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Abstract—A method is presented for isolating moving distrac-
tors from a static background in imagery captured by a hovering
or slowly moving Autonomous Underwater Vehicle (AUV). By
reparameterizing a set of monocular images into a light �eld
structure, it becomes possible to apply a linear fan �lter and its
inverse to extract the background and distractors, respectively.
Results are shown for a hovering AUV imaging a region with
non-trivial 3D structure and containing moving elements. The
output is a distractor-free 3D light �eld model of the sea �oor
and a set of images of isolated distractors. We show that the
technique is insensitive to parallax in the background elements,
outperforming pixel differencing techniques.

I. I NTRODUCTION

Autonomous Underwater Vehicles (AUVs) are playing an
increasingly important role in exploring, surveying and mon-
itoring benthic habitats. Recent advances in navigation allow
dense, detailed surveys to be performed autonomously [1]–
[3], while repeated surveys [4] open the possibility of directly
observing habitat dynamics. The use of AUVs in long-term
studies is particularly appealing as an alternative to dedicated,
potentially intrusive and expensive underwater installations.

A common assumption in underwater surveys is that of a
static environment – an assumption violated in many of the
most interesting habitats: �sh and drifting organisms, swaying
vegetation, and dynamic lighting can all act as distractors. In
long-term reef monitoring, it is desirable to establish patterns
of change in the underlying reef structure while ignoring the
movements of �sh in the captured imagery. Conversely, one
might wish to investigate the distractors themselves, isolating
dynamic organisms from their underlying environment.

Distractor isolation from mobile platforms is non-trivial, due
to the apparent motion of the environment in the captured
imagery. This apparent motion is non-uniform in the case
of non-planar 3D scene geometry, and so methods based on
pixel-level statistics are insuf�cient for such applications. The
key limitation of these techniques is in their direct use of
2D monocular imagery in what is fundamentally a higher-
dimensional problem.

This paper proposes a method for collecting a set of
monocular images into a light �eld structure [5], prior to
distractor/background isolation. A light �eld representsthe
light permeating a scene and, unlike monocular images alone,
implicitly represents the geometry of the scene as well as its
textural content. This enables simple techniques to accomplish
complex tasks – in particular we show that a linear �lter

and its inverse can isolate static background elements and
dynamic distractors. The output of the proposed process is
a light �eld model of the sea �oor, from which novel views
may be rendered, as well as a set of images containing the
isolated distractors.

Our method applies to monocular image sequences for
which there exist sets of overlapping, approximately co-linear
and equally spaced images. This would be the case, for
example, for a station-keeping robot which slowly drifts about
its ideal location for a large number of frames, or for an AUV
moving at a constant velocity, with a low speed relative to the
frame capture rate. We make use of an estimate of the camera's
pose, obtained from the AUVs navigation system, to select
images for inclusion in the light �eld, though this estimate
need not be exact, and can be approximated using robust
registration techniques [6]. We also assume that the camera
is calibrated, though techniques exist for approximating a
calibration directly from captured imagery [7].

The remainder of this paper is organized as follows:
Section II provides background on foreground/background
isolation and light �eld processing, Section III deals with
constructing a light �eld from monocular image sequences,
Section IV shows how a fan �lter and its inverse can be used
to isolate foreground and background elements, and SectionV
shows results for a nontrivial underwater sequence obtained
from a hovering AUV. Finally, Section VI gives conclusions
and future work.

II. BACKGROUND

The closely related tasks of foreground/background seg-
mentation and change detection are fundamental problems of
computer vision, with several successful approaches demon-
strated under a variety of scene and camera constraints.
For sequences with a static camera, the projection of the
background onto the image plane is also static, and so it is
possible to utilize simple pixel-based statistics to accomplish
segmentation [8]–[10]. This is appealing for several reasons:
it is computationally ef�cient, regardless of scene complexity,
it is easily parallelized, and it does not rely on identifying
and tracking features, which can be problematic in noisy or
self-similar environments.

Extension to rotating cameras exploits the lack of parallax
in the motion of the background [11]–[13], and so methods
similar to the static-camera case may be utilized. Similarly,



approximately planar scenes with camera motion parallel to
the plane – such as in aerial surveillance – present little orno
parallax, and so similar techniques may be employed [14].

In the case of a freely moving camera and non-trivial scene
geometry, background elements are not static and move with
different projected velocities. Several approaches have been
proposed for addressing this scenario, including the use of
occlusion detection, and using concepts from optical �ow
to perform iterative camera motion and motion boundary
estimation [15], [16]. Other interesting approaches exploit
constraints on projected background motion in an orthographic
camera, as in [17], which proposes tracking features across
the image sequence, and modelling background motion as a
sum of basis trajectories – dense per-pixel labelling is then
performed in a �nal optimization step. In [18], motion between
pairs of images is considered, for which background elements
are shown to lie on a 1D locus. This constraint is exploited to
detect foreground elements, though only low-density results
are demonstrated. While promising, these techniques are all
more conceptually and computationally complex than statis-
tical per-pixel methods, and either generate sparse results or
rely on iterative methods to converge on a solution.

It would be appealing, then, to accomplish fore-
ground/background segmentation in a completelylinear and
featurelessmanner – one which does not rely on tracking
features, iterative approaches, or optimization frameworks, but
which operates simply on a per-pixel basis, as in the traditional
static-camera segmentation techniques. In order to accomplish
this, we propose collecting a number of input images into a
light �eld structure, and �ltering that structure.

Light �elds �rst came about as an image-based approach
to computer graphics [5], but have since gathered attention
in image processing, allowing image-based, featureless tech-
niques to accomplish complex tasks such as depth estimation
and �ltering [19]–[22]. Whereas a conventional photograph
encodes variations in light as a function of direction for
rays passing through a single position (aperture), a light �eld
encodes variations in light as a function of both direction and
position, and is typically measured using multiple camerasor
lenses, or a single moving camera.

A common light �eld parameterization is the two-plane
parameterization depicted by Fig. 1, which describes a light
ray by its point of intersection with two reference planes: the
s; t plane given byz = 0 , and theu; v plane which is parallel
to thes; t plane at some positive separationz = d. Coordinates
in (s; t) can be thought of as de�ning theposition of a ray,
and in(u; v) as de�ning itsdirection, so a sample of the light
�eld function L(s; t; u; v) represents the value (monochrome
or colour) of one speci�c ray within the scene.

Another intuitive way of visualizing the light �eld is to
imagine thes; t plane as a grid of pinhole cameras facing the
u; v plane. Fixing a value for(s; t) selects one speci�c pinhole
camera, and(u; v) act as pixel coordinates for that pinhole
camera. The only complication is that(u; v) coordinates are
on a common plane for all cameras, and so are skewed as a
function of (s; t).

Fig. 1. Two-plane parameterization of light rays

As we shall see, a 3D subset of the light �eld,L (s; u; v),
suf�ces for the present task. This can be thought of as a
horizontal row of images indexed bys, for a �xed value
of t. Though this simpli�es our task, it also prevents us
from processing all images in a hovering AUV sequence –
generalization to 4D is suggested as future work.

Our approach relies on constructing a light �eld from
a moving camera. Several methods for rendering directly
from arbitrarily posed cameras have been suggested [23]–
[25], but only a few have focused on building the two-plane-
parameterized light �eld which we will require for �ltering
[26], [27]. We will borrow heavily from these techniques in
constructing our light �eld.

III. L IGHT FIELD CONSTRUCTION

Because the light �eldL(s; u; v) can be thought of as a
row of images alongs, one way to construct it is to place a
camera at each of thes sample locations, facing theu; v plane,
and then reproject those images to commonu; v coordinates.
Assuming the camera is calibrated, we may even allow some
relaxation in the orientations of the camera, so long as the
images overlap suf�ciently to be reprojected onto a common
u; v plane. The critical point is that the camera's aperture must
coincide with the locations of thes samples. To this end, we
require a set of co-linear, equally spaced camera poses.

A. Image Selection

We consider two scenarios: an AUV collecting a large
number of images while hovering above an area of interest
on the sea �oor, and an AUV moving slowly over an area
of interest at an approximately constant velocity, capturing
images at a constant frame rate. Both scenarios can yield the
co-linear and evenly spaced images we require. As we will
be applying a linear fan �lter to the light �eld, at least 10
such images are recommended [22] – more images will yield
more selective results, meaning a higher sensitivity to slowly
moving distractors, but requiring longer computation times.

In the case of a slowly moving AUV, the requisite images
are straightforwardly obtained from a linear section of itspath.
In the case of a station-keeping robot a cloud of images is
available, and we must select a subset of those images to
construct a light �eld. Though several appropriate methods
are available for this task, we have empirically determined



simulated annealing [28] to be simple and suf�cient. The
required number of images is prescribed as well as a minimum
desired image separation, and position, orientation and image
separation are allowed to converge, yielding a line ofideal
grid locationss which are a best-�t toactualcamera locations.
During annealing, the vertical (z) distance between the actual
and ideal locations is scaled to re�ect its limited impact
on the resulting images: movement in the vertical direction
results in a maximum projected translation which is inversely
proportional to the focal length of the camera.

B. Image Reparameterization

Having selected a set of camera poses close to an ideal line
of samples,s, we must now reproject them onto a common
u; v plane. We present a simpli�ed approach then generalize,
in all cases starting with recti�cation of the input images [29].

Starting with the assumptions of an approximately planar
sea �oor and a downward-facing camera moving parallel
to it, we choose au; v reference plane coincident with the
sea �oor and centered horizontally on the grid of camera
positions,s. Because a downward facing camera has an image
plane parallel to thisu; v plane, reprojection of the images to
commonu; v coordinates can be carried out as a combination
of 2D rotation and translation within the image plane. Rotation
brings the horizontal pixel coordinateu into alignment with
the line of positions,s, and translation aligns the images
into a commonu; v frame. To determine the appropriate
transformations, the center image ins is �rst rotated to align
its u with s based on the camera pose estimate. Next, the
remaining images are brought into alignment with the center
image based on statistically robust registration [6], ensuring
immunity to distractors and small deviations from an ideally
planar scene.

In the more general case of a non-planar scene which is
not parallel to the direction of motion of the camera, and a
non-downward-facing camera, we cannot always accomplish
image registration using orthonormal transformations. Our
approach in this case begins by reprojecting each image into
a downward-facing pose, with aligneds andu axes, based on
the AUV's pose estimates. We then perform robust registration
of each image with the central image in the grid, usingprojec-
tive transformations. Applying these transformations directly
would result in a non-parallel, non-orthogonal planar parame-
terization of the light �eld, and to correct this we extract and
apply a set of best-�torthonormal transformations from the
projective transformations. This process guarantees a parallel
and centeredu; v reference plane, at a depth somewhere near
the mean depth of the projected scene, and also corrects for
inaccuracies in the estimated camera poses.

As a �nal step, the light �eld must be cropped inu; v such
that only areas visible in all (or most) images alongs remain.
The reparameterization process can be summarized as:

1) Rectify and reproject images, rotating to alignu with s
2) Find projective homographies with central image
3) Find and apply best-�t orthonormal transformations
4) Crop inu; v

IV. I SOLATING BACKGROUND AND DISTRACTORS

In [22] it was shown that an occlusion-free, Lambertian
scene lying between two depthszmin and zmax will yield a
light �eld whose frequency-domain region of support (ROS)
is given by a dual-fan shape. For the Fourier transform of the
light �eld, L f req (
 s; 
 t ; 
 u ; 
 v ), the ROS is given by

�
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�
=

�
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pz

� 1
� �
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�
; zmin � pz � zmax ; (1)

where pz is the depth of a point in the scene. This means
that if the background is known to exist between two depths,
we can guarantee that it exists within a fan-shaped ROS
in 
 s; 
 u . This fan-shaped ROS arises because of smooth
apparent motion of scene elements as the camera moves along
s: elements are constrained to move in the same direction, and
within a range of rates determined by the scene's geometry.
This can be exploited to �lter for a range of depths using a
�lter with a fan-shaped passband.

Because the images which make up our light �eld were
taken at different times, moving elements within them will,in
general, not conform to the smooth motion associated with
background elements. In the case of a hovering AUV, in
particular, images are typically distantly separated in time,
so distractors display impulse-like behaviour alongs: �sh
appear and disappear in adjacent images, introducing very
high frequency components well outside the fan-shaped ROS
of the background elements. For sequences with more slowly
moving distractors, the frequency components may approach
the fan shape, but are unlikely to exactly match those of a
valid background element. Note that these observations are
similar to those made in [16] and [18], but can be exploited
much more simply because we have taken the additional step
of reparameterizing the problem into a light �eld structure.

Note that occlusions and non-Lambertian (e.g. specular)
scene elements may have frequency components outside the
ideal fan-shaped ROS. Fortunately, most of the energy of
interest in typical underwater scenes is both non-occluding and
Lambertian, and indeed removal of specular re�ections from
these scenes may be desirable, depending on the application.

A. Fan Filter

In [22] �lter banks are proposed for approximating a fan-
shaped passband. Such a �lter may be applied to the problem
at hand by appropriately selecting �lter coef�cients such that
the passband admits background elements within the depth
range de�ned byzmin andzmax . The appropriate depth range
will vary by the type of terrain in the scene, though a good
starting point is to constrain the depth to lie between half and
twice the nominal AUV altitude. A narrower depth range will
be more selective to distractors, but will also attenuate any
scene elements which violate the depth range.

For the purposes of this investigation, we implemented a
simpler �lter directly in the frequency domain. The light �eld
is processed in slices ins; u, �rst taking a 2D discrete Fourier
transform, then multiplying by a fan-shaped passband, and



�nally taking the inverse discrete Fourier transform. The fan-
shaped passband is designed directly in the frequency domain
as the combination of an ideal fan passband and an edge-
softening Gaussian, chosen to reduce ringing associated with
discontinuities in the frequency domain. The variance of the
Gaussian is increased along
 u , so as to maximize selectivity
at low frequencies, and to further soften the �lter at higher
frequencies. The phase response is left at zero throughout.
Though simplistic, this approach has yielded acceptable re-
sults. More complex schemes, such as those proposed in [30]
and [31], may yield more exact results.

Because there are relatively few samples alongs, it is
necessary to introduce measures to deal with edge effects. In
particular, the circular nature of the Fourier transform means
images get blurred off one edge of thes dimension onto the
opposite edge. To counteract this, zero-padding is introduced
in the s dimension, though this introduces darkening near the
edges. The darkening is partially dealt with by normalizing
each slice alongs to a consistent mean and standard deviation.

B. Inverse Fan Filter

As a trivial extension of the distractor-rejecting fan �lter, a
distractor-extracting �lter can be formulated by utilizing the
inverse fan �lter. This is accomplished by applying one minus
the magnitude response in the frequency domain.

V. RESULTS

The University of Sydney's Australian Centre for Field
Robotics operates an ocean going AUV called Sirius capable
of undertaking high resolution survey work. A sequence of
1853 geo-referenced images was collected during a station-
keeping mission over the course of about half an hour, with
position estimates obtained through simultaneous localization
and mapping (SLAM) [1]. The navigation estimates of the
camera's position are shown in a top-down view in Fig. 2 as
grey dots. Over the sequence, the AUV drifted on the order
of half a meter in each direction.

As described in Section III-A, simulated annealing was used
to select 30 approximately co-linear camera positions, shown
as dark circles in the �gure. This yielded a best-�t grid of ideal
positions,s, of length 0.2 m – the mean and worst-case error
between the camera's estimated position and the ideal grid
locations were 4 mm and 6.8 mm, respectively. Note that this
error includes depth (not shown in the �gure), and though the
individual position errors seem high, the overall shape of the
array is close enough to ideal for the �lters to operate. Errors
in position manifest themselves in the �ltered scene model as a
slight blurring of parallax motion, and in the isolated distractor
output as ghosting of background elements.

The 30 selected images were reparameterized into a light
�eld by registering the images using rotation and translation
transformations, as described in Section III-B. The average
altitude of the AUV over the 30 images was 1.98 m, and this
determined the light �eld plane separation,d. The images,
after cropping, contained 990 and 680 pixels inu and v,
respectively. A fan �lter was constructed with a passband

Fig. 2. A set of 30 camera poses (black circles) selected from asequence
of 1853 poses captured by a station-keeping AUV (grey dots);approximate
image footprints are shown as black boxes

admitting elements between depths of 1.8 and 2.2 m – these
were empirically chosen to closely conform to the geometry
of the scene.

Fig. 3 depicts the results of the �ltering operation: 3a shows
a single input frame, taken near the center ofs, and 3b shows
a detailed zoom on a central region of the image. The inverse
fan �lter and fan �lter outputs for this same central frame are
shown in Figs. 3c and 3d, respectively. The inverse fan �lter
reveals two �sh hiding in this frame – 30 such images were
produced, one pers position, containing a total of 41 images
of �sh, though of course some are the same �sh in different
positions. The fan �lter output is a distractor-free, 3D light
�eld model of the background. A short video of these results
is included as a video attachment to this paper.1

By comparison, a simple pixel differencing scheme is un-
able to distinguish between changes caused by parallax and
those caused by distractors. This is seen by comparing the
inverse fan �lter output with pixel differencing results for two
of the images alongs, shown in Figs. 3e and 3f, respectively.

Fig. 4 depicts the �ltering results as slices ins and u: the
horizontal axis represents samples alongs – i.e. camera motion
– while the vertical axis representsu – i.e. image pixels – for
a particularv chosen to contain a distractor (seen near the top
of the �gure). The loss of contrast near the edges of the fan
�lter output is due to �ltering edge effects, which increasein
magnitude with the selectivity of the �lter.

To investigate the effects of image separation on parallax
components, we found the energy in the difference between
the �rst image in s and each subsequent image, as shown
in Fig. 5. As anticipated, parallax energy rises as image
separation increases, and we believe that any 2D per-pixel
method will suffer from this limitation. For comparison, the
energy in the unnormalized fan �lter output is shown – note
that the increase in energy near the edge samples is due to
�ltering edge effects, not sensitivity to parallax.

1Available at http://www.youtube.com/watch?v=7IltUPFo3Ew.



(a) (b) (c)

(d) (e) (f)

Fig. 3. a) A frame of the input light �eld taken near the center of s, and b) a zoomed in detail near the center of the image; c) isolated distractors, one of
30 such images produced by the inverse fan �lter (note the shadows cast by the AUV's two strobes), and d) a frame of the distractor-free light �eld model
produced by the fan �lter; e) a full frame of the isolated distractors for comparison with f) simple pixel differencing, which shows higher sensitivity to parallax
in the scene
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Fig. 4. A slice, in thes; u plane, of a) the input light �eld, b) the fan-�ltered,
distractor-free light �eld, and c) the inverse-fan-�ltered extracted distractors;
images have been cropped inu to show detail

VI. CONCLUSIONS ANDFUTURE WORK

We have demonstrated a technique for building a 3D light
�eld from monocular image sequences obtained from a station-
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Fig. 5. Energy content from image differencing increases with image
separation (black), driven by an increase in parallax; thiseffect is not seen in
the inverse fan �lter output (grey)

keeping or slowly moving AUV. By applying linear fan �lters
and inverse fan �lters to these 3D light �elds, we are able to
construct a distractor-free light �eld model of the background
and, conversely, images of the isolated distractors. Beyond the
actual light �eld formation process, which relies on feature
extraction for image registration, our technique is featureless
– distractors and background are isolated using entirely linear,
pixel-wise operations. We have shown our results to outper-



form 2D per-pixel methods, which are sensitive to parallax
motion of background elements. The fan �lters presented are
conceptually and computationally simpler than the feature-
based and nonlinear counterparts discussed in Section II. They
operate in constant time independent of scene complexity, are
suitable for parallelization, and are expected to show better
noise performance than feature-based methods because they
use all measured pixels in forming a solution.

As future work, generalization to a 4D light �eld would
allow processing of all images from a hovering AUV. Ap-
plying the fan �lter to sequences suffering from caustics
and other illumination effects would be interesting, as would
be demonstration of the technique for long-term distractor-
free change detection. Finally, the presented techniques might
�nd application outside those named – aerial surveillance or
agricultural monitoring, for example.

ACKNOWLEDGMENT

This work is supported in part by the ARC Centre of
Excellence programme, funded by the Australian Research
Council (ARC) and the New South Wales State Government,
the Australian Centre for Field Robotics, The University of
Sydney, the Australian Government's International Postgradu-
ate Research Scholarship (IPRS), and the Australian Institute
of Marine Science (AIMS). The authors would also like to
thank Lachlan Toohey for suggesting the inverse fan �lter,
and the ACFR underwater group for inspiration and guidance.

REFERENCES

[1] S. B. Williams, O. Pizarro, I. Mahon, and M. Johnson-Roberson, “Si-
multaneous Localisation and Mapping and Dense StereoscopicSea�oor
Reconstruction Using an AUV,” inExperimental Robotics, ser. Springer
Tracts in Advanced Robotics, O. Khatib, V. Kumar, and G. Pappas, Eds.
Springer Berlin / Heidelberg, 2009, vol. 54, pp. 407–416.

[2] M. Grasmueck, G. P. Eberli, D. A. Viggiano, T. Correa, G. Rathwell, and
J. Luo, “Autonomous underwater vehicle (AUV) mapping revealscoral
mound distribution, morphology, and oceanography in deep water of the
Straits of Florida,”Geophysical Research Letters, vol. 33, p. L23616,
Dec 2006.

[3] C. Kunz, C. Murphy, R. Camilli, H. Singh, R. Eustice, C. Roman,
M. Jakuba, C. Willis, T. Sato, K. Nakamura, R. Sohn, and J. Bailey,
“Deep sea underwater robotic exploration in the ice-covered arctic ocean
with AUVs,” in IROS, 2008, pp. 3654–3660.

[4] S. B. Williams, O. Pizarro, M. Jakuba, I. J. Mahon, S. D. Ling, and C. R.
Johnson, “Repeated AUV Surveying of Urchin Barrens in NorthEastern
Tasmania,” inProceedings of the 2010 IEEE international conference
on Robotics and Automation. IEEE, May 2010, pp. 293–299.

[5] M. Levoy and P. Hanrahan, “Light �eld rendering,” inProceedings
of the 23rd annual conference on Computer graphics and interactive
techniques. ACM, 1996, pp. 31–42.

[6] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91–110,
2004.

[7] R. Koch, M. Pollefeys, and L. Van Gool, “Robust calibration and 3D
geometric modeling from large collections of uncalibrated images,” in
Proc. DAGM, vol. 99, 1999, pp. 413–420.

[8] M. Piccardi, “Background subtraction techniques: a review,” in IEEE
International Conference on Systems, Man and Cybernetics, vol. 4, 2004,
pp. 3099–3104.

[9] S. Chien, S. Ma, and L. Chen, “Ef�cient moving object segmentation
algorithm using background registration technique,”IEEE Transactions
on Circuits and Systems for Video Technology, vol. 12, no. 7, pp. 577–
586, 2002.

[10] C. Stauffer and W. Grimson, “Adaptive background mixturemodels
for real-time tracking,” inProceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, vol. 2. IEEE,
1999, pp. 246–252.

[11] E. Hayman and J. Eklundh, “Statistical background subtraction for a
mobile observer,” inNinth IEEE International Conference on Computer
Vision, 2003. Proceedings, 2003, pp. 67–74.

[12] A. Mittal and D. Huttenlocher, “Scene modeling for wide area surveil-
lance and image synthesis,” inIEEE Computer Society Conference on
Computer Vision and Pattern Recognition, vol. 2. IEEE, 2000, pp.
160–167.

[13] Y. Ren, C. Chua, and Y. Ho, “Statistical background modeling for non-
stationary camera,”Pattern Recognition Letters, vol. 24, no. 1-3, pp.
183–196, 2003.

[14] R. Pless, T. Brodsky, and Y. Aloimonos, “Detecting independent motion:
the statistics of temporal continuity,”Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 22, no. 8, pp. 768–773, Aug.
2000.

[15] A. Ogale, C. Fermuller, and Y. Aloimonos, “Motion segmentation
using occlusions,”Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 27, no. 6, pp. 988–992, June 2005.

[16] R. Feghali and A. Mitiche, “Spatiotemporal motion boundary detection
and motion boundary velocity estimation for tracking moving objects
with a moving camera: a level sets PDEs approach with concurrent
camera motion compensation,”Image Processing, IEEE Transactions
on, vol. 13, no. 11, pp. 1473–1490, Nov. 2004.

[17] Y. Sheikh, O. Javed, and T. Kanade, “Background subtraction for freely
moving cameras,” inComputer Vision, 2009 IEEE 12th International
Conference on, Sept. 2009, pp. 1219–1225.

[18] R. C. Nelson, “Qualitative detection of motion by a movingobserver,”
International Journal of Computer Vision, vol. 7, pp. 33–46, 1991.

[19] D. Dansereau and L. Bruton, “Gradient-based depth estimation from 4D
light �elds,” in Proceedings of the International Symposium on Circuits
and Systems, vol. 3. IEEE, May 2004, pp. 549–552.

[20] W. Hong, “Light �eld applications to 3-dimensional surface imaging,”
Master's thesis, Massachusetts Institute of Technology, 2009.
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