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Abstract—A method is presented for isolating moving distrac- and its inverse can isolate static background elements and
tors from a static background in imagery captured by a hovering  dynamic distractors. The output of the proposed process is
or slowly moving Autonomous Underwater Vehicle (AUV). By o 'jight eld model of the sea oor, from which novel views

reparameterizing a set of monocular images into a light eld b dered I tof i taining th
structure, it becomes possible to apply a linear fan Iter and its may be rendered, as well as a set of Images containing the

inverse to extract the background and distractors, respectiely. isolated distractors.
Results are shown for a hovering AUV imaging a region with Our method applies to monocular image sequences for
non-trivial 3D structure and containing moving elements. The which there exist sets of overlapping, approximately oedir

output is a distractor-free 3D light eld model of the sea oor ; ;
and a set of images of isolated distractors. We show that the and equally spaced images. This would be the case, for

technique is insensitive to parallax in the background elements, gxa}mple, for f"‘ station-keeping robot which slowly driftoab
outperforming pixel differencing techniques. its ideal location for a large number of frames, or for an AUV
moving at a constant velocity, with a low speed relative ® th
frame capture rate. We make use of an estimate of the camera’s
Autonomous Underwater Vehicles (AUVs) are playing apose, obtained from the AUVs navigation system, to select
increasingly important role in exploring, surveying andrmo images for inclusion in the light eld, though this estimate
itoring benthic habitats. Recent advances in navigatitowal need not be exact, and can be approximated using robust
dense, detailed surveys to be performed autonomously [Ykgistration techniques [6]. We also assume that the camera
[3], while repeated surveys [4] open the possibility of dthe is calibrated, though techniques exist for approximating a
observing habitat dynamics. The use of AUVs in long-terraalibration directly from captured imagery [7].
studies is particularly appealing as an alternative tocktdd, = The remainder of this paper is organized as follows:
potentially intrusive and expensive underwater instialie. Section Il provides background on foreground/background
A common assumption in underwater surveys is that ofigolation and light eld processing, Section Il deals with
static environment — an assumption violated in many of thnstructing a light eld from monocular image sequences,
most interesting habitats: sh and drifting organisms, giwg  Section IV shows how a fan Iter and its inverse can be used
vegetation, and dynamic lighting can all act as distractors to isolate foreground and background elements, and Se¢tion
long-term reef monitoring, it is desirable to establisht@@is shows results for a nontrivial underwater sequence oldaine
of change in the underlying reef structure while ignoring thfrom a hovering AUV. Finally, Section VI gives conclusions
movements of sh in the captured imagery. Conversely, orgnd future work.
might wish to investigate the distractors themselvesatstg
dynamic organisms from their underlying environment. Il. BACKGROUND
Distractor isolation from mobile platforms is non-trivialue The closely related tasks of foreground/background seg-
to the apparent motion of the environment in the capturedentation and change detection are fundamental problems of
imagery. This apparent motion is non-uniform in the cassmputer vision, with several successful approaches demon
of non-planar 3D scene geometry, and so methods basedstmated under a variety of scene and camera constraints.
pixel-level statistics are insuf cient for such appliaatis. The For sequences with a static camera, the projection of the
key limitation of these techniques is in their direct use dfackground onto the image plane is also static, and so it is
2D monocular imagery in what is fundamentally a highepossible to utilize simple pixel-based statistics to aqgolish
dimensional problem. segmentation [8]-[10]. This is appealing for several reaso
This paper proposes a method for collecting a set dfis computationally ef cient, regardless of scene conxile
monocular images into a light eld structure [5], prior toit is easily parallelized, and it does not rely on identifyin
distractor/background isolation. A light eld represeritse and tracking features, which can be problematic in noisy or
light permeating a scene and, unlike monocular images aloself-similar environments.
implicitly represents the geometry of the scene as wellss it Extension to rotating cameras exploits the lack of parallax
textural content. This enables simple techniques to actisimp in the motion of the background [11]-[13], and so methods
complex tasks — in particular we show that a linear Itesimilar to the static-camera case may be utilized. Sinyilarl

I. INTRODUCTION



approximately planar scenes with camera motion parallel to
the plane — such as in aerial surveillance — present littleoor
parallax, and so similar techniques may be employed [14].

In the case of a freely moving camera and non-trivial scene
geometry, background elements are not static and move with
different projected velocities. Several approaches haenb
proposed for addressing this scenario, including the use of
occlusion detection, and using concepts from optical ow
to perform iterative camera motion and motion boundary
estimation [15], [16]. Other interesting approaches eixplo
constraints on projected background motion in an orthdgcap
camera, as in [17], which proposes tracking features across Fig. 1. Two-plane parameterization of light rays
the image sequence, and modelling background motion as a

sum of basis trajectories — dense per-pixel labelling isthe As we shall see, a 3D subset of the light eld(s; u; V),

pe_rformv_ad ina r_lal optimization step. _In [18], motion betere suf ces for the present task. This can be thought of as a
pairs of images is considered, for which background elesent

are shown to lie on a 1D locus. This constraint is exploited orizontal row O.f Images indexed by, _for a xed value

detect foreground elements trlwough only low-density tesuq t. Though_ this s!mphes our task, .'t also prevents us

are demonstrated. While pr;)mising these techniques are rci processing al 'mages 1n a hovering AUV sequence —
’ 2 gae eralization to 4D is suggested as future work.

more conceptually and computationally complex than stati

tical per-pixel method nd either qenerat ; it Our approach relies on constructing a light eld from
cal per-pixel methods, and eitner generate sparse seeult moving camera. Several methods for rendering directly
rely on iterative methods to converge on a solution.

It would be appealing, then, to accomplish forefrom arbitrarily posed cameras have been suggested [23]-

d/back d tation i et d [25], but only a few have focused on building the two-plane-
?rotur; | acmgr::nr segnmecwzla\i 'ﬁndm a (r:]ort‘n;r)(la ?r?rtran Kin arameterized light eld which we will require for lItering
caturelessmanner — one which does not rely on trackigg) 1571 we will borrow heavily from these techniques in
features, iterative approaches, or optimization framésjdout . .
. . . . . ... constructing our light eld.
which operates simply on a per-pixel basis, as in the ti@ukii
static-camera segmentation techniques. In order to admp I1l. LIGHT FIELD CONSTRUCTION

this, we propose collecting a number of input images into agecause the light eldL(s;u;v) can be thought of as a

light eld structure, and Itering that structure. row of images alongs, one way to construct it is to place a
Light elds rst came about as an image-based approagthmera at each of tresample locations, facing the v plane,

to computer graphics [S], but have since gathered attentigRq then reproject those images to comnupm coordinates.

in image processing, allowing image-based, featureleds teAssuming the camera is calibrated, we may even allow some

niques to accomplish complex tasks such as depth estimatigixation in the orientations of the camera, so long as the

and ltering [19]-{22]. Whereas a conventional photograpfimages overlap suf ciently to be reprojected onto a common

encodes variations in light as a function of direction foy:y plane. The critical point is that the camera’s aperture must

rays passing through a single position (aperture), a lightl  coincide with the locations of the samples. To this end, we

position, and is typically measured using multiple camenas

lenses, or a single moving camera. A. Image Selection

A common light eld parameterization is the two-plane We consider two scenarios: an AUV collecting a large
parameterization depicted by Fig. 1, which describes a lighumber of images while hovering above an area of interest
ray by its point of intersection with two reference pland® t on the sea oor, and an AUV moving slowly over an area
s;t plane given byz = 0, and theu; v plane which is parallel of interest at an approximately constant velocity, capyri
to thes;t plane at some positive separatior d. Coordinates images at a constant frame rate. Both scenarios can yield the
in (s;t) can be thought of as de ning theosition of a ray, co-linear and evenly spaced images we require. As we will
and in(u; v) as de ning itsdirection so a sample of the light be applying a linear fan lter to the light eld, at least 10
eld function L(s;t;u;Vv) represents the value (monochromsuch images are recommended [22] — more images will yield
or colour) of one speci c ray within the scene. more selective results, meaning a higher sensitivity tavigio

Another intuitive way of visualizing the light eld is to moving distractors, but requiring longer computation tme
imagine thes;t plane as a grid of pinhole cameras facing the In the case of a slowly moving AUV, the requisite images
u; v plane. Fixing a value fofs; t) selects one speci ¢ pinhole are straightforwardly obtained from a linear section opish.
camera, andu;v) act as pixel coordinates for that pinholdn the case of a station-keeping robot a cloud of images is
camera. The only complication is thét;v) coordinates are available, and we must select a subset of those images to
on a common plane for all cameras, and so are skewed asoastruct a light eld. Though several appropriate methods
function of (s;1). are available for this task, we have empirically determined




simulated annealing [28] to be simple and sufcient. The V. |SOLATING BACKGROUND AND DISTRACTORS
required number of images is prescribed as well as a minimu

desired image separation, and position, orientation aradyém scene lying between two deptg;, andzme will yield a

se.paratlo.n are al!owed to converge, yielding a Imewtﬁal light eld whose frequency-domain region of support (ROS)
grid locationss which are a best- t taactual camera locations. ;- given by a dual-fan shape. For the Fourier transform of the
During annealing, the verticak) distance between the actuati ht eld. L (oo . e ROS s given b

and ideal locations is scaled to re ect its limited impac g pofrea ks b v 9 y

on the resulting images: movement in the vertical direction s _ d v )

results in a maximum projected translation which is invigrse tp 1 v Zmin Pz Zmaci (1)
proportional to the focal length of the camera.

Mn [22] it was shown that an occlusion-free, Lambertian

where p, is the depth of a point in the scene. This means

B. Image Reparameterization that if the background is known to exist between two depths,

Having selected a set of camera poses close to an ideal @ can guarantee that it exists within a fan-shaped ROS
of sampless, we must now reproject them onto a commoin s; . This fan-shaped ROS arises because of smooth
u;v plane. We present a simpli ed approach then generalizeépparent motion of scene elements as the camera moves along
in all cases starting with recti cation of the input image9]. s: elements are constrained to move in the same direction, and

Starting with the assumptions of an approximately planarithin a range of rates determined by the scene's geometry.
sea oor and a downward-facing camera moving paralldlhis can be exploited to lter for a range of depths using a
to it, we choose au;v reference plane coincident with the Iter with a fan-shaped passband.
sea oor and centered horizontally on the grid of camera Because the images which make up our light eld were
positions,s. Because a downward facing camera has an imageken at different times, moving elements within them wil,
plane parallel to thisi; v plane, reprojection of the images togeneral, not conform to the smooth motion associated with
commonu; Vv coordinates can be carried out as a combinatidrackground elements. In the case of a hovering AUV, in
of 2D rotation and translation within the image plane. Rotat particular, images are typically distantly separated meti
brings the horizontal pixel coordinate into alignment with so distractors display impulse-like behaviour alosig sh
the line of positions,s, and translation aligns the imagesappear and disappear in adjacent images, introducing very
into a commonu;v frame. To determine the appropriatehigh frequency components well outside the fan-shaped ROS
transformations, the center imagedns rst rotated to align of the background elements. For sequences with more slowly
its u with s based on the camera pose estimate. Next, theving distractors, the frequency components may approach
remaining images are brought into alignment with the centtire fan shape, but are unlikely to exactly match those of a
image based on statistically robust registration [6], eingu valid background element. Note that these observations are
immunity to distractors and small deviations from an ideallsimilar to those made in [16] and [18], but can be exploited
planar scene. much more simply because we have taken the additional step

In the more general case of a non-planar scene whichafreparameterizing the problem into a light eld structure
not parallel to the direction of motion of the camera, and a Note that occlusions and non-Lambertian (e.g. specular)
non-downward-facing camera, we cannot always accomplistene elements may have frequency components outside the
image registration using orthonormal transformationsr Oideal fan-shaped ROS. Fortunately, most of the energy of
approach in this case begins by reprojecting each image iiicerest in typical underwater scenes is both non-occtueind
a downward-facing pose, with alignedandu axes, based on Lambertian, and indeed removal of specular re ections from
the AUV's pose estimates. We then perform robust regisinati these scenes may be desirable, depending on the application
of each image with the central image in the grid, ugingjec-
tive transformations. Applying these transformations digect/A. Fan Filter
would result in a non-parallel, non-orthogonal planar p&a |y [22] Iter banks are proposed for approximating a fan-
terization of the light eld, and to correct this we extragith ghaped passband. Such a Iter may be applied to the problem
apply a set of best- torthonormaltransformations from the gt hand by appropriately selecting lter coef cients sudiat
projective transformations. This process guarantees @l@ar the passband admits background elements within the depth
and centered;; v reference plane, at a depth somewhere neéginge de ned byzmin andzmax . The appropriate depth range
the mean depth of the projected scene, and also corrects\{@f vary by the type of terrain in the scene, though a good
inaccuracies in the estimated camera poses. starting point is to constrain the depth to lie between hatf a

As a nal step, the light eld must be cropped imv such  yyice the nominal AUV altitude. A narrower depth range will
that only areas visible in all (or most) images al&emain. pe more selective to distractors, but will also attenuatg an
The reparameterization process can be summarized as:  gcene elements which violate the depth range.

1) Rectify and reproject images, rotating to aligiwith s For the purposes of this investigation, we implemented a

2) Find projective homographies with central image  simpler lter directly in the frequency domain. The light &

3) Find and apply best- t orthonormal transformations  is processed in slices #ju, rst taking a 2D discrete Fourier

4) Crop inu;v transform, then multiplying by a fan-shaped passband, and



nally taking the inverse discrete Fourier transform. Tlaan{ e .-:..,‘_-_“- ) 3
shaped passband is designed directly in the frequency domai v e '

as the combination of an ideal fan passband and an edge- . ,_ﬁ»,..‘-‘_‘f'_‘; :

softening Gaussian, chosen to reduce ringing associatéd wi A, ;*.'.f-;‘-'-,.::-x" i %
discontinuities in the frequency domain. The variance @f th ~°’=:-°§?'.'::-.5§" by 200 A 1)
Gaussian is increased along, so as to maximize selectivity RO, ol :
at low frequencies, and to further soften the Iter at higher 05 b “‘f- o _,;\’;é“', i
frequencies. The phase response is left at zero throughout. DA -.. L
Though simplistic, this approach has yielded acceptable re _ o =

v

sults. More complex schemes, such as those proposed in [30] >
and [31], may yield more exact results.

Because there are relatively few samples alangt is
necessary to introduce measures to deal with edge effects. |
particular, the circular nature of the Fourier transformamse -oes o005
images get blurred off one edge of tealimension onto the
opposite edge. To counteract this, zero-padding is inttedu Fig. 2. A set of 30 camera poses (black circles) selected framcmence
in the s dimension, though this introduces darkening near t ;gf?og?;ﬁt;:?é“;i%ﬁz ::é?;g;'é‘gfepsmg AUV (grey dasproximate
edges. The darkening is partially dealt with by normalizing
each slice along to a consistent mean and standard deviation.

-0.5

admitting elements between depths of 1.8 and 2.2 m — these
were empirically chosen to closely conform to the geometry
As a trivial extension of the distractor-rejecting fan ff&  of the scene.
distractor-extracting Iter can be formulated by utiliginthe Fig. 3 depicts the results of the Itering operation: 3a skow
inverse fan lter. This is accomplished by applying one msnug single input frame, taken near the centesoénd 3b shows
the magnitude response in the frequency domain. a detailed zoom on a central region of the image. The inverse
fan lter and fan lter outputs for this same central frameear
shown in Figs. 3c and 3d, respectively. The inverse fan lter
The University of Sydney's Australian Centre for Fieldeyeals two sh hiding in this frame — 30 such images were
Robotics operates an ocean going AUV called Sirius capalgjﬁ)duced, one pes position, containing a total of 41 images
of undertaking high resolution survey work. A sequence g sh, though of course some are the same sh in different
1853 geo-referenced images was collected during a statigsitions. The fan Iter output is a distractor-free, 3D Hig
keeping mission over the course of about half an hour, withig model of the background. A short video of these results
position estimates obtained through simultaneous laatédia s included as a video attachment to this paper.
and mapping (SLAM) [1]. The navigation estimates of the By comparison, a simple pixel differencing scheme is un-
camera’s position are shown in a top-down view in Fig. 2 agje to distinguish between changes caused by parallax and
grey dots. Over the sequence, the AUV drifted on the ordgfose caused by distractors. This is seen by comparing the
of half a meter in each direction. inverse fan Iter output with pixel differencing resultsrfowo
As described in Section llI-A, simulated annealing was usgf the images along, shown in Figs. 3e and 3f, respectively.
to select 30 approximately co-linear camera positionswsho  Fig. 4 depicts the ltering results as slices snand u: the
as dark circles in the gure. This yielded a best- t grid o®@l orizontal axis represents samples alsrgi.e. camera motion
positions,s, of length 0.2 m — the mean and worst-case error yhile the vertical axis represents- i.e. image pixels — for
between the camera's estimated position and the ideal ggtharticularv chosen to contain a distractor (seen near the top
locations were 4 mm and 6.8 mm, respectively. Note that thi$ e gure). The loss of contrast near the edges of the fan
error includes depth (not shown in the gure), and though thgg, output is due to Itering edge effects, which increase
individual position errors seem high, the overall shapehef Umagnitude with the selectivity of the Iter.
array is close enough to ideal for the lIters to operate. 810 1, investigate the effects of image separation on parallax
in position manifest themselves in the Itered scene moseiacomponents, we found the energy in the difference between
slight blurring of parallax motion, and in the isolated digtor he st image ins and each subsequent image, as shown
output as ghosting of background elements. in Fig. 5. As anticipated, parallax energy rises as image
The 30 selected images were reparameterized into a I@@paraﬁon increases, and we believe that any 2D per-pixel
eld by registering the images using rotation and transkti method will suffer from this limitation. For comparison,eth
transformations, as described in Section IlI-B. The averagnergy in the unnormalized fan Iter output is shown — note
altitude of the AUV over the 30 images was 1.98 m, and thiat the increase in energy near the edge samples is due to

determined the light eld plane separatiod, The images, ltering edge effects, not sensitivity to parallax.
after cropping, contained 990 and 680 pixelsunand v,

respectively. A fan Iter was constructed with a passband !Available at http://www.youtube.com/watch?v=7IltUPFeBE

B. Inverse Fan Filter

V. RESULTS
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(d) (e) ®
Fig. 3. a) A frame of the input light eld taken near the centérspand b) a zoomed in detail near the center of the image; c) &bldistractors, one of
30 such images produced by the inverse fan Iter (note the @hadtast by the AUV's two strobes), and d) a frame of the distraftee light eld model
produced by the fan lter; e) a full frame of the isolated déstiors for comparison with f) simple pixel differencing, wiishows higher sensitivity to parallax
in the scene
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Fig. 4. Aslice, in thes; u plane, of a) the input light eld, b) the fan- ltered, k . lowl ing AUV. B Vi i f |
distractor-free light eld, and c) the inverse-fan- ltedteextracted distractors; eeping or slowly moving . By applying linear tan lters

images have been croppediinto show detail and inverse fan lIters to these 3D light elds, we are able to
construct a distractor-free light eld model of the backgnal
and, conversely, images of the isolated distractors. Betyoa
VI. CONCLUSIONS ANDFUTURE WORK actual light eld formation process, which relies on featur
extraction for image registration, our technique is fealess
We have demonstrated a technique for building a 3D lightdistractors and background are isolated using entiregali,
eld from monocular image sequences obtained from a statiopixel-wise operations. We have shown our results to outper-



form 2D per-pixel methods, which are sensitive to parallggo] C. Stauffer and W. Grimson, “Adaptive background mixturedels
motion of background elements. The fan lters presented are for real-time tracking,” inProceedings of the IEEE Computer Society
conceptually and computationally simpler than the feature
based and nonlinear counterparts discussed in Sectiohel T[11] E. Hayman and J. Eklundh, “Statistical background sadiion for a
operate in constant time independent of scene complexay, a
suitable for parallelization, and are expected to showebetf;,,
noise performance than feature-based methods because theylance and image synthesis,” IEEE Computer Society Conference on
use all measured pixels in forming a solution.

As future work, generalization to a 4D light eld would ;3
allow processing of all images from a hovering AUV. Ap-

plying the fan

Iter to sequences suffering from causticFl 4

and other illumination effects would be interesting, as \dou
be demonstration of the technique for long-term distractor

free change detection. Finally, the presented techniqueglstm
nd application outside those named — aerial surveillance

5]

agricultural monitoring, for example.
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