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ABSTRACT

It is shown that an infinitesimally small surface element of a Lam-

bertian scene exists as a plane of constant value in a 4D light field,

where the orientation of the plane is determined by the depth of the

element in the scene. By applying 2D gradient operators to appro-
priate subsets of the light field, the orientations of these constant-

valued planes, and thus the depths of the corresponding elements

of the scene, may be estimated. The redundancy associated with

using three color channels, and having two depth estimates based
on orthogonal 2D gradient estimates, is resolved using a weighted

sum based on the confidence of each estimate.

1. INTRODUCTION

Image-based rendering has gained attention as a fast alternative to

geometric model-based rendering. Light field rendering [1] and

the Lumigraph [2] are two similar image-based rendering tech-

niques which seek to model a 4D subset of the more general 7D

plenoptic function [3] associated with a scene. In this way, the
set of light rays permeating a scene is represented, rather than the

geometry of the objects within the scene.

The 7D plenoptic function describes the light rays in a scene as

a function of position, orientation, spectral content, and time. This

can be simplified to a 4D function [1] by considering only the value

of each ray as a function of its position and orientation in a static
scene, and by constraining each ray to have the same value at every

point along its direction of propagation. This disallows scenes in

which the medium attenuates light as it propagates, and it fails to

completely model the behavior of rays as they are occluded. These
limitations are not an issue for scenes in a clear medium such as air,

and for which the camera is not allowed to move behind occluding

objects.

The 4D light field typically parameterizes light rays using the

two-plane parameterization (2PP), as depicted in Fig. 1. Each ray

is described by its point of intersection with two reference planes:
the s, t plane given by z = 0, and the u, v plane which is parallel

to the s, t plane at some positive separation z = d. A full light

field may consist of multiple sets of such planes, though this paper

will deal only with a single set of reference planes. Note also that
each sample of a light field can be taken as a grayscale intensity,

though extension to utilize color samples given as red, green and

blue components is a simple matter of keeping one light field for

each color channel, and repeating each operation accordingly, as

is done in most image processing applications.

Because light fields accurately model scenes which are geo-

metrically complex, they are well suited to act as an intermediary
between the real world and computer vision algorithms. By storing
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Fig. 1. Two-plane parameterization of light rays.

a large amount of information about a scene prior to processing,

light fields allow more informed decision making, and for simple
algorithms to accomplish complex tasks.

This paper is focused on the task of estimating the shape of a

scene modeled using a light field. Normally shape estimation is

quite involved, with complexity proportional to that of the scene
geometry. Because a light field model of the scene is utilized, sim-

ple methods suffice, and the speed and accuracy of these methods

are independent of scene complexity. Because of their simplicity,

the techniques described are extremely robust, and may have ap-
plications as diverse as robot navigation [4] and object recognition

[5], for example.

Throughout this paper, the continuous-domain light field will
be denoted as Lcont(s, t, u, v), and the discrete-domain version

as L(ns, nt, nu, nv), where n is the discrete-domain index of the

signal. The technique described here will assume equal sample

rates in the four dimensions – extension to differing sample rates
requires appropriate adjustment.

2. THE POINT-PLANE CORRESPONDENCE

2.1. The Omni-Directional Point Light Source

Fig. 2 depicts a 2D slice along s and u of a subset of the rays
emanating from an omni-directional point source of light at the

position P = [Px, Py, Pz]. It is clear from this figure that for

any given point on the s, t plane there is only one point on the

u, v plane for which a ray will intersect the light source. The re-
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Fig. 2. The point-plane correspondence: a) 2D slice of a point
source of light shown with the two reference planes; b) 2D slice of

the corresponding light field.

sult is that an s, u slice of the corresponding continuous-domain

light field Lcont(s, t, u, v) takes the form of a line, as depicted in
Fig. 2b). The equation of this line is given by

(d/Pz − 1)s + u = Pxd/Pz, (1)

where d is the separation of the reference planes. The behavior in

the t and v dimensions is similar, and can be expressed as

(d/Pz − 1)t + v = Pyd/Pz. (2)

In 4D space, (1) and (2) are the equations of two hyperplanes

with normals in the directions D1 = [d/Pz −1, 0, 1, 0] and D2 =
[0, d/Pz − 1, 0, 1], respectively [6]. The set of points in the light
field which satisfy both (1) and (2) belongs to a plane defined by

the intersection of these two hyperplanes. Points belonging to this

plane of intersection correspond to rays emanating from the point

light source and so take on the value of that light source, while
all other points in the light field have a value of zero. Thus, an

omni-directional point light source is a plane of constant value in

the light field, where this plane is the solution of (1) and (2).

2.2. A Lambertian Surface

A Lambertian surface is one with ideal diffuse reflectance – that

is, the luminance for any given point on such a surface is indepen-

dent of viewing angle. In this sense, an infinitesimally small area

of a Lambertian surface behaves similarly to an omni-directional
point light source, and will therefore exist in a light field as a plane

of constant value according to the point-plane correspondence. A

complex scene may be modeled as a collection of such infinites-

imally small surface elements, and thus as the superposition of
many constant-valued planes in a light field. The orientation of

each plane is determined by the depth of the corresponding sur-

face element. Note that this superposition assumes the absence of

occlusions – occluded regions will appear as truncated planes in a
light field model. These observations can be seen in Fig. 3, which

is a slice in s, u of a light field of a Lambertian scene containing

elements at different depths.

Because the orientations of the planes that make up a light field

depend only on the depths of the corresponding surface elements,

the depth of each surface element may be estimated by finding the

orientation of the corresponding plane.

Fig. 3. A slice in s and u of a simple light field.

3. DEPTH ESTIMATION

The technique we propose is to estimate the orientation of the
plane passing through each light field sample, and use this ori-

entation to estimate the depth of the corresponding scene element.

Because a separate depth estimate is formed for each light field

sample, occluded regions are treated correctly.

3.1. Plane Orientation Estimation

The orientation of a plane is difficult to estimate in 4D. In the gen-

eral case, two 4D vectors are required to do so. Thankfully, the
planes in a light field are constrained to have the same orientation

in the s, u directions as in the t, v directions. This observation will

allow the use of 2D gradient operators, applied in slices in s, u
and t, v, in estimating a plane’s orientation, and it will introduce
redundancy which can be used to validate the results. The use of

gradients to estimate depth is mentioned briefly in [7].

Observing an s, u slice of a simple light field, such as the one

shown in Fig. 3, it is clear that a 2D gradient operator, applied at

some point in the slice, will yield a gradient vector which points
orthogonal to the plane passing through that point. The basic ap-

proach associated with gradient-based depth estimation, then, is to

use a 2D gradient operator in the s and u dimensions to estimate

the orientation of the plane passing through each light field sample.

Gradient operators applied in t and v should yield the same results,
introducing a redundancy of a factor of two. In fact, because the

2D gradient operator can be applied to each color channel of the

light field independently, a total redundancy of a factor of six is

introduced.

The 2D gradient operator, applied to a single color channel in
the s and u directions, is defined as

∇suL(n) =

[
∂L(n)

∂s
,
∂L(n)

∂u

]
. (3)

The values of the partial derivatives can be estimated using a num-

ber of methods. One of the simpler methods, which has a relatively

high immunity to noise, utilizes 2D convolution in s and u, as in

∂L(n)

∂s
� L(ns, nu) ∗

⎡
⎣ 1 0 −1

2 0 −2
1 0 −1

⎤
⎦ . (4)



Extension to the partial derivative in u, and of both the gradient

operator and partial derivatives to operate on slices in t and v, is

trivial.

3.2. Estimating Depth

Given the gradient vector, the slope of the plane passing through

each sample in the light field can be found, and from this slope

the depth of the corresponding point in the scene can be found.

From the point-plane correspondence, the slope of the plane corre-
sponding to a point in the scene is given, in the s and u directions,

by

mplane = 1 − d

Pz
. (5)

The direction of the gradient vector can also be expressed as a

slope, as in

m∇ =
∇su

u L(n)

∇su
s L(n)

=
∂L(n)/∂u

∂L(n)/∂s
. (6)

Assuming no regions of constant value, for which the magni-
tude of the gradient vector is zero, the gradient vector will always

point orthogonal to the plane. This means that the relationship be-

tween the slope of the plane and the slope of the gradient vector

can be expressed as mplane = −m−1
∇ . Rearranging to solve for

Pz yields the equation

Pz =
d

1 + ∂L(n)/∂s
∂L(n)/∂u

, (7)

which is easily generalized to the t and v dimensions. By applying
this equation throughout the light field, the shape of the scene that

it models is estimated.

3.3. Consolidating Redundant Results

Because of the redundancy associated with having three indepen-

dent color channels, with two independent depth estimates per
channel, some method of optimally combining the estimates is in

order. One way of doing this is to take the weighted sum of the

six depth estimates, where the weight is taken as some measure

of confidence. Given that the magnitude of the gradient vector,

‖∇L(n)‖, is essentially an indication of the contrast of the light
field at each sample, it is a good indicator of confidence. Areas of

low contrast, which yield little information about a scene’s shape,

will have short gradient vectors, while areas of high contrast will

have long gradient vectors.The weighted sum can be expressed as

P̄z =

5∑
i=0

Pz,i‖∇iL(n)‖
5∑

i=0

‖∇iL(n)‖
, (8)

where the ith gradient and depth estimate correspond to one of the
six unique combinations of color channel and direction. Because

the denominator of this expression is an indication of overall con-

fidence, it can be used in a thresholding operation – allowing depth

estimates with inadequate support to be ignored altogether.

3.4. Obtaining a Dense Estimate

When using the denominator of (8) as the basis for a thresholding

operation, the output is sparse for scenes with regions of constant

value. Some method of filling the gaps in the estimate is desirable.

This can be achieved using a simple region growing algorithm. By
iteratively assigning each empty estimate the average value of all

of its nearest neighbors along s, t, u and v, the gaps can be filled.

A further improvement in the output can be obtained through
the use of a 4D lowpass filter – a simple 4D moving average filter

is sufficient – to increase immunity to noise, aliasing, occlusions

and specular reflections. The use of a lowpass filter is particularly

appropriate, as it goes some way towards consolidating the large

amount of information associated with having a depth estimate for
every light field sample.

4. RESULTS

Gradient-based depth estimation was applied to a light field with

geometric parameters as summarized in Table 1. The light field
was measured using a gantry system and contains occlusions. A

rendered view of the input light field is shown in Fig. 4. The back-

ground is a poster of a supernova imaged by the Dominion Radio

Astrophysical Observatory in British Columbia, Canada. The fore-
ground is a beer coaster mounted at approximately 45 degrees to

the reference planes – a wooden dowel can be seen holding the

coaster in place. The poster is at a depth of 66 cm, and the coaster

occupies a range of depths from about 40 cm to 50 cm. With this

size of light field, gradient-based depth estimation takes about 35
ms to form depth estimates in a single u, v slice of the light field,

and about 35 s to fill the entire light field structure.

Table 1. Input light field parameters.

Color channels 3

s, t samples 32

u, v samples 128

s, t size (cm) 21

u, v size (cm) 15

Separation d (cm) 45

The results of the depth estimation are shown in Fig. 5. This

figure visualizes the depth estimates as intensity – pure black rep-

resents a depth of 30 cm, while pure white represents a depth of

70 cm. The poor estimates associated with areas of constant value
are clear in a). These regions were reduced by applying the thresh-

olding technique, with a threshold of 1.0 – that is, the average mag-

nitude of the gradient vectors had to exceed 1.0 before the corre-

sponding depth estimate was used. The results of the thresholding

are shown in b) – regions that have been ignored due to threshold-
ing appear black. Clearly the thresholded estimate is more desir-

able, having the advantage of allowing regions of low confidence

to be ignored.

Applying a region growing algorithm, followed by a simple

4D moving average filter, yields the result shown in Fig. 6 – in this

case, a window size of 4 samples was used. These techniques have

clearly yielded a highly accurate, dense depth estimate.



Fig. 4. Input light field.

5. CONCLUSIONS

A technique for estimating the depth of each visible point in a

scene modeled as a light field was described. The technique uti-
lizes 2D gradient operators applied to slices of the light field in s, u
and in t, v. The estimates are redundant by a factor of six because

of the independent estimates formed in s, u and t, v, as well as

in the three color channels. This redundancy was consolidated by
weighting each estimate with a corresponding confidence, where

confidence was taken as the magnitude of the corresponding gra-

dient vector.

Gradient-based depth estimation was shown to be effective
with a light field containing occlusions. The results were improved

by ignoring estimates for which the average confidence did not

exceed a given threshold. Regions in which no estimates were

formed were filled using a simple region-growing algorithm, and

smoothed using a 4D moving average filter.

Though they first came about in the context of synthesizing

graphics, image-based techniques have a significant potential in

the field of scene analysis. Specific applications of the depth es-

timation technique presented here might include robot navigation
[4], scene modeling [8], and object or face recognition [5] [9]. The

possibility of applying simple and robust techniques to accomplish

complex tasks is exciting.

Future work might involve the optimization of the technique

(a) (b)

Fig. 5. Results of gradient-based depth estimation a) without
thresholding, and b) with thresholding.

Fig. 6. Results of applying region growing and a 4D moving aver-

age filter to the output of gradient-based depth estimation.

described in this paper, through the use of parallel processing, for

example, to operate in real-time. Optimization for operation in
the presence of occlusions and specular reflections may also prove

interesting.
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