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Fig. 16. Exemplary images from the different areas, from top to bottom: A, A’ and B. Areas A and A’ differ mainly in illumination and
camera setting changes, which affects the color appearance.

Fig. 18. This plot visualizes the novelty of observations when the
data from areas A and A’ is recorded several months apart, emulat-
ing long-term operation. From the graph we can see that although
the data was recorded several months apart the method still is able
to reuse most of the existing model when visiting A’.

6. Conclusion

We propose to approach the long-term autonomy problem
in robotics by enabling robots to learn and maintain models
of their environment without the need for human supervi-
sion. To this end, we improve the computational efficiency
of affinity propagation, the clustering method used in our
methods, by introducing meta-point affinity propagation. In
experiments we show how this new method has a similar
clustering quality to affinity propagation but at a signif-
icantly lower computational cost. We then show how the
proposed methods can be used on a real robotic system to
learn to predict collisions with the environment from raw
laser scanner readings without any information provided by
a human expert. Finally, we show how a robot can build
a model of the visual appearance of its environment in an
unsupervised way. Making use of the bumper of the robot
we can additionally self-supervise it to learn which objects
identified by the model represent obstacles. This combina-
tion allows a robot to build a model of the environment and
learn to avoid obstacles without any human help.

Overall the proposed methods give robots the capabil-
ity to build a model of their environment and adapt to
changes in the environment in an entirely unsupervised
manner. This is a crucial skill for the long-term auton-
omy of robots as we cannot assume that the environment
remains unchanged over days, weeks or months. It addition-
ally makes the deployment of a robotic system easier and
quicker as no human labor is required to build the model of
the environment the robot is going to operate in.
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