, because they operate outside, field robots – including the Google driverless car –

are sometimes exposed to visually challenging conditions capable of impeding their vision

systems1. Dust, rain, fog, snow, smoke, glare and low light are all regularly encountered

by unmanned ground vehicles (UGVs), unmanned aerial vehicles (UAVs) and marine un-

manned surface vehicles (USVs). Autonomous underwater vehicles (AUVs) must contend

with the underwater equivalents, including murky water, suspended particulate matter and

dynamic light effects such as the light beams and caustics depicted in Figure 1.2. These

conditions can interfere with even the most sophisticated vision algorithms, including those

that have evolved over millions of years. Anyone who has driven in drifting snow, depicted

in Figure 1.2(b), knows that this simple scenario can cause the convincing illusion that the

1In this work we define field robotics broadly as the application of robotics technologies in outdoor
settings, especially in unstructured, natural environments.
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(a)

(b)

(c)

Figure 1.2 – Examples of challenging environmental conditions: (a) Fog seriously impacts con-
trast in this aerial photo; (b) drifting snow can fool even the human visual system; and (c) dynamic
caustics and light beams dominate the visual information in this underwater scene.
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snow is static, and that the road is drifting – an unnerving sensation when one’s goal is to

stay on the road!

Even in ideal conditions, the complex, unstructured environments in which field robots

operate can complicate vision. Straight edges and right-angled corners are generally absent,

and outdoor scenes often display a high degree of self-similarity – one small patch of coral,

coastline or grassy plain looks very much like hundreds of other small patches, often at

multiple scales. These features can interfere with computer vision algorithms developed for

more regularly structured environments.

Finally, the mobile nature of the robotic platform is responsible for a further class of hin-

drance. Field robots are not generally static, indeed they are sometimes incapable of re-

maining still due to competing forces such as wind and water currents, or a need to maintain

lift or steering authority. This motion combined with complex scene structure results in

nonuniform projected motion which complicates some tasks. Change detection, for exam-

ple, can be accomplished by simple pixel differencing, but only if the camera is static or the

scene planar. Platform motion also limits exposure times due to motion blur, and complex

3D scene structure can necessitate a wide depth of field, limiting maximum aperture diame-

ter – both of these result in lower light sensitivity and reduced image quality in low-contrast

scenarios.

We take these challenges as motivation to develop robust computer vision algorithms suit-

able for use in challenging field conditions – one would certainly want Google’s driverless

car to be as capable as possible in conditions as common as rain, fog, or snow. In addition

to improving performance in existing applications, we are motivated by the possibility of

broadening the range of conditions under which robotic deployments are possible.

1.1.2 Computational and Behavioural Simplicity

We have identified an opportunity to improve the robustness of computer vision in field

robotics. However, with the rich information accessible through other sensors one might

ask why vision should be considered at all. Historically, roboticists have found great suc-

cess in addressing challenging conditions by turning to alternative sensing modalities. Lidar

sensors, for example, robustly generate 3D point cloud models using active, laser-based sens-

ing. They have been employed in mobile robotics since as early as 1977 [103], and directly
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Figure 1.3 – Cameras offer more information at lower weight, size and monetary costs than any
other sensor; modern cellular telephones perform face detection and image registration as enabled
by these economical sensors.

provide detailed and accurate 3D scene models with minimal external computation. Other

sensors employed in robotics include inertial navigation systems, global positioning sys-

tem (GPS) receivers, compass, Doppler-based odometry, radar, acoustic imaging, infrared

and acoustic range-finding, and pressure-based altimeters and depth sensors. Increasingly,

two of the alternative camera technologies depicted in Figure 1.1, the time of flight and

structured light-based RGB-D sensors, are also finding adoption within the robotics com-

munity [132, 148, 189].

We observe that in the diverse range of available sensors, cameras occupy a unique niche by

measuring dense colour and textural detail that are not accessible by other means. Further-

more, cameras present no possibility of inter-sensor interference, unlike many active sensors,

and are appropriate for outdoor use, unlike active infrared sensors such as Microsoft’s struc-

tured light-based Kinect.

We further note that cameras deliver more information at a lower cost than other sensors.

At the time of writing, one particular off-the-shelf camera – depicted in Figure 1.3 – costs

less than USD✩4, delivers 300,000 pixels 30 times a second, draws 120 mW of power, and

fits inside a cube 3.2 mm on a side, including optics. A similar 8 Megapixel model comes

at a modest increase in size and cost. Even including the cost of computing hardware,

this is orders of magnitude less expensive than lidar or imaging sonar, in terms of financial

cost, size, weight and power consumption. Indeed, applications such as face tracking and

image mosaicing are already in common use on power-limited, low-cost and compact mobile

platforms – we refer of course to cellular telephones – and this is only possible by virtue of

lightweight visual sensing.

We hypothesize that an important barrier to the widespread adoption of visual sensing is the

complexity of vision algorithms. In this respect, tightly integrating cameras and computing
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as in the mobile phone example above makes good sense. Indeed we attribute much of the

success of RGB-D sensors to their pre-packaging of the transmission, sensing and computing

required to directly deliver co-registered depth and colour images. Similar attempts with

passive cameras, however, have not yet enjoyed the same level of success. This is at least

partially a symptom of the complexity of existing vision algorithms, both in terms of com-

putational burden and range of behaviour. As an example, depth estimation from stereo

matching shows a much more complex range of behaviours and failure modes than RGB-D

cameras, making the latter significantly easier to integrate into robotics applications.

These observations underline an opportunity to develop simple and consistent computer vi-

sion algorithms, enabling the development of tightly integrated and easily deployed sensors.

Aside from filling an important general-purpose niche, we expect that the modest size and

power requirements of such devices would enable new levels of autonomy in small robotic

platforms. This is especially true where external sensing is presently required, as in the

motion capture arenas employed in much of the recent quadcopter research.

1.2 Problem Statement

Based on the discussion above, there exists a clear opportunity to advance computer vision

in field robotics in two important areas:

1. Increasing robustness to difficult environmental conditions, in unstructured scenes and

under the constraints of a moving platform; and

2. Simplifying algorithms, both in terms of computational burden and behaviour, to

enable tightly integrated, predictable and easily deployed vision systems.

We expect that progress under these broad objectives will yield improved performance in

existing applications, while allowing new forms of autonomy where previously prohibited by

environmental conditions or limited sensor payloads. To address them, we turn to the third

technology depicted in Figure 1.1, the plenoptic camera. These passive devices share many

of the advantages of conventional cameras, but measure a rich, 4D light field structure that

implicitly encodes both geometry and texture. Our hypothesis is that plenoptic cameras

can enable the algorithms required to accomplish the goals enumerated above. The key

challenges in showing this to be true involve understanding the properties of plenoptic

signals and developing the algorithms required to exploit them.
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1.3 Contributions

The broad topics addressed by this thesis are:

1. Calibration and rectification of plenoptic imagery;

2. Improved image quality in low-contrast scenarios;

3. Mitigation of environmental factors such as snow, rain and particulate matter; and

4. Dramatic simplification of a set of nontrivial problems in computer vision.

The specific contributions are:

Calibration and rectification – partially published as [45]

• A novel pinhole/thin lens model which better describes the real-world behaviour of

lenslet-based plenoptic cameras than previous models;

• A novel 4D plenoptic intrinsic matrix based on the physical camera model, which

linearly and reversibly relates rectified pixels and rays;

• The first published calibration scheme appropriate to lenslet-based cameras including

a novel ray reprojection calibration objective function; and

• Practical decoding and rectification methods appropriate to lenslet-based cameras.

Contrast enhancement and interference mitigation – partially published as [46]

• Identification of the frequency-domain region of support of the light field as the hy-

perfan at the intersection of a 4D hypercone and a 2D fan – this is more detailed and

selective than previous descriptions;

• Development of novel, inseparable 4D hyperfan filters surrounding this shape; and

• A demonstration that these effect volumetric focus, contrast enhancement in low

light and murky water, and attenuation of interference including occluding particulate

matter.

Visual odometry – partially published as [48]

• A novel geometric derivation yielding methods for featureless 6-degree-of-freedom

(DOF) visual odometry, culminating in a closed-form plenoptic flow solution;

• Improvement of previously-published closed-form gradient-based depth estimation;

• A novel, additive rendering method which generates novel views based on plenoptic

motion decomposition; and

• A novel adaptation of plenoptic flow to lenslet-based imagery.
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Distractor isolation – partially published as [49]

• Closed-form identification of dynamic scene elements in the presence of nonuniform

apparent scene motion, through a novel method employing the residuals of plenoptic

flow; and

• Linear distractor isolation and removal from spatially co-linear and temporally dis-

jointed monocular image sequences, through novel spatio-temporal light field con-

struction and filtering.

Parts of this work also appear in [112, 143, 152].

1.4 Outline

Several plenoptic devices are described throughout the literature, and Chapter 2 lists some

of the diversity of names under which these and light field processing concepts appear. It

also provides background relevant to the remainder of the thesis, including a description of

the theory of operation of a few important light field camera models.

Their compact nature makes lenslet-based plenoptic cameras particularly suitable for field

robotics. Chapter 3 lays the groundwork for employing these cameras by developing

appropriate decoding, calibration and rectification schemes. A physically based 4D plenoptic

intrinsic matrix is derived which straightforwardly and reversibly relates pixels and rays,

and a practical calibration objective function is presented. The proposed pinhole and thin-

lens camera model underlying this chapter is shown to more accurately represent the physics

of lenslet-based cameras than previous models.

In Chapter 4 the frequency-domain shape of plenoptic signals is derived as the hyperfan

at the intersection of a 4D hypercone and a 2D fan. Though past work has examined the

frequency content of light fields, this treatment differs in its level of precision, identifying

the highly-selective hypercone and hyperfan shapes, and proposing the irreducibly 4D filters

required to fully exploit them. The proposed hyperfan filters are shown to focus on a

volume, rather than a plane, effectively maintaining depth of field. They are also shown to

dramatically improve contrast in low light and through attenuating media such as murky

water and fog, while reducing the impact of noise and occluders such as snow, rain and

underwater particulate matter. Quantitative results demonstrate significant improvement

over previous work.
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In Chapter 5, the classically nonlinear problem of visual odometry is reduced to a closed-

form system of linear equations. A geometric derivation yields a series of methods for

performing featureless 6-DOF visual odometry, culminating in plenoptic flow, a closed-form

generalization of optical flow which directly estimates camera motion from first-order deriva-

tives. Although prior work has demonstrated similar equations, the geometric derivation

presented here provides unique insights allowing an improved method of closed-form depth

estimation, and an additive method for rendering novel views based on plenoptic motion

decomposition. A method is also derived for applying plenoptic flow to lenslet-based im-

agery, and an extension of plenoptic flow to distractor isolation is presented in the following

chapter.

In Chapter 6 the isolation of dynamic elements from a static background is considered,

a task complicated by nonuniform apparent motion associated with a mobile camera. An

elegant closed-form solution to this conventionally complex problem is presented which,

through an adaptation of plenoptic flow, identifies dynamic objects as those breaking the

rules of parallax motion. A second solution demonstrates an application of light field prin-

ciples to conventional imagery, co-registering spatially co-linear but temporally disjointed

monocular images into a plenoptic signal. This allows distractor isolation and removal using

a linear filter and its inverse.

Finally, Chapter 7 draws conclusions and indicates directions for future work. Throughout

this work, non-iterative (i.e. direct) closed-form and linear methods are emphasized. These

have predictable behaviours and constant runtimes, addressing the goal of simplicity set

out above. They are also noise-tolerant and, in the case of the hyperfan filter, noise- and

interference-attenuating, addressing the goal of robustness.

The non-iterative and closed-form nature of the methods presented here make them par-

ticularly suitable for hardware implementation. By employing field programmable gate

arrays (FPGAs) or application-specific integrated circuits (ASICs), very compact, respon-

sive, high-throughput and power-efficient implementations are possible. This line of research

is beyond the scope of the present work, but the curious reader is referred to [113–115, 196].



Chapter 2

Background

“Nonsense is that which does not fit into the prearranged patterns which we

have superimposed on reality... Nonsense is nonsense only when we have not yet

found that point of view from which it makes sense.”
– Gary Zukav

2.1 Related Work

We have identified field robotics as our primary motivation, and will be taking on specific

computer vision problems relevant to the field. We employ a specific sensor occupying a

niche within the spectrum of camera technologies, and we focus on a family of lightweight,

linear and analytic filtering and estimation approaches deriving from the principles of in-

formation theory and signal processing. Clearly, this work lies at the intersection of many

disciplines.

Of the related work, plenoptic signal processing is undoubtedly the most directly relevant –

Section 4.2 outlines a partial history of the field. The work presented here originates chiefly

from the confluence of multi-dimensional signal processing (MDSP) and image-based ren-

dering. The latter of these is the context in which the first plenoptic modelling and light

field papers came about [69, 102, 120]. Its underlying principle is to simplify the render-

ing of computer graphics by changing the emphasis of the model: Rather than capture

the geometry and texture of a scene, image-based rendering models the behaviour of the

light permeating it. This data-driven approach allows very fast rendering from arbitrary

10
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viewpoints, and from arbitrary cameras, allowing changes in focus, for example – this is

a key feature of consumer-driven plenoptic cameras today. The light field models at the

core of image-based rendering are directly observable by plenoptic cameras, and rendering

from light fields is an active area of research which continues to inform tasks in plenoptic

analysis [15, 65, 67, 108, 110].

The other key field driving this work is MDSP, which examines the underlying properties

of signals in order to develop efficient, often linear and analytic solutions to complex prob-

lems. The 3D plane wave analysis originating in MDSP and having applications spanning

astronomy, acoustics, radio and video processing [20, 81, 112] has strong parallels to the

4D planar analysis applicable to light fields. Indeed, a generalization of plane wave filtering

to 4D allows depth selective filtering in light fields [43]. MDSP underlies much of robotics

and computer vision. For example some of the recent, high-profile work on pulse detection

from video sequences is essentially a rediscovery of concepts from MDSP, employing spatio-

temporal bandpass filters to simply and robustly detect small, periodic signals [12, 198].

The specific technical questions tackled in this thesis are calibration, filtering, odometry

and change detection, each of which have rich bodies of research dedicated to them. Rather

than review these here, each chapter provides its own literature review. Modern plenoptic

signal processing addresses many more problems than these, of course, with recent work

spanning a broad range of topics including labelling [184], video stabilization [164], gas flow

reconstruction [84], depth estimation [16], and compressive sensing-based acquisition and

compression [119].

2.2 A Rose by Any Other Name

The technology enabling the present work is the plenoptic camera, which in the introductory

chapter we noted has only recently come into prominence. Indeed, off-the-shelf cameras have

only become commercially available in the last few years. Anecdotally, exposure of plenoptic

processing ideas is steadily increasing, and interestingly seems to be inversely proportional

to level of integration: Exposure is highest in imaging, lower in computer vision, and lowest

in robotics. The technology behind plenoptic cameras is not new, however, and the key

ideas behind it have appeared in different domains and under different names for more than

a century.
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The history of plenoptic photography has appeared elsewhere [64], and so rather than

reproduce it here this section seeks to expose the many names and keywords under which

similar ideas have been explored. We do this with the hope of reducing duplication of effort

due to a complex taxonomy of nomenclature that can easily conceal relevant research. A

list of keywords is included at the end of the section for convenience.

Throughout this thesis the terms “plenoptic camera” and “light field camera” are used

essentially interchangeably. Historically, plenoptic was reserved strictly for the 7D function

describing all light passing through all space over all time, as described by Adelson and

Bergen in 1991 [2]. The modern interchangeability is due largely to Lytro’s popularization of

their commercial device under the name plenoptic camera, though we do note earlier usage,

including Adelson’s 2002 paper describing depth estimation from a plenoptic camera [1].

The term light field was itself borrowed from Gershun’s 1936 work, in which it refers to a

different concept, the irradiance vector as a function of position [66]. Levoy and Hanrahan

were the ones to borrow this term, in their 1996 paper on image-based rendering [102] –

they do acknowledge the discrepancy between theirs and the earlier usage, further noting

that some physicists later turned to the term photic field to more clearly distinguish the

concepts [124], though that term is not in common usage. In the same year that Levoy and

Hanrahan published their light field work, Gortler et al. published a similar image-based

rendering paper under the name lumigraph [69].

Astronomers employ wavefront sensors to control adaptive optics. These first appeared

as an aperture array device developed by Hartmann in 1900 as a means of tracing the light

passing through a telescope [74]. Though its use is specific to astronomy, to the author’s

knowledge this is the earliest example of a light field sensor. In their 1971 work, Shack and

Platt describe a refinement on Hartmann’s array employing lenslets [159], and this is the

variant in common use today under the name Shack-Hartmann sensor. Outside astron-

omy, Lippmann created the first plenoptic sensor under the name integral photography

in 1908 [105].

The term polydioptric camera was introduced by Neumann et al. [129] to elicit the

multiple refractive paths associated with physical plenoptic camera embodiments. Neumann

argues for use of this term to clearly distinguish between the continuous-domain plenoptic

function and the discrete subset that can be measured by practical devices.
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The term compound eye [173] is sometimes employed for lenslet and array-based cameras,

and cameras employing attenuating masks appear under the names mask-based capture,

dappled photography and coded aperture imaging [10, 96, 100, 179, 199]. Early,

primarily 2D analyses of light fields employed the name epipolar image or epipolar-

plane image [11, 18], and these terms still occasionally appear.

A camera array [190] captures a light field, as does an appropriately configured camera

gantry [43]. Work sometimes appears under variants of the array idea, including catadiop-

tric array [172, 204], reflective array, refractive array, and multi-axial imaging [4].

A less well-structured collection of viewpoints is not conventionally referred to as a light

field camera, but ideas applicable to plenoptic imaging sometimes appear in the context of

multiple camera or multi-view scenarios [165, 205].

Finally, light field cameras belong to the greater classes of generalized and computa-

tional cameras [58, 97, 187].

Table 2.1 – Keywords under which plenoptic processing concepts appear

aperture array light field

camera array lumigraph

camera gantry mask-based camera

catadioptric array multi-axial imaging

coded aperture imaging multiple camera

compound eye multi-view

computational camera photic field

computational photography plenoptic camera

dappled photography polydioptric camera

epipolar image reflective array

epipolar-plane image refractive array

generalized camera Shack-Hartmann sensor

integral photography wavefront sensor

2.3 Plenoptics

It is important to understand that light is a higher-dimensional phenomenon than one might

intuitively conclude. A 2D photo, after all, goes most of the way towards representing what

we see with our own eyes, minus depth. So, goes the reasoning, perhaps light is a 3D phe-
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nomenon? In 1991, Adelson and Bergen proposed that light could be understood in a much

higher-dimensional space [2]. Their “plenoptic function” – so-named by prepending optics

with plenum, a Latin word meaning “full” – describes light in seven dimensions: time (1),

space (3), direction (2) and frequency (1). One might also add mode of propagation, in

particular polarization, to this list.

The plenoptic function inspires us to contemplate light not in terms of objects, geometry

and texture, but rather in terms of light rays themselves. A scene is no longer a set of

surfaces, but rather a volume through which light rays flow, and the act of seeing is no

longer one of reaching out to objects with rays, but of measuring the light passing through

two openings, the pupils of our eyes.

This shift to thinking about the light itself is what allowed Levoy and Hanrahan’s image-

based rendering [102]. Because the plenoptic function represents all the light moving

through a scene, determining what a specific camera, at a specific point in space would

see is a simple matter of querying the plenoptic function with the appropriately selected

rays – those that pass into the camera. For a suitably sampled representation of the plenop-

tic function, this querying requires only interpolation.

2.3.1 The Light Field

The plenoptic function is of a higher dimensionality than is required for image-based ren-

dering, and a key insight in [102] was to reduce the dimensionality to a 4D subset, the light

field, making the storage requirements associated with representing the plenoptic function

significantly more manageable. Similar parameterizations had previously been explored

in optics [72, 197], but this was the first time such a parameterization was employed for

processing digital images. Time was discarded in favour of static scenes, and frequency

replaced with the three colour channels typical of digital colour representation. Note that

we exclude the three colour channels when counting the dimensionality of the light field, as

they are generally treated independently, akin to having three 4D signals.

The astute reader will have noticed that an extra dimension remains unaccounted for in the

above: Three spatial and two directional dimensions add up to five, not four. An important

insight brought to light in [102] allows removal of one of the spatial dimensions: Light rays

do not change in value along their direction of propagation – at least, not until they hit
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Figure 2.1 – Two-plane parameterizations of light rays – shown is the relative two-plane param-
eterization. The points of intersection of a ray with two parallel planes completely describes its
position and orientation in space. By convention, the s, t plane is closer to the camera, and the
u, v plane is closer to the scene.

something, or pass through an attenuating medium. This realization allows light rays to

be parameterized in terms of four dimensions instead of five. A common way of doing so

measures each ray’s points of intersection with two parallel reference planes, requiring only

four numbers to describe the ray, two for each of position and direction.

The caveats in the above argument – that the light rays not impact a surface or pass

through attenuating media – are not as restrictive as they may first appear. Of course all

the light rays we might be interested in eventually do one or both of these things, but in the

unobstructed space of a scene through which the camera passes they do not. This means,

for example, that a light field model of a closed door will allow rendering of novel views in

front of the door, but not behind it.

2.3.2 Light Field Parameterizations

Throughout this work we employ light field parameterizations in which light rays are de-

scribed by their points of intersection with two parallel planes: an s, t plane, by convention

closest to the camera, and a u, v plane at distance D, by convention closer to the scene.

The continuous-domain light field signal L(s, t, u, v) describes all light rays passing through
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the s, t and u, v planes. The relative two-plane parameterization, depicted in Figure 2.1,

is so-called because the ray’s intersection with the u, v plane is expressed relative to its

intersection with the s, t plane, as shown. In the absolute two-plane parameterization, U

and V are expressed as s and t, in absolute coordinates. Though we employ uppercase U, V

to distinguish absolute coordinates, lowercase u, v can refer generically to both variants.

It is often most convenient to align the global coordinate system with the two-plane param-

eterization, as shown in Figure 2.1, so that s and x are aligned, and likewise for t and y.

The following section describes a camera array as a simple form of light field camera, and it

is most convenient to place the apertures of such an array within and aligned with the s, t

plane – such a set of cameras and their apertures are depicted in the figure as cubes and

circles in the s, t plane. One of the advantages of the relative two-plane parameterization

is that, if one selects D to equal the focal length of the cameras in the array, u and v then

coincide with physical coordinates on the image sensor. One can think of the s, t plane as

selecting a camera, and u, v as selecting a pixel.

The two-plane parameterization describes rays in terms of position and direction, and so

the terms angular and spatial are sometimes employed to describe these dimensions. One

interpretation is that s and t fix the position of a ray, while u and v fix its direction. In this

interpretation, s and t are spatial, and u and v are angular dimensions – this convention

is followed throughout the thesis. There are other interpretations, however, and we could

think instead of u, v fixing ray position – especially in the absolute parameterization – and

s, t fixing direction. Sometimes the scene is the focus of a discussion, and one might discuss

spatial and angular resolution of light rays leaving surfaces within the scene. Again, we

employ the first of these three interpretations.

Alternatives to the two-plane parameterization exist, most notably the spherical-Cartesian

parameterization, also known as the one-plane parameterization. This parameterization

describes a ray’s position using its point of intersection with a plane, and its direction using

two angles, for a total of four parameters. Unlike the two-plane parameterization, which

cannot describe rays that run parallel to the reference planes, the spherical-Cartesian system

can describe rays passing in all directions. Note that these parameterizations represent

essentially the same form of information, the 4D light field, and conversion between them

is possible except where rays run parallel to the reference planes.
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2.3.3 The Camera Array

A major strength of the light field representation is that the light field of a scene can be

directly measured by a passive optical system. This is in contrast to scene geometry, which

can only be measured by interacting with the scene via active methods like lasers, sonar, or

contact sensors. A variety of methods exist for measuring light fields, and some of these were

listed in Section 2.2. Of the light field measuring devices, an array of monocular cameras

is in many ways the most easily understood [190]. The array of images measured by such

a device straightforwardly maps to a 4D light field, with camera position determining s, t,

and pixel position determining u, v, as depicted in Figure 2.1.

Many of the properties of light fields are also most easily understood in terms of camera

arrays. For example, the increased light gathering of a light field camera is easy to see: In

the case of an N ×N grid of cameras, the amount of light captured is straightforwardly N2

the light captured by a single camera having the same depth of field.

2.3.4 The Lenslet-Based Camera

A second type of camera employs an array of lenslets within the optical path of a monocular

camera [135]. Depicted in Figure 2.2, the principle is to split light across different pixels

based on its direction of arrival. The main lens focuses the scene on the lenslet array, and

the lenslet array focuses the pixels at infinity, or equivalently on the main lens. That this

measures a light field is less intuitive than in the case of a camera array. However, the

idealized model shown in Figure 2.3 shows how tracing a ray for each pixel through the

camera and into the scene reveals a virtual aperture array in front of the main lens. For

a camera with N × N pixels beneath each lenslet, there are N × N such virtual cameras.

This model is elaborated in Chapter 3.

While it is evident that an array of cameras gathers more light than a single camera, it is less

obvious that a lenslet-based camera also does so. This well-established fact has appeared

in the literature [14, 135], but is often misunderstood or overlooked. It is our hope that an

informal but intuitive explanation will assist in clarifying this important point.

When we compared a single camera and an array, we did so without changing depth of field.

This is important because depth of field and light gathering trade off directly. When we
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Figure 2.2 – The lenslet-based plenoptic camera – Light from an object in the scene (right)
passes through the main lens (blue), and is focused on a lenslet array (green). The lenslets
split the incoming light across many pixels (left), based on direction of arrival. A single pixel is
highlighted in yellow, illustrating the aperture size of a conventional camera with the same depth
of field.

say a camera gathers more light, we could equivalently say it has a wider depth of field –

the key is the ratio between the two. The depth of field of a camera is determined by the

spatial extent of the rays integrated by each pixel. Referring to Figure 2.2, the yellow cone

of light represents the rays integrated by one pixel, and the cone’s extents at the aperture

determine depth of field. This is akin to the baseline of a stereo camera: Smaller changes in

depth are observable with larger baselines, and so it is with the pixels of a camera. Pixels

with smaller “baselines” – extents at the aperture – are less sensitive to changes in depth,

and therefore have a wider depth of field.

In a conventional camera pixels integrate light across the whole aperture, and so the “base-

line” of every pixel equals the full aperture diameter. This can be seen by replacing the

lenslet array in Figure 2.2 with a pixel array, one pixel per lenslet, to yield a traditional

camera. It should be clear that the path highlighted in red depicts the light integrated by a

single conventional pixel, and that it has a full-aperture baseline. In the plenoptic camera,

lenslets split arriving light across multiple pixels, and so a single pixel integrates across a

fraction of the aperture, as depicted by the yellow path. The smaller baseline of this pixel

yields a wider depth of field.

So, to make a conventional camera with the same depth of field as the plenoptic camera

depicted in Figure 2.2, it would need to narrow its aperture to match the yellow path.
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Figure 2.3 – An idealized model shows how the lenslet array results in a virtual camera array
in front of the main lens. Here a single ray has been traced starting from each pixel on the left
at the i, j plane, passing through the nearest lenslet at k, l, then the main lens at s, t, and finally
into the scene where the u, v reference plane has been placed to coincide with the array of virtual
cameras. Ray colour illustrates the N virtual cameras, and the inset depicts the N = 4 pixels per
lenslet in this example.

Stated the other way around, if we were to start with a conventional camera with an

aperture matching the yellow path, we could construct a plenoptic camera with the same

depth of field but having the much wider aperture depicted by the red path.

In the case of camera arrays with N ×N cameras, we concluded there would be a gain in

light gathering of N2. Strikingly, for a lenslet-based camera with N × N pixels beneath

each lenslet, the aperture diameter can be increased by a factor of N , again resulting in an

N2 increase in light gathering. Referring to Figure 2.3, we see that this lines up with our

simplified model, which predicts an equivalent N ×N virtual camera array.

2.3.5 Focused Lenslet-Based Cameras

In 2009 Lumsdaine and Georgiev proposed a modification of the lenslet-based plenoptic

camera [109]. In the originally proposed camera, the main lens focuses on the lenslets,

as shown in Figure 2.2. In the “focused” plenoptic camera, sometimes called “plenoptic

camera 2.0”, the main lens is focused elsewhere, either in front of or behind the lenslets,

and the lenslets are focused to match. This increases the degrees of freedom in designing the

camera, allowing different tradeoffs between angular and spatial resolutions, and offering

different focusing behaviour than available with the traditional lenslet-based camera. A
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further variant on the focused plenoptic camera is the “multi-focus” plenoptic camera which

employs interleaved lenslets of different focal lengths to extend depth of field [60].

Although we do not specifically address the focused plenoptic camera, much of our devel-

opment is concerned with the structure of the 4D light field, which is independent of the

camera technology used to measure it. This is because it is possible to resample light fields

with different parameterizations into the two-plane parameterizations that we employ here.

A practical example is presented by Wanner et al. [182], in which images from a focused

plenoptic camera are converted to an epipolar form suitable for the two-plane parameteri-

zation. This is possible because all 4D plenoptic cameras measure fundamentally the same

kind of information, the light field. The optical properties of these cameras do differ, how-

ever, and for a generalization of the depth of field discussion above to the focused plenoptic

camera, the reader is referred to [63].

2.3.6 Tradeoffs

Of the camera technologies discussed here, the compactness of lenslet-based cameras makes

them particularly appealing in robotics applications – certainly more so than traditional,

large camera arrays. As we shall see in Chapter 3, manufacturing processes for both the

pixels and lenslets going into lenslet-based cameras are very precise, reducing the modes

of imperfection to a few degrees of freedom. Conventional camera arrays, on the other

hand, are difficult to align, and require many more degrees of freedom to describe their im-

perfections, especially in inter-aperture pose variations. The characteristics of forthcoming

miniaturized camera arrays like the one depicted in Figure 1.1(c) are yet to be seen, though

their separate lenses may behave much like camera arrays.

An important characteristic of lenslet-based devices is that they trade off angular and spatial

resolutions [62, 141]. For a 9 Megapixel sensor and 10× 10 pixels per lenslet, the resulting

light field has 10× 10 samples in s and t, and 300× 300 pixels in u and v. A conventional

camera employing the same sensor would measure one sample in s and t, and 3000 pixels

in each of u and v. A common interpretation is therefore that the plenoptic camera has

a fraction of the resolution. This could be restated as one form of information – angular

samples – being traded for another – spatial samples.
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Viewing this as a tradeoff of course assumes that pixel count is somehow fixed. However, the

number of pixels employed in a given robotics application often has more to do with external

considerations – bandwidth, memory, optics and minimum resolution requirements – than

by our ability to construct high-pixel-count sensors. 50 Megapixel sensors are a modern

reality, though few robotics applications would take on such a device as they simply have

no call for that many pixels. If we take the view that pixels are in abundant supply, the

question becomes how to best employ them. If one were to expend as many pixels as were

available – say 50 Megapixels – on angular samples, or trade some off for spatial samples,

which scenario would yield the most information about the scene? Which would yield the

most useful information about the scene for a given task? It is our suspicion that most

applications would benefit from a balance of both forms of information. Importantly, the

idea that plenoptic cameras reduce resolution is only accurate if one assumes a fixed pixel

count.

As a concrete example, Chatterjee and Milanfar in their 2010 paper “Is Denoising Dead?”

and follow-on work [26, 27] examine theoretical limits on the extent to which denoising tech-

niques can improve image quality. They later use this to derive a near-optimal patch-based

denoising method [28]. The method we describe in Chapter 4 can significantly outperform

even this nearly optimal method, but only because it benefits from the extra information

gathered by the plenoptic camera. The comparison is fundamentally unfair, but it does

highlight that if the end-goal is performance in contrast-limited environments, plenoptic

sensing offers a significant advantage.

A related tradeoff in plenoptic imaging is that of bandwidth. For most applications plenoptic

imaging yields higher data rates than conventional imaging. This is a consequence of the fact

that these cameras capture more information, and it has drawbacks in terms of computation,

transmission and storage requirements. In the introduction we highlighted these concerns,

proposing that tightly coupling computation and sensing might help address them. An

integrated sensor could directly deliver processed, low-bandwidth information that benefits

from the added information of plenoptic sensing, but shields the system from the associated

increase in bandwidth.

Table 2.2 explores design tradeoffs in a set of representative conventional and lenslet-based

plenoptic cameras. All these cameras feature a field of view (FOV) of 52 degrees and

are focused on a plane 2 m in front of the camera. The resolution column “Res.” shows
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Table 2.2 – Exploring tradeoffs in camera design

Model Focal
length
(mm)

Pixel
pitch
(µm)

Pixels Res.
(mm)

Near
focal
(m)

Far
focal
(m)

F/# DM

(mm)
Relative
light

DOF

Conventional Cameras
DOF 7 7 1M 2 0.609 ∞ 8 0.875 1 Wide
Light 7 7 1M 2 1.27 4.67 2 3.5 16 Narrow

Lenslet-Based Plenoptic Cameras, N = 4× 4
Dense 7 1.75 16M 2 0.609 ∞ 2 3.5 16 Wide
Large, DOF 28 7 16M 2 0.609 ∞ 8 3.5 16 Wide
Large, Light 28 7 16M 2 1.27 4.67 2 14 256 Narrow
Same, DOF 7 7 1M 8 0.197 ∞ 2 3.5 16 V. Wide
Same, Light 7 7 1M 8 0.609 ∞ 0.5 14 256 Wide

the pixel footprint on the focal plane, while the near and far focal distances are those for

which the circle of confusion on the sensor is equal to the pixel pitch, beyond which objects

experience defocus blur. “F/#” is the F-number of the camera, and DM is the diameter of

the camera’s aperture. The “Relative light” column reflects the total light gathered by the

camera, expressed relative to the light gathered by the first camera in the table. The final

“DOF” column is a qualitative description of depth of field, as determined by the near and

far focal distances, and is included to facilitate comparison.

The first two rows in Table 2.2 depict conventional cameras prioritizing depth of field and

light gathering, respectively. These two features trade off directly, and so a wide depth of

field and enhanced light gathering are not simultaneously possible. The next five cameras

depict a variety of plenoptic cameras with N = 4 × 4 pixels per lenslet. The first of these

lenslet-based cameras employs a denser sensor than the equivalent conventional cameras,

and its performance simultaneously offers a wide depth of field and enhanced light gathering,

while keeping all other features, e.g. resolution and field of view, fixed. The light gathering

of this camera is proportional to N2 which, in this case, is 4× 4 = 16.

Rather than employing a denser sensor, the next two plenoptic cameras in Table 2.2 employ

larger sensors to obtain more pixels, necessitating a change in focal length to obtain the

same field of view. These cameras prioritize depth of field and light gathering, respectively,

and the performance of the first matches that of the dense sensor example, while the second

opens its aperture to gather still more light – proportional to N4 = 256 times the light –

at the cost of a narrower depth of field.

The final two cameras employ the same sensor as the conventional cameras and therefore

show a reduced resolution. However, larger pixels gather more light and are less sensitive
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to defocus blur, and so the first of these cameras offers a very wide depth of field, while

the second offers significantly enhanced light gathering. We note that the final camera in

the table is probably not physically realizable due to its requirement for an F/0.5 lens, but

it does illustrate a useful point, that depth of field and light gathering trade off in lenslet-

based plenoptic cameras, but for a significantly more favourable ratio than in a conventional

camera.

The most important observation from this Table 2.2 is that lenslet-based cameras always

gather more light for a given depth of field than conventional cameras, on the order of N2

times the light for the fairest comparison, and as much as N4 times the light if a resolution

reduction is allowed. Though the above analysis ignored effects such as diffraction, aberra-

tions, and attenuation introduced by the lenslet array, gains as significant as N2 or N4 will

generally dominate over these higher-order effects.

2.3.7 Light Field Visualizations

We will be examining the characteristics of 4D plenoptic signals, and as such some means

of visualizing these signals will be useful. In general we will be slicing the light field into 2D

images. A u, v slice of the light field fixes s and t and examines the signal as it varies in u

and v. Returning to the two-plane parameterization and camera array analogy depicted in

Figure 2.1, it is clear that this corresponds to examining what a single camera in the array

sees. An example of a u, v slice is depicted in Figure 2.4.

It is often useful to examine different pairings of dimensions from the light field, in particular

s, u and t, v. Examples of these slices are also shown in Figure 2.4. The s, u slice is taken for

the v value highlighted by the red line, and the t, v slice is taken for the u value highlighted

by the blue line.

It is also possible to visualize the 4D light field as an array of slices. This is akin to tiling

all the images captured by the cameras in an array. Figure 2.5 shows an array of u, v

slices arranged according to their s, t positions. Notice the compact convention we follow in

labelling these axes. Here s and t are the outer dimensions, while u and v are the dimensions

of the individual tiles, but different permutations of dimensions are employed throughout

the thesis.
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Figure 2.4 – Visualizing subsets of the 4D light field in 2D slices. The large u, v slice can be
thought of as a conventional image taken from a camera sitting on the s, t plane. The s, u and t, v
slices – sometimes referred to as epipolar images – show characteristic straight lines with slopes
which, as discussed in Chapter 4, reflect depth in the scene.
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Figure 2.5 – Visualizing the light field as an array of u, v slices arranged in s, t. Here each tile
is a u, v slice like the one shown in Figure 2.4, and behaves like a conventional image taken from
a camera sitting at a specific location on the s, t plane. Tiles are arranged by their s, t positions.
Note the compact axis labelling convention which is followed throughout this work.
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2.4 Conventions

A new Mars lander is en route to the red planet when suddenly all contact is

lost. The project manager, lead scientist, and lead engineer are called in to

diagnose the situation, and they quickly discover the vessel has collided with

a previously unknown Martian moon. The manager is furious, “Why didn’t we

know about this?!” The scientist is elated, “We’ve discovered a new moon!” But

the engineer barely reacts. “Don’t worry about that,” he says, “it’s just noise.”

2.4.1 Noise and Interference

Noise and interference are often bundled into a single concept in informal conversation. We

will take a cue from telecommunications, the birthplace of the information theory that drives

much of computer vision, and instead adopt a strict distinction between the two [147, 160].

The absurdity of referring to a celestial body as “noise” in the above joke helps underline

the difference between these concepts: Noise is random and unpredictable, arising in any

receiver of electromagnetic waves, including cameras, due to the physical characteristics of

the measurement instrument. It has less to do with the incoming signal, and more to do

with what the receiver does to that signal.

Interference, on the other hand, is the presence of competing, real, physical entities within

the signal before it is even received. Competing users in a radio communication system

and occluders between the camera and the scene in photography are good examples of

interference.

That we identified noise as being both random and unpredictable may appear redundant,

but it helps distinguish it from other random but predictable phenomena. The random

pattern of gain fluctuations across the pixels of a camera – a phenomenon commonly and

confusingly referred to as “fixed-pattern noise” – is an example of a random but predictable

(fixed) phenomenon. Having measured the fixed pattern noise for a sensor, it can be com-

pensated for, at which point it is neither noise nor interference, but part of our model of

how the camera behaves.
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2.4.2 Notation

This thesis employs both absolute and relative two-plane parameterizations. Uppercase

U, V are employed for absolute coordinates, but lowercase u, v are general, and can refer

to either parameterization. This is useful because some statements – e.g. “Light passes

through the u, v plane” – are independent of parameterization. Each chapter specifies

which parameterization it employs.

The plane separation D is arbitrary unless otherwise stated. When discussing light field

dimensions, we follow the convention that s and t are the “spatial” dimensions, fixing the

positions of rays, while u and v are “angular”, describing their directions.

Sampled light fields are denoted L(n) = L(i, j, k, l), where n ∈ N
4 is an index into the light

field. Continuous-domain light fields are denoted L(Φ) = L(s, t, u, v), where Φ ∈ R
4 is a

ray in space as defined by the two-plane parameterization. Where it is clear from context

that we are discussing continuous-domain light fields, the calligraphic font is dropped.

The 4D continuous-domain Fourier transform of the light field is denoted L(Ω), while the 4D

discrete Fourier transform (DFT) is denoted L(ω). Again a calligraphic font distinguishes

the continuous-domain variable where necessary.

Time is denoted by τ to avoid confusion with the second light field dimension t.

The reference sheet provided in Appendix A summarizes the major light field properties

explored in this work.



Chapter 3

Decoding, Calibration and

Rectification

“Do the difficult things while they are easy and do the great things while they

are small. A journey of a thousand miles must begin with a single step.”

– Lao Tzu

In the background section we introduced the plenoptic camera and saw that these devices

measure a rich, 4D representation of light called the light field. In the following chapters we

will elaborate on the advantages these cameras present, and explore some elegant methods

for exploiting the extra information that they measure. But first some practical issues need

to be addressed: How can we calibrate these cameras? How can we rectify their images?

And in the case of lenslet-based cameras, how can we convert the 2D image measured by

the sensor into a 4D light field structure? These questions are central to the adoption of

plenoptic imaging in robotics, and this chapter seeks to address them.

Parts of this chapter are published as [45] – here we introduce a further reduction of the

free parameters in the calibration process, and a method for automating initialization of

the intrinsic model. The datasets and a toolbox including the methods described here are

available at http://marine.acfr.usyd.edu.au/permlinks/Plenoptic.

28
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3.1 Related Work

Ng alludes to many of the goals of this chapter in his dissertation [134], describing the need

to establish the correspondence between a pixel and the subset of the plenoptic function

that it integrates. That work demonstrates the correction of some forms of lens aberration

through appropriate resampling of a measured light field. What it does not address is how

to practically go about calibrating a model to describe a specific, real-world camera. All

of that work’s models are “open-loop”, in that they are based on the ideal geometry of

the optical system, and never adjusted based on what the real camera measures. In other

words, manufacturing variations and changes in optical configuration – e.g. focus – are not

addressed.

Previous work addressing calibration in plenoptic cameras has dealt primarily with arrays

or freeform collections of cameras [89, 91, 169, 171, 178]. Similar to this is the case of

a moving camera in a static scene, for which structure-from-motion can be extended for

plenoptic modelling [91]. Because camera array calibration has been well addressed, our

focus falls chiefly on lenslet-based cameras. We will show that array-based approaches

cannot be directly applied to lenslet-based cameras, because they introduce more degrees

of freedom than are necessary, and fail to accurately describe some of the optical properties

of lenslet-based cameras.

In other relevant work, Georgiev et al. [61] derive a simplified plenoptic camera model using

ray transfer matrix analysis. That work applies a simplification which effectively omits

an important effect in lenslet-based cameras, namely projection through the lenslets, and

argues for the equivalence of lenslet-based cameras and camera arrays. Their model invokes

an array of hundreds of thousands of cameras which can lie at virtual locations well outside

the actual camera – even at infinity. This model abstracts away from the physical device,

and it is unclear how one might efficiently adapt it to the task of calibration – this discussion

is elaborated later in the chapter.

Cho et al. [30] present an alternative method for what we refer to as “decoding” – converting

the raw 2D image on a lenslet-based camera’s sensor to a 4D light field. That work estimates

the rotation and offset of the projected lenslet image, but it never addresses calibration in

the sense of establishing a corerspondence between pixels and the rays they measure, nor

does it address rectification.
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The ray model we propose draws inspiration from the work of Grossberg and Nayar [70],

which introduces a generalized imaging model built from virtual sensing elements. As in that

work, we adopt a ray-per-pixel approach to calibration. However, the piecewise-continuous

pixel-ray mapping it proposes does not apply to the lenslet-based plenoptic camera due to

discontinuities at the edges of lenslets, and so our model and calibration procedure differ

significantly from theirs.

Finally, we draw inspiration from conventional monocular camera calibration – a useful

overview and empirical analysis are presented in [170] – and we utilize elements of the monoc-

ular camera calibration procedures presented by Heikkilä and Silvén [78] and Zhang [206]

in initializing our camera model.

The remainder of the chapter is organized as follows: In Section 3.2 ideal sampling patterns

are derived for a few different camera models, including lenslet-based plenoptic cameras. A

calibration methodology appropriate to lenslet-based cameras is presented in Section 3.3,

including a practical method for transforming raw 2D images into a 4D light field structure.

In Section 3.4 a method is demonstrated for rectifying light fields, removing the influence of

lens-induced distortions and yielding a regularly sampled light field. Experimental results

are presented in Section 3.5, followed by a discussion of alternative camera models in 3.6.

Finally, conclusions are drawn and directions for future work are indicated in Section 3.7.

3.2 Ideal Sampling Patterns

Here we derive the ideal sampling patterns of a few different camera models, ignoring for the

moment the distortions typical of real-world optical systems. We assume the camera has

its main lens centered at the origin, facing along the positive z axis. Incorporating camera

pose (“extrinsics”) requires a straightforward ray transformation [170]. We also ignore

the presence of any colour-encoding masks such as Bayer patterns, which raise important

questions regarding aliasing. A more complete analysis would jointly consider the refractive

optics and colour mask, and this is left as future work.
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Figure 3.1 – Parameterizing the integrating volume of a pixel in a generic camera: The pixel
i, j, shown as a red square within the camera on the left, integrates a 4D volume of rays which
can be described using the two-plane parameterization. The shape of the pixel volume will vary
based on the camera or the model being employed to describe it.

3.2.1 Plenoptic Pixel Shape

We begin with the simple question of what a single pixel sees. In any digital camera, each

pixel integrates a specific subset of the light incident on the camera’s lens. Traditionally

pixels are analyzed in terms of point spread function (PSF), the 2D response of the focused

optical system to a point source [191]. That the system must be focused is a significant

limitation, as this restricts the nature of the scenes for which the pixel’s behaviour is well

described. As we wish to understand the optical behaviour of the camera independent

of scene content, we turn to plenoptic analysis as a more powerful tool. We can more

completely describe the behaviour of a pixel by understanding it as a weighted integral over

the plenoptic function.

The shape of a pixel’s plenoptic integration is defined by exposure time, angular extent,

spatial extent, and colour response of the pixel. Here we are concerned primarily with the

spatial and angular extents of each pixel, which are determined by the camera’s optics and

the characteristics of the sensor. We can reduce the dimensionality of the resulting spatio-

angular integration to four following the usual arguments of the light field parameterization

presented in Section 2.3.2 [102]. By convention, we place an s, t reference plane coincident

with the main lens aperture, and an absolute U, V reference plane at a distance D in front of

the camera, as depicted in Figure 3.1. Note that because this is a conventional 2D camera,
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Figure 3.2 – Pixel sampling pattern for a pinhole camera – (a) The differently-coloured pixels on
the left are illuminated by different bundles of rays, all of which pass through the ideal pinhole on
the s, t plane. The finite extent of the aperture depicted on the s, t plane is ignored. (b) Because the
aperture is taken to be infinitesimally small, the integrating volume of each pixel is correspondingly
infinitesimally narrow in s (and by extension t), as seen in this s, U slice.

pixel indices are 2D, n = i, j. Each pixel’s value can be written as a weighted 4D integral

on the light field,

L(n) =

∫

4D

w(n,Φ)L(Φ) dΦ. (3.1)

We adopt the convention that w completely defines the pixel’s integrating volume, by

capturing both the weighting of each contributing ray, and taking on a zero weight outside

the pixel’s 4D extents. In the most generic model, w varies with the pixel’s index n and

both the position and direction of the incoming rays Φ.

The plenoptic integrating volume of a pixel in an ideal pinhole camera is depicted in 2D

in Figure 3.2. While this model realistically treats pixels as having a finite spatial extent,

the aperture is modelled as being infinitesimally small. The integrating volume for each

pixel is a unique square in U, V , but is a 2D delta function in s, t, taking on a value of

zero everywhere except s = t = 0. The consequence, depicted in Figure 3.2(b), is that the

integrating volume is not a volume at all, but is “flat” in s and by extension t. Notice

that the shapes of the pixels are identical, but tiled in the U, V plane. Of course real

pinhole cameras have a finite aperture diameter, resulting in nonzero per-pixel plenoptic

volumes [111].

The integrating volumes for pixels in a thin-lens optical system is depicted in Figure 3.3.

The integrating volumes for only two pixels are highlighted in (a) – each of the other pixels
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Figure 3.3 – Pixel sampling pattern for a thin lens monocular camera – (a) The bundle of rays
illuminating each pixel now takes on a finite size in s, t – for clarity, bundles for only two pixels
are shown. (b) The bundles for all of the pixels, shown in this s, U slice, have taken on a finite
size in s as determined by the aperture diameter.

will be illuminated by similar bundles. Each pixel now covers a range of s, t positions and

U, V directions, and so each pixel’s integrating volume is a 4D volume. The integrating

volumes take on the same shape for every pixel, as seen in (b), and they are tiled in U, V ,

but all take on identical values in s, t, with extents determined by the aperture diameter.

Thus far we have depicted pixel volumes in 2D cross-sections with straightforward gen-

eralizations to 4D. The weighting function w has yielded nicely-tiled, sharp-edged pixels.

However, it is not generally the case that pixel shape is separable into 2D cross-sections.

Real-world cameras with compound optical systems have complex 4D pixel shapes that are

not 2D separable, which vary across the sensor, and which have complex soft edges. A

simulated example of a complex pixel shape is depicted in s, t tiles in Figure 3.4 – refer to

Section 2.3.7 for a reminder of how to interpret the axes on this figure.

It is possible in principle to fully characterize the pixels of a camera in terms of their individ-

ual plenoptic integrating volumes. For most real-world applications this level of complexity

is unnecessary, and a few simplifying assumptions can vastly decrease the complexity of

both the camera model and calibration procedure.

3.2.2 Ray Approximation

A broadly-applied simplification is to model each 4D pixel volume as a single ray [70]. This

simplifies analysis, but also discards information. Importantly, if a camera could sample
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Figure 3.4 – This simulated 4D pixel shape demonstrates many of the qualities of real-world
pixels. This is the weighting function w for a single pixel – i.e. the 4D function w(Φ) for a fixed
index n. It displays soft, complex edges, and is not easily described in 2D. Calibrating pixels at
this level of detail requires specialized hardware and techniques beyond the scope of the present
work.

single rays, i.e. discrete points in plenoptic space, the resulting images would suffer from

significant aliasing. That this does not occur in real cameras is due to the adjacent or

overlapping integrating volumes associated with the pixels.

Assuming the 4D pixel shape is uniform throughout the light field image, one can imagine

the sampling process as one of first convolving the continuous-domain light field with the

pixel shape, then sampling at discrete points corresponding to the pixel volume centers.

This coincides closely with standard sampling theory, with the convolution acting as a low-

pass filter and effectively band-limiting the input light field so that aliasing does not occur.

The case of nonuniform pixel shapes is more complex, but the essential low-pass filtering

effect remains, and must be kept in mind when approximating pixels as single-ray devices.

The reader is referred to [40] for further information and an alternative parameterization

of plenoptic sampling patterns.

In the following we derive the ideal sampling patterns of various camera models by employing

the ray-per-pixel approximation.
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3.2.3 Monocular Cameras

The pinhole model depicted in Figure 3.2 is commonly used to associate rays with pixels in

monocular cameras. Some simple and well-established geometry [170] yields a relationship

of the form





i
j
1



 =





h1,1 h1,2 h1,3
0 h2,2 h2,3
0 0 1









U
V
1



 . (3.2)

The 3 × 3 H matrix is referred to as the camera’s “intrinsic” matrix, and for modern

hardware the term h1,2, which describes skew in the pixel geometry, is generally zero due

to the high degree of precision associated with modern sensor fabrication processes.

3.2.4 Camera Arrays

An array of cameras ideally repeats the sampling pattern of a single monocular camera

across a regular spatial grid. This is visualized in Figure 3.5, for which a thin lens model is

employed for each camera. Here k and l index a camera in the array, and i and j index a

pixel from that camera. Because of the large gaps evident in s and t, significant aliasing can

exist in these dimensions for array-based cameras, especially for large aperture spacings.

From the figure, a linear relationship is evident between camera index k and ray position

s. Similarly, ray direction U varies linearly with both pixel index i and camera index k.

These relationships can be expressed as
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. (3.3)

This could have been expressed more compactly and without the use of homogeneous coor-

dinates, but putting the relationship in this form draws a strong parallel with the intrinsic

matrices of the monocular and lenslet-based cameras.
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3.2.5 Lenslet-Based Plenoptic Cameras

In describing the lenslet-based plenoptic camera, we wish to employ the simplest model

capable of capturing the camera’s relatively complex pixel-to-ray mapping. Our proposed

model treats the lenslets as an array of pinholes and the main lens as a thin lens, as depicted

in Figure 3.6. Any further simplification, for example replacing the main lens with a pinhole

model, would result in the majority of pixels being inaccurately modelled as receiving no

light.

We derive an intrinsic matrix by employing ray transfer matrix analysis [140, 174]. Our

starting point is a pixel index expressed in homogeneous coordinates n = [i, j, k, l, 1], where

k, l are zero-based lenslet indices, and i, j are zero-based pixel indices. Note the underlying

assumptions that each pixel is associated with a single lenslet, and that the association is

known. The first part of the assumption holds for well-designed cameras, for which the

f-number of the main lens is matched to the f-number of the lenslets [135]. The second

assumption is addressed in the following section.

s,t

k=1

i,j

i,j

i,j

k=0

k=2

(a) (b)

Figure 3.5 – Pixel sampling pattern for a camera array. (a) A camera array shown with pixel
indices i, j and camera indices k, l (only k is shown). The U, V axis is not shown, but lies to the
right of the figure. Pixels from different cameras are highlighted to ease comparison with the s, U
depiction. (b) The sampling pattern for the camera array, displayed as a slice in s, U , is a tiling of
the sampling pattern for a single camera – compare to Figure 3.3. Note the potential for aliasing
due to gaps in the s, t dimensions.
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We proceed by converting the pixel index n to a ray representation suitable for ray transfer

matrix analysis. The ray is then propagated through the optical system, and finally con-

verted back to a light field ray representation. The full sequence of transformations is given

by

φA = H
φ
ΦH

MHTHΦ
φH

φ
absn = Hn. (3.4)

We derive each component of this process in the 2D plane, starting with the homogeneous

relative index n2D = [i, k, 1], and later generalizing the result to 4D.

The conversion from absolute pixel index to a ray is accomplished with

H
φ
abs =





1/Fs 0 -cs/Fs

0 1/Fµ -cµ/Fµ

0 0 1



 . (3.5)

Fs and Fµ are the spatial sampling frequencies in samples/m of the sensor and lenslets,

respectively, while cs and cµ are the offsets, in samples, of the same.

Next we express the ray as position and direction,

HΦ
φ =





1 0 0
-1/dµ 1/dµ 0
0 0 1



 , (3.6)

and propagate to the main lens

HT =





1 dµ + dM 0
0 1 0
0 0 1



 , (3.7)

U,V

d
M

dµ

i,j k,l

D

s,t

Figure 3.6 – In the lenslet-based plenoptic camera, we model the main lens as a thin lens and
the lenslets as an array of pinholes; grey lines depict lenslet image centers.
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where dµ and dM are the microlens and main lens separations as depicted in Figure 3.6.

Note that in the conventional plenoptic camera, the lenslet distance equals the lenslet focal

length, dµ = fµ, while in the focused plenoptic camera the lenslet distance can take on

other values.

Next we apply the main lens using a thin lens and small angle approximation

HM =





1 0 0
-1/fM 1 0

0 0 1



 , (3.8)

where fM is the focal length of the main lens, and convert back to the absolute two-plane

parameterization

H
φ
Φ =





1 0 0
1 D 0
0 0 1



 , (3.9)

with the main lens as the s, t plane, and the U, V plane at an arbitrary plane separation

D, as depicted in Figure 3.1. Multiplying through (3.4) is straightforward, yielding a 3× 3

homogeneous matrix. We treat horizontal and vertical components as being independent,

and so extension to 4D straightforwardly yields an expression of the form
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This homogeneous 5×5 plenoptic intrinsic matrix H is similar to the camera array intrinsic

matrix (3.3), but with more nonzero terms. In a model with pixel or lenslet skew we would

expect still more nonzero terms, though in practice we have found this to be unnecessary. We

expect this is due to the precision with which lenslet arrays are aligned in commercially-

available plenoptic cameras – relevant fabrication details are discussed in Ng’s doctoral

thesis [134].

Two sampling patterns for lenslet-based plenoptic cameras are depicted in Figure 3.7. Note

how, in the s, U slices depicted on the right, pixels are densely packed in all directions.

This results in less aliasing than for an array of cameras in the s and t dimensions – see,

for comparison, Figure 3.5(b). Note also how the sampling pattern differs for an integer
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Figure 3.7 – (a) In an idealized lenslet-based plenoptic camera with an integer number of pixels
per lenslet, e.g. N = 4, the camera can be conveniently modelled as N virtual apertures sitting in
front of the main lens at a distance of one (main lens) focal length. (c) In the more common case
of a non-integer number of pixels per lenslet, rays pass through a continuum of points, as depicted
for N = 4.7. (b,d) Inspecting the sampling patterns in s, U reveals a tight packing of pixels in
both variations – compare with Figure 3.5(b). In this figure colour reflects each ray’s direction of
propagation between the lenslet array and the main lens.
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i,j k,l

Figure 3.8 – A depiction of the effect of projection through the lenslets. This effect is typically
ignored in prior work, and can shift lenslet images significantly – by over 6 pixels in the Lytro,
more than 1⁄2 a lenslet diameter.

and non-integer number of pixels per lenslet, N . One of the ramifications of this is that,

for a non-integer N , the camera cannot be conveniently modelled as an array of apertures,

but rather light must be allowed to pass through a continuum of points in both space and

direction. This is discussed further in the results section, and as it relates to alternative

camera models in Section 3.6.

3.2.5.1 Projection through the lenslets

In deriving the plenoptic intrinsic matrix we made the simplifying assumption that the

lenslet associated with each pixel is known. This seems like a simple enough assignment,

most obviously accomplished by locating the lenslet center with the smallest Euclidean

distance to each pixel. If the main lens were an infinite distance from the lenslet array –

an approximation commonly applied in previous work [61] – this approach would hold.

A more realistic model places the main lens a finite distance from the lenslets. In this

scenario, tracing rays entering the main lens and passing through the lenslets, as depicted

in Figure 3.8, reveals a projection effect in which lenslet images are shifted towards the

edges of the sensor. The shift associated with this projection can be significant, more than

6 pixels in some Lytro imagery, i.e. more than half a lenslet image diameter.

To more accurately associate pixels with lenslets, then, rays can be traced from the center

of the main lens through the lenslets, as depicted by the grey lines in Figure 3.6. This

yields the ideal projected lenslet image centers, to which pixels can be associated using a
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simple Euclidean distance. In the following section we propose a decoding method which

implicitly deals with projection through the lenslets.

3.3 Calibration

Very rarely will a real-world camera conform to its ideal sampling pattern. Most fundamen-

tally, this is because lenses display more complex behaviours than their idealized models

describe, particularly near the edges of an image. In conventional monocular camera cal-

ibration, these lens distortions are modelled as a radially-dependent perturbation of ray

direction [170]. Manufacturing variation can also significantly alter the optical properties

of a camera. This is true in monocular cameras in the alignment of the lens components

and sensor, and even more so where lenslet arrays are concerned, as micron-scale vari-

ations in a lenslet grid’s position can easily yield multiple-pixel changes in the resulting

imagery. In the consumer-grade Lytro camera, for example, there appears to be very good

coplanarity of the lenslet array and the sensor, but variability in the in-plane lenslet array

alignment causes multiple-pixel variation between individual cameras. In the case of camera

arrays, perfectly aligning multiple cameras to be co-planar and aligned is very challenging

and so even carefully-constructed arrays display significant variations from the ideal model

described earlier.

In monocular camera calibration, a typical approach to calibration is to image a known

target – often a checkerboard – from multiple relative poses. Observed and predicted target

feature locations are compared to establish a reprojection error. The reprojection error is

minimized in an iterative nonlinear optimization over camera pose and model parameters.

Radial lens distortion is typically included in a second stage of optimization [170].

In calibrating an array of cameras, the monocular camera calibration procedure can be fol-

lowed closely, as each camera in the array can be treated independently. Adding constraints

based on the fixed relative poses of the individual cameras improves calibration accuracy.

Because of the difficulty of constructing perfectly co-planar and aligned camera arrays, an

idealized grid is seldom adequate to describe relative camera poses, and so the camera array

intrinsic matrix (3.3) simply does not apply well to real-world camera arrays. Each camera

must rather be allowed its own relative pose.
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Figure 3.9 – Crop of a raw image of a checkerboard

Calibration of monocular cameras, arrays of cameras, and multiple-camera setups in general,

are well-explored topics, and the reader is referred to the extensive existing literature [89, 91,

169–171, 178]. In the following, we tackle the problem of calibrating lenslet-based plenoptic

cameras.

3.3.1 A Chicken-and-Egg Problem

Calibrating lenslet-based plenoptic cameras represents a significant challenge because, com-

pared with monocular imagery, plenoptic imagery is more heavily abstracted from the reality

it represents. Figure 3.9 depicts a crop of a raw image of a checkerboard. We refer to the

process of converting such a raw 2D image to a 4D light field as “decoding”, though it is

literally a demultiplexing task: The 4D light field is multiplexed onto the 2D sensor by the

lenslet-based optical system [82, 186]. Decoding the light field requires knowledge of the

optical system, and in particular the locations and extents of the lenslet images, and so

calibration is required.
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Calibrating the light field camera will give us the information required to decode its images.

Unfortunately, there is no clear manner in which meaningful features can be extracted from

the raw 2D images without knowledge of the structure of the projected lenslet images.

Ideally we would decode the images, then find checkerboard corners in the resulting 4D

light field, perhaps treating it as an array of 2D images. Herein lies the chicken-and-egg

problem: Without first decoding the light field, there is no clear way to extract features and

calibrate, and without calibration there is no clear way to locate lenslet images and decode.

To bootstrap our way out of this conundrum we propose to begin with an incomplete,

rough calibration of those parameters required to decode the light field. From the resulting

uncalibrated 4D structure, feature extraction can be accomplished by treating it as a set

of 2D slices and applying conventional feature detection methods. A full calibration can

then be performed based on the extracted features. Any inaccuracies in the initial rough

estimate will be compensated for in the full calibration.

3.3.2 Decoding

The decoding process converts a raw 2D image into a 4D sampled light field. To accomplish

this, we form a rough estimate of the parameters of the lenslet grid based on a white image,

an image of a completely white scene, or taken through a diffuser. The model of the lenslet

grid allows us to resample the raw 2D image into a 4D light field. Strictly speaking, we do

not estimate the parameters of the lenslet grid, but rather the projected lenslet grid image.

The distinction is due to projection through the lenslets, and is important when establishing

a correspondence between physical camera geometry and calibration parameters.

We do not address the question of demosaicing Bayer-pattern plenoptic images – we instead

refer the reader to [203] and related work. We employ conventional linear demosaicing

applied directly to the raw 2D image. This may yield undesired effects near lenslet edges,

though these edge pixels are also typically heavily vignetted, and we therefore ignore a

tunable number of edge pixels during calibration. A more complete solution would jointly

address demosaicing and decoding.
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Figure 3.10 – Crop of a raw 2D image after demosaicing and without vignetting correction –
pictured is a rainbow Lorikeet.

3.3.2.1 Characterizing the Lenslet Grid

In general the exact placement of the lenslet array is unknown, with lenslet spacing be-

ing a non-integer multiple of pixel pitch, and unknown translational and rotational offsets

further complicating the decoding process. A crop of a typical raw 2D image is shown in

Figure 3.10 – note that the lenslet grid is hexagonally packed, further complicating the

decoding process.

A crop of a typical white image taken with a Lytro is shown in Figure 3.11. Because of

vignetting, the brightest spot in each white lenslet image approximates its center. This is an

approximation, but the calibration process will negate any inaccuracies it introduces. A low-

pass filter is applied to reduce sensor noise prior to finding the local maximum within each

Figure 3.11 – A white image with detected image centers shown as red dots.
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Figure 3.12 – Decoding the raw 2D sensor image to a 4D light field

lenslet image. Though this result is only accurate to the nearest pixel, gathering statistics

over the entire image mitigates the impact of quantization. Grid parameters are estimated

by traversing lenslet image centers, finding the mean horizontal and vertical spacing and

offset, and performing line fits to estimate rotation. A further optimization of the estimated

grid parameters is possible by employing an iterative nonlinear optimization process which

establishes a sub-pixel-accurate match by maximizing the brightness under estimated grid

centers. In practice this has proven to yield a negligible refinement to the estimated grid

parameters.

3.3.2.2 Resampling the Aligned Light Field Image

From the estimated grid parameters there are many potential methods for decoding the

raw 2D image to a 4D light field. The method we present was chosen for its ease of

implementation, and begins by demosaicing the raw 2D image and correcting for vignetting

by dividing by the white image. This demosaiced input is depicted on the left in Figure 3.12.

At this point the lenslet images, depicted in blue in the “2D Input” frame in Figure 3.12,

are on a generally non-integer spaced, rotated grid relative to the image’s pixels (green).

We therefore resample the image, rotating and scaling such that all lenslet centers fall on

the centers of pixels in the resampled image, as depicted in the “Align” frame. The required

scaling for this step will not generally be square, and so the aligned pixels are rectangular.
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Aligning the lenslet images to an integer pixel grid allows a very simple slicing scheme. The

light field is broken into identically sized, overlapping rectangles centered on the lenslet

images, as depicted in the top-right and bottom-left frames of Figure 3.12. The spacing in

the bottom-left frame represents the hexagonal sampling in the lenslet indices k, l, as well

as non-square pixels in the pixel indices i, j. It should be noted that interpolating along

k and l is difficult until the 2D structure is sliced into 4D, thus the motivation to slice as

early as possible.

Converting hexagonally sampled data to an orthogonal grid is a well-explored topic – see [33]

for a reversible conversion based on 1D filters. We implemented both a 2D interpolation

scheme operating in k, l, and a 1D scheme interpolating only along k, and have found the

latter approach, depicted in the bottom middle frame of Figure 3.12, to be an adequate

approximation. For rectangular lenslet arrays, this interpolation step is omitted.

As we interpolate in k to compensate for the hexagonal grid’s offsets, we simultaneously

compensate for the unequal vertical and horizontal sample rates. The final stage of the

decoding process corrects for the rectangular pixels in i, j through a 1D interpolation along

i. In every interpolation step we increase the effective sample rate in order to avoid loss of

information.

We denote the result of the decoding process the “aligned” light field LA(i, j, k, l). Note

that these i, j coordinates are not absolute, spanning the pixel count of the sensor, but

are rather relative in that they span a range [0, N − 1], where N is the number of pixels

per lenslet. This distinction must be accounted for when applying the plenoptic intrinsic

matrix. A simple additional step converts relative to absolute indices, as in

Habs
rel =





1 N -cpix
0 1 0
0 0 1



 , (3.11)

where cpix is an additional translational offset, in samples. Habs
rel gets inserted between H

φ
abs

and n in the physical derivation of the plenoptic intrinsic matrix (3.4).

3.3.2.3 Vignetting and Masking

Some of the light field LA, particularly near the corners in i and j, will contain undesired

information, namely content from adjacent lenslets. As such, a final step in the decoding
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process is to mask off pixels that fall outside the lenslet image. The applied mask should

match, as closely as possible, the actual shape of the lenslet images. As a first pass, we

apply a circular mask in i and j with diameter equal to the lenslet image spacing.

3.3.2.4 Adjusting the Camera Model

The decoding process included several manipulations which will change the apparent camera

parameters. By resizing, rotating, interpolating, and centering on the projected lenslet

images, we have created a virtual light field camera with its own parameters. In this section

we compensate for these effects through the application of correction coefficients to the

physical camera parameters. In effect, we derive a set of parameters for a virtual light

field camera, and these adjusted parameters can then be used with the plenoptic intrinsic

derivation from Section 3.2.5 to construct an estimate of the camera’s plenoptic intrinsic

matrix.

The aligned light field LA is based on a light field sliced using the centers of the projected

lenslet images. As discussed earlier in the context of ideal sampling patterns, these pro-

jected images will have a larger spacing than the physical lenslet array – this is depicted

in Figures 3.6 and 3.8, and must be taken into consideration when building the plenoptic

intrinsic matrix. Lenslet-based plenoptic cameras are constructed with careful attention to

the coplanarity of the lenslet array and image plane [135]. As a consequence, projection

through the lenslets is well-approximated by a single scaling factor, Mproj .

Scaling and adjusting for hexagonal sampling can similarly be modelled as scaling factors.

We therefore correct the pixel sample rates using

Mproj = [1 + dµ/dM ]
-1, Ms = NA/N S , MHEX = 2/

√
3,

FA

s = MsMprojF
S

s , FA

µ = MHEXF
S

µ , (3.12)

where superscripts indicate that a measure applies to the physical sensor (S), or to the

virtual “aligned” camera (A); Mproj is derived from similar triangles formed by each grey

projection line in Figure 3.6; Ms is due to rescaling in the decoding process; and MHEX

is due to hexagonal/Cartesian conversion. Extension to the vertical dimensions is trivial,

omitting MHEX .
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3.3.3 Distortion Model

We have established an idealized sampling pattern and have roughly decoded the light

field, but we still lack a model of the optical distortions introduced by a real-world camera.

The physical alignment and characteristics of the lenslet array as well as all the elements

of the main lens all potentially contribute to lens distortion. A complete description of

lens distortion is 4D, describing a mapping of rays to rays in plenoptic space. Later in

this chapter we will show that the Lytro consumer plenoptic camera suffers primarily from

directionally dependent radial distortion, which can be modelled in 2D as

θd = (1 + k1r
2 + k2r

4 + · · · )
(

θU − b
)

+ b, r =
√

θ2s + θ2t . (3.13)

The offset b captures decentering, k are the radial distortion coefficients, and θU and θd

are the undistorted and distorted 2D ray directions, respectively. Note that we apply the

small angle assumption, such that θ ≈ [dx/dz, dy/dz]. We define the complete distortion

vector as d = [b,k]. Extension to more complex distortion models is left as future work.

3.3.4 Reprojection Error

We now establish an appropriate calibration methodology based on the roughly-decoded

4D light field. The plenoptic camera theoretically gathers sufficient information to perform

calibration from unstructured and unknown environments. However, as a first pass we take

a more conventional approach familiar from projective camera calibration [78, 206], in which

the relative locations of a set of 3D features are known. For this purpose we employ the

corners of a checkerboard pattern of known dimensions, with feature locations expressed in

the frame of reference of the checkerboard.

As depicted in Figure 3.13(a), projective calibration builds an objective function from the

2D distance between observed and expected projected feature locations, n and n̂, forming

the basis for optimization over the camera’s poses and intrinsics. Plenoptic calibration is

complicated by the fact that a single feature will appear in the imaging plane multiple

times, as depicted in Figure 3.13(b). A tempting line of reasoning is to again formulate an

error metric based on the 2D distance between observed and expected feature locations in i

and j. The problem arises that the observed and expected features do not generally appear

in the same lenslet images – indeed the number of expected and observed features is not
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Figure 3.13 – In conventional projective calibration (a) a 3D feature P has one projected im-
age, and a convenient error metric is the 2D distance between the expected and observed image
locations |n̂ − n|. In the plenoptic camera (b) each feature has multiple expected and observed
images n̂,n. These may differ in number, and do not generally appear beneath the same lenslets.
We propose the per-observation ray reprojection metric |E3D| taken as the 3D distance between

the reprojected ray φ̂i and the feature location P . (c) The limitations of the 2D distance are clear
in this slice in k, i. The red line illustrates how the expected values n̂ are in fact a sampling of
the continuous-domain expectation associated with P . The 2D error is unrepresentative of the
true distance between the observations and this continuous-domain phenomenon. The depicted
4D error is an alternative to our proposed 3D error.

generally equal. Limiting error to the i and j dimensions also disproportionately penalizes

small errors in k and l, slowing or even preventing convergence. Shown in Figure 3.13(c) is

a case in which the 2D error is much larger than the more relevant 4D error. Note that the

expectation (red) is best described as a 4D plane, and not a set of points – the reason for

this will become clear in the next chapter.

A meaningful way of finding the “closest” distance between each observation and the ex-

pected feature surface is required. We propose two practical methods. In the first, each

known 3D feature location P is transformed to its corresponding 4D light field plane λ

using the point-plane correspondence [47] – this is covered in the following chapter. The
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objective function is then taken as the point-to-plane distance between each observation

n and the plane λ, as depicted by E4D in Figure 3.13(c). The second approach generates

a projected ray φ̂ from each observation n. The error metric, which we denote the “ray

reprojection error”, is taken as the point-to-ray distance between φ̂ and P , as depicted

in Figure 3.13(b). The two methods are closely related, and have experimentally yielded

similar results. We pursue the 3D distance, as it is computationally simpler.

The observed feature locations are extracted by treating the decoded light field as an array

of Ni ×Nj 2D slices, applying a conventional feature detection scheme [87] to each. If the

plenoptic camera takes on M poses in the calibration dataset and there are nc features on

the calibration target, the total feature set over which we optimize is of size ncMNiNj . Our

goal is to find the intrinsic matrix H, camera poses T , and distortion parameters d which

minimize the error across all features,

argmin
H,T ,d

nc
∑

c=1

M
∑

m=1

Ni
∑

s=1

Nj
∑

t=1

||φ̂s,t
c (H,Tm,d),Pc||pt-ray, (3.14)

where || · ||pt-ray is the ray reprojection error described above.

Each of the M camera poses has 6 degrees of freedom, and from (3.10) the intrinsic model

H has 12 free parameters. However, there is a redundancy between the rightmost column

of values, hi,5 for i = 1..4, which effect horizontal translation and orientation within the

intrinsic model, and the camera poses T . This redundancy could slow or even prevent

convergence as the redundant parameters drift in opposing directions in an unbounded

manner. We therefore force the rightmost column of the intrinsic matrix, hi,5 for i = 1..4,

such that pixels at the center of the pixel index range map to rays at [s, t, U, V ] = 0. Because

of this forcing, the physical location of the central ray on the camera will remain unknown,

and if it is required must be measured by alternative means.

The number of parameters over which we optimize is now reduced to 8 for intrinsics, 5 for

lens distortion, and 6 for each of the M camera poses, for a total of 6M + 13. Note the

significant simplification relative to multiple-camera approaches, which grow with sample

count in i and j – this is discussed further in Section 3.5.

As in monocular camera calibration, a Levenberg-Marquardt or similar optimization algo-

rithm can be employed which exploits knowledge of the Jacobian. Rather than deriving
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the Jacobian here we describe its sparsity pattern and show results based on the trust re-

gion reflective algorithm implemented in MATLAB’s lsqnonlin function [34]. In practice

we have found this to run quickly on modern hardware, finishing in tens of iterations and

taking on the order of minutes to complete.

The Jacobian sparsity pattern is easy to derive: Each of the M pose estimates will only

influence that pose’s ncNiNj error terms, while all of the 13 intrinsic and distortion pa-

rameters will affect every error term. As a practical example, for a checkerboard with 256

corners, viewed from 16 poses by a camera with Ni = Nj = 8 spatial samples, there will

be Ne = ncMNiNj = (256)(16)(8)(8) = 262, 144 error terms and Nv = 6M + 13 = 109

optimization variables. Of the NeNv = 28, 573, 696 interactions, (13 + 6)Ne = 4, 980, 736,

or about 17% will be nonzero.

3.3.5 Procedure

The calibration process proceeds in stages: First initial pose and intrinsic estimates are

formed, then an optimization is carried out with no distortion parameters, and finally a full

optimization is carried out with distortion parameters. To form initial pose estimates, we

again treat the decoded light fields across M poses each as an array of Ni ×Nj 2D images.

By passing all the images through a conventional camera calibration process, for example

that proposed by Heikkilä [78], we obtain a per-image pose estimate. Taking the mean or

median within each light field’s Ni × Nj per-image pose estimates yields M physical pose

estimates. Note that distortion parameters are excluded from this process.

We propose two methods for initialization of the plenoptic intrinsic parameters: Construc-

tion of the matrix from known physical camera geometry, and automatic initialization from

checkerboard images.

3.3.5.1 Initialization from Physical Parameters

In Section 3.2.5 we derived a closed-form expression for the intrinsic matrix H based on the

plenoptic camera’s physical parameters (3.4), and later derived correction factors associated

with the decoding process (3.11), (3.12). We can use these expressions to form a physically-

based initial estimate of the camera’s intrinsics. The physical parameters include a number
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of offsets which we have no basis for estimating: cs, cµ and cpix. As such, we set these to

center the sensor, lenslet array and absolute i, j indices, respectively.

We have found the optimization process to be robust to errors in the initial estimates, and so

in cases where the physical parameters of the camera are unknown, rough initial estimates

may suffice. However, in cases where no information relating to the camera’s geometry is

available, automatic estimation of the initial parameters may be preferable.

3.3.5.2 Automated Initialization

For automatic intrinsic initialization, we begin by forming an estimate of the focal length

of the main lens, f̃M . For this we employ a vanishing point-based method [22], applied to

2D k, l slices of the light field. By treating each lenslet as a pixel, we effectively estimate

the focal length of the main lens without consideration of the lenslet parameters.

Earlier in this section we initialized camera pose estimates by applying a monocular cali-

bration in k, l slices, yielding Ni×Nj pose estimates for each physical camera pose. We can

employ these poses to form an estimate of the effective “baseline” B of the camera. This is

a measure of the captured light field’s spatial extent in s and t, and it forms the basis for

an initial estimate of h1,1, the change in s as a function of the index i:

h1,1 ≈ ∂s/∂i ≈ B/Ni. (3.15)

Extension to h2,2 is trivial. We find a single, robust estimate of B for both horizontal and

vertical directions. For each of the M physical poses, there are Ni ×Nj sub-poses. We find

the distances of these sub-poses to their mean or median, designating these distances dij .

Sub-images in i and j represent a regular sampling of a disc – this is a consequence of the

circular nature of the lenslet images. As such, the mean of the distances dij should represent

2/3 of the disc’s radius. This allows us to formulate a robust estimate of the baseline B as

B ≈ 2(3/2)dij = 3dij , (3.16)

where dij denotes the mean. The resulting value for B completes the estimate (3.15).

For h3,3, the change in ray direction U as a function of lenslet index k, we treat the main

lens as a pinhole, and approximate its distance from the lenslet array as being equal to its
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i,j k,l s,t U,V

Figure 3.14 – Deriving h3,3 from similar triangles, treating the main lens as a pinhole.

estimated focal length, as shown in Figure 3.14. From the similar triangles depicted in the

figure, we see that

h3,3 ≈ ∂U/∂k ≈ -D/f̃M . (3.17)

Extension to h4,4 is trivial.

We have now estimated all the diagonal elements of the plenoptic intrinsic matrix. Based

on this diagonal estimate, we set the rightmost column of values, hi,5 for i = 1..4, by

forcing the center index in i, j, k, l to correspond to the ray at [s, t, U, V ] = 0. Although the

remaining components of the plenoptic intrinsic matrix are significant, we have found that

this partially-complete matrix is a sufficient starting point for carrying out calibration.

desir
ed

inverse
distortion

und
istor

ted

Figure 3.15 – Reversing lens distortion: Tracing from the desired pixel location nR through
the ideal optical system, reversing lens distortion, then returning through the calibrated physical
optical system to the measured pixel ñA.
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3.4 Rectification

We wish to rectify the light field imagery, reversing the effects of lens distortion and yielding

square pixels in i, j and k, l. Our approach is to interpolate from the decoded light field LA

at a set of continuous-domain indices ñA such that the interpolated light field approximates

a distortion-free rectified light field LR. In doing so, we must select an ideal intrinsic matrix

HR, bearing in mind that deviating too far from the physical camera parameters will yield

undefined pixels near the edges of the captured light field, where no information is available.

At the same time, we wish to force horizontal and vertical sample rates to be equal – i.e. we

wish to force h1,1 = h2,2, h1,3 = h2,4, h3,1 = h4,2 and h3,3 = h4,4. As a starting point, we

replace each of these four pairs with the mean of its members, simultaneously readjusting

hi,5, i = 1..4 so as to maintain the centering described earlier.

The rectification process is depicted in Figure 3.15, with the optical system treated as a

black box. To find ñA we begin with the indices of the rectified light field nR, and project

through the ideal optical system by applying HR, yielding the ideal ray φR. Referring to

the distortion model (3.13), the desired ray φR is arrived at by applying the forward model

to some unknown undistorted ray φA. Assuming we can find φA, the desired index ñA is

arrived at by applying the inverse of the calibrated intrinsic matrix Ĥ
-1
.

There is no closed-form solution to the problem of reversing the distortion model (3.13),

and so we propose an iterative approach similar to that of Melen [121]. Starting with an

estimate of r taken from the desired ray φR, we solve for the first-pass estimate φA

1 using

(3.13), then update r from the new estimate and iterate. In practice we have found as few

as two iterations to produce acceptable results.

3.5 Experiments

We carried out calibration on five datasets collected with the commercially available Lytro

plenoptic camera. The same camera was used for all datasets, but the optical configuration

was changed between datasets by adjusting the camera’s focal settings – care was taken not

to change settings within a dataset. Calibration on two further Lytro cameras has since

shown similar results.
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(a) (b) (c)

(d) (e) (f)

Figure 3.16 – Images from a variety of the poses appearing in the five plenoptic calibration
datasets, shown for (a,b) 3.61 mm, (c,d) 7.22 mm and (e,f) 35.1 mm grid sizes. These are k, l
slices taken at the center of i, j.

Three calibration grids of differing sizes were used: a 19 × 19 grid of 3.61 mm cells for

Datasets A and B, a 19× 19 grid of 7.22 mm cells for Datasets C and D, and an 8× 6 grid

of 35.1× 35.0 mm cells for Dataset E. Images within each dataset were taken over a range

of depths and orientations. In Datasets A and B, range did not exceed 20 cm, in C and

D it did not exceed 50 cm, and in E it did not exceed 2 m. Close ranges were favoured

in all datasets so as to maximize accuracy in light of limited effective baseline in the s, t

plane. This did not limit the applicability of each calibration to longer-range imagery. A

few sample images are shown in Figure 3.16.

The datasets each contained between 10 and 18 poses, and are available online1. Investi-

gating the minimum number of poses required to obtain good calibration results is left as

future work, but from the results obtained it is clear that 10 is sufficient for appropriately

1http://marine.acfr.usyd.edu.au/permlinks/Plenoptic

http://marine.acfr.usyd.edu.au/permlinks/Plenoptic
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Table 3.1 – Virtual “aligned” camera parameters

Parameter Value

N 10 pix
Fs, Fµ 716,790, 71,950 samp/m

cs, cµ, cpix 1,645.3, 164.7, 6 samp
dM , dµ, fM 6.6506, 0.025, 6.45 mm

diverse poses. Table 3.3 lists the datasets and their corresponding grid spacings and pose

counts.

The decoding process requires a white image for locating lenslet image centers and cor-

recting for vignetting. For this purpose, we used white images provided with the camera.

Figure 3.11 shows a crop of a typical white image, with the grid model overlaid. A closeup

of one of the checkerboard images after demosaicing and correcting for vignetting is shown

in Figure 3.9. We decoded to a 10-pixel aligned intermediary image yielding, after inter-

polations, 11 × 11 × 380 × 380 pixels. We ignored a border of two pixels in i, j due to

demosaicing and edge artifacts.

An initial estimate of the camera’s intrinsics was formed from its physical parameters,

adjusted to reflect the parameters of the decoding process using (3.11), (3.12). We refer

to this method as “blind” because it is based more on the theoretical characteristics of the

device than it is on measured signals. The adjusted parameters for Dataset B are shown in

Table 3.1, and the resulting intrinsics appear in the “Blind” column of Table 3.2.

Follow-on experiments replaced the initialization step with the automated initialization

described in Section 3.3.5.2. The resulting initial estimates showed significantly lower error

than the model-based blind initial estimates. Despite this difference, results were similar

throughout the remainder of the experiment. This serves as confirmation that the proposed

method converges to similar results over a wide basin of initial values.

For feature detection we used the Robust Automatic Detection Of Calibration Chess-

boards [87] toolbox2. All features appear in all images, simplifying the task of associating

them. Each calibration stage converged within 15 iterations in all cases, with the longer-

range datasets generally taking longer to converge.

Table 3.2 shows the estimated parameters for Dataset B at the three stages of the calibration

process: Initial (blind) estimate, intrinsics without distortion, and intrinsics with distortion.

2http://www-personal.acfr.usyd.edu.au/akas9185/AutoCalib/AutoCamDoc/index.html

http://www-personal.acfr.usyd.edu.au/akas9185/AutoCalib/AutoCamDoc/index.html
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Table 3.2 – Estimated parameters for Dataset B

Parameter Blind Intrinsics Distortion

H1,1 3.6974e-04 3.7642e-04 4.0003e-04
H1,3 -8.6736e-19 -5.6301e-05 -9.3810e-05
H1,5 -1.5862e-03 8.8433e-03 1.5871e-02
H2,2 3.6974e-04 3.7416e-04 3.9680e-04
H2,4 -8.6736e-19 -5.3831e-05 -9.3704e-05
H2,5 -1.5862e-03 8.3841e-03 1.5867e-02
H3,1 -1.5194e-03 -1.1888e-03 -1.1833e-03
H3,3 1.8167e-03 1.7951e-03 1.8105e-03
H3,5 -3.3897e-01 -3.3681e-01 -3.3175e-01
H4,2 -1.5194e-03 -1.1657e-03 -1.1583e-03
H4,4 1.8167e-03 1.7830e-03 1.8077e-03
H4,5 -3.3897e-01 -3.2501e-01 -3.2230e-01
b1 . . 1.5258e-01
b2 . . -1.1840e-01
k1 . . 2.9771e+00
k2 . . -3.4308e-03
k3 . . -5.5949e-03

Table 3.3 – RMS ray reprojection error (mm)

Dataset/grid Poses Blind Init. Intrin. Dist. Multi295 Multi631

A/3.61 10 3.20 0.535 0.146 0.0835 0.198 0.109
B/3.61 18 5.06 0.535 0.148 0.0628 0.178 0.0682
C/7.22 12 8.63 0.968 0.255 0.106 0.220 0.107
D/7.22 10 5.92 1.16 0.247 0.105 0.382 0.108
E/35.1 17 13.8 17.0 0.471 0.363 2.22 0.336

Table 3.3 summarizes the root mean square (RMS) ray reprojection error, as described in

Section 3.3.4, at the three calibration stages and across the five datasets. The “Init.”

column shows the reprojection error after applying the automated initialization method,

while the “Blind” column is for the blind method based on camera parameters only. The

results for intrinsic-only optimization (“Intrin.”) and optimization with distortion (“Dist.”)

were similar regardless of the initialization method, and the values shown are for the blind

initialization.

Results are also shown for two conventional multiple-camera calibration models, “Multi295”

and “Multi631”. The first represents the plenoptic camera as an array of projective sub-

cameras with independent relative poses and identical intrinsics and distortion parameters.

This is similar to prior work dealing with freeform and camera array calibration [89, 91, 178].

The second also includes per-sub-camera intrinsic and distortion parameters, increasing the

descriptive power but decreasing the generality of the model. Both camera array models
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grow in complexity with sample count in i and j, and for 7× 7 samples require 295 and 631

parameters, respectively.

From Table 3.3, the Multi295 model performs poorly, while Multi631 approaches the per-

formance of our proposed model. Referring to Table 3.2, we observe that the calibrated

h1,3 and h2,4 terms converged to nonzero values. These represent the dependence of a ray’s

position on the lenslet through which it passes, and a consequence of these nonzero values

is that rays take on a wide variety of rational-valued positions in the s, t plane, as depicted

in Figure 3.7(c). This raises an important problem with the multiple-camera models, which

unrealistically constrain rays to pass through a small set of sub-camera apertures, rather

than allowing them to vary smoothly in position. We take this to explain the poor perfor-

mance of the Multi295 model. The Multi631 model performed well despite this limitation,

which we attribute to its very high dimensionality. Aside from the obvious tradeoff in com-

plexity – compare with our proposed 13-parameter model – this model presents a risk of

overfitting and correspondingly reduced generality.

Figure 3.17 depicts typical ray reprojection error in our proposed model as a function of

direction and position. The top row depicts error with no distortion model, and clearly

shows a radial pattern as a function of both direction (left) and position (right). The

bottom row shows error with the proposed distortion model in place – note the order of

magnitude reduction in the error scale, and the absence of any evident radial pattern. This

shows the proposed distortion model to account for most lens distortion for this camera.

We have carried out decoding and rectification on a wide range of images – more than

1,000 at the time of writing. Examples of decoded and rectified light fields are shown in

Figures 3.18(a)–(f), as 2D slices in k, l – i.e. with i and j fixed. Rectification used a four-

iteration inverse distortion model. The straight red rulings aid visual confirmation that

rectification has significantly reduced the effects of lens distortion. The two last images are

also shown in Figure 3.19 as slices in the horizontal i, k plane passing through the center

of the Lorikeet’s eye. The slope of the light field in the i, k plane as measured at the bird’s

eye and at the building in the background are, respectively, −1.2 and 0.57, in both the

unrectified and rectified images. That these remain approximately unchanged is due to the

similarity between the rectified and calibrated camera intrinsic matrices. Most importantly,

that the straight lines display minimal distortion and maintain their slopes confirms that

rectification has not destroyed the 3D information captured by the light field.
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Figure 3.17 – Ray reprojection error for Dataset B. Left: error vs. ray direction; right: error
vs. ray position; top: no distortion model; bottom: the proposed five-parameter distortion model.
Note the order of magnitude difference in the error scale. The proposed model has accounted for
most lens distortion for this camera.

3.6 Alternative Camera Models

In this chapter we have advanced a specific model for characterizing lenslet-based plenoptic

cameras, namely the pinhole and thin lens model. Alternative models are possible, and

some have been suggested in related literature. The following sections discuss some of the

strengths and weaknesses of these alternative models.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.18 – Examples of (left) unrectified and (right) rectified light fields shown as k, l slices;
red rulings aid confirmation that rectification has significantly reduced the effect of lens distortion.
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(a)

(b)

Figure 3.19 – Slices in the horizontal plane i, k of the (a) unrectified and (b) rectified Lorikeet
images from Figures 3.18(e) and (f). Note the range of slopes present in these images – this is the
implicit encoding of depth information in the light field, and it is important that it has not been
destroyed by the rectification process.

3.6.1 An Array of Apertures

In an idealized lenslet-based camera with an integer number of pixels per lenslet N , the cam-

era can be accurately modelled as N virtual apertures in front of the main lens. This con-

venient way of understanding the plenoptic camera is illustrated in Figures 3.7(a) and (b).

It it clear from Figure 3.7(a) that for N = 4 pixels per lenslet there are only four unique

ray directions within the camera. Because the rays incident on the main lens are parallel,

this means that every ray passes through one of four points on a plane one focal length

in front of the main lens. The four virtual apertures manifest themselves in this space as

four parallel columns of pixels in s and U . The first pixel under each lenslet belongs to the

first column, the second pixel to the second column, and so on. Noteworthy is that as the
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number of pixels and lenslets increase, the number of virtual apertures does not change so

long as the pixels per lenslet N stays constant.

For a non-integer number of pixels per lenslet, many more ray directions arise within the

camera. This is depicted for N = 4.7 in Figures 3.7(c) and (d). Rather than passing through

a small number of points on the U plane, rays may pass through a continuum of points.

Notice that, in contrast to the idealized N = 4 case, as the number of lenslets within the

camera increases, so to do the number of points of intersection on the U plane. Inspecting

the situation in the s, U space, we see pixels no longer lie on straight lines, but rather take

on a continuum of values.

It may be noted that although they are not vertical, there are straight lines in Figure 3.7(d)

along which pixels align. Does this not also allow the camera to be represented as an array

of apertures? The answer is yes, but with a large number of apertures, the number and

geometry of which vary with the focal settings of the camera. This is discussed in more

detail below.

3.6.2 A Dense Array of Apertures

Georgiev et al. have noted that the plenoptic camera can be modelled as an array of thou-

sands of apertures, with a virtual aperture for every lenslet in the camera [61]. The exact

position and geometry of the virtual apertures is determined by the optical configuration

and focal settings of the camera. In the case of the focused plenoptic camera, the virtual

array tends to be within a few metres of the camera, while in the case of conventional

plenoptic camera, the virtual array lies at infinity. In Figures 3.7(b) and (d), these virtual

apertures correspond to the straight lines of pixels at 45 degrees which correspond to points

at infinity.

We have seen that pixels lying on straight lines in s, U space indicate that the corresponding

rays pass through common points, allowing representation of the plenoptic camera as an

array of virtual apertures. We have addressed the vertical lines of pixels in Figure 3.7(b),

and the 45-degree lines in both (b) and (d), but what of the lines sloping up and to the left

in (d)? These correspond to virtual points just in front of the s, U plane, as seen in (c).

As in the aperture-per-lenslet model, the number of apertures in this array grows with the

number of lenslets, and its geometry varies significantly with the focal setting of the camera.
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The large number of apertures these models yield and their high sensitivity to the focal set-

tings of the camera must be considered when pursuing them for the purposes of calibration.

In the case of conventional plenoptic cameras, dealing with virtual apertures at infinity may

be impractical. In contrast, the pinhole and thin lens model we pursued directly followed

the geometry of the camera, did not increase in complexity with lenslet or pixel count, and

always conformed to the physical layout of the camera regardless of focal settings – i.e. it

did not yield significant components at infinity or outside the camera.

3.7 Discussion and Future Directions

We have presented a simple camera model and method for calibrating a lenslet-based plenop-

tic camera. This included derivation of a novel physically-based plenoptic intrinsic matrix

and distortion model which relate the indices of a pixel to its corresponding spatial ray. We

proposed a practical objective function based on ray reprojection, and presented an opti-

mization framework for carrying out calibration. We also presented a method for decoding

lenslet-based plenoptic images without prior knowledge of the camera’s parameters, and

related the resulting images to the camera model.

Methods for initializing the camera model included a physically-based method employing

prior knowledge of the camera’s geometry, and an automated method that estimated the

plenoptic intrinsic matrix directly from calibration images. Finally, we showed a method for

rectifying decoded images, reversing the effects of lens distortion and yielding square pixels

in i, j and k, l. In the rectified images, the ray corresponding to each pixel is easily found

through a single matrix multiplication (3.10). We also note that the plenoptic intrinsic

matrix is invertible, meaning the mapping from rays back to pixels is similarly trivial.

Validation included five datasets captured with a commercially available plenoptic camera,

over three calibration grid sizes. Typical RMS ray reprojection errors were 0.0628, 0.105 and

0.363 mm for 3.61, 7.22 and 35.1 mm calibration grids, respectively. Real-world rectified

imagery demonstrated a significant reduction in lens distortion.

In this chapter we showed that a 2D distortion model is adequate to account for most of the

distortion in the Lytro consumer camera. However, further improvements in performance

and greater generality might be possible by considering more complex distortion models.
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The ray-per-pixel approximation might also be replaced with a more realistic per-pixel

plenoptic integrating volume.

Different calibration targets may yield elegant alternatives to the feature-based approach

presented here, including the “light field probes” proposed by Wetzstein et al. in the context

of measuring refractive objects [188]. The need for a calibration target might be avoided

altogether by allowing calibration from arbitrary images, robustly matching scene features

across the light field and between poses. Similarly, a single image theoretically contains

sufficient information to reconstruct the depth of scene elements, and so calibration from a

single image should be possible, though the accuracy of this method would be tied to the

camera’s limited baseline.

It should be possible to further validate the calibration methodology by applying higher-

order tasks like depth estimation [185] and the optical flow method presented in Chapter 5,

using the accuracy of the resulting models and odometric estimates as a measure of the

accuracy of the calibration.

We have presented decoding and rectification as a multiple-step process, first aligning and

slicing the light field, then performing 4D interpolation. A speed-optimized approach could

trace back through this process, mapping each pixel in the rectified light field back to raw

light field pixels that make it up. The resulting map would allow direct, rectified decoding

of light fields from the raw input imagery. Demosaicing could be bundled into this process

by employing different maps for each colour channel.

Lumsdaine and Georgiev’s focused plenoptic camera offers different resolution tradeoffs and

focusing characteristics than the conventional plenoptic camera [109]. In a forthcoming

publication, Johannsen et al. [85] describe a method for calibrating the focused plenoptic

camera, and ultimately it should be possible to construct a unified scheme capable of han-

dling both conventional and focused plenoptic cameras. As a starting point, the spatial

sampling analysis by Lumsdaine et al. [111] generalizes to both focused and conventional

lenslet-based cameras.

For some applications, fixing multiple lenslet-based cameras in a rig may be desirable,

increasing the baseline of the overall system while maintaining the advantages of plenoptic

sampling. In [94], La Foy and Vlachos use simulation to demonstrate that this idea has
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applicability in particle image velocimetry. Calibrating a real-world multiple-camera rig

should be possible through simple extension of the methods described in this chapter.

Finally, underwater camera calibration is an outstanding problem, and recent advances in

describing light transport through underwater viewports [5, 86, 93, 175] could inform the

calibration of underwater plenoptic cameras.



Chapter 4

Volumetric Focus

“Man cannot discover new oceans unless he

has the courage to lose sight of the shore.”

– André Gide

The previous chapter addressed some of the practicalities of employing plenoptic cameras,

including the decoding and rectification of imagery gathered by lenslet-based devices. By

calibrating a camera and rectifying its imagery, a light field conforming to a regular sampling

pattern was generated. In this chapter we exploit the rich information contained in the

resulting light field by introducing a simple, linear filter – the frequency-hyperfan volumetric

focus filter – with a broad range of potential applications in robotics and imaging in general.

Parts of this chapter are published as [46].

4.1 Focus, Noise, Interference and Depth

Focus has been around almost as long as photography, and is employed in all modern

cameras. Photographers employ focus to selectively emphasize and blur the elements of

a scene, controlling the level and shape of blur – the “bokeh” – to yield an aesthetically

pleasing result. An example of effective use of focus to draw out the foreground element

of a scene is shown in Figure 4.1 – the left and right images differ only in the size of

aperture used to capure them. It is easy to forget that a key motivation for employing

focus, and probably the original reason it came about, was not to blur out background

elements but to gather more light, shortening exposure times and increasing signal-to-noise

66
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(a) (b)

Figure 4.1 – Focus is used to selectively emphasize or blur the elements of a scene in an aestheti-
cally pleasing manner. The image on the right shows narrower focus, yielding a strong separation
of foreground and background elements and a more pleasing photo. It is easy to forget that focus
probably first came about not to blur background elements, but to gather more light – note the
evident improvement in noise level associated with the more narrowly focused scene.

ratio (SNR). Although the two images in Figure 4.1 were measured under identical exposure

and illumination conditions, an improvement in SNR is evident in the more heavily focused

image.

Robotics applications care little for bokeh or aesthetics. The ideal imaging scenario for a

robot includes sufficient illumination that focus can essentially be ignored. The camera’s

aperture is narrowed to yield a wide depth of field, and there is sufficient light that the SNR

is nevertheless acceptably high. In contrast-limited scenarios, however, one must strike a

balance between depth of field and light gathering. Such scenarios arise any time light is

limited, for example at night or underwater, or where an attenuating medium is present,

such as in murky water, smoke, cloud, fog, or dust.
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Figure 4.2 – Focus can also be used to attenuate interference, as in this underwater scene. Here
focus is used to image through particulate matter while keeping the colour chart sharp.

Combating limited contrast is not trivial. Large scenes cannot always be effectively lit,

illumination power budgets are typically limited, and in the presence of scattering media or

occluders backscatter can negate any advantage gained by increasing illumination. Increas-

ing exposure duration, a practical solution in static scenarios, also typically finds limited

success in robotics due to the motion blur associated with dynamic scenes and camera

motion. Focus therefore becomes crucial in dealing with limited contrast.

Focus is also a powerful tool in dealing with snow, rain, underwater particulate matter and

other heterogeneous occluders. We distinguish this from low-contrast scenarios because the

undesired content is not noise introduced by the sensing process, but rather interference

present within the signal itself. Increasing illumination will not help remove occluders,

they will simply be imaged with higher fidelity. Section 2.4 discusses our convention of

distinguishing between noise and interference.

Widening the aperture does help remove occluders, but not by virtue of gathering more

light. Rather, it is the increase in “baseline” – in this case the aperture diameter – that
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helps in this scenario, because the depth selectivity of focus increases with baseline. By

widening the aperture we allow desired scene elements to be better isolated on the basis of

their depth in the scene. An example of focus effectively “looking through” (more correctly

looking around) particulate occluders is shown in Figure 4.2. The distinction between light

gathering and depth selectivity will become important later in the chapter, when we carry

out these same operations by applying filters to light field imagery.

These observations underline the importance of focus in designing effective machine vision

systems. In effect, the degrees of freedom available to the system designer are depth of field,

trading off directly for SNR, exposure time, which is limited by motion blur, and depth of

the focal plane, typically fixed so as to simplify calibration and processing.

4.1.1 Breaking the Rules

Plenoptic imaging offers important benefits in challenging imaging conditions, most notably

in breaking the usual tradeoff between depth of field and SNR. Both arrays of cameras

and lenslet-based cameras gather significantly more light for a given depth of field than

conventional cameras [135]. Specifically, in both an array of N ×N cameras, and a lenslet-

based plenoptic camera with N ×N pixels per lenslet, the increase in light gathering for a

given depth of field is N2 – a huge improvement. In both cases, the effective baseline also

increases, increasing depth selectivity and the ability to reject occluders.

Unfortunately, the redundant light that plenoptic cameras capture must be combined com-

putationally in order to yield imaging improvements. The combining of light field informa-

tion to improve SNR is the main focus of this chapter, and is not without precedent. It is

well established that a light field contains sufficient information to allow post-capture focus

through appropriate filtering [83, 133]. This virtual focus demonstrates similar properties

to conventional focus: It combines light coming from different directions to increase SNR,

and simultaneously offers depth selectivity, blurring out scene elements that fall outside a

plane of focus. Because plenoptic focus can be tuned after the imagery has been captured,

there is no need to decide ahead of time on a single focal setting.

In this chapter we generalize planar focus to volumetric focus. As in planar focus, volumetric

focus combines light coming from different directions to increase SNR. Unlike conventional

focus, volumetric focus keeps a range of depths in focus, blurring scene elements outside the
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focal volume. The filter we present is useful where planar focus is useful: in ameliorating low

contrast due to lack of illumination, murky water or other attenuating media, and in seeing

around heterogeneous occluders. Volumetric focus can simplify system design by offering

different tradeoffs in depth of field and SNR than are possible with planar focus. This

is particularly important where large baselines are present: An array of cameras sharply

focused at a single depth will display a high SNR, but over a very narrow depth of field.

In robotics applications scenes are not typically planar, and so the ability to put a volume

in focus becomes highly desirable. Volumetric focus also simplifies applications in which a

variable focal plane, adjusted to match the scene content, can be replaced with a fixed focal

volume, designed to encompass all typical scene depths.

The remainder of this chapter is organized as follows: We discuss related work in Section 4.2,

and develop the light field characteristics central to the chapter in Section 4.3. Those

characteristics are exploited in Section 4.4 to derive a frequency-domain volumetric focus

filter, and in 4.5 to derive a spatial-domain implementation. Sections 4.6 and 4.7 show

results for camera array and lenslet-based light fields, giving quantitative and qualitative

analysis of the volumetric filter’s performance. The chapter concludes with discussion and

directions for future work in Section 4.8.

4.2 Related Work

Denoising of conventional imagery is a rich and active area of research, and a good review

is provided by Buades et al. [21]. See also [73] for modern overcomplete dictionary de-

velopments, and [7] and [55] for a singular value decomposition generalization of K-means

for learning dictionaries directly from noisy imagery. Because we are dealing with high-

dimensional imagery, video denoising is also relevant, including recent advances in block

matching and filtering [39].

Alternative approaches to low-light and contrast-limited imaging have recently appeared in

the realm of computational photography. Levoy et al. [101] demonstrate an active illumi-

nation generalization of confocal imaging, allowing effective imaging through turbid media.

Turning the idea of structured light on its head by varying the position of the camera rather

than the illumination source yields the light field-based approach explored in this chapter.
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O’Toole et al. augment the structured light method by including a variable camera mask,

allowing a range of light transport phenomena to be investigated through completely op-

tical processes [139]. Relevant capabilities of this system are depth selectivity and the

improvement of contrast through turbid media.

Bishop and Favaro [14] and Goldluecke and Wanner [68] employ iterative variational Bayes-

ian frameworks for combining light measured across many apertures. Our work differs

significantly in its complexity: We present a single, non-iterative linear filter as a means

of combining images from across the light field, offering a simpler and potentially more

robust solution. Zhan et al. tackle denoising of light fields measured using reflective spheres

in [204], employing a robust image registration technique. Again our work differs in its level

of complexity, by offering a linear, non-iterative solution.

Other approaches from computational photography include focal sweep, flutter shutter, and

motion blur mitigation from multiple-exposure-time video [6, 125, 149]. These techniques

offer different tradeoffs to ours by virtue of employing temporally modulated optics and

extended exposure times or sequences of images.

The key principle underlying much of this chapter is ultimately parallax motion and its

consequences in the frequency domain. Parallax motion is a common thread throughout

light field research and indeed much of computer vision, including stereo and multiple-

camera geometry and structure from motion. As early as 1987 the manifestation of parallax

in 2D light field slices was being explored [18]. That work examines the characteristic

straight lines arising in “epipolar images”, 2D slices of the light field in spatial and angular

dimensions. These straight lines are employed as the basis for depth estimation in a lenslet-

based plenoptic camera described in 2002 by Adelson and Wang [1], and similar ideas are

later elaborated in general 4D light fields in [44].

Similar developments often arise in disparate fields, and it is interesting that evolution itself

may have stumbled upon depth estimation from parallax motion in lenticular arrays, in the

form of insect compound eyes [17]. A year before that work was published, Neumann et

al. proposed an artificial compound eye sensor for egomotion estimation, based on a spatio-

temporal generalization of parallax motion [131] – this idea will be explored in more detail in

Chapter 5. Spatial-domain light field manifolds are also discussed in more detail in [13, 71].
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Exploiting parallax motion in light fields is not limited to depth estimation, and indeed one

of its first applications was in filtering. Levoy and Hanrahan’s 1996 paper [102] included a

discussion of spatial-domain antialiasing filters, employing the properties of the light field to

improve rendering quality. In this chapter we show that parallax motion has consequences

in the frequency domain – namely that the frequency-domain region of support (ROS) of

a light field is a fan-like shape which we call a hyperfan. The frequency content of light

fields has been the subject of extensive research [24, 25, 54, 58], with the frequency plane

being a commonly identified feature. To the author’s knowledge, the first frequency-planar

light field filter was proposed by Isaksen et al. in 2000 [83], and the same idea has since

arisen with minor variations, including efficient recursive and frequency-slicing approaches

for carrying out light field focus [43, 133].

Volumetric focus is a generalization of planar focus, and an example is discussed in [47].

That work proposes the dual-fan as the frequency-domain ROS of a light field, and employs

multiple-branch filter banks to approximate the dual-fan shape. Around the same time,

Stewart et al. proposed a two-branch filter bank to approximate a fan shape, though under

different terminology [168]. In the present work it is shown that the dual-fan is a projection

of the much more selective frequency hyperfan underlying light fields.

Levin et al. [98, 99] discuss the light field’s frequency-domain ROS in terms of a dimension-

ality gap, the idea that light field images lie on a 3D focal manifold in 4D frequency space.

In [99] the focal manifold is used to analyze a novel, physical lens design which displays

extended depth of field by virtue of collecting light over many discrete focal depths. [98]

employs the focal manifold in derivations of 2D deconvolution kernels for rendering from

focal stacks and sparse collections of viewpoints. That same work discusses aliasing in terms

of the focal manifold, and concludes by rendering wide depth-of-field images from a stack

of more narrowly focused anti-aliased images produced using methods from [109].

Our work differs in specifically identifying the frequency-domain ROS of the light field as

the 4D hyperfan shape at the intersection of a hypercone and a dual-fan. We effect tunable,

post-capture volumetric focus by surrounding the frequency-hyperfan with a novel, linear,

single-step and irreducibly 4D hyperfan filter. We demonstrate the frequency hyperfan to

show important theoretical and practical performance gains over previously described filters

in low-contrast, wide depth-of-field scenarios.
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Figure 4.3 – Parallax in the light field: the point-plane correspondence. (a) for all rays originating
at a point P in space, u varies linearly with s, and by extension v with t; (b) this describes a line
λ in the 2D s, u plane and, by extension, in the t, v plane.

4.3 The Many Faces of Parallax

In this section we explore the spatial- and frequency- domain behaviours of light fields,

starting with parallax motion and concluding with a set of rules which, under a few rea-

sonable assumptions, all light fields follow. In subsequent sections we design linear filters

which exploit these rules to carry out volumetric focus.

Throughout this chapter we employ the relative two-plane parameterization described in

Section 2.3.2. However, the concepts apply to light fields in general, requiring only a

straightforward adjustment of parameters to move between representations.

4.3.1 Parallax in 2D

We begin by investigating the simple case of a single point P in an arbitrary scene, in

2D. The rays emanating from P can be described using a simple set of rules. As depicted

in Figure 4.3(a), if one begins with a ray that intersects P (highlighted), then translates

that ray’s point of intersection along s, its point of intersection along u must follow at a

proportional rate in order for the ray to maintain its intersection with P . In other words,
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the rays emanating from P follow a linear relationship in s and u. This is the light field

manifestation of parallax motion [18, 43].

We can write the linear relationship relating s and u, and its generalization in the vertical

dimensions t and v, as

[

u
v

]

=
(

D
Pz

)

[

Px − s
Py − t

]

. (4.1)

We can visualize this relationship as shown in Figure 4.3(b). We label the line supporting

P ’s rays λ. Recall that we are operating under the relative two-plane parameterization –

under the other parameterizations discussed in this work a similar linear relationship will

hold, but with different slopes and offsets. Notice how the slope of the line relating s and u

is determined entirely by the depth of P in the scene. An immediate consequence of this is

that a scene containing many points at the same depth will yield parallel lines in s and u.

Thus far we have discussed only the support of P ’s rays, and said nothing of their values.

In a totally unconstrained scene we can say very little. P may lie on a mirrored surface,

and there can be arbitrarily many occlusions within the scene, in which case the values

along λ can be almost anything. Thankfully, much of the light measured in natural scenes

is diffusely reflected. Trees, grass, dirt, rocks, kelp, coral, sand. . . just about everything

occurring naturally is primarily diffuse except water, as confirmed in studies measuring the

bidirectional reflectance distribution functions (BRDFs) of natural materials [41]. We say

primarily diffuse, because many materials have small specular components, and just about

everything will reflect specularly when wet – but statistically, only a small fraction the light

in a natural scene is specular.

Computer vision has long exploited the primarily diffuse content of nature’s palette by

adopting Lambert’s model of reflectance. First proposed in his 1760 work on the measure-

ment of light, colours and shadow [95], this model enables vast simplifications by making

the reasonable-sounding assumption that matte surfaces have an observed brightness which

is independent of viewing angle. In the intervening centuries, models have been proposed

which more accurately describe the reflectance of real-world surfaces, particularly at sharper

viewing angles [138]. However, so great is the value and simplicity of Lambert’s model that

most of computer vision still employs it. Indeed, one could say that most of the energy

observed in natural scenes obeys Lambert’s law, an assumption which is tested daily by the

countless machine vision systems which rely on it.
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We have bypassed the question of partially occluded scene content, which is visible from

some viewpoints but occluded in others. Aside from the arguments stemming from scene

statistics [59, 153], the limited baseline of our cameras will ensure the energy in occlusions to

be minimal. There are of course pathological cases breaking this generalization, including

the example of a blizzard in which almost every visible surface is a partially occluded

snowflake. However, in most natural imagery occlusion is, as with specular reflection, a

relatively small component of the scene.

The curious reader is referred to [54] for a discussion of specularly reflective surfaces and

occlusions in the context of the light field, [117] for scenes with refractive objects, [84] for an

excellent treatment on the more complex case of refractive gas flows, and [150] for situations

where the camera itself contributes complex lens flare effects.

Returning to our discussion of the light field, we will adopt the assumptions of a Lambertian

scene and no occlusion, allowing us to say that the line λ corresponding to every point P in

the scene is constant-valued [43]. Considering the case of multiple points, we can see that

the light field slices must consist of multiple, constant-valued lines. Because the orientation

of a line depends only on the depth of its corresponding point, a scene consisting of surface

elements at a single depth will yield light field slices of parallel, constant-valued lines.

We now consider the implications of these observations in the frequency domain. The 2D

Fourier transform of a set of parallel, constant-valued lines is an orthogonal line which passes

through the origin. This fact can be derived mathematically [42], or understood intuitively

by realizing that a function which is constant-valued in a certain direction will exist as a

frequency-domain delta function along that direction.

More formally, the frequency-domain ROS of the Lambertian surface at depth Pz can be

described as

Ωs/Ωu = Ωt/Ωv = D/Pz, (4.2)

where Ω is the continuous-domain light field frequency space.

Generalizing for a scene containing a range of depths is possible through superposition: A

scene comprising surface elements at many depths will exist as a superposition of lines in

the 2D light field. This can be seen by allowing Pz in (4.2) to sweep through a range of

depths corresponding to the scene extents,
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Figure 4.4 – The relationship between Lambertian scenes and their frequency-domain regions of
support: (a) Points at a single depth, shown in s and u, correspond to (b) a 2D frequency-domain
line. (c) Points over a range of depths correspond to (d) a 2D frequency-domain fan.

ZMIN < Pz < ZMAX . (4.3)

The resulting shape is a 2D fan [24]. The relationships between Lambertian scenes and

their frequency-domain regions of support are depicted in 2D in Figure 4.4.

Recall that we have explicitly ignored the effects of occlusion, for which lines in the 2D

light field are truncated, and non-Lambertian surfaces, for which rays within the lines have

different values. Many practical scenes have relatively little energy in these components,

and we shall demonstrate that the filters we derive are effective despite their presence.

4.3.2 Generalizing to 4D

We now generalize the observations made in 2D in the previous section to the 4D light field.

We begin with the relationship depicted in Figure 4.3, which is expressed as a system of

two linear equations (4.1). In 4D, each of these linear equations describes a hyperplane [42],

because it imposes a single linear constraint on the four dimensions. The two hyperplanes
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Figure 4.5 – Two 4D hyperplanes, (a) and (b), intersect to form a plane (c).

described by (4.1) are depicted in 4D in Figures 4.5(a) and (b). Notice how each of these

resembles a line in two of the light field dimensions at a time.

Applying both equations simultaneously results in an intersection of the two hyperplanes.

The situation is closely analogous to the intersection, in 3D, of two planes: Each plane is

described by a single linear equation, and the combination of the two equations is the line

where the two planes intersect. In the same way, our two linear equations describe two

hyperplanes, which intersect to form a plane in 4D space, as depicted in Figure 4.5(c). The
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Figure 4.6 – Two fans, (a) and (b), intersect to form a dual-fan (c).

consequence of these observations is that a point in space, P , corresponds to a plane in 4D

space.

In 2D, we saw that a Lambertian surface at a single depth has a linear 2D frequency-domain

ROS. Generalizing this to 4D follows exactly the same procedure as above: Each 2D linear

ROS corresponds to a 4D frequency-hyperplane, and the simultaneous application of the

two hyperplanes intersects to form a 4D plane. The result is that a Lambertian surface at

a single depth has a 4D frequency-planar ROS.
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Next, we generalize a scene over a range of depths (4.3), which yielded a fan shape in 2D.

Following the same procedure as for the frequency plane above, we intersect a 2D fan in

s and u, shown in Figure 4.6(a), with a 2D fan in t and v, shown in (b), to yield the

intersection depicted in (c). The resulting shape is referred to as a “dual fan” [47].

The dual-fan is an elegant, 2D-separable shape describing the frequency content of the light

field. Prior work has demonstrated filters approximating the dual-fan to carry out volu-

metric focus and anti-aliasing [47, 168]. Unfortunately, the final steps of our generalization

to 4D contained an important flaw, and a much more selective shape can be described, as

demonstrated in the following section.

4.3.3 Correctly Generalizing to 4D

The error in the previous section lies in attempting to describe the frequency-domain ROS

of the light field as an intersection of two 2D fans. This process yields a 4D volume, while

the true shape of the light field’s ROS, we shall see, is a 3D manifold embedded in 4D

space. This is akin to the 3D example of attempting to describe the surface of a cone as the

intersection of a circle and two triangles. As depicted in Figure 4.7, this approach yields a

family of shapes including some, such as the gem-like shape pictured, which are not cones,

and most of which are volumes, not surfaces.

To correctly derive the ROS of the light field, we need to reconsider the generalization

from a single depth to a range of depths. Figure 4.8(a) depicts three points at a single

depth in a scene, this time in 4D, and (b) depicts the corresponding 4D frequency-domain

ROS. Nothing has changed compared with the previous section, we’ve simply visualized

the situation in 4D to facilitate the next step. In (c), we see a scene comprising points at

different depths, and (d) shows the corresponding 4D ROS. The latter is the superposition

of planes like the one in (b) at different orientations, and the shape is significantly different

from the dual-fan shown in Figure 4.6(c). We denote this new shape the hyperfan, because

it is constructed by sweeping a plane through a range of angles, akin to sweeping a line

through 2D space to form a fan.
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Figure 4.7 – The surface of a 3D cone cannot be unambiguously decomposed into orthogonal 2D
projections: The shape at the intersection of a circle and two triangles describes a 3D volume, not
a surface, and there are many shapes which conform to this decomposition, including the gem-like
shape shown here. There are strong parallels between this and our use, in the previous section,
of orthogonal fans to try to describe the light field’s frequency-domain ROS.

A more mathematically driven approach considers (4.2) and (4.3) together, resulting in

three constraints describing the frequency-domain ROS of the light field:

mMIN < Ωs/Ωu < mMAX , (4.4)

mMIN < Ωt/Ωv < mMAX , (4.5)

Ωs/Ωu = Ωt/Ωv. (4.6)

The first two constraints, (4.4) and (4.5), describe the dual-fan [47]. We shall demonstrate

in the following section that the third constraint (4.6), ignored in the previous section,

describes a hypercone. The hypercone is depicted on its own in Figure 4.9(a), and in 4.9(b)

the dual-fan is depicted in red and the intersection of the two, the hyperfan, is shown in

white.
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(a) (b)

(c) (d)

Figure 4.8 – Correctly deriving the frequency-domain ROS of the light field in 4D: Points at a
single depth (a) have a frequency-planar ROS (b), while points over a range of depths (c) have
an ROS which is a superposition of planes at different orientations (d). We denote this sweep of
planes a hyperfan.
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(a) (b)

Figure 4.9 – Decomposing the hyperfan into (a) the 4D frequency-hypercone (4.6), which con-
strains slopes in two pairs of dimensions, and (b) the dual-fan (4.4), (4.5), shown in red; The
shape at their intersection, shown in white in (b), is the hyperfan.

The hypercone restricts two pairs of slopes to be equal in the frequency domain. The

physical interpretation of this constraint is simply that an object’s apparent motion in the

horizontal light field dimensions s and u should equal its apparent motion in the vertical

directions t and v. Recall that the slope of the line λ supporting a point depends on the

depth of the point in the scene, Pz. It makes sense that, regardless of the value of that slope,

it should be equal in horizontal and vertical directions. Noise will not in general follow this

rule, and so the hypercone shape gives us a high degree of selectivity against noise.

The dual-fan imposes depth limits on the scene by constraining the range of valid slopes.

In the following sections we will construct a volumetric focus filter by combining the depth

selectivity of the dual-fan and the noise rejection of the hypercone.

4.3.4 Hyperfans and Hypercones

To see why (4.6) describes a hypercone, we begin with the standard form

R2
s +R2

u −R2
t −R2

v = 0, (4.7)
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which describes a 4D saddle or hyperbolic cone – this differs from the 4D spherical cone in

the sign of the third term. To show equivalence with (4.6), we transform the coordinate

axes by applying rotations of -π/4 in the Ωs, Ωv and Ωt, Ωu planes, yielding









Rs

Rt

Ru

Rv









=
1√
2









Ωs +Ωv

Ωt +Ωu

Ωt −Ωu

Ωs −Ωv









. (4.8)

Substituting the rotated coordinates into (4.7) and simplifying yields the form shown in

(4.6), thus the two forms are rotated views of the same shape. The rotated form of the

hypercone (4.7) is depicted in Figure 4.10(a), alongside some other rotations of the same

shape.

We have made much in this chapter of the distinction between the dual-fan and the hyperfan.

As we shall see, the difference made by treating the hyperfan as an inseparable 4D shape is

significant, especially in regards to improving SNR in low-contrast applications.

4.4 The 4D Hyperfan Filter

Having described a frequency-domain ROS for the light field, we proceed to design a linear

filter that selectively passes it. We begin by implementing the filter in the frequency domain,

computing the input’s DFT, multiplying by the filter’s magnitude response in the frequency

domain, and then computing the inverse DFT. We explore spatial-domain implementation

in the following section. Note that we describe the filter in terms of the continuous-domain

frequency space Ω, and that practical implementation requires appropriate adjustment of

filter parameters to reflect the sample rate of the discrete light field [42].

Because the frequency hyperfan lies at the intersection of a dual-fan and a hypercone as

depicted in Figure 4.9, one way forward is to describe each of those passbands and take

their product. As we proceed we will evaluate the theoretical selectivity of each passband

as the fractional 4D Nyquist volume that it passes, with smaller fractions corresponding to

higher selectivity.

Starting with the dual-fan passband, we note that this is itself the product of two 2D fan

filters [47]
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10 – Visualizing the 4D hypercone does not come naturally, but by inspecting tilings
under a variety of rotations we can construct an intuition for its nature. (a) When rotated as
in (4.6) circles are revealed which grow with distance from the center, highlighting the shape’s
cone-like nature; (b) this rotation elicits the contour lines of a saddle shape; (c–f) further reveal
the complex beauty of this shape, at turns eliciting circles, spirals, saddles and crosses.
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HDF(Ω) = H2D

FAN (Ωs, Ωu, θMIN , θMAX ) H
2D

FAN (Ωt, Ωv, θMIN , θMAX ), (4.9)

where each 2D fan is straightforwardly implemented by passing all points within the pre-

scribed angular range θMIN to θMAX . The 2D fan filter is explored by Ansari [9], and the

process of selecting θ values for a desired depth range is described in [47].

The fractional 2D area passed by each 2D fan has a lower bound αDF determined by the

range [θMIN , θMAX ]. We apply Gaussian smoothing to reduce ringing artifacts, surrounding

the fan by a tunable bandwidth and increasing the passband area by βDF . Because the

same selectivity is applied in Ωs, Ωu and in Ωt, Ωv, the fractional volume passed by the 4D

dual-fan is given by the square

VDF = (αDF + βDF)
2. (4.10)

The ideal hypercone (4.6) is a 3D manifold, not a 4D volume, and so practical implemen-

tation requires surrounding the hypercone by a bandwidth βHC . We propose the filter with

magnitude response

HHC (Ω) = exp

(

−
√
2 ln 2

[

(ΩsΩv −ΩtΩu)

β
2

HC

]2
)

, (4.11)

where βHC is the 3-dB bandwidth measured as the radius of the hypercone at the origin –

this is the radius of the cone in the rotated Rs, Ru and Rt, Rv planes. The magnitude of

the numerator of the exponential increases with distance from the ideal hypercone shape,

and so the filter rolls off in a Gaussian-like manner from the ideal passband. Note that the

filter offers no selectivity near the origin, but this is consistent given that the underlying

constraint (4.6) provides no information to do so.

For analysis we begin by ignoring the Gaussian rolloff, approximating the hypercone filter

as having constant thickness related to the 3-dB bandwidth βHC through a constant factor

κ. Examining Figure 4.9(a), this implies every Ωt, Ωv slice, with the exception of the origin,

will pass a constant fraction of its area. Including the effect of the Gaussian rolloff increases

the total admitted volume by another constant factor which we absorb into κ, for a fractional

volume passed by the hypercone given by

VHC = κβHC . (4.12)
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Although not evaluated here, we note that alternative formulations for the hypercone are

possible based on the exponential in (4.11). For example, a Butterworth-like filter of order

n can be constructed using

HButter

HC (Ω) =

√

1

1 +
[

(ΩsΩv −ΩtΩu)/β
2

HC

]2n . (4.13)

The hyperfan filter is simply the product of the hypercone and dual-fan

HHF = HHCHDF . (4.14)

Referring to Figure 4.9(b), we notice that every nonzero Ωt, Ωv slice of the hyperfan will

pass a mean area of κβHC , and from the dual-fan αDF + βDF describes the ratio of nonzero

slices. The fractional volume passed by the hyperfan filter is therefore the product

VHF = κβHC (αDF + βDF). (4.15)

Notice the minimum volume passed by the dual-fan is α2
DF , while the minimum for the

hyperfan is zero – i.e. the hyperfan offers direct control, via βHC , of the total signal energy

passed, and therefore presents significantly greater selectivity than the equivalent dual-

fan filter. Note also that both the dual-fan and hyperfan filters degenerate gracefully to

frequency-planar filters as their depth ranges approach zero.

4.4.1 Memory and Complexity

If we implement the hyperfan filter in the frequency domain, the filtering process is sim-

ply one of applying a discrete Fourier transform, its inverse, and a per-sample complex

multiplication. Computation time for an N -sample light field is therefore constant and

straightforwardly of complexity O(N logN) when using the fast Fourier transform (FFT).

We operate on the three colour channels separately, and so the memory requirement is for

a single colour channel at a time. Two buffers are required beyond the input light field

buffer: the filter magnitude buffer, and a complex buffer to contain the DFT. The input

light field comprises 8-bit integers, but for simplicity our implementation operates on single-

or double- precision floats. For a colour light field of N samples total, our total additional

memory requirement, for double-precision, is
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M = (8 + 16)N/3 = 8N. (4.16)

In practical terms, the 128 × 128 × 17 × 17 light fields shown in our results occupy about

N = 14 MBytes. Filtering requiring an 8N/3 = 38 MByte double-precision buffer to hold

the filter’s magnitude response, and a 16N/3 = 76 MByte complex double-precison buffer

to hold the DFT of the input, for a total of 8N = 114 MBytes. The single-precision

implementation requires half the memory.

For the full-resolution Stanford Archive light fields, for example the 1024× 1024× 17× 17-

sample Tarot light fields, the input buffer itself occupies 909 MBytes, and the additional

memory requirements associated with a double-precision filter are 7,272 MBytes. Most

modern computers have sufficient memory to support such an operation, but in lightweight

robotics applications a more memory-efficient spatial-domain implementation might be de-

sirable.

4.5 Spatial-Domain Implementation

For very large light fields, for example the full-resolution versions of the Stanford Archive

light fields, directly computing the full 4D DFT may be prohibitively memory intensive on

smaller systems. For this reason, a spatial-domain filter implementation may be desirable.

By constructing a spatial-domain finite impulse response (FIR) filter with impulse response

h(i, j, k, l), we can compute the output light field a single pixel at a time. The key advantage

of this is lower memory utilization: The output buffer need not be the full light field size if

only a subset of the output is needed. This would be the case, for example, when only a 2D

subset of the output light field is required. Furthermore, the filter buffer – in this case the

impulse response h – will not in general be as large a structure as the full light field L. The

total memory utilization of a spatial implementation will therefore be much lower than for

a frequency-domain implementation.

As a concrete example, for the 1024 × 1024 × 17 × 17-sample 3-channel Tarot light fields,

rendering a single 2D output image requires only a 1024×1024×3-sample output buffer, plus

a buffer to store the impulse response h, which we shall show can be quite modest, between

1 and 16 MBytes. As such, the total memory requirement for the spatial implementation
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is 20 MBytes or lower, a significant improvement over the 7,272 MBytes required by the

DFT-based implementation.

Where spatial implementation suffers, of course, is in processing time1. Convolution over

millions of samples is much more complex than Fourier-based multiplicative filtering. If,

however, only a 2D output slice is required, the spatial convolution method can actually

be faster compared with the frequency-domain implementation, because the latter treats

the entire signal during the DFT, while the former can focus on those parts of the light

field required for the 2D output. The filter appropriate to a given application will therefore

depend on the nature of the desired output, the size of the input, and memory availability.

4.5.1 Constructing the Impulse Response

A key factor allowing us to constrain the size of the impulse response h is the range of

parallax motion typical of real-world light fields. Apparent motion is usually restricted to

a small fraction of the total u, v plane, for the simple reason that it is impractical to design

a camera otherwise. Even arrays of cameras with relatively large baselines are seldom

designed to display more apparent motion than a fraction of the u, v plane, as doing so

would yield excessive aliasing.

The size of the impulse response required for a given volumetric focus task is directly

related to the slopes that it must support. If the desired depth range projects at most to

an apparent motion of ten pixels, then the resulting impulse response will not need to be

more than ten pixels wide in u and v. In general we assume that the whole s, t range is to

be covered, as doing so maximizes selectivity, and we select the impulse response’s size in

u and v to conservatively include the maximum apparent motion we might want to include

in the passband.

Having chosen a size for the impulse response, we proceed to build the appropriately sized

hyperfan in the frequency domain, as in the frequency-domain implementation, then take

its inverse DFT. To avoid windowing artifacts, we pad the frequency-domain shape to a

larger size – for the Stanford light fields, we pad to a hypercube of size 32 or 64 samples in

each dimension.
1This observation applies mostly to general-purpose computing. Though the total operation count may

be higher, the highly parallel nature of spatial implementations can make them better suited to parallel
architectures, leading to significantly faster runtimes on specialized hardware such as graphics processing
units (GPUs), FPGAs and ASICs.
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Figure 4.11 – A typical hyperfan filter impulse response. This example is for a 9× 9× 13× 13
filter passing a range of slopes between 0 and 1. The overall shape resembles a superposition of
planar filters, but with the inclusion of orthogonal highpass components that appear as ringing.

A typical impulse response h is shown in Figure 4.11. Hypefan impulse responses typically

have many samples with very low magnitudes, and so a simple optimization is to discard

low-magnitude samples, effectively speeding convolution. The number of samples to retain

in the impulse response can be exposed as a user-controllable parameter, and we will show

in the results section that less than 5% of the samples are typically required for high-quality

results.

4.6 Experiments: Stanford Light Fields

The Stanford Light Field Archive2 is a publicly accessible database suitable for evaluating

light field filtering techniques. The twelve light fields we utilize, listed in Table 4.1, all

contain 17 × 17 aperture positions in s, t. Aperture positions are close enough to an ideal

grid that ignoring the deviation results in negligible degradation to output quality. Each

2http://lightfield.stanford.edu/

http://lightfield.stanford.edu/
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image in s, t is rectified in u, v, and the light fields are in the two-plane parameterization.

Light field geometry varies across the dataset: Grid spacing is not identical, plane separation

varies, and image aspect and resolution vary, meaning fan extents θ need to be tuned on a

per-light field basis. An alternative would have been to convert the light fields to a uniform

relative two-plane parameterization and use generic fan extents.

The Stanford light fields were generally downsampled to a maximum u, v size of 128× 128

pixels to reduce memory requirements in the frequency-domain implementation – full-

resolution spatial-domain results are also included. With the exception of displayed colour

images, the results are for monochrome versions of the light fields. When an experiment

calls for less than 17 × 17 apertures we discard apertures at the edge of the light field,

retaining the central portion. For consistency across experiments for which aperture counts

can vary, metrics report on the central image in s, t.

In the following section, further validation of the hyperfan filter is carried out on imagery

collected using a commercially available Lytro lenslet-based light field camera. This imagery

includes low-light and turbid media examples. The raw lenslet images are decoded to a 9×9

array of images, each having 380 × 380 pixels. Compared with the 17 × 17 images of the

Stanford light fields, we expect significantly less selectivity. However, there is still a potential

81-fold redundancy in the imagery (actually slightly less due to lenslet vignetting) allowing

significant noise rejection to be demonstrated.

As empirical evidence of the frequency-hyperfan ROS of light fields, we computed the DFT

of the first six of the twelve Stanford light fields (as listed in Table 4.1), scaled to a common

size, and selected the maximum magnitude at each frequency. The result, shown in Fig-

ure 4.12, establishes the bounds of the light fields in frequency space: The hyperfan shape

is clearly evident. Note that this is true despite the varying light field geometries and the

presence of occlusions, non-Lambertian surfaces and aliasing.

4.6.1 The Methods

We test a range of linear filters on the Stanford light fields, including the three described

in this chapter: the hyperfan (4.14), the hypercone (4.11) and the dual-fan (4.9). If our

earlier assertions are correct, the hyperfan will be the most selective of these, though how

the hypercone alone behaves will also prove interesting.
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Figure 4.12 – The maximum magnitude per frequency component over the first six Stanford
light fields, showing a characteristic hyperfan shape – compare with Figure 4.9(b).

We further test a 4D Gaussian filter as well as a 4D planar Gaussian filter which is the

basis for synthetic refocusing of light fields [43, 133, 135]. Dictionary-based image denoising

approaches do not exploit the structure of the light field, nevertheless by collapsing the light

field into a tiling of images we test the overcomplete discrete cosine transform (DCT) [73]

and K-SVD methods [7, 55]. Finally, we test the block-matching and filtering approach

V-BM3D [39] by applying it over sequences along the s dimension.

4.6.2 Tuning

The hyperfan has four tunable parameters: the two depth limits and filter rolloff associated

with the dual-fan filter, and the bandwidth associated with the hypercone. The optimal

values for these depend on the range of depths occupied by the scene, the number of

apertures in the light field, the noise level, and the light field parameterization.

If no prior knowledge of scene depth is available, a great deal of selectivity is nevertheless

possible, as the valid range of plane angles present in any light field is limited [99]. In the

relative two-plane parameterization, for example, all planes must lie within the first and

third quadrants in Ωs, Ωu and Ωt, Ωv – i.e. the plane angles are restricted to a ninety degree

range. This observation allows the fan limits to be pre-tuned for generic scenes, leaving
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only the hypercone bandwidth to be tuned. Of course, knowledge of a more selective depth

range allows for more aggressive filtering.

For fixed fan angles and selectivity, Figure 4.13 demonstrates the dependence of the optimal

hypercone bandwidth on input noise level and aperture count. We leave derivation of closed-

form expressions for these optima as future work – the following results are for filters tuned

to their PSNR-optimal bandwidths and depth limits through exhaustive search.

4.6.3 Evaluation

Figures 4.14 and 4.15 are typical of the output from each filter – numerical results are the

peak signal-to-noise ratio (PSNR), assuming the uncorrupted input to be ideal. Figure 4.14

introduces additive Gaussian noise to the light field, while Figure 4.15 introduces a model

of low-light camera noise, including quantization to 32 levels, intensity-dependent Poisson

noise, additive Gaussian noise (σ = 5% maximum pixel value) and salt & pepper noise (5%

density).

Visually, the hyperfan outperforms the other filters in all cases, though this will not al-

ways be true: Scene elements which violate the underlying assumptions of Lambertian and

non-occluding scenes will not generally conform to the hyperfan passband, and so the fil-

ter will attenuate those elements. If a scene were dominated by such elements, the filter

could perform poorly. Note, for example, the severely attenuated crystal ball content in

Figure 4.15(d), which has resulted in a decreased PSNR. Because the content being re-

−1.4
−1.2

−1
−0.8

−0.6
−0.4

−0.2

0.1
0.2

0.3
0.4

0.5
0.6

15

20

25

30

Noise Level (s
td.dev / 2

55)

log
10

(BW)

O
ut

pu
t P

S
N

R
 (

dB
)

(a)

−1.5 −1.3 −1.1 −0.9 −0.7 −0.5

3
5

7
9

11
13

15
17

22

24

26

28

30

log
10

(BW)

Apertures per side

O
ut

pu
t P

S
N

R
 (

dB
)

(b)

Figure 4.13 – The optimal bandwidth shifts with (a) noise level and (b) aperture count.
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(a) Original (b) Input 13.9 dB (c) Hyperfan 30.4 dB

(d) Hypercone 27.4 dB (e) Dual-fan 24.9 dB (f) Planar 26.9 dB

(g) Gaussian 25.6 dB (h) DCT 21.0 dB (i) K-SVD 21.4 dB

(j) VBM3D 25.4 dB (k) Mistuned Planar (l) Mistuned Hyperfan

Figure 4.14 – Filtering results for the Stanford “Lego Knights” light field: (a) The original scene,
and (b) with additive white Gaussian noise; (c)–(i) show filter outputs; the depth-tunable results
(c), (e) and (f) are at the PSNR-optimal balance between noise rejection and reduction in depth of
field; the effects of mistuning are exaggerated in (k),(l); the hyperfan output is visually superior,
with the nonlinear methods providing the most jarring artifacts, the Gaussian and planar reducing
edge content, and the dual-fan and hypercone being less selective to noise.
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(a) Original (b) Before Gain, S&P (c) Input 12.9 dB

(d) Hyperfan 23.0 dB (e) Hypercone 22.9 dB (f) Dual-fan 16.4 dB

(g) Planar 20.1 dB (h) Gaussian 21.0 dB (i) DCT 17.9 dB

(j) K-SVD 18.2 dB (k) VBM3D 20.5 dB

Figure 4.15 – Filtering the “Tarot Coarse” light field for synthetic noise based on a camera
model including quantization, Poisson, Gaussian and salt & pepper noise; (a) the original light
field, (b) the low-light image prior to salt & pepper noise and gain control, (c) the gain-adjusted
input including salt & pepper noise, and (d)–(k) the filter outputs; light refracting through the
crystal ball violates the depth constraints, leading to attenuation of that content and a lower
PSNR for depth-selective filters (d), (f), and (g); the hyperfan nevertheless arguably provides the
most visually appealing result.
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fracted through the ball takes on apparent motion matching scene elements close to the

camera and outside the passband range, it has been attenuated. These limitations are not

always so jarring: The specular highlights on the Lego knights’ helmets are mostly retained,

for example, while the noise is mostly rejected. Furthermore, some applications can actu-

ally benefit from removal of non-Lambertian and occluding energy, for example geometric

reconstruction and visual odometry.

Figures 4.16 and 4.17 show each method’s performance for the “Lego Knights” light field

over a range of aperture counts, for a variety of noise types, over a range of input noise

levels, and evaluated with a range of metrics. Note that the hyperfan outperforms the others

for aperture counts of five or more, and continues to improve significantly with aperture

count – note the logarithmic vertical scale – confirming the scalability of the approach.

The metrics depicted in Figure 4.17(b) are normalized to a maximum value of one. These

represent the mean result over 21 levels of additive Gaussian noise with σ = 10% to 70%max-

imum pixel value. The first three metrics are, in order: PSNR, an SVD-based similarity

measure [163], and a structural similarity measure SSIM [181]. The remaining three met-

rics apply only to linear methods and linear noise, as they rely on separating the filter’s

treatment of noise and signal: By filtering the original image and the noise alone, the at-

tenuation to each can be evaluated separately. Shown, in order, are the energy remaining

when filtering the original image, the edge content of that filtered image measured as the

mean magnitude of the first derivative of the image, and the inverse of the energy remaining

in the filtered noise signal. Because of normalization, the best performance for all metrics

is one.

Inspecting the metric results, the humble Gaussian filter takes on a prominent position in

the first three metrics, even taking the lead for the SVD metric. Note, however, that the

Gaussian also attenuates the most edge content. All linear methods are similar in passing

signal energy, and the dual-fan outperforms the hyperfan in edge content – though it also

does a poor job of attenuating noise energy, thus its weak PSNR. The nonlinear methods

do well according to the SVD but a visual analysis shows that the artifacts they introduce

are jarring to the human visual system. On the whole, the hyperfan attenuates the most

noise energy while passing the second-to-best edge content, surpassed in this respect only

by the poorly selective dual-fan. The hyperfan also dominates in structural similarity and

PSNR, outperformed by its nonlinear counterparts only in the SVD metric.
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Figure 4.16 – Performance of the evaluated methods for (a) increasing aperture count, and
(b) increasing noise level. The hyperfan generally shows the best performance.
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Figure 4.17 – Performance of the evaluated methods for (a) a variety of noise types, and (b) over
a variety of metrics; the hyperfan generally shows the best performance.
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Table 4.1 – Output PSNR (dB) over a range of noise levels for the Stanford Archive

LF σ : 2% 5% 10% 15% 20% 25% 50% 75% 100%

Amethyst 41.91 40.35 37.98 36.10 34.58 33.50 29.81 27.52 26.09

Bracelet 40.99 38.65 35.46 33.16 31.57 30.46 26.88 24.71 23.27

Bulldozer 41.70 39.09 36.00 33.78 31.99 30.93 27.01 24.85 23.30

Bunny 45.44 41.89 38.26 35.80 34.12 32.87 28.84 26.43 24.89

Chess 44.60 41.87 38.26 35.74 34.06 32.76 28.94 26.87 25.14

Eucalyptus 43.81 41.74 38.95 37.02 35.49 34.25 30.34 28.15 26.62

JellyBeans 42.26 40.09 36.94 34.57 33.10 32.08 28.74 26.70 25.24

LegoKnights 40.48 37.16 33.96 31.83 30.32 29.03 25.56 23.47 22.20

TarotCoarse 33.82 30.73 28.12 26.36 25.14 24.34 21.42 19.77 18.60

TarotFine 40.87 37.09 34.13 32.13 30.64 29.29 25.53 23.32 21.85

Treasure 43.59 40.27 36.78 34.62 32.95 31.60 27.70 25.59 24.13

Truck 45.86 43.36 40.16 37.87 36.23 34.87 30.84 28.51 26.88

Mean 42.11 39.36 36.25 34.08 32.52 31.33 27.63 25.49 24.02

Std.Dev 3.17 3.33 3.18 3.06 2.96 2.86 2.61 2.47 2.36
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Figure 4.18 – Output PSNR (dB) over a range of noise levels for the Stanford Archive
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Drawing on the variety of light fields available in Stanford’s archive, Table 4.1 shows the

hyperfan’s performance over a range of inputs. The same data is depicted graphically in

Figure 4.18 – notice the proportional falloff in output PSNR as input noise increases. The

output quality throughout these results is high and consistent despite the varying presence

of occlusions, specular reflections and refractions in the light fields – all phenomena which

break the assumptions behind the filter. The weakest performance is for “Tarot Coarse”,

which we attribute to refraction in the scene as seen in Figure 4.15(d).

4.6.4 Spatial-Domain Implementation

We employed the spatial-domain implementation described in Section 4.5 to demonstrate

volumetric focus on the full-resolution Stanford Archive light fields. Examples are shown

in Figure 4.19. We found that the number of nonzero impulse response samples required

to obtain high-quality results varies with the depth of field of the passband signal. The

narrow-passband filter employed to generate Figure 4.19(b) was well approximated with

2,000 impulse response entries, while the wider depth of field examples (c) and (d) required

40,000 samples.

It is possible to synthesize interesting filters by combining multiple hyperfans. This can

be done by taking the maximum magnitude response of two or more filters, for example.

Figure 4.20 shows the result of including most of the tarot scene in the passband, with the

exception of a narrow volume surrounding the crystal ball. Note that this is not the same

as taking the inverse of the frequency-planar filter centered on the crystal ball, as doing so

would also remove the low-frequency components of the passband signals.

Similar filters can be constructed to select mutliple in- and out-of-focus depths for a single

scene. Note that these are are still single-step linear filters, they simply have more complex

passband shapes.

4.7 Experiments: Lenslet-Based Camera

Validation was carried out on imagery collected using a Lytro consumer-grade lenslet-based

hand-held light field camera – typical low-contrast results are depicted in Figure 4.21. The

left column depicts a low-light aquarium scene, and the right depicts a low-light outdoor
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(a) (b)

(c) (d)

Figure 4.19 – Examples of volumetric focus applied using a spatial-domain filter implementation:
Only the pixels shown in these 2D slices of the 4D output light field were computed, saving
significant processing time and memory. (a) A slice of the input light field (b) filtered with a
narrow depth of field centered on the crystal ball, (c) filtered with a wide depth of field containing
elements near the camera including the ball, and (d) filtered with a wide depth of field containing
elements farther from the camera and excluding the ball. Notice that the image within the crystal
ball behaves similarly to foreground scene elements, and as such passes most clearly in (c).
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Figure 4.20 – Example of a multiple-passband filter constructed as the superposition of two
hyperfans. Here only a volume surrounding the crystal ball is left out of the focal volume. Notice
how the crystal ball content is nevertheless left clear, as it behaves similarly to objects closer to
the camera, and as such does not conform to the parallax motion of the stop-band signal.
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(a) Low-Light Input (b) Low-Light Input

(c) Gain-Adjusted (d) Gain-Adjusted

(e) Hyperfan-Filtered (f) Hyperfan-Filtered

Figure 4.21 – Filtering low-light imagery from a Lytro consumer-grade light field camera: (a,b)
Low-contrast input, (c,d) gain-adjusted images, and (e,f) filter output, showing a visible improve-
ment in SNR. The filtered results demonstrate both noise rejection and depth selectivity, with
specks of dirt on the side of the aquarium being attenuated based on depth – one such dirt speck
is indicated by the black arrow.
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scene. Inspection of the unfiltered and filtered images shows that the hyperfan filter has

significantly attenuated the noise. Note also that the specks of dirt on the side of the

aquarium in the top row have been rejected by the depth selectivity of the filter – one of

these is indicated by a black arrow in the inset depicting a Silver Dollar fish.

4.7.1 Murky water and particulate matter

Figure 4.22 depicts a checkerboard as imaged through turbid water. The histograms beneath

each image show the distribution of pixel intensities corresponding to white (top) and black

(bottom) checkerboard squares, where intensity is taken as the mean of the three colour

channels. Numeric values are contrast-to-noise ratio (CNR), rather than PSNR, because

this is more reflective of the quality of images in the presence of a scattering medium. PSNR

neglects the biasing effect of backscatter, which effectively limits the range and contrast of

a signal. Contrast was taken as the difference between the means of pixels belonging to

white and black checkerboard squares, and noise level as the standard deviation of pixels

from their respective distribution means.

In Figure 4.22 illumination and camera were co-located, resulting in significant backscatter

as seen in (a). The result of increasing illumination is depicted in (b) – saturation and

backscatter have limited the efficacy of this approach, both visually and in terms of CNR.

The result of gain-adjusting the input is shown in (c), including removal of a low-frequency

biasing term caused by backscatter. The biasing term was estimated by low-pass filtering in

the u and v dimensions. Notable is the similarity of this adjusted image to a gain-adjusted

low-light image – noise has limited the extent to which contrast can be enhanced. The final

two images show the output of the hyperfan filter tuned to two different depth ranges: The

first is for a wide depth range including content between the camera and the checkerboard,

while the final image is for a narrow filter more closely matching the geometry of this

constant-depth scene. In all cases, the noise reduction effected by the hyperfan filter has

been significant visually and in terms of CNR.

In applications involving heterogeneous occluders, e.g. snow, rain, or particulate suspended

in water, the depth selectivity of the hypercone filter becomes an asset in reducing the

influence of the interfering elements. Figures 4.23 and 4.24 show scenes imaged through

fine, suspended particulate matter. The hypercone filter increases the CNR of the images,
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(a) Turbid Input -7.29 dB
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(b) Brighter Illumination 4.71 dB
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(c) De-Backscatter 5.18 dB
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(d) Hyperfan 11.7 dB
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(e) Narrow Hyperfan 14.9 dB

Figure 4.22 – A demonstration of imaging in a turbid medium: The histograms beneath each
image indicate the distribution of pixel intensities in white and black checkerboard squares, and
numeric values are CNR for the same. (a) The low-contrast input is not ameliorated by (b) adding
light, due to backscatter and saturation – note the change in scale on the histograms; (c) Backscat-
ter compensation increases contrast but is noise-limited, while (d) hyperfan filtering significantly
reduces noise, yielding higher-CNR results; (e) Further improvement is possible by trading off
depth of field in this planar scene.
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(a) Input 9.99 dB (b) De-Backscatter Input 10.5 dB

(c) Hypercone 14.2 dB (d) De-Backscatter Hypercone 15.0 dB

(e) Hyperfan 14.5 dB (f) De-Backscatter Hyperfan 15.4 dB

Figure 4.23 – A scene with suspended particulate matter and relatively clear water. Numerical
results are CNR over the checkerboard region of the image, and images in the right column have
been backscatter-compensated. Relative to the input (top) the hypercone filter reduces noise
(center), but does not attenuate particulate occluders. The hyperfan filter reduces noise and
attenuates the occluders, while maintaining focus over the scene’s volume (bottom).
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(a) Input 2.07 dB (b) De-Backscatter 6.16 dB

(c) Hypercone 2.63 dB (d) De-Backscatter Hypercone 12.0 dB

(e) Hyperfan 2.45 dB (f) De-Backscatter Hyperfan 13.2 dB

Figure 4.24 – Similar to Figure 4.23, except here the water is considerably more turbid, showing
a lower CNR in the input image (top), and a greater advantage in applying the hypercone filter
without depth selectivity (center). Again the hyperfan filter attenuates occluders (bottom).
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but has little effect on the particulate matter, while the hyperfan both reduces noise and

attenuates the occluding particles. We attribute the decrease in CNR between the hypercone

and hyperfan output in Figures 4.24(c) and (e) to the non-stationary mean across the image

caused by backscatter, which is not accounted for in the CNR metric. Note that the CNR

for the corresponding backscatter-compensated images reflects the qualitative improvement

in these images.

Figure 4.23 features clearer water than 4.24 and there is therefore less advantage in applying

the hypercone. That scene also includes a foreground element, positioned about halfway

between the checkerboard and the camera, requiring that a volumetric focal region be

utilized to keep all scene elements in focus. This figure underlines that particle attenuation

is not achieved by the same mechanism as noise reduction. There is adequate illumination

in this scene, and the noise level is low. All the scene elements, including the particulate

matter, conform to the rules of parallax motion, and will therefore fall within the frequency-

hypercone in the light field. It is the depth selectivity of the hyperfan that allows us to

single out the desired scene elements.

Note that CNR is a useful but inaccurately named measure in this context, as the “noise”

value includes interference from the particles. A more accurate term would be the contrast-

to-noise-and-interference ratio, similar to the carrier-to-noise-and-interference ratio em-

ployed in telecommunications.

4.8 Discussion and Future Directions

We have established that the frequency-domain ROS of a light field image is a hyperfan at

the intersection of a dual-fan and a hypercone. We have designed, implemented and tested a

novel filter which selectively passes this ROS. This approach to light field denoising is linear

and featureless, operating efficiently and in constant time independent of scene complexity.

We have demonstrated the filter outperforming a range of linear and nonlinear alternatives

over a range of conditions including noise type, noise level, aperture count and scene content.

Test scenes included examples of occlusion, non-Lambertian surfaces, attenuating media and

interference.
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Numeric results were shown for twelve light fields from the Stanford Light Field Archive,

including representative images and quantitative results over a range of metrics. The filter

was shown to be effective at removing noise in all cases, generally outperforming the other

methods we evaluated including planar, dual-fan, overcomplete DCT, K-SVD and video-

based VBR3D methods. We also showed that the hyperfan filter’s performance scales with

aperture count.

Further results demonstrated the filter on imagery collected with the Lytro consumer-grade

light field camera, including scenes with low light, turbid (murky) water, and suspended un-

derwater particulate matter. We showed how increased illumination can lead to saturation

in the presence of backscatter, effectively limiting how much light can be employed to mit-

igate contrast limits in underwater imaging. The hyperfan filter was shown to significantly

improve CNR and visibly improve image quality.

There are several immediate avenues for future work. Automated means of selecting filter

parameters would be desirable, and we believe the hyperfan filter could be useful for a

range of interesting tasks, including compression and interpolation. The inverse-DFT FIR-

based approach we presented was only one of many possible approaches to spatial-domain

implementation. The FIR filter design might benefit from iterative refinement similar to

that presented in [23], for example, and recursive infinite impulse response (IIR) filters may

be more appropriate in some applications, particularly where hardware implementation

would be of benefit.

A more thorough quantitative analysis of performance through turbid media would be

interesting, comparing with the performance curves for low-light noise reduction. This

would benefit from a calibration scheme tailored to the underwater viewport. A theoretical

prediction of signal improvement should be possible, following methods similar to those

outlined in [36, 82, 186].

In their 2012 paper “When Does Computational Imaging Improve Performance?” and

follow-on work [35], Cossairt et al. provide theoretical bounds on image improvement and

relate it to absolute light levels. This is expanded upon in [122]. It would be interesting to

evaluate the hyperfan filter in this context, and against other computational photography

techniques such as focal sweep and flutter shutter [125, 149].
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The hyperfan filter was demonstrated attenuating occluding interference, but one of its

shortcomings is that it can also attenuate desired occluding edges. In the case of the wide

depth of field lego knights scene, for example, some ghosting is visible in desired, occluding

foreground elements. A means of better dealing with these occlusions would be desirable,

perhaps through detection and refinement of small subsets of the light field using a more

complex method, like the variational Bayesian framework proposed in [68], or by employing

a form of median filtering like that proposed in [177].

Finally, backscatter mitigation conventionally employs adaptive, spatially-varying filter

schemes, such as that presented by Schechner and Auverbuch in [157]. This requires the

estimation of distance, transmittance or SNR, and implementation of a filter which adapts

across the scene accordingly. The backscatter mitigation presented here could benefit from

such a method, and the properties of the light field including simplified depth estimation [44]

might enable an elegant implementation. Combination with other approaches to mitigating

underwater effects, e.g. the use of polarization filters [176], may also be interesting.



Chapter 5

Plenoptic Flow

“The observer, when he seems to himself to be observing a stone, is really, if

physics is to be believed, observing the effects of the stone upon himself.”

– Bertrand Russell

In the previous chapter we saw how the spatial properties of light fields could be exploited

to construct simple, linear volumetric focus filters useful for ameliorating a range of difficult

imaging scenarios. We now open our investigation to the time-domain behaviour of light

fields, examining what a mobile light field camera sees as it moves through a static scene.

Much research has been dedicated to modelling a scene while simultaneously keeping track

of the observer’s position within it, and the modern solutions to this problem are broadly

referred to as simultaneous localisation and mapping (SLAM) [52, 118, 195]. A critical

component of even the most sophisticated SLAM algorithm is odometry – estimating ego-

motion based on instantaneous sensor data. Visual odometry, egomotion estimation based

on what the camera sees, is the focus of this chapter.

To tackle this problem we extend the spatial-domain observations regarding parallax motion

from the previous chapter into the time domain. We follow a geometrically driven derivation

which yields useful, modular intermediary solutions including a 3D point cloud model of

the scene, and eventually arrive at a six-dimensional generalization of optical flow. We

demonstrate how this generalization, which we call plenoptic flow, can be employed to effect

closed-form visual odometry, yielding a constant-runtime and robust solution appropriate

to robotics applications. Parts of this chapter are published as [48].

110
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5.1 Closed-Form Visual Odometry

Visual odometry is well established as a fundamental and useful application of computer

vision. Due to the breadth of use cases, low cost of cameras, and wealth of information pre-

sented by the visual world, the deceptively simple-sounding problem of tracking a camera’s

trajectory continues to attract considerable attention [32, 97, 136, 145].

This chapter is concerned with visual odometry employing plenoptic cameras. Although

conventional methods could be straightforwardly adapted to operate on 2D slices of the

light field, we are concerned with solutions which more fully exploit the rich information

captured by these cameras. To this end, we focus on featureless and closed-form techniques

which are impossible in conventional imaging scenarios, but enabled by the high-dimensional

information captured by light field cameras.

Featureless and closed-form solutions are attractive in field robotics for a number of reasons.

While feature-based methods show good performance in high-SNR scenarios, and through

the application of robust estimation techniques such as random sampling and consensus

(RANSAC) show high immunity to interference and other outliers, they can suffer signifi-

cantly in difficult imaging situations such as the contrast-limited scenarios explored in the

previous chapter. By focusing only on a subset of the scene, feature-based methods discard

potentially valuable information. Featureless methods, by contrast, employ all measured

energy, and can therefore show superior performance in low light and other contrast-limited

scenarios.

Because the solutions we propose are closed-form, computation time is constant and inde-

pendent of scene complexity. This makes the techniques attractive for real-time applications

such as mobile robotics, in which a guaranteed and constant runtime simplify system de-

sign. Closed-form solutions are also much better suited to hardware implementation. This

might be attractive for mobile robotics applications where power is limited or real-time

performance critical, as dedicated hardware can offer faster performance under lower power

budgets.

We present a sequence of approaches, starting with a modular method consisting of ge-

ometrically tractable sub-problems, then combining modules into increasingly integrated

solutions until reaching a completely closed-form solution. This final form is a generaliza-

tion of conventional optical flow which, rather than dealing with two-dimensional motion in
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localized image patches, estimates six-dimensional camera motion from an equation which

is invariant across the light field.

The remainder of this chapter is organized as follows: Section 5.2 provides background

and outlines work relating to visual odometry in multiple-camera scenarios. Section 5.3

discusses the light field characteristics that are exploited in Section 5.4 to derive a modular

approach to visual odometry. Section 5.5 integrates part of the solution by generalizing

a technique from optical flow, and Section 5.6 derives expressions for closed-form visual

odometry. Experimental results are shown for simulated data, trinocular camera data and

lenslet-based camera sequences in Sections 5.7 through 5.9. The chapter concludes with

discussion and avenues for future research in Section 5.10.

5.2 Related Work

Prior work in visual odometry has commonly made use of monocular or stereo cameras [32,

136], which by their very nature present insufficient information for direct closed-form so-

lution [128]. In [166] a closed-form solution is presented, but under 3-DOF motion. An

interesting vein of research has been in the use of multiple nonoverlapping cameras for

visual odometry [31, 104]. These approaches generally employ iterative, nonlinear estima-

tion techniques based on feature matching, or suffer from degeneracy in that they fail to

disambiguate certain types of motion.

The spatio-temporal behaviour of plenoptic signals has been explored in the past, with

early work investigating the behaviour of epipolar images [11, 18]. Denzler et al. employed

plenoptic rendering from monocular image sequences and a particle-based tracking system

to perform egomotion estimation in [50].

Moving to a 4D + time analysis, Neumann et al. [128, 130] show that a light field camera

can provide sufficient information for unambiguously solving the visual odometry problem

using closed-form linear equations. This very relevant work refers to light field cameras as

polydioptric cameras, eliciting the multiple refractive paths associated with physical camera

embodiments, and helping distinguish between the continuous-domain plenoptic function

and the discrete subset that can be practically measured. Our work differs by presenting

a geometrically driven derivation which provides modular, intuitive and potentially useful

intermediary solutions. These generate useful intermediary results, such as an estimate of
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the scene’s 3D geometry, and provide important insights into the physical interpretation

of the fully closed-form solution, allowing a novel additive rendering scheme, and helping

point the way forward for future research.

Agrawal and Chellappa present an elegant method similar to ours in that it accomplishes

egomotion estimation based on parallax motion and brightness derivatives [3]. Where their

approach differs is in incorporating an iterative framework and ideas from structure from

motion, where we can forgo this complexity by virtue of employing plenoptic cameras.

In other closely related work, Dong et al. address the question of optimal camera design

for the task of plenoptic visual odometry [53]. Yang et al. also deal with camera design for

featureless visual odometry, but rather than a plenoptic camera, they arrive at a novel, non-

planar four-camera rig [200]. That work is conceptually similar to ours in that it linearizes

the change in appearance resulting from different motion components, but it differs in the

number and nature of those components and how they are generated.

Our derivation can be seen as a generalization of optical flow for plenoptic cameras. In [169]

Sturm tackles multi-view geometry for generalized cameras, ultimately yielding multi-view

matching tensors applicable to a wide range of camera configurations. Specialization of that

work to plenoptic cameras should ultimately yield the equation of plenoptic flow presented

here.

Part of our derivation estimates depth based on first-order derivatives. Prior work has sim-

ilarly shown how the rules of parallax described in the previous chapter can be employed

to form local depth estimates [183, 185]. Unlike these and other prior works which em-

ploy iterative statistical analyses to consolidate local estimates [76], we employ a simple,

closed-form approach which represents a refinement of the gradient-based depth estimation

proposed by the author in 2004 [44].

5.3 The Gradient-Depth Constraint

Throughout this chapter we assume the input light fields have been expressed in the relative

two-plane parameterization. Recall that camera arrays immediately yield this parameteriza-

tion, and light fields measured by other camera models can be transformed into it. Lenslet-
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based camera imagery can be elegantly handled through a simple linear transformation, as

described in Section 5.3.1.

Recall that, to avoid confusion with the spatial light field dimension t, we employ τ to

denote time. Because visual odometry is concerned with the instantaneous estimation of

motion, we restrict our attention to two time instants, τ0 and τ1, and assume a unit time

step such that ∆τ = τ1 − τ0 = 1 sec. Without loss of generality we also treat the camera

as being fixed at the origin, and track the apparent motion of the scene. This allows us to

simplify the coordinate system by orienting the camera along the z axis, aligning the s and

t plane coordinates to be equal to the global frame’s x and y coordinates, respectively. By

selecting the plane separation to equal focal length, D = fM , we also force u and v to be on

the same scale as the global coordinate system.

The previous chapter generalized some of the implications of parallax motion into the light

field, and here we expand briefly on these observations in preparation for the following

sections. We have seen that a point on a Lambertian surface exists as a constant-valued

plane in the light field, and so a scene at a single depth exists as a set of parallel constant-

valued planes – this is described by (4.1) and depicted in Figures 4.3, 4.5 and 4.8(a). Recall

that the slope of the parallel planes depends only on the depth of the scene, and in slices

in s, u and t, v is given by -D/Pz.

Let us inspect the light field’s behaviour about an arbitrary ray Φ = [s, t, u, v]. In particular,

we are concerned with the gradient of the light field, as given by ∇L(Φ) = [Ls, Lt, Lu, Lv],

where L∗ denotes the partial derivative ∂L/∂∗. A consequence of the parallel, constant-

valued planes described above is that the gradient of the light field at each ray Φ must

be perpendicular to the plane that passes through it. The slope of the gradient is related,

through the slope of the planes, to the depth of the scene where it intersects Φ – this is the

basis for gradient-based depth estimation [44].

An arbitrarily selected vector within the constant-valued light field planes will also be

perpendicular to the light field’s gradient. Selecting, for the moment, that vector which

lies in the s, u plane, we recognize that the vector takes on the direction (1, -D/Pz), and

because it is orthogonal to the gradient we can write the dot product

(1, -D/Pz) · (Ls, Lu) = 0. (5.1)

Solving for the ratio Ls/Lu and generalizing to 4D yields the gradient-depth constraint
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Ls/Lu = Lt/Lv = D/Pz. (5.2)

There is a striking similarity between this expression and the frequency-domain constraint

underlying the hyperfan filter presented in the previous chapter (4.2). This is essentially a

spatial differential-form expression of the same underlying phenomenon.

5.3.1 Lenslet-Based Imagery

The gradient-depth constraint and much of the following development deal with the partial

derivatives of the continuous-domain light field. The complication arises that we are working

with sampled light fields, and as such need to estimate derivatives from sampled data.

A feature of the two-plane parameterizations is that the index dimensions i, j, k and l align

with the spatial light field dimensions s, t, u and v. As a consequence, the continuous-domain

derivative is trivially estimated using the first difference along each sampled dimension, i.e.

Ls ≈ fs[L(i+ 1)− L(i)], where fs is the sample rate in samples/sec.

In the case of the more generally parameterized rectified light fields appearing in Chapter 3,

the situation is more complex. Now the sampled dimensions do not align with the spatial

light field dimensions, and so a transformation is required. To tackle this problem we turn to

the plenoptic intrinsic matrix (3.10), which relates spatial rays with light field indices. We

are in fact concerned with the inverse of the relationship shown previously, i.e. n = H -1Φ,

which can be expanded as
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Note that the plenoptic intrinsic matrix and its inverse, shown here, have the same sparsity

pattern, and that we have written the inverse in terms of partial derivatives and offsets, c∗.

We have done so because the spatial derivatives we seek can be expressed in terms of first

differences and the terms of the inverse plenoptic matrix, for example

Ls =
∂L

∂s
≈ ∂L

∂i

∂i

∂s
+

∂L

∂k

∂k

∂s
. (5.4)
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We have omitted the j and l terms because they are independent of s, as indicated by (5.3).

Generalizing to the other dimensions yields a collection of terms which can be succinctly

stated as
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Here the Jakubian1 H -T
4×4 is constructed from the top-left 4× 4 portion of the plenoptic in-

trinsic matrix (3.10). The constant offsets, and thus the need for homogeneous coordinates,

disappear under differentiation. This relationship allows us to directly utilize light fields

parameterized using arbitrary plenoptic intrinsic matrices in the solutions derived later in

this chapter.

5.4 Modular Visual Odometry

In our pursuit of closed-form visual odometry we begin with a modular approach, broken

into three stages. First, we estimate a 3D point cloud for the scene, then we estimate

the motion of each 3D point between two frames. Finally, we use the two resulting point

clouds with Horn’s closed-form method for estimating orientation [80] to yield the camera’s

transformation.

5.4.1 Depth Estimation

The output of this stage is a cloud of 3D points representing the scene geometry, and a

confidence associated with each point. Because the light field offers us the flexibility of

rendering views from arbitrary virtual cameras, any existing stereo or multi-camera depth

estimation technique can be utilized, as appropriate to the application [158]. However,

because our ultimate motivation is to find a closed-form solution, we favour the simple,

non-iterative gradient-based depth estimation presented in [44]. This technique exploits the

gradient-depth constraint to estimate depth from the first-order partial derivatives of the

light field: (5.2) is straightforwardly rearranged to solve for Pz.

1Named for Mike Jakuba, a colleague whose name, like the matrix, is reminiscent of the Jacobian.
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Estimating partial derivatives requires a bandlimiting step, especially in camera arrays

which exhibit aliasing in s and t, and typically feature much higher sample rates in u and

v. We therefore precede estimation of depth with a Gaussian low-pass filter.

Notice that (5.2) yields two depth estimates per light field sample – one from Ls/Lu and

one from Lt/Lv. In [44] these were combined as a weighted sum using the magnitudes of the

partial derivatives as weights. The results were then culled based on a minimum allowable

weight, and filtered across the light field to yield a dense result.

We propose a refinement to this method in which results are collected in neighbourhoods.

Starting in s, u, we take a weighted mean of the ratio Lu/Ls, where the weight is based

on the magnitude of the denominator Ls. We justify this by pointing out that the ratio is

likely well-defined only where Ls is large, corresponding to regions where there is spatial

edge information. A 2D Gaussian window ωsu also enters into the weighting, and the

denominator for the mean ends up taking a form which allows a simplification:

Pz = D

∑

ωsu ‖Ls‖Lu/Ls
∑

ωsu ‖Ls‖
= D

∑

ωsu sgn(Ls)Lu
∑

ωsu ‖Ls‖
. (5.6)

Results from t, v are straightforwardly incorporated by adding similar summations to both

the numerator and denominator. Notice that the simplification has effectively removed a

division from the estimate making this a more numerically stable solution, particularly in

regions with little contrast in s or t. Another strength of this approach is that where there is

little contrast in either or both of s or t, nearby pixels from either orientation can contribute

to the overall estimate. An estimate of confidence for each depth estimate is given by the

denominator of (5.6). Two examples of closed-form depth estimation applied to imagery

gathered using a Lytro lenslet-based camera are shown in Figure 5.1.

5.4.2 Point Cloud Generation

Given an estimate of Pz for a given ray Φ, a point cloud can be generated by rearranging

the point-plane correspondence (4.1) to solve for Px and Py:

[

Px

Py

]

=

[

1 0 Pz/D 0
0 1 0 Pz/D

]

[s, t, u, v]T. (5.7)

A nice feature of this equation is that Px and Py are weakly dependent on Pz near u = v = 0:

These rays are nearly perpendicular to the reference planes, and so their points of intersec-
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(a) Input (b) Input

(c) Depth (d) Depth

(e) Confidence (f) Confidence

Figure 5.1 – Two examples of closed-form depth estimation – Slices in k, l of the input light field
(top), depth estimate (center), and confidence (bottom).
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Figure 5.2 – Establishing a correspondence between rays in two light fields: A point P translates
at velocity v to a new location. Translating the intersecting ray Φ by the projected velocity vx,y

yields a parallel ray Φ′ which intersects the translated point. In Section 5.5 similar triangles are
used to express a translation -∂z as an equivalent translation ∂x.

tion with the scene are mostly determined by s and t. As a consequence, Px and Py are

typically known with greater confidence than Pz.

At time τ0, we denote the 3D point cloud estimate P (Φ, τ0) = [Px, Py, Pz]. The confidence

associated with each point is taken as the confidence of its depth estimate, Pz. Note that

the cloud has one point per ray within the light field, so a physical point in the scene will

appear in the point cloud many times.

5.4.3 Projected Method for Point Motion Estimation

We wish to track the apparent motion of the point cloud P between two time instants,

τ0 and τ1. We will treat the camera as stationary, and estimate the motion of the scene

relative to it. Because each point is treated individually, all apparent motion including that

resulting from camera rotation can be approximated by local pointwise 3D translations.

Figure 5.2 depicts the apparent motion of an arbitrary scene, shown as a coloured band,

with apparent motion v towards the camera and along positive x.

A naive approach to estimating translation would be to form an independent point cloud

estimate at time τ1, i.e. P (Φ, τ1). Unfortunately, the correspondence between the two point
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clouds is unknown: P (Φ, τ0) and P (Φ, τ1) are indexed by the same ray Φ, which intersects

different scene points at τ0 and τ1. The lack of correspondence between the two point clouds

makes it impossible to formulate a closed-form motion estimate.

We require an estimate of the point cloud P (Φ′, τ1) such that the ray Φ′ at τ1 intersects

the same scene point as Φ at τ0, as depicted in Figure 5.2 – i.e. P (Φ′, τ1) and P (Φ, τ0) are

the same scene point at different times. We propose to estimate Φ′ based on projected 2D

velocities. In Section 5.5 we present an alternative approach which directly estimates the

3D velocity of each point based on a generalization of optical flow, sidestepping the need to

explicitly estimate Φ′.

Estimating Φ′ can be accomplished elegantly by operating on orthographic images. We

have already seen that the light field can be thought of as a collection of projective cameras

yielding images in u, v, but it can also be seen as a collection of orthographic cameras, with

each camera facing a slightly different direction. The camera is indexed by u, v, and within

each image the pixels are indexed by s, t. Recall that we are using the relative two-plane

parameterization, so fixing u and v selects a single ray direction. Every ray within an s, t

image is parallel so there is no parallax motion, simplifying motion estimation.

We can estimate, by any number of appropriate techniques, the velocity vx,y of each point

in the orthographic s, t plane. Because the rays in an orthographic image are parallel,

the projected velocity is sufficient to determine the mapping from Φ to Φ′, as depicted in

Figure 5.2. For a unit time step,

Φ′ = Φ+ [vx,vy, 0, 0]. (5.8)

A range of techniques can be utilized to estimate vx,y – this is simply 2D registration, and

so correlative, frequency-domain and optical-flow based methods all apply [19]. Because

we are favouring closed-form solutions, and because it is similar to the more integrated

solution presented in the following subsection, we favour the closed-form version of Lucas

and Kanade’s optical flow [107]. We can restate Lucas and Kanade’s well-known result, in

the notation of the present work, as:

vx,y =

[ ∑

ωL2
s

∑

ωLsLt
∑

ωLsLt

∑

ωL2
t

]-1 [
-
∑

ωLsLτ

-
∑

ωLtLτ

]

, (5.9)
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with summations taken over a Gaussian window ω. The derivation of this result involves

constructing a linear system of equations describing brightness constancy between a patch

as it appears in two images. This system of equations is solved in a least squares sense to

yield (5.9). The reader is referred to [107] for the full derivation, and we also follow a similar

derivation in the following section, generalizing to 3D translational motion and yielding a

similar expression (5.14).

Because we are operating on orthographic s, t images, the underlying assumption that neigh-

bouring points have similar velocities is a good one – apparent motion due to translation

is independent of depth under orthographic projection. Importantly, because the method

operates locally on the basis of first-order derivatives, it can operate on very small patches –

i.e. on light fields with very few samples in s, t.

The projected velocity estimate vx,y is used to generate a new set of rays Φ′ using (5.8),

with the two resulting point clouds P (Φ, τ0) and P (Φ′, τ1) corresponding to the same scene

points.

5.4.4 From Point Clouds to Camera Motion

We employ Horn’s closed-form quaternion-based method for solving absolute orientation,

which accepts as input two associated point clouds with an optional weight for each pair of

points [80]. This method generates an estimate of 6-DOF apparent motion, which we invert

to find camera motion. We supply weights based on the confidence of the depth estimate

Pz. The method requires us to collapse the 4D point clouds into flat lists, discarding all

information relating to ray geometry. The two point lists correspond exactly – the nth entry

in the first and second lists correspond to the same scene point.

5.5 Pointwise Plenoptic Flow

The method described so far offers numerous opportunities for tuning and adaptation to

specific applications. The rest of our development is concerned with combining elements

into more direct solutions, at the cost of reduced flexibility. The present section replaces

the projected motion and point cloud estimate P (Φ′, τ1) from the previous section with an
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estimate of the 3D velocity v of each point P (Φ, τ0). This derivation of pointwise plenop-

tic flow closely follows the familiar closed-form derivation for Lucas and Kanade’s optical

flow [107]. Section 5.6 will further integrate the method, foregoing formation of intermediary

point clouds for a direct estimation of camera motion from light field derivatives.

5.5.1 Equations of Plenoptic Flow for a Point

We begin by generalizing the optical flow equation for the light field. Operating about a

ray of interest Φ which intersects the scene at a point P , we are interested in the change in

light field value Lτ in response to an incremental apparent point translation v = [vx, vy, vz]
T.

The classical optical flow derivation [57] generalizes to

Lxvx + Lyvy + Lzvz = -Lτ . (5.10)

Recall that L∗ denotes the partial derivative ∂L/∂∗. We can think of light field derivatives

as describing the change in the light field as a function of ray position and direction, so

that Lx, for example, denotes the change in a ray’s value for a positive translation of that

ray along x. With this in mind, the first two terms of (5.10) make intuitive sense: If a ray

intersects the scene on a surface which gets brighter along positive x (Lx > 0), and that

surface translates by a positive vx, then the ray value will decrease proportionally to vx and

Lx – a scene translation along positive x corresponds to a ray translation along negative x.

Notice that because the global coordinates x, y and light field coordinates s, t are identical,

we can substitute in Ls for Lx, and Lt for Ly. However, a complication arises in the final

term: There is no light field dimension z, and thus no straightforward way to determine

Lz, the change in the value of a ray as it translates along positive z. Fortunately, be-

cause the light field partial derivative is defined about a ray, a small translation ∂z can be

approximated with appropriately chosen translations in x and y.

Inspecting Figure 5.2, we see that translating a surface by a small distance ∂z towards the

camera yields the same result, at the ray Φ′, as translating it a small distance ∂x to the

right. From similar triangles in the figure, and generalizing to translation in v, we can write

∂zx ≈ −D

u
∂x, ∂zy ≈ −D

v
∂y, (5.11)

and substitute into the definition of Lz to yield
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Lz ≈
∂L

∂zx
+

∂L

∂zy
≈ − u

D
Ls −

v

D
Lt. (5.12)

Lz can now be substituted into (5.10) to express Lτ entirely in terms of the light field’s

partial derivatives. As with traditional optical flow, we assume this equation holds within

a neighbourhood and form a system of equations

A =

















Ls(Φ1) Lt(Φ1) Lz(Φ1)

Ls(Φ2) Lt(Φ2) Lz(Φ2)
...

...
...

Ls(Φn) Lt(Φn) Lz(Φn)

















, b =

















-Lτ (Φ1)

-Lτ (Φ2)
...

-Lτ (Φn)

















,

Av = b, (5.13)

which we solve for v in the least squares sense to yield the pointwise plenoptic flow equation:

v = (ATA)−1ATb, (5.14)

=









∑

L2
s

∑

LsLt

∑

LsLz
∑

LsLt

∑

L2
t

∑

LtLz
∑

LsLz

∑

LtLz

∑

L2
z









-1 







-
∑

LsLτ

-
∑

LtLτ

-
∑

LzLτ









.

As with 2D optical flow, the summations are performed in neighbourhoods, applying a

Gaussian window (not shown) favouring samples near the center of the neighbourhood.

Having estimated a per-ray v, we form an estimate of the point cloud at time τ1 as

P (Φ′, τ1) = P (Φ, τ0) + v, (5.15)

and as in the previous section we apply Horn’s method for estimating the camera’s motion.

5.5.2 Weighted Filtering

In Section 5.4.1 we proposed a weighted depth-estimation scheme for increased performance

in areas of low contrast. We propose a similar scheme for pointwise plenoptic flow. Ex-

panding the inverted matrix in (5.14) in terms of its determinant, we get

(ATA)-1 = B/
∣

∣ATA
∣

∣ , (5.16)
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where B is the adjoint of ATA. Substituting into (5.14) and weighting by the magnitude

of the denominator as in (5.6), we obtain a simplification:

v =
∑

∣

∣ATA
∣

∣BATb
∣

∣ATA
∣

∣

/
∑

∣

∣ATA
∣

∣ =

∑

BATb
∑
∣

∣ATA
∣

∣

, (5.17)

where the summations are on Gaussian-weighted neighbourhoods (not shown), and the

denominator of the final expression again serves as a convenient estimate of confidence.

5.6 Plenoptic Flow

In this section we take a final step in consolidating the techniques presented so far, writing

a single expression for the camera’s motion from the light field’s derivatives. The previous

section yielded an expression relating the local apparent velocity of a scene’s points to the

light field’s derivatives (5.13). Now we will express the apparent velocity of every scene point

in terms of a global rigid transformation resulting from the camera’s motion. We substitute

the resulting expression into (5.13) to yield a single closed-form expression relating the

scene’s global transformation to the light field’s spatio-temporal derivatives.

The quantity we estimate here is the scene’s apparent transformation due to the camera’s

motion. Inverting this to yield the camera’s motion will be straightforward because we

employ a linearization of rotation, specifically the small-angle approximation of Rodrigues’

rotation formula:

R ≈ I+ [ω]×, [ω]× =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



 . (5.18)

Note that the rotation is entirely defined by three values, ω = [ωx, ωy, ωz]
T, and the local

translation of a point P due to the global rotation R is straightforwardly found as [ω]×P .

We express the scene’s global translation using another three values, q = [qx, qy, qz]
T, and

so the total degrees of freedom in the scene’s global transformation, [q;ω]T is, as expected,

six – [∗; ∗] indicates vertical stacking of vectors. The camera’s transformation is given as

the negation of this six-element transformation.

We express the apparent velocity of a point, v, as the net effect of the scenes’s global

rotation and translation:
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v = q + [ω]×P . (5.19)

We seek to complete this expression in terms of the light field’s partial derivatives. This

is possible by constructing P from the gradient-depth constraint (5.2) and point-plane

correspondence (5.7). For the former we must select one of two possible values for Pz, and

though we proceed using the expression in s and u, the following section will show that

equivalent expressions are possible:

P ≈





s+ uPz/D
t+ vPz/D
DLu/Ls



 ≈





s+ uLu/Ls

t+ vLu/Ls

DLu/Ls



 . (5.20)

The resulting expression for P is inserted into (5.19) to relate the pointwise apparent

velocity v and the light field’s partial derivatives. That value for v is in turn inserted into

the earlier expression relating velocity and partial derivatives (5.13) to yield

[Ls, Lt, Lz]









q + [ω]×









s+ uLu/Ls

t+ vLu/Ls

DLu/Ls

















= -Lτ . (5.21)

We can split out the global transformation [q;ω] to yield the equivalent expression

[Ls, Lt, Lz][I(3),Mω][q;w] = -Lτ ,

Mω =









0 DLu/Ls -(t+ vLu/Ls)

-DLu/Ls 0 s+ uLu/Ls

t+ vLu/Ls -(s+ uLu/Ls) 0









, (5.22)

where I(3) is a 3×3 identity matrix. The part of the equation to the left of the global

transformation can be multiplied through to yield a six-element vector. Simplifying that

vector using the gradient-depth constraint to replace expressions such as LuLt/Ls with Lv

yields the equation of plenoptic flow:

















Ls

Lt

Lz

(t+ vLu/Ls)Lz −DLv

-(s+ uLv/Lt)Lz +DLu

sLt − tLs + uLv − vLu

















T 















qx
qy
qz
wx

wy

wz

















= -Lτ , (5.23)



5.6 Plenoptic Flow 126

where Lz is defined in terms of Ls and Lt in (5.12).

Plenoptic flow (5.23) must hold throughout the light field, and so following the method for

obtaining (5.14) from (5.13), a new system of equations can be straightforwardly constructed

and solved, in a least-squares sense, to yield an estimate of the global scene transformation,

and therefore the camera’s motion. A key difference is that this equation is invariant

throughout the light field, and rather than solving in neighbourhoods, the entire system is

solved at once, yielding a single estimate.

The least-squares solution shown in (5.14) can be precomputed: The matrix inverse and

multiplication can be carried out symbolically, yielding a single polynomial expression for

each element of v. Similarly, the system of equations built from (5.23) can be precomputed

symbolically, including a six-by-six matrix inversion, to yield closed-form polynomial ex-

pressions for each of the six elements of the camera motion parameters. This is therefore

a completely closed-form solution, which yields results with a constant runtime, and could

be straightforwardly mapped into a hardware implementation.

5.6.1 Equivalent Expressions

As part of the derivation of the equation of plenoptic flow (5.14) we employed the gradient-

depth constraint (5.2), derived in Section 5.3, to yield the simplifications Lv = LuLt/Ls and

Lu = LvLs/Lt. The question arises as to whether other formulations are possible by making

similar substitutions. In particular, the form shown in (5.14) includes divisions which may

lead to poorly conditioned results in areas of little contrast. Indeed, by substituting in the

definition for Lz (5.12) and performing the appropriate substitutions using the gradient-

depth constraint as above, we obtain the less succinct but more numerically stable

















Ls

Lt

-(uLs + vLt)/D
-(tuLs + tvLt + uvLu + v2Lv)/D −DLv

(suLs + svLt + u2Lu + uvLv)/D +DLu

sLt − tLs + uLv − vLu

















T 















qx
qy
qz
wx

wy

wz

















= -Lτ . (5.24)

Taking a mathematical approach based on Taylor series approximations, Neumann et al.

derive a closed-form expression [128, 130, 131] which is equivalent to (5.24). That this
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should be the case is indeed remarkable, given the difference in approach and the number

and nature of approximations taken in both derivations.

5.7 Experiments: Simulation

Here we compare the performance of the pointwise and full plenoptic methods to the stereo

feature-based approach described in [118], using raytraced image sequences. Real-world

sequences are considered in later sections. When implemented as unoptimized Matlab code

running on an Intel i7 930 at 2.8 GHz, the technique is capable of running in 0.5 sec per

frame in the case of the full plenoptic solution, or 1.8 sec for the pointwise plenoptic method.

It would be straightforward to write optimized code capable of running either approach at

real-time video rates on general-purpose hardware, but this is left as future work.

5.7.1 Random Trajectories

A raytracer was employed to produce images of a Lambertian scene comprising a camera

within a cube 10 m on side, with a texture consisting of a checkerboard pattern and additive

band-limited noise. Each u, v image in the light field was rendered at a resolution of 128×128

pixels.

Pairs of frames were rendered in which a camera array was moved through random trans-

formations within the cube, starting from random positions and orientations. Translation

was uniformly distributed and limited to ±0.1 m per axis, and rotation was carried out

as a concatenation of roll, pitch and yaw, each uniformly distributed and limited to ±1 ◦

per axis. Starting positions were also constrained to a minimum of 0.3 m from the edge of

the box. Error was computed as the Euclidean distance between the ideal and estimated

camera translation and rotation.

Figures 5.3, 5.4 and 5.5 depict the mean absolute rotational and translational error for the

pointwise and full plenoptic flow methods. Unless otherwise stated, the number of cameras

in all experiments was 2×2, the field of view (FOV) was 100 ◦, and the camera separation

was 20 mm. Figure 5.3 varies camera separation and FOV, 5.4 shows the relationship

between the bandwidth of the input antialiasing filter and FOV, and 5.5 shows the effect
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Figure 5.3 – Mean translational error (top) and rotational error (bottom) for pointwise (left)
and closed-form plenoptic flow (right) as a function of FOV and input bandwidth.
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Figure 5.4 – Mean translational error (top) and rotational error (bottom) for pointwise (left)
and closed-form plenoptic flow (right) as a function of FOV and camera separation.
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Figure 5.5 – Mean translational error (top) and rotational error (bottom) for pointwise (left)
and closed-form plenoptic flow (right) as a function of noise level and camera count.
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of additive white Gaussian noise and additional cameras. The number of cameras reported

in the latter figure is per-side, i.e. 7×7 cameras were used in the larger experiments.

From these results we see that the pointwise method is less sensitive, in general, to param-

eter variation, though its best performance is weaker. Also noteworthy is that under the

addition of noise the full plenoptic method does not benefit from additional cameras, while

the pointwise plenoptic method does. This is because the pointwise plenoptic method, in

formulating an explicit and filtered depth estimate, enforces the gradient-depth constraint.

While that constraint was used in deriving the full plenoptic solution, it is not enforced in

any way by the resulting equation. This indicates the potential to enhance the full plenoptic

method, possibly through application of the hyperfan filter presented in Chapter 4.

5.7.2 A Simulated AUV Trajectory

The techniques were evaluated for a specific robotic application: High-resolution under-

water survey by an Autonomous Underwater Vehicle (AUV). The University of Sydney’s

Australian Centre for Field Robotics operates an ocean-going AUV called Sirius capable of

such work [192], and a recorded trajectory from one of its missions was used as the basis for

this experiment. A raytracer was employed to produce imagery of a nontrivial simulated

seafloor as the camera was moved along the AUV’s recorded trajectory. The sequence is

an approximation of the imagery an underwater light field camera might record, though it

ignores the water’s attenuation and motion of the light source with the robot.

It is a well-known property of optical flow methods that the motion between frames must

not exceed the coherence of the filtered input images. If the inter-frame transformation

is too great, the temporal derivative becomes independent of the spatial derivatives, and

the solution falls apart. On Sirius, imagery is collected at a rate of one image per second,

resulting in apparent scene motion higher than ideal for the optical flow methods presented

here. As such, we pursued an alternative image capture regime in which two frames were

recorded in rapid succession every second, separated by 50 ms, and motion estimation was

performed on the resulting pairs of images. Given the inertial stability of the vehicle,

velocity was assumed to be constant over the remainder of each second. The FOV of the

virtual camera was 100 ◦, and there were 2×2 cameras in the array separated by 20 mm in

s and t.
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Figure 5.6 – A trajectory from an excursion of the Sirius AUV is used to drive a virtual light
field camera; trajectory estimates are shown for pointwise and full plenoptic flow, as well as a
feature-based visual odometry method.

Figure 5.6 and Table 5.1, in the next section, summarize the results for pointwise and full

plenoptic as well as feature-tracking methods. Because ground truth values are available,

errors are reported both as RMS error between the integrated and ideal path, and also as

RMS instantaneous translational error. All methods were successful at providing odometry

sufficient for this application.

5.8 Experiments: Trinocular Camera

A three-camera rig was used to measure a simple scene comprising a vertical checkerboard

pattern at a distance of about 1 m from the camera. The camera separation was 10 cm,

and the FOV was approximately 65 ◦×50 ◦. The camera rig was factory-calibrated, offering

rectified imagery.

The large aperture separation necessitated a multi-resolution derivative estimation method,

as the shift between images was too large for a single-step method to operate well. Adaptive

gain adjustment was also required, both between apertures and in time, as both the spatial
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Figure 5.7 – Comparing results for a real-world light field video sequence

and temporal gain characteristics of the camera were non-ideal. These additional steps

slowed performance to about 1.0 sec per frame for the plenoptic and 2.6 sec for the pointwise

plenoptic solution, again using an unoptimized Matlab-based implementation running on

an Intel i7 930 at 2.8 GHz. Real-time operation should still be well within reach with these

additional steps.

Though the camera offered a much higher resolution, images were down-sampled to 128×96

in u an v, for a total input size of only 36,864 pixels. The feature-based method was allowed

to run on higher-resolution 256×192 pixel images because its use of only two cameras limits

its input signal energy.

When recording the sequence, the camera’s motion was constrained to the vertical plane,

and rotation within the plane was allowed. The path followed was a 42×12 mm rectangle,

repeated twice over a one minute duration. Figure 5.7 and Table 5.1 summarize the results

for pointwise and full plenoptic methods, as well as for the feature-tracking method described

in [118]. The reported errors are the root mean square (RMS) shortest distance between

the integrated path and the ideal rectangular path. No ground truth was available for

evaluation of the instantaneous transforms.

Again the results are promising, with the proposed methods very closely conforming to the

actual trajectory, and outperforming the feature-based method. The relatively poor results
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Table 5.1 – Summary of results for AUV and trinocular sequences

Measure AUV Path Rectangular Path

Poses 225 571

Path length (mm) 79,835 2,160

Instantaneous Translational RMS Error (mm)

Plenoptic 23.30 –

Pointwise 31.03 –

Feature 33.74 –

Integrated Path Translational RMS Error (mm)

Plenoptic 437.00 2.92

Pointwise 255.76 4.38

Feature 647.35 26.48

obtained from the latter can likely be attributed to the low input resolution and non-ideal

gain characteristics of the camera.

5.9 Experiments: Lenslet-Based Camera

This section deals with imagery gathered using a Lytro lenslet-based light field camera. We

employ rectified imagery generated using the camera calibration associated with Dataset 2

from Chapter 3, and apply the plenoptic intrinsic matrix as described in Section 5.3.1 to

convert first differences in the rectified image space into spatial derivative estimates.

5.9.1 Motion Components and View Synthesis

To confirm that the sequence of calibration, rectification, and estimation of derivatives as

presented in Section 5.3.1 has succeeded, we investigated the individual components of the

equation of plenoptic flow. Examining the leftmost matrix in (5.24), we see that each row

can be interpreted as one of six motion components – for brevity we will refer to the last

three rows in terms of the rotations they represents, Lωx, Lωy and Lωz. Though they are

treated as flat lists of numbers in solving for camera motion, each of the six components

can also be interpreted as a 4D light field, taking on the same dimensions as the input.

Taking this approach, we decomposed the light field depicted in Figure 5.8 into its six
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Figure 5.8 – A scene with large depth variation. In an effect difficult to capture in print,
the rightmost image displays a shifted perspective as accomplished entirely by adding motion
components to the input light field – the virtual viewpoint has been translated towards the bird
relative to the measured view, causing the bird to appear larger.

motion components, depicted in Figure 5.9 – negative values are depicted as dark, positive

as bright, and zero as grey. For these figures, the input was band-limited to a normalized

bandwidth of 10-0.5 to increase the visibility of the derivatives for display.

One of the immediate applications of this decomposition is that novel views can now be

synthesized via the weighted addition of these six motion components to the original light

field, provided the desired camera motion is relatively small. This is difficult to demonstrate

in print, given the need for relatively small camera motions, but the two frames in Figure 5.8

display shifted camera perspectives. The camera has been moved forward in the frame on the

right, causing the bird to appear larger, with little change to the more distant background

elements. The effect is accomplished entirely through addition of motion components – in

this case the displayed light field is the result of adding 8× Lz to the input light field.

Examining Figure 5.9, notice that the vertical spatial derivative, Lt and the rotational

derivative Lωx are visually similar, and likewise for Ls and Lωy – the negation of Lωx is

displayed to emphasize the structural similarity to Lt. This similarity is even more pointed

for scenes with less depth variation. In some circumstances, the spatial and rotational

derivatives are sufficiently similar that the method of plenoptic flow is unable to distinguish

them. This problem has been previously noted [127], and is generally worse in cameras with
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(a) Ls (b) Lωy

(c) Lt (d) -Lωx

(e) Lz (f) Lωz

Figure 5.9 – Plenoptic motion components for the scene with large depth variation depicted in
the previous figure – note that angular and spatial derivatives are similar, but not identical.
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narrower fields of view, for which the ambiguity is stronger. We address this further in the

following sections.

5.9.2 Input Sequences

The Lytro does not support video capture, so we instead captured still images over pre-

cisely controlled motion sequences. To effect repeatable motion we mounted the camera on

a 6-DOF Epson C3 industrial robot arm with ±0.020 mm repeatability. Sequences were

collected over a range of motions and over a variety of test scenes – two such scenes are

depicted in Figure 5.10. The scene on the left features two planar regions with printed

textures, with the leftmost portion of the scene being closer to the camera by about 10 cm.

The scene on the right is similar, but introduces a folded playing card for added geometric

detail, and changes the heights of the planar regions with respect to the camera. Illumina-

tion conditions varied across datasets, as is evident from these two images, and distances

to the scenes varied between 0.3 and 0.5 m.

(a) (b)

Figure 5.10 – The two test scenes used for the lenslet-based odometric results: The scenes show
different non-planar 3D structures, and were measured from different heights and under different
illumination conditions. (a) The edge of a book with illustrated cover (left) is elevated above a
flat, textured background (right). (b) The book and camera are at different elevations, and a bent
playing card introduces more geometric complexity.
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In Lytro imagery the number of samples in k and l is significantly higher than in i and j, and

so light fields were downsampled in k and l by a factor of four, to yield 9× 9× 95× 95 sam-

ples. This downsampling was accompanied by a corresponding adjustment of the plenoptic

intrinsic matrix. The light fields were reduced to greyscale through summation of the colour

channels.

5.9.3 Symmetric Derivative Estimation

In the AUV trajectory experiment in Section 5.7.2, we brought up the question of maximum

inter-frame transformation, proposing an image capture regime designed to keep the maxi-

mum transformation within an acceptable limit. This was necessary because, like all optical

flow methods, plenoptic flow only works for relatively small camera motions. To investigate

this phenomenon we gathered pairs of frames showing a variety of relative translations in

the y direction. The numerically stable form of plenoptic flow (5.24) was employed to esti-

mate 3-DOF translation – the dataset and estimator are described in more detail later in

the text.

The estimated y translations for 765 image pairs are plotted in red in Figure 5.11. The black

line indicates the ground truth – clearly, the estimator has underestimated the translation,

to an extent which grows with distance. The same image pairs were also applied in reverse,

yielding the estimates shown in blue – the negation of the estimates are plotted so as to allow

comparison on the same axes. Ideally all motion is adequately smooth that the difference

between forward and reverse estimates is negligible, but as we see from the figure, as the

distance travelled grows so does the difference between the estimates.

We attribute the observed asymmetry to the manner in which the light field’s derivatives

are estimated. Spatial derivatives are based on a single frame at τ0, while the temporal

derivative is based on a difference between that frame and the next, τ1. Reversing the

images does not yield the same solution, as in that case the spatial derivatives are based on

the second frame. Observing this asymmetry, the question arises as to whether a symmetric

derivative estimate might show better performance.

To this end we propose a three-frame method, in which spatial derivatives are computed

from a center frame, τ0, while temporal derivatives are based on the previous and next

frames, τ-1 and τ1. Similarly, spatial derivatives of the form ∂L/∂s are approximated using
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Figure 5.11 – A comparison of the asymmetric derivative estimates employed previously (red,
blue) and the proposed symmetric approach (grey). On average, the symmetric approach conforms
to the ideal (black) over a greater range of inter-frame translations.

the symmetric difference L(i+ 1)−L(i− 1), as opposed to L(i+ 1)−L(i). A consequence

of this approach is that now reverse and forward estimates are exactly equal. Furthermore,

examining the result depicted in grey in Figure 5.11, we see that the estimates conform

to the ideal over a greater range of transformation magnitudes – compare the symmetric

estimate to the mean behaviour of the forward and reverse estimates. For these reasons we

will employ symmetric derivative estimates for the remainder of this section.

5.9.4 Motion Ambiguities

Figure 5.9 demonstrated a similarity between angular and translational motion components.

To evaluate the impact of this ambiguity we collected sequences of images showing trans-

lational and rotational motions. To effect the latter, the nodal point of the camera was

located through manual adjustment, minimizing the relative apparent motion of objects at

different depths as the rotation was applied. The results that follow are from four datasets

measured over the two scenes depicted in Figure 5.10, two having rotational motion and

two showing rotational.
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Figure 5.12 – Estimated vs. ideal transformations for two translational (top) and rotational
(bottom) datasets. Black lines depict ground truth values, with the green y components in (a)
and red ωx components in (c) ideally following the diagonal lines, and all other components ideally
following the horizontal zero line. As the magnitude of the transformation increases, so does the
confusion between translational and rotational components.
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Figure 5.13 – The two translational (left) and rotational (right) datasets yield more accurate re-
sults under 3-DOF motion estimation because they do not suffer from the translational/rotational
ambiguity evident in Figure 5.12.
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Motion was estimated for the four sequences using the stable form of plenoptic flow (5.24).

We included estimates for non-temporally adjacent image pairs – for example, frame 1 was

paired with frames 2, 3, and so on up to a maximum frame separation of 2 mm or 1 deg. This

allowed us to quantify accuracy as a function of image separation, as seen in Figure 5.12. In

these plots black lines represent ground truth values, while coloured dots represent estimated

transformations. The green, y translational component in Figure 5.12(a) and the red, ωx

rotational component in (c) ideally follow the diagonal black lines, while the rest ideally

follow the horizontal zero lines. The top row of the figure shows results for 800 image pairs

over the two translational sequences, and the bottom shows results for 390 image pairs over

two rotational sequences.

From the figure there is an evident confusion between translation and rotation, and the

ambiguity becomes more significant for larger transformations. There are a few approaches

to addressing this ambiguity, and by far the one appearing most often in prior work is to

increase the FOV of the camera. Motion at the edges of wide-FOV imagery is more distinct

under rotation and translation. We would further propose that, where wider-FOV cameras

are impractical or unavailable, other forms of disambiguation might suffice. Scenes with

large depth variation, such as that depicted in Figure 5.8 for example, demonstrate less

ambiguity than planar scenes. Cameras with wider spatial baselines and higher resolutions

are also better able to disambiguate these types of motion. These features come with their

own tradeoffs, and verification of their efficacy is left as future work.

Instead we augment our investigation by including unambiguous lower-dimensional subsets

of 6-DOF plenoptic flow. In particular, we pursue two 3-DOF solutions, one purely trans-

lational and the other purely rotational. We have found different 3-DOF subsets – e.g. x, y

translation and z rotation in the plane – to yield similar results, provided no two ambiguous

dimension are included.

The same datasets shown in Figure 5.12 yielded the 3-DOF solutions shown in Figure 5.13.

Notice the improved stability, over larger transformations, compared with the 6-DOF solu-

tions. We anticipate the behaviours of these lower-dimensional motion subsets to resemble

that of higher-dimensional estimators, allowing us to investigate these behaviours without

having access to a wider-FOV camera.
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5.9.5 Bandwidth Tuning

The question of optimal input bandwidth was explored in the context of camera arrays

earlier in the chapter. In that section, aliasing due to the distance between apertures was

an important consideration. In lenslet-based cameras that form of aliasing is less of a

concern, but bandwidth must nevertheless be adjusted based on motion between frames.

Figure 5.14 summarizes performance over 8,400 trials for one of the translational datasets.

Shown is the mean 3-DOF error as a function of translation and input bandwidth, where

error is taken as 3D Euclidean distance, and the negative log of error is displayed so that

higher values represent better performance.

A ridge of optimal performance is indicated in the figure, from which it is clear that the

optimal bandwidth decreases as distance travelled increases. There is also a clear trend

towards better performance for smaller translations. We can deduce that for the range of

distances between 0 and 1 mm, the system would actually benefit from more than unity

bandwidth – i.e. a higher input resolution or, in our case, less sub-sampling. We also note

that performance is relatively high in an area bounded by translations of 0 and 1 mm and

bandwidths between 10-0.5 and 100.
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Figure 5.14 – Performance as a function of bandwidth and translation between frames. Shown
is the negative log of error, so that larger values correspond to better performance.
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Based on Figure 5.14 and earlier experiments exploring performance as a function of trans-

formation magnitude, we selected 0.5 mm and 0.2 deg as typical transformations, and further

investigated performance as a function of bandwidth for these specific values. Figure 5.15

depicts the results for 651 translational and 252 rotational image pairs. These show both

types of error as 3D Euclidean distance – the solid line is the mean error, and the shaded

area is at one standard deviation from the mean. For these experiments, the same normal-

ized bandwidth was applied in all dimensions. Experiments applying different bandwidths

in spatial and angular dimensions did not exhibit significant performance improvements.

From these figures we conclude that a bandwidth near 10-0.8 provides near-optimal perfor-

mance for rotational and translational estimates of 0.5 mm and 0.2 deg.

5.9.6 Quiescent Motion

One of the challenges in implementing optical-flow based solutions is that of apparent motion

due to dynamic lighting conditions and sensor noise. These can yield frame-wide apparent

changes in Lτ which the solution tries to explain in terms of its six decomposed motion

components. To investigate this phenomenon, sequences of images were recorded with

zero camera motion, and the pairs of ideally identical images fed into the plenoptic flow

estimator. That the results, depicted in Figure 5.16, deviate from the ideal value of zero is

due entirely to sensor noise and flicker due to fluorescent lighting. We note that the 3-DOF

solutions show slightly less quiescent motion. We note also that perfectly identical input
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Figure 5.15 – Determining optimal bandwidths for (a) translational and (b) rotational estimates.
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Figure 5.16 – Histograms of estimated translation and rotation over 2 datasets, using 3-DOF
and 6-DOF methods. For this sequence of stationary images, any deviation from zero represents
error.
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frames result in a temporal derivative of zero, and thus a motion estimate of exactly zero.

The solution is not ill-conditioned near zero in any way. However, for a nonzero change

between frames, small motion estimates do result.

Illumination variation could be at least partially addressed through inter-frame gain control.

This is based on the approximation that most of the change attributed to an illumination

change is global, in that it affects the whole frame approximately equally. Something similar

was applied to the trinocular data in Section 5.8, but was not implemented here.

5.9.7 Extended Motion Sequences

To better understand the performance of visual odometry using the Lytro, we concatenated

randomly selected motion sequences from the datasets described earlier. Non-adjacent im-

age pairs were again considered, yielding 400 unique translational and 190 unique rotational

estimates which we concatenated into random sequences. Results for the 3-DOF estimators

are depicted in Figure 5.17. From this figure it is clear that the estimates are reasonable,

though not perfect, and indeed the existence of marked biases in both the translational and

rotational cases indicates a potential for future refinement. We hypothesize that the biases

are due to a combination of Poisson-distributed (non-Gaussian) sensor noise, flickering illu-

mination associated with fluorescent lighting, and error in the plenoptic camera calibration.

Methods for mitigating some of these sources of bias should be possible, and are left as

future work.

Thus far we have hypothesized that the field of view of the Lytro is narrow enough that the

translational/rotational ambiguity prevents full 6-DOF motion estimation. Repeating the

experiments depicted in Figure 5.17 with the 6-DOF estimator, we find that the error is not

necessarily prohibitive for sequences with small inter-frame motions. The estimates shown in

Figure 5.18 are for maximum inter-frame transformations of 4 mm and 0.5 deg, respectively.

Though imperfect, this result might be acceptably accurate for some applications.
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Figure 5.17 – Concatenating 3-DOF motion estimates over longer sequences – 20 randomly se-
lected sequences are shown in each plot; path lengths vary, with blue lines indicating the difference
between estimated and ideal final poses. Black lines indicate ideal trajectories. Note the unequal
scales – errors are generally a fraction of the subtended angles / distances. Rotational (top)
and translational (center) sequences show different biases across datasets (left, right). Longer
sequences further emphasize the mean behaviour of the estimates, as shown in 1 m translational
sequences (bottom).
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Figure 5.18 – Similar to Figure 5.17, 6-DOF motion estimates are concatenated over long se-
quences: 20 randomly selected sequences are shown in each plot. The top row depicts rotational
sequences, for which the estimated translation (right) is ideally zero, and the bottom row depicts
translational sequences, for which estimated rotation (right) is ideally zero. Wider field of view
cameras are expected to show less of this type of angular/translational confusion.
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Figure 5.19 – Histogram of error over the four datasets for maximum inter-frame separations of
1 mm and 0.5 deg, for 3-DOF (top) and 6-DOF (bottom) estimators. Although maximum error is
pronounced in the 6-DOF estimates, mean performance may be acceptable in some applications.
Mean performance is shown in Table 5.2.

Table 5.2 – Plenoptic flow from a lenslet-based camera – error statistics

Type Range NSamps Mean Error
(abs)

Mean Error
(%-max)

6-DOF Trans. 1 mm 915 0.28 27.6
6-DOF Rot. 0.5 deg 915 0.090 17.9
3-DOF Trans. 1 mm 600 0.12 12.26
3-DOF Rot. 0.5 deg 315 0.033 6.56

Figure 5.19 and Table 5.2 further summarize the inter-frame performance of the 3- and

6-DOF methods over the four datasets. These results are for maximum transformations of

1 mm and 0.5 deg.
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5.10 Discussion and Future Directions

We have derived three solutions capable of estimating a camera’s 6-DOF trajectory in a

closed-form manner: A modular approach which can be adapted to specific applications,

a more integrated solution based on a pointwise generalization of plenoptic flow, and a

fully integrated plenoptic equation which provides a single-step solution. All methods are

featureless, in that they operate on all measured pixels without explicitly extracting scene

features, and are closed-form, operating in constant time independent of scene complex-

ity. The modular approaches include generation of a 3D point cloud of the scene, and we

presented an improved method of doing this from first-order light field derivatives.

Real-world and simulation results confirmed correct operation of the pointwise plenoptic

and full plenoptic methods. In both simulated and real-world trinocular sequences the

methods were compared with, and indeed outperformed, a state-of-the-art stereo feature-

tracking method. The methods take between 0.5 s and 2.6 s per frame to operate when

implemented as unoptimized Matlab code running on an Intel i7 930 at 2.8 GHz, and

through optimization real-time operation should be possible on general-purpose hardware.

Simulation results established that increasing the number of cameras in an array can yield

improved noise performance in the pointwise plenoptic method. This points to a potential

improvement: By constraining the partial derivative estimates with the gradient-depth con-

straint (5.2), we expect to improve the performance of the full plenoptic solution, especially

in noisy environments. This could be accomplished by applying the hyperfan filter from

Chapter 4.

Experiments with Lytro imagery demonstrated an elegant adaptation of plenoptic flow

to operate directly on rectified lenslet-based camera imagery. Despite its limited field of

view, which causes ambiguity between rotational and translational motion, we demonstrated

plenoptic flow operating on 3-DOF and 6-DOF translational and rotational sequences.

While the 3-DOF estimators clearly outperformed the full 6-DOF estimator, the latter

was able to produce results that might nevertheless be suitable for applications with small

inter-frame transformations, on the order of 4 mm translation and 0.5 deg, or less.

By interpreting the equation of plenoptic flow as a decomposition of apparent motion into

six components, we were also able to synthesize novel camera views in an entirely additive

manner, by adding scaled motion components to the input light field.
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In terms of future work, having a fully closed-form solution may enable derivation of rig-

orous closed-form confidence estimates, allowing more formal integration into multi-sensor

systems. Simulation results demonstrate improved performance for wider-FOV cameras,

but similar performance might be attained by combining two or more narrow-FOV light

field cameras pointing in different directions, or having a wider baseline.

Very low pixel-count hemispherical sensors have recently been explored for the task of visual

odometry [116], though they lack depth or scale information. The plenoptic flow equation

should allow the design of a similar low pixel-count sensor which is capable of dealing with

depth and therefore scale correctly, in a closed-form manner.

Finally, the fully closed-form method of plenoptic flow does not require explicit estimation

of depth, but it does rely on depth information being implicitly present in the light field

data. As such, performance of the method will vary with distance to the scene. The method

also assumes linear pixel responses, and no attempts were made to detect or deal with sat-

uration, stuck pixels, occlusion, fixed pattern noise, non-Gaussian noise, non-Lambertian

surfaces, illumination changes or dynamic scene elements. Methods for dealing with these

phenomena, either by ignoring pertinent regions, compensating for them e.g. through cal-

ibrating for a nonlinear intensity response, or elaborating the model of plenoptic flow to

incorporate them, would be desirable.



Chapter 6

Distractor Isolation

“The creative act lasts but a brief moment, a lightning instant of give-and-take,

just long enough for you to level the camera and to trap the fleeting prey in your

little box.”
– Henri Cartier-Bresson

In previous chapters we made an assumption common throughout much of computer vision:

that the scene is static. This assumption is violated in many of the most interesting field

robotics applications. Humans, fish and other animals, mobile machines such as robots and

cars, and even swaying vegetation all have a habit of moving. Visual changes are also caused

by mobile light sources and dynamic environmental factors such as clouds, rain, snow and

underwater particulate matter. Finally, it is typical in field robotics for the camera itself to

move, causing complex apparent motion which varies with scene geometry.

In this chapter we tackle the problems of identifying and isolating dynamic scene elements

from mobile camera imagery. We propose two methods, one adapting the hyperfan filter of

Chapter 4 to deal with sequences of temporally disjointed monocular frames, and the other

extending plenoptic flow, described in Chapter 5, to identify objects breaking the rules of

parallax motion. The fan filter-based approach is published as [49].

6.1 Perspectives on Dynamic Objects

Dynamic scene elements can act as distractors, confounding every level of a visual processing

chain. Odometry, mapping and long-term change detection are negatively impacted by

151
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mobile objects, and motion blur associated with rapid motion can deter even single-frame

algorithms. Conversely, dynamic elements are sometimes the focus of an application, and

an ability to detect and isolate them is desirable.

Some clarification in terminology is appropriate as several closely related tasks fall under a

single umbrella. By identification we mean marking pixels corresponding to dynamic scene

elements – this is also called change detection, with connotations of longer timelines. Iden-

tification is the first step in segmentation, delineating regions containing only dynamic or

static elements. Removing dynamic elements can be carried out based on this segmentation

or, as in the first method presented in this chapter, by operating directly on the input im-

agery. In this context, dynamic elements are commonly referred to as distractors, a specific

form of interference. Isolating dynamic elements is the converse of removing them, in that

the static elements are eliminated, leaving only the desired, dynamic elements.

The tasks enumerated above are all closely related, and though the title of the chapter

is “Distractor Isolation” the methods presented also address identification and removal of

dynamic scene elements. Relevant applications within and outside field robotics include

foreground/background segmentation for human-computer interaction and video produc-

tion, object tracking in security and defence applications, and long-term change detection

for habitat monitoring. Reef monitoring is a typical application in which the removal of dy-

namic fish from captured imagery eliminates false positives in long-term change detection.

Conversely, the fish themselves might be important in a population study, a task facilitated

by isolating them from the static background.

6.2 Related Work

Several successful approaches to distractor isolation have been demonstrated under a va-

riety of scene and camera constraints. For sequences with a static camera, the projection

of the background onto the image plane is also static, and so it is possible to utilize sim-

ple pixel-based statistics to accomplish segmentation [29, 142, 167]. This is appealing for

several reasons: It is computationally efficient, regardless of scene complexity, it is easily

parallelized, and it does not rely on identifying and tracking features, which can be prob-

lematic in noisy or self-similar environments. Other more sophisticated linear methods are

also possible in the case of a stationary camera. For example, the linear velocity filters for



6.2 Related Work 153

object detection proposed in [156]. The work we present is conceptually similar to these

filters, but allows camera motion.

Extension to rotating cameras exploits the lack of parallax in the motion of the back-

ground [75, 123, 151], and so methods similar to the static-camera case may be employed.

Similarly, approximately planar scenes with camera motion parallel to the plane – such

as in aerial surveillance – present little or no parallax, and so similar techniques may be

employed [144].

In the case of a freely moving camera and nontrivial scene geometry, background elements

display different projected velocities. Several approaches have been proposed for addressing

this scenario, including the use of occlusion detection, and employing concepts from optical

flow to perform iterative camera motion and motion boundary estimation [56, 137].

Other interesting approaches exploit constraints on projected background motion in an or-

thographic camera, as in [162] which tracks features across the image sequence, modelling

background motion as a sum of basis trajectories. Dense per-pixel labelling is then per-

formed in a final optimization step. In [126], motion between pairs of images is considered,

for which background elements are shown to lie on a 1D locus. This constraint is exploited

to detect foreground elements, though only low-density results are demonstrated. Dey et

al. [51] present a generalization of the epipolar constraint and propose a feature-based ap-

proach for exploiting it. Finally, a lightweight algorithm exploiting similar ideas has recently

been demonstrated operating in realtime on mobile devies [202].

Our proposed approaches differ in being conceptually, behaviourally and computationally

simpler than these iterative, feature-based methods. Ours are much more closely akin to

the per-pixel methods of a stationary camera, offering dense results in constant runtime.

It would be appealing to identify and isolate dynamic objects in a completely linear and

featureless manner – one which does not rely on tracking features, iterative approaches, or

optimization frameworks, but which operates simply on a per-pixel basis, as in the tradi-

tional static-camera segmentation techniques. We propose two methods for accomplishing

this. The first adapts the hyperfan filter developed in Chapter 4 to operate on sequences

of temporally-disjointed but spatially co-linear 2D images, while the second examines the

residual in plenoptic flow to identify dynamic scene elements.
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This first, hyperfan-based approach relies on constructing a light field-like structure from a

moving camera. Relevant prior work has demonstrated rendering directly from arbitrarily

posed cameras [77, 91, 146], but only a few works have focused on building the two-plane-

parameterized light field which we will require for filtering [161, 180].

6.3 Monocular Co-Registration

Thus far we have considered methods for which the input is a complete 4D light field, as

measured by a plenoptic camera. However, every image ever measured, including those

captured with conventional 2D cameras, represents some subset of the plenoptic function.

As such, even conventional imagery can be interpreted using ideas from plenoptic signal

processing.

This section shows how 2D monocular image sequences can be interpreted in plenoptic

space in order to simplify the task of distractor isolation. In particular, we will co-register

2D images into a light field signal which must follow the rules of parallax motion and the

frequency-domain constraints they give rise to (4.2–4.6). Because the images making up

the sequence are taken at different times, dynamic elements will not in general conform

to these same rules. Consequently, distractors can be attenuated by enforcing the rules of

parallax motion, e.g. by applying the hyperfan filter described in Chapter 4. A side-effect

of the linear nature of the filter is that isolating dynamic elements rather than removing

them can be accomplished by applying the inverse filter.

An added advantage of this method is that the output is a light field model, to which further

plenoptic processing techniques can be applied.

6.3.1 Image Selection

The complexity in the proposed approach lies in constructing the light field from 2D images.

The task of co-registration would evidently be trivial if the images were taken over a regular

grid of poses, effectively behaving as a camera array. The chances of this occurring in

practice are of course slim, and so we simplify our approach by constructing a 3D subset

of the light field, requiring only an approximately co-linear, equally spaced and overlapping

sequence of images. Such sequences are much more common, and are measured by any
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robot moving with roughly constant velocity, roughly orthogonal to the principal axis of

the camera. Flying and underwater robots, with their downward-facing cameras, do this

regularly, as do ground vehicles with side-facing cameras.

To extend the applicability of the method we also consider the case of a station-keeping

robot collecting an extended sequence of images. Because station keeping is imperfect, with

the robot typically fighting competing forces such as wind or currents, imagery tends to be

collected over a cloud of poses. For sufficiently long sequences, subsets appropriate to our

method can be selected.

Selecting images in this scenario requires that the camera’s poses be known. For this we

rely on pose estimates obtained from the robot’s navigation system. The estimates need

not be exact, and can be approximated using robust registration techniques [106]. We

also assume that the camera calibration is known and that all images are rectified. In the

case of unknown camera parameters, techniques exist for approximating calibration and

rectification directly from captured imagery [90].

For selecting co-linear images from a cloud of poses, we have empirically determined sim-

ulated annealing [88] to be simple and sufficient. In this approach the required number of

images is prescribed as well as a minimum desired image separation. Position, orientation

and image separation are allowed to converge through an iterative process, yielding a line

of ideal grid locations which represent a best-fit match to an approximately co-linear set

of camera poses. During annealing, error in the depth dimension – along the camera’s

principal axis – is weighted to reflect limited impact on the resulting images: Movement

in depth results in a maximum projected translation which is inversely proportional to the

focal length of the camera.

We will be applying a linear filter to the co-registered images and as a general rule at least

10 images will be required for good selectivity [47]. While employing more images yields

more selective results, meaning a higher sensitivity to distractors, this also requires longer

computation times.

6.3.2 Co-Registration

We now have a set of images with roughly co-linear positions, but the orientation of the

camera at each of these positions varies. Particularly in the case of a sequence selected from
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Figure 6.1 – The simplified case of a planar scene and cameras having only rotations about their
principal axes and translations parallel to the scene. Here the orange camera is co-registered with
the green one through rotation and translation in the plane, meaning it can be accomplished using
2D image-space translation and rotation, as depicted with red arrows.

a larger set of station-keeping images, the camera can rotate significantly between images.

Nevertheless, if the image footprints are mostly overlapping, it is possible to reproject

the images into a common parameterization. To accomplish this, we present a simplified

approach then generalize.

We start with the scenario of an ideally planar, horizontal scene and perfectly downward-

facing cameras occupying a line of positions s that runs parallel to the scene. This scenario

is depicted in Figure 6.1. The cameras take on individual rotations about their respec-

tive principal axes. Employing the absolute two-plane parameterization, we select a U, V

reference plane coincident with the scene and centered horizontally on the line of camera

positions, s. Because the downward-facing cameras have image planes parallel to the U, V

plane, reprojection of the images to common U, V coordinates can be carried out as a com-

bination of 2D image-space rotation and translation. Rotation brings the horizontal pixel

coordinate U into alignment with the line of positions, s, and translation aligns the images

into a common U, V frame.

To determine the appropriate transformations, the center image in s is first rotated to

align its U with the line of poses, s, based on the navigational pose estimate. Next, the

remaining images are brought into alignment with the first image based on statistically
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Figure 6.2 – In the case of cameras having arbitrary rotations, it is possible to reproject each
image to a plane parallel with the U, V plane, based on navigation estimates of the camera’s ori-
entation. The resulting images can again be co-registered using 2D image-space transformations.

robust feature-based registration [106]. Ignoring the remaining images’ navigational pose

estimates eliminates any inaccuracy in the navigational estimates – only the image selection

process ultimately depends upon it. Employing a robust image registration technique makes

the method robust to distractors and small deviations from an ideally planar scene.

Moving to the case of arbitrarily oriented cameras, our approach begins by reprojecting

each image into a downward-facing pose, as depicted in Figure 6.2. We know that the

images share a common line of aperture locations on s, and so reprojecting all the images

to a common plane parallel to the scene effectively reduces the problem of co-registering

the images to the simpler case described above. The reprojection is based on navigational

pose estimates, and the subsequent 2D image-space co-registration is again performed by

robust feature-based registration, absorbing some of the error present in the navigational

estimates.

Finally, in the general case of a non-planar scene which is not parallel to the s axis, we cannot

accomplish image registration using orthonormal transformations. We begin by reprojecting

the images into the equivalent downward-facing poses, as described above, and aligning the

s and U axes using an image-space rotation, based on the navigational pose estimates. We
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then perform robust registration of each image with the central image employing projective

transformations. The projective transformation allows for the scene to take on a 3D shape

and a slope relative to the s axis. Applying these transformations directly would result

in a non-parallel, non-orthogonal planar parameterization of the light field. To correct

this, we extract and apply a set of best-fit orthonormal transformations from the estimated

projective transformations. The result is a parallel and centered U, V reference plane at a

position near the mean depth of the scene. Because we perform co-registration after the

initial correction to downward-facing cameras, the impact of inaccuracy in the navigational

estimates is again reduced.

As a final step, the light field can be cropped in U, V such that only areas visible in most

images remain. The reparameterization process can be summarized as:

1. Rectify and reproject images to downward-facing pose, rotating to align U with s

2. Find projective homographies with central image

3. Find and apply best-fit orthonormal transformations

4. Crop in U, V

6.3.3 Fan Filter

We have registered a sequence of temporally disjointed images into a common 3D light field

structure. We will now apply the filtering techniques developed in Chapter 4 to isolate or

remove distractors. Note that a consequence of employing this subset of the light field is

that only the less selective 2D fan shape is at our disposal, and not the full 4D hyperfan.

Despite its lower selectivity, we will show the 2D fan to be sufficient for the task.

To apply a fan filter, a depth range needs to be selected appropriate to the application.

Generally this can be based on prior knowledge of the task – flying or underwater vehicles

typically maintain a safe distance over their targets, for example. In these scenarios a typical

starting point might be to select depth limits at half and twice the nominal robot altitude.

A narrower depth range will be more selective to distractors, but will also attenuate any

scene elements which violate the depth range.

Fan filter implementation is addressed in [47], employing filter banks to approximate the fan

shape. The spatial implementation described in Section 4.5 can also be straightforwardly

reduced to 3D. For the purposes of this investigation, we implement the fan filter directly in
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the frequency domain. Passband shape is generated as the combination of an ideal fan and

an edge-softening Gaussian, chosen to reduce ringing associated with discontinuities in the

frequency domain. The variance of the Gaussian is increased along ΩU , so as to maximize

selectivity at low frequencies, and to further soften the filter at higher frequencies. The

phase response is left at zero throughout.

Because the frequency-domain shape is well described in 2D, processing proceeds in 2D slices

in i and k – recall that i, j, k and l are the discrete indices corresponding to the continuous

s, t, U and V dimensions, respectively. The 2D DFT of each i, k slice is multiplied by a fan-

shaped passband, and the inverse DFT applied. To counteract edge effects, zero-padding

is introduced in the i dimension, and darkening is partially addressed by normalizing slices

along i to a consistent mean and standard deviation. More sophisticated filtering schemes,

such as those proposed in [23] and [9], may yield superior results.

As a trivial extension of the distractor rejecting fan filter, a distractor isolating filter can

be formulated utilizing the inverse of the fan filter. This is accomplished by applying one

minus the magnitude response in the frequency domain.

6.3.4 Degenerate Cases

Fan filter parameters corresponding to a selected depth range will differ based on the image

spacing in s. In the case of a perfectly static camera, for which the spacing in s is zero,

the solution proposed here degenerates gracefully. Isolating dynamic objects from a static

camera is a much simpler task, with a low-pass filter selecting static scene elements, and

the inverse, high-pass filter selecting dynamic elements. For zero spacing in s, the fan filter

degenerates to a low-pass filter, and its inverse is a high-pass filter, as one would expect.

6.4 Experiments: Monocular Co-Registration

The University of Sydney’s Australian Centre for Field Robotics operates an ocean-going

AUV, Sirius, as part of an ongoing benthic habitat monitoring program [79, 194]. During

a typical station-keeping mission Sirius can collect thousands of images while hovering over

a spot on the seafloor. For these experiments we employed a sequence of 1853 such images

collected over the course of a half hour. Pose estimates were computed using a robust
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Figure 6.3 – A top-down view of the poses in the station-keeping AUV dataset. A set of 30 camera
poses (black circles) was selected from the 1853 available (grey dots); approximate footprints for
the corresponding images are shown as black boxes.

multi-sensor SLAM solution [118, 193]. Figure 6.3 depicts a top-down view of the mission,

showing the camera’s estimated positions as grey dots. Over the sequence, the AUV drifted

on the order of half a meter in each direction.

The simulated annealing described in Section 6.3.1 was employed to select 30 approximately

co-linear camera positions from the dataset – these are shown as dark circles in the figure,

and the corresponding image footprints are shown as black rectangles. The best-fit grid

of ideal positions, s, was 0.2 m in length, and the mean and worst-case error between the

camera’s estimated position and the ideal grid locations were 4 mm and 6.8 mm, respectively.

Note that this error includes depth (not shown in the figure), and though the individual

position errors seem high, the overall shape of the array is close enough to ideal for the

filters to operate. Errors in position manifest themselves in the filtered scene model as

a slight blurring of parallax motion, and in the isolated distractor output as ghosting of

background elements.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4 – Results of linear distractor isolation and removal: (a) A frame of the input light field
taken near the center of s, and (b) a zoomed in detail near the center of the image; (c) isolated
distractors, one of 30 such images produced by the inverse fan filter (note the shadows cast by the
AUV’s two strobes), and (d) a frame of the distractor-free light field model produced by the fan
filter; (e) a full frame of the isolated distractors for comparison with (f) simple pixel differencing,
which shows higher sensitivity to apparent motion
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The 30 selected images were reparameterized into a light field by co-registering the images

as described in Section 6.3.2. The average altitude of the AUV over the 30 images was

estimated as 1.98 m, and this determined the light field plane separation, D. The images,

after cropping, contained 990 and 680 pixels in k and l, respectively. A fan filter was

constructed with a passband admitting elements between depths of 1.8 and 2.2 m – these

were empirically chosen to closely conform to the geometry of the scene.

Figure 6.4 depicts the results of the filtering operation: (a) shows a single input frame,

taken near the center of s, and (b) shows a detailed zoom on a central region of this input

image. The inverse fan filter and fan filter outputs for this same zoomed region are shown

in (c) and (d), respectively. The inverse fan filter reveals two fish hiding in this frame.

30 such images were produced, one per s position, containing a total of 41 images of fish,

though of course some are the same fish in different positions. The fan filter output is a

distractor-free, 3D light field model of the background. A short video of these results is

available at http://www.youtube.com/watch?v=7IltUPFo3Ew.

By comparison, a simple pixel differencing scheme is unable to distinguish between changes

caused by parallax and those caused by distractors. This is seen by comparing the inverse

fan filter output with pixel differencing results for two of the images along s, shown in

Figures 6.4 (e) and (f), respectively. Figure 6.5 depicts the filtering results as slices in i and

k. The vertical pixel position l was chosen to contain a distractor, as seen near the top of

the figures. The loss of contrast near the edges of the fan filter output is due to filtering

edge effects, which increase in magnitude with the selectivity of the filter.

To investigate the sensitivity of pixel differencing approaches to apparent motion, we com-

puted the energy in the difference between the first image along s and each subsequent

image. The results, shown in Figure 6.6, demonstrate a steady increase in the pixel differ-

encing energy, as anticipated. For comparison, the energy in the un-normalized fan filter

output is also shown – note that the increase in energy near the edge samples is due to

filtering edge effects, not sensitivity to parallax.

6.5 Plenoptic Residuals

We now turn our attention to a second approach employing as input two full light field

images separated by some unknown camera transformation. In [162], scene motion is mod-

http://www.youtube.com/watch?v=7IltUPFo3Ew
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Figure 6.5 – A slice, in the i, k plane, of (a) the input light field, (b) the fan-filtered, distractor-
free light field, and (c) the inverse-fan-filtered extracted distractors; images have been cropped in
k to emphasize detail. Note the swaying vegetation appearing as a wavy line just above the fish
in the input and inverse-fan-filtered images.

elled as a sum of basis trajectories, allowing dynamic objects to be identified as those with

velocities lying outside the computed bases. Unfortunately, a dense result in this approach

requires a complex iterative optimization process. If there were some way of expressing all

apparent motion in a scene in terms of a set of motion components, it would be possible

to directly obtain a dense result. Light field imagery gives us the opportunity to do this,

as the light field presents sufficient information to express dense scene motion between two

frames in terms of six decomposed motion components. What’s more, these six components

can be computed very efficiently using closed-form expressions constructed from the first-
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Figure 6.6 – The energy content of simple pixel differencing increases with image separation
(black), driven by an increase in apparent motion; this effect is not seen in the inverse fan filter
output (grey)

order spatio-temporal derivatives of the light field. We know this because we derived these

components as the six terms of plenoptic flow in Chapter 5.

Note that because the equation of plenoptic flow is written in the relative two-plane param-

eterization, the remainder of this chapter employs relative u, v coordinates. The equation

of plenoptic flow (5.24) relates the spatial and temporal light field derivatives through the

camera’s motion, in a linear system of equations. This can be written as

Av = Lτ . (6.1)

Note that we have absorbed the negation of the temporal derivatives into v to directly yield

camera motion, and A contains the six motion components as shown in (5.24). Recall the

notation Lτ = ∂L/∂τ .

In the previous chapter, we employed (6.1) to estimate camera motion in a least squares

sense, yielding the estimate ṽ. Based on this motion estimate, we can compute an estimated

temporal derivative
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L̃τ = Aṽ, (6.2)

and use that to project the light field at time τ0 forward in time to τ1,

L̃(τ1) = L(τ0) + L̃τ . (6.3)

Note that our projection of the light field forward in time necessarily excludes the motion

of any dynamic scene elements. As such, the difference between this estimated light field

and the measured light field at τ1 will highlight any elements breaking the rules of plenoptic

flow – i.e. dynamic elements. We compute the error as

R = L(τ1)− L̃(τ1) = Lτ − L̃τ . (6.4)

In other words, dynamic scene elements can be identified by computing residual error in

the equation of plenoptic flow, with areas of high error corresponding to dynamic elements.

This simple solution is linear and closed-form.

Because it relies on the plenoptic flow equation, our solution is limited to pairs of images

with relatively small relative transformations. Large visual changes due to occlusions will

also appear as residual errors, but because motion is necessarily small this effect should be

negligible. Scenes dominated by dynamic elements, however, will likely cause plenoptic flow

to describe the dynamic elements’ motion rather than the apparent motion of the scene,

effectively breaking this solution.

In Chapter 5 we explored ambiguities between pairs of rotational and translational motion

components within the equation of plenoptic flow. In the present application, we are inter-

ested only in identifying elements that break the rules of parallax motion. In this sense,

we are not immediately concerned with the velocity estimate ṽ, but rather in the recon-

structed temporal derivative estimate L̃τ that it yields. As such, ambiguity in the motion

components is irrelevant to the task – these components are able to explain the temporal

derivative, but not the dynamic scene elements, and so serve our purpose despite their

ambiguity.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7 – Two frames (top) showing both apparent motion and a dynamic scene element. The
temporal derivative (c) represents a naive pixel-differencing approach; the plenoptic residual (d)
shows significantly less sensitivity to apparent motion while retaining dynamic elements. The first
input frame is highlighted using each of these results (bottom). Notice that the pen rotated about
its center, thus the pattern of decreasing velocity near its pivot.
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6.6 Experiments: Plenoptic Residuals

We applied the method of plenoptic residuals to pairs of images captured using a Lytro

consumer-grade plenoptic camera. The camera was calibrated and imagery rectified follow-

ing the methods of Chapter 3. In poorly-lit scenes the hyperfan volumetric focus filter from

Chapter 4 was applied to improve contrast and reject noise, while maintaining depth of field

and 3D scene information. We applied the numerically stable form of plenoptic flow from

Chapter 5, including the adaptation to lenslet-based imagery described in Section 5.3.1, to

yield a camera velocity estimate. Finally, we computed the plenoptic residual (6.4) to build

a map highlighting dynamic scene elements.

The top row of Figure 6.7 shows two input frames with a small inter-frame camera motion

and a single dynamic scene element. The center row shows the magnitude of the difference

between frames Lτ as computed after band-limiting for plenoptic flow (left), and the plenop-

tic residual R (right). The bottom row highlights dynamic scene elements in red using Lτ

and R. The temporal derivative frames on the left are representative of the results obtained

from naive pixel differencing. Though imperfect, the residual frames on the right show a

significant attenuation of apparent motion, while retaining those elements showing genuine

motion within the scene.

Additional results are shown in Figure 6.8. Each of the three tests captured both dynamic

scene elements and nonuniform apparent motion due to a change in camera pose. The left

column depicts the result of simple frame differencing, while the right shows the proposed

method of plenoptic residuals. Notice the correctly identified shadow change in the first

row, and that the two highlights in this row correspond to the original and destination

locations of the toothpick in a relatively large translation. In the bottom row, the square

object was removed between frames, while in the center row it was rotated.

Table 6.1 summarizes the signal energy in the temporal derivative and residual, and their

ratio. Values are shown for eight pairs of images from the three test scenes depicted in

Figures 6.7 and 6.8. The tabulated values represent signal energy expressed in dB, for

input light fields normalized to a peak value of one. The mean ratio of 4 dB establishes that

the plenoptic residuals method is more than twice as selective as simple pixel differencing.

Referring to Figures 6.7 and 6.8, we confirm the method has selectively attenuated static
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(a) (b)

(c) (d)

(e) (f)

Figure 6.8 – Additional results demonstrating the method of plenoptic residuals – The left column
demonstrates simple temporal differencing, while the right demonstrates the proposed method.
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scene elements while passing dynamic objects. Quantification using ground-truth data is

left as future work.

Table 6.1 – Energy statistics for the method of plenoptic residuals

Scene Lτ (dB) R (dB) Ratio (dB)

Jar -31.81 -35.848 4.0386
Jar -27.634 -31.029 3.3954
Jar -36.452 -43.197 6.7448
Pen -23.805 -28.842 5.037
Pen -34.679 -39.917 5.2385
Toothpicks -33.064 -33.55 0.48605
Toothpicks -30.576 -32.087 1.5104
Toothpicks -39.247 -42.276 3.0284

Mean -29.684 -33.439 4.0905

6.7 Discussion and Future Directions

We demonstrated two techniques dealing with dynamic scene elements. The first builds a

3D light field from monocular image sequences obtained from a station-keeping or constant-

velocity robot. By applying linear fan filters and inverse fan filters to these 3D light fields,

we were able to construct a distractor-free light field model of the background and, con-

versely, images of the isolated distractors. Beyond the actual light field formation process,

which relies on feature extraction for image registration, the technique is featureless and

non-iterative. Distractors and background are isolated using entirely linear, pixel-wise op-

erations. The second approach identifies moving objects based on residual error in the

equation of plenoptic flow.

The presented methods cope with nonuniform apparent motion due to a mobile camera

in complex, 3D environments. No depth estimation or other complex scene modelling

is required – apparent motion is disregarded by linearly exploiting the parallax motion

implicitly encoded by the light field.

We showed our methods to outperform naive 2D per-pixel methods, which are sensitive

to the apparent motion of background elements. The proposed methods are behaviourally

and computationally simpler than the feature-based and nonlinear counterparts discussed

in Section 6.2. They operate in constant time independent of scene complexity, are suitable
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for parallelization, and are expected to show better noise performance than feature-based

methods because they use all measured pixels in forming a solution.

As future work, applying the fan filter to sequences suffering from caustics and other illu-

mination effects would be interesting, as would be demonstration of the technique for long-

term distractor-free change detection. Ground-truth data and verification of the method of

plenoptic residuals would formalize the efficacy of this method. Verification of the presented

techniques in other application areas would be interesting, including aerial surveillance or

agricultural monitoring, for example.

The method of plenoptic residuals is susceptible to false positives associated with the parts

of a scene breaking the underlying assumptions of plenoptic flow. These include occlusions

and specular reflections. A method of detecting and explicitly ignoring these phenomena

would be desirable. Finally, by identifying those elements breaking the rules of plenoptic

flow, the method of plenoptic residuals could be used to ignore problematic parts of a

scene in visual odometry. This two-stage approach would start with an initial application

of plenoptic flow to identify distractors, then ignore these in a second round to yield a

distractor-free velocity estimate.

Finally, we have essentially used plenoptic flow to bring disparate views of a structured scene

into a common registration, allowing us to easily identify moving objects. We reduced the

problem to one that can be solved by using simple pixel differencing. Now that we can

efficiently and linearly co-register images in this manner, other forms of video processing

may be applied which benefit from a static camera, e.g. simple noise reduction or pulse

detection from a moving plenoptic camera [12].



Chapter 7

Conclusions and Future Directions

“I do not know what I may appear to the world, but to myself I seem to have

been only like a boy playing on the sea-shore, and diverting myself in now and

then finding a smoother pebble or a prettier shell than ordinary, whilst the great

ocean of truth lay all undiscovered before me.”
– Isaac Newton

7.1 Conclusions

At the outset of this work we identified an opportunity to advance computer vision in field

robotics by developing robust and simple algorithms. Noting the success of active RGB-

D sensors, we proposed that a similarly predictable, robust and tightly integrated vision

sensor could increase performance in existing applications, while broadening the range of

conditions under which autonomous deployments are possible.

We turned to plenoptic imaging as a technology unique in offering the means of addressing

this opportunity, while retaining many of the advantages of conventional cameras. We

established the specific goals of demonstrating

1. Calibration and rectification of plenoptic imagery;

2. Improved image quality in low-contrast scenarios;

3. Mitigation of environmental factors such as snow, rain and particulate matter; and

4. Dramatic simplification of a set of nontrivial problems in computer vision.
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In addressing these goals, the key developments were in exploring the properties of plenoptic

signals and developing algorithms to exploit them. The first of these goals, calibration, was

accomplished in Chapter 3. Having identified compact, lenslet-based cameras as being well-

suited to field deployment, the chapter introduced a camera model and decoding, calibration

and rectification procedures appropriate to these devices. A plenoptic intrinsic matrix

straightforwardly and reversibly mapped rectified pixels and light rays. To the author’s

knowledge this is the first published lenslet-based plenoptic camera calibration scheme, and

it enables the practical utilization of these compact devices in computer vision tasks.

The second and third goals, improved low-contrast performance and mitigation of occlud-

ing interference, were addressed in Chapter 4. Irreducibly 4D hyperfan filters provided

volumetric focus, simultaneously attenuating occluders, cutting through murky water and

cancelling noise by gathering light across a user-selected depth of field. Because they ex-

ploit the extra information gathered by the plenoptic camera, these methods can be scaled

through appropriate camera design, ultimately outperforming any conventional monocular

method. The proposed filters are significantly more selective than previous linear filters by

virtue of exploiting the hyperfan shape brought to light in this chapter.

The fourth goal was addressed in Chapters 4, 5 and 6, which presented simple solutions to

problems with traditionally complex, iterative and nonlinear solutions. High-performance

denoising, depth selectivity, 6-DOF visual odometry and distractor isolation from a mov-

ing camera, all performed in unstructured 3D scenes, were accomplished using novel non-

iterative, constant-runtime and behaviourally simple methods.

7.2 Future Directions

We have addressed the specific goals identified in the introductory text, describing potential

future avenues along the way. Within the greater scope of the work, however, we have but

scratched the surface.

In particular, at the outset we identified an opportunity to advance vision in field robotics

through the creation of integrated vision systems. We have demonstrated that such a system

is possible from an algorithmic point of view by advancing methods in plenoptic signal

processing. An obvious next step is embedding the methods developed here in physical

devices and testing them in the field. Some potentially useful examples include:
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• A compact 6-DOF visual odometry sensor,

• A passive RGB-D sensor that works outside,

• A low-light camera,

• An underwater camera cutting through murky and silty water, and

• A mobile surveillance device that highlights dynamic scene elements.

In most cases it probably makes sense for these sensors to directly deliver precomputed

information, e.g. filtered 2D images or odometry, by applying the methods in this thesis.

This will allow the system to reap the benefits of plenoptic imaging while shielding it from

the associated bandwidth and computational costs.

7.2.1 Camera Design

Construction of any of these devices raises important design concerns, perhaps the most

obvious and pressing of which is the optimal optical configuration. In this work we have

employed existing plenoptic camera hardware to explore the properties of plenoptic signals.

It seems logical that we should now apply this knowledge to the specialization of optical

hardware to individual tasks.

For example, visual odometry benefits from a large field of view, as discussed in Chapter 5.

Depth estimation and occluder removal, on the other hand, benefit from wide baselines,

while low-contrast imaging and change detection benefit not so much from wide baselines as

large apertures – or many apertures in the case of aperture arrays. These simple observations

emerge directly from this work, with a strong implication that more insights lie waiting

beneath the surface.

As an example, we have focused on lenslet-based cameras because they are the most compact

and cost-effective of the commercial offerings, but other camera models may offer superior

performance in some cases. The tradeoffs are sometimes counter-intuitive: Mask-based

cameras [179] block light in order to modulate the plenoptic function for measurement on

a 2D sensor. This blocking of light makes these cameras easy to dismiss as inefficient,

but a properly designed mask-based camera can nevertheless gather significantly more light

for a given depth of field than conventional cameras. Given the low cost of manufacture

and compact characteristics of these cameras, they might be the best choice for lightweight

applications.
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Given that plenoptic sensing is still a relatively new technology, there is a significant po-

tential for novel camera design. One possible approach generalizes on the concept of mask-

and lenslet-based cameras, replacing the attenuating mask and lenslet array with a gener-

alized refractive modulation pattern. Such cameras might display benefits from both mask-

and lenslet-based cameras, by modulating light without blocking it, and by allowing more

complex forms of modulation than are possible with lenslets.

7.2.2 Algorithmic Simplification

One of the goals of this work was to show that plenoptic sensing can simplify conventionally

complex tasks. We set about doing this by demonstrating the simplification of specific tasks.

Of course, many difficult problems in computer vision remain, and the following are some of

the problems where we expect plenoptic sensing to yield behavioural and/or computational

simplifications:

• Motion blur,

• Underwater calibration,

• Localization and mapping,

• High dynamic range imaging, and

• 3D scene, object or person recognition/classification.

Many of our simplifications emerged from the observation that a light field image allows

the simulation of arbitrary virtual cameras. The hyperfan volumetric focus filter can be

derived as an infinite number of virtual planar-focus cameras, and the derivation of plenoptic

flow used the light field as an array of orthographic cameras. The method of plenoptic

flow – breaking motion down into dense and invariant components – is a further enabler of

simplification. We showed that it simplifies distractor isolation in Chapter 6, reducing it to

an essentially 1D problem, and we expect this tool to find broader use.

7.2.3 Sensor Fusion and Filtering

On smaller robotic platforms we have argued that plenoptic sensing is a logical alternative

to conventional cameras, by virtue of the simplifications they allow. However, on larger

platforms it may make more sense to employ plenoptic sensing as a complement to other
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sensing modalities. This opens a range of interesting topics relating to sensor fusion, in-

cluding the combination of plenoptic data with other plenoptic sensors and conventional

cameras, with RGB-D sensors, and with other modalities like sonar and radar.

Beyond fusing sensor modalities, it seems possible that filtering techniques might be de-

veloped which incorporate the information offered by additional plenoptic sensors. As an

example, multiple plenoptic cameras might allow superior depth selectivity by virtue of

their extended baseline, while still allowing that selectivity to be implemented through a

simple filter.

We also include here the idea of extending filtering, plenoptic flow and distractor isolation

methods to deal with wider time windows. All the work presented here has dealt with at

most two or three frames at a time. By opening this window to longer sequences, the idea

of 5D plenopto-temporal filtering arises, and promises extended capabilities in odometry,

segmentation, and signal enhancement.

7.2.4 A Broader View

This work has addressed problems in the context of field robotics, but it seems hopeful

that the methods developed might also find broader application. The volumetric filtering

demonstrated in Chapter 4, for example, seems like it would be an attractive capability

across many domains.

Indeed, examining plenoptic signal processing in a broader scope highlights opportunities

anywhere conventional cameras are presently employed. Video production, including the

3D movie technology that has found widespread use in recent years, stands to benefit

significantly from the rich information captured by plenoptic cameras. The ability to shift

perspectives, adjust focus, and generate 3D models post-capture are all highly desirable in

the film industry, and plenoptic imaging has caught the attention of at least one of the

major film studios.

Finally, of the emerging opportunities, consumer adoption of plenoptic imaging is one of

the most significant. There is an exciting potential to allow consumers to manipulate and

employ plenoptic images in the same ways they employ 2D photographs today, while taking

advantage of the rich information plenoptic images present.
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Appendix A

Reference Sheet

On the following page is a quick reference for the light field properties explored in this work.
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