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Abstract

We present a new control law for the problem of docking a wheeled robot to a target at a certain location with a desired heading. Recent
research into insect navigation has inspired a solution which uses only one video camera. The control law is of the “behavioral” type in that all
control actions are based on immediate visual information. Docking success under certain conditions is proved mathematically and simulation
studies show the control law to be robust to camera intrinsic parameter errors. Experiments were performed for verification of the control law.
c� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It is currently very popular among roboticists to draw
inspiration from the animal kingdom [1,2]. This trend is termed
“biomimetics”. Robot navigation strategies thus derived, often
categorized as “behavioral” or “reactive” robotics, aim at the
construction of simple control strategies which use direct
sensory information, rather than a structured environmental
model. Such strategies demonstrate an intimate relationship
between movement control and vision. The use of vision
is recommended when robots must operate in a dynamic
environment.

In this paper we present one such control strategy and
its experimentation for the problem of positioning a wheeled
robot to a target at a certain location with a certain heading,
i.e. docking, using information provided by a video camera.
The kinematics of the robot are non-holonomic, so standard
techniques of visual servoing (see, e.g., [3]) cannot be directly
applied. We introduce a change of variables and a camera space
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regulation condition which allow solution of the problem via a
relatively simple nonlinear control law.

This paper draws on previous work in precision missile
guidance [4,5] that involved missile guidance with an impact-
angle constraint, and was built on a combination of geometrical
considerations, and recent work in robust control and filtering
theory [6–10].

The remarkable ability of honeybees and other insects like
them to navigate effectively using very little information is a
source of inspiration for the proposed control strategy. In par-
ticular, the work of Srinivasan and his co-authors [11–13], ex-
plaining the use of optical-flow in honeybee navigation where
a honeybee makes a smooth landing on a surface without the
knowledge of its vertical height above the surface. Analogous
to this, the control strategy we present, which is originally pub-
lished by the co-authors [14], is solely based on instantaneously
available visual information and requires no information on the
distance to the target. Thus, it is particularly suitable for robots
equipped with a video camera as their primary sensor.

From a behavioral point of view, the problem of controlling
eye–head systems is a fundamental issue for completion
of specific tasks [15]. In this paper, we describe and
experimentally investigate a vision-based docking system [16]
for controlling a wheeled mobile robot approach to a static
target using a video camera. The docking system consists of
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the behavior-based control law and a vision design. The vision
design includes a pan video camera with a visual gaze algorithm
that mimics the ability of many living insects to control their
direction of gaze, enabling fixation on a specific part of an
environment. As a result, it captures images more suitable for
completion of a task.

Computer vision-processing techniques [17] allow wheeled
robots to understand an environment. Underlying all these
techniques is the need to recognize an object of interest
in an environment. We use both edge and region detection
techniques. Specifically, intersection of the edges of a rectangle
produces corners and region information is employed in the
form of optical flow. Subsequently, these visual parameters are
provided to the control law which regulates the motion of the
wheeled robot to the target.

The proposed vision-based robotic docking system was
implemented and verified by various experiments using a
wheeled robot and a pan video camera in a laboratory setting.
In each experiment, the aim was to dock a wheeled robot at
a certain location with a different heading. The experimental
results demonstrated the effectiveness of the control law.

Docking is required in almost all applications of wheeled
robots particularly when mobile wheeled robots are required to
recharge their batteries for long term operation. It is envisaged
that wheeled robots will play a significant role in search and
rescue operations, in port automation and even in autonomous
highway systems.

The rest of the paper is organized as follows. Section 2 dis-
cusses work in the literature related to the docking problem.
Section 3 defines the problem statement. Section 4 introduces
the control law for docking a wheeled mobile robot and presents
the derivation and mathematically rigorous analysis of the con-
trol law. Section 5 includes simulation studies on the robust-
ness of the control law. Section 6 describes the design of the
vision-based docking system and reports experimental results.
Our conclusions are drawn in Section 7. Lastly, an appendix
includes computer vision algorithms used in this work.

2. Related work

Most studies of this problem can be roughly grouped into
two approaches. One focuses on the robot’s “configuration
space”, i.e. the relative positions and angles of the robot and
target, and perhaps obstacles, in the plane. All these relations
are assumed to be available to the control law, and from them
it chooses some desirable path. Examples are found in [18–21]
and references therein.

The method described in [18] is similar in its approach
to the method presented in this paper, in that the aim is to
follow to a circular path. The main differences are that, firstly,
they assume a slightly simpler kinematic model (often termed
the unicycle model), and secondly, they are able to prove
exponential stabilization to the desired final location, but at
the expense of a control law which is more complicated and
requires more information.

The other main approach focuses on “camera space” or
“visual space”. It is no longer assumed that the robot has access

Fig. 1. System geometry.

to the full configuration, but only the image of the target (and
obstacles) as the camera sees them. Typically it also knows how
they ought to look if the goal is achieved. From this information
a control law is assigned which drives the appearance of the
target towards its goal. That is, dynamics are examined in
camera space. Examples of this approach are found in the
papers [22–27] and references therein.

Our paper can be seen as a blend of the two approaches. A
simple camera-space condition is defined which, if kept, leads
to desirable configuration-space trajectories.

3. Problem statement

Our aim is to design a control law by which a car-like vehicle
may dock to a target point. The information available to the
control law is consistent with the use of a video camera as the
main sensor.

We now described the kinematic model of the robot, the
measurements available to it, and finally give a complete
definition of the problem statement.

The relative position of vehicle and target is given in polar
form (see Fig. 1). The vehicle’s position is an extension-less
point in the plane, and is identified in a physical system with
the mid-point of the rear axle. The scalar quantity r is the range
between the vehicle and the target, and the angle ε is the angle
between the desired heading and the line-of-sight from the car
to the target. These two quantities can be thought of as polar
coordinates, placing the vehicle with respect to the fixed target
frame.

Two more angles are required to completely characterize the
state of the system. These are the heading of the vehicle, and the
angle of its steering wheels. The angle λ is the angle between
the vehicle’s current heading and the line-of-sight. The angle φ

is the angle of the steering wheels with respect to the centerline
of the car, and is controlled with the input u. The forward speed
is controlled with the input v.

The reason for this unusual representation of the state will
become clear later in the paper, when the CNG Principle is
described, and the control law derived.
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The state-space of the car–target system is then the manifold
R × T3 of states (r, λ, ε, φ), where T is the circle group:
R mod 2πZ. The equations of motion on this manifold
are given by the following differential equations. These are
given for a front-wheel-drive car. To make our control law
independent of the forward-velocity of the car, the dynamics
are derived with respect to path length, not time.

The change of variables ds = v cos φdt allows us to pass
from one representation to another.

Hereafter, x � denotes derivative of a variable x with respect
to path length s. The dynamics of the states in this form are
given below:

λ� = sin λ

r
− tan φ

l
, ε� = − sin λ

r
, (1)

r � = − cos λ, φ� = u
v cos φ

. (2)

Where l is the distance between the front wheels and rear
wheels.

We now discuss the measurements available. Inspired by the
elegant instinctual behavior of insects, and the practical need for
controlling vehicles with simple sensors, we use a measurement
model consistent with a single video camera mounted on the
robot, and an optical flow algorithm.

The main restriction felt with this model is that the range
to the the target, r , is not directly measurable. Furthermore, in
certain situations it is unobservable, or weakly observable, from
the measurements we do have. For this reason we do not use this
quantity in our control law.

The angular position of the dock-target in the field of view is
the angle λ. The derivative of this variable is the optical flow of
the image. An optical flow algorithm such as [28] can calculate
this value.

The angle ε must be known, as it is not an environmental
variable, but part of the problem statement. This variable is
calculated by assuming the target-heading is defined as an
abstract bearing, the heading of the vehicle is dead-reckoned
and from this and the angle λ, ε is calculated. Details are
provided later in the paper.

Further to the information from the video camera, we need
some knowledge of the internal state of the vehicle. Specifi-
cally, we assume knowledge of the forward speed v, the angle
of the steering wheels φ and the distance between the axles l.

3.1. Complete problem statement

Our complete problem statement is this. To find a control
law of the form

u = f (l, φ, v, ε, λ, λ̇) (3)

such that range and angle error at final time, i.e. r(T ) and ε(T ),
are minimized. Corresponding to this, we make the following
definition:

Definition 1. A docking manoeuvre is considered perfect if
there exists some finite time T such that

r(T ) = 0,

lim
t→T

ε(t) = 0.

A limit is used in the above definition because if r = 0 the angle
ε is undefined.

4. Control law

From the optical flow measurements, we can cancel the
component due to the robot’s rotation (= v sin φ/ l), and retain
only the component due to the relative motion of robot and
dock-target. We denote this remaining flow O f , so:

O f := λ̇ + v sin φ

l
. (4)

The control input u is then chosen as:

eh := λ − ε, ec := 2O f

v cos φ
− tan φ

l
, (5)

u := lv cos3 φ(aec + beh). (6)

Here we can think of eh as the heading error, and ec as the
curvature error, as the car describes a path toward the target.

The gains a and b should both be positive, and can be chosen
with the following guidelines:

• The dynamics of the linear system e��
h +ae�

h +beh = 0 should
represent suitable regulation to the desired path,

• The range r0 := 2/a should be small enough that divergence
from the desired path within this region of the target is
acceptable.

A discussion of the reasoning behind this control law, and
the tuning guidelines, is presented over the next two sections.

4.1. Control law derivation

The method with which we arrived at the above control law
is slightly different from most previous approaches. The control
objective is to reach some final state, but rather than trying to
derive a controller which provides some type of stability to this
state, our approach has two stages.

Firstly, simple geometry allows us to pass from the terminal
condition to a condition on the instantaneous configuration of
the vehicle, this is what we call the CNG Principle. Secondly,
from this instantaneous condition we derive a feedback-control
law using methods similar to feedback linearization.

The following theorem forms the basis of our control law,
and was proved in [4]:

Theorem 1 (Circular-Navigation-Guidance Principle). Intro-
duce the circle uniquely defined by the following properties:
The initial and final positions of the vehicle lies on the circle;
the desired final-heading vector at the target’s position is a tan-
gent to the circle.

Suppose that a controller of the form (3) is designed such
that the angles λ and ε are kept exactly equal over the full
docking manoeuvre, then the vehicle’s trajectory will be an arc
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Fig. 2. Geometry for Theorem 1.

on this circle. Furthermore, this will result in a perfect docking
manoeuvre, as defined in Definition 1.1 �
This is visualized in Fig. 2, where the point A is the dock target
position, and B the vehicle’s initial position. BA, then, is the
line-of-sight, and let AZ (equivalently BY) be the desired final-
heading vector.

Note that in the case where λ = ε = π and φ = 0, the
car is heading away from the target, and will continue to do so
forever. In a sense, the car is following a circle of infinite radius:
a straight line.

It is only in this case, corresponding to just a one-
dimensional line in a four-dimensional manifold, where a
perfect docking manoeuvre will not occur. Since this is a “thin”
set, and would be simple to overcome in practice, we do not
consider it further.

In order to regulate λ to be equal to ε, we consider two errors:
λ − ε and λ� − ε�. The second of these can be expanded as
follows, from Eqs. (1), (2) and (4):

λ� − ε� = 2 sin λ

r
− tan φ

l
, (7)

= 2O f

v cos φ
− tan φ

l
, (8)

giving us Eq. (5).
This can also be interpreted in the following way: Given any

position of the car in the plane, relative to the dock target, there
exists a unique circle it should follow. To follow this circle,
it must have a certain instantaneous heading and curvature.
There are then two errors worth considering: heading error and
curvature error. eh is obviously the heading error, and ec is the
curvature error.

This follows, since the curvature of the circle defined
in Theorem 1 is given by the function 2 sin λ/r , and the
instantaneous curvature of the vehicle is given by the function
tan φ/ l.

If both of these errors are zero, then the vehicle will follow
a circular path to the dock target. We can think of these error

1 In [4] the definition of perfect intercept was slightly different. However, in
the case we consider here it is equivalent to Definition 1.

functions as describing a two-dimensional target sub-manifold
of the four-dimensional state-space: M := {(r, λ, ε, φ) : eh =
0 and ec = 0}.

Viewed like this, our objective is similar to that of sliding-
mode control: to regulate the system to a particular sub-
manifold on which it is known to behave well.

So we have transformed the terminal-state control problem
into an instantaneous-state control problem, i.e. the regulation
of eh and ec. This is reminiscent of the way a honeybee can
land on a surface by regulating certain visual cues. We now
tackle this regulation problem in a way similar to input–output
linearization (see, e.g., [29], Chapter 13), and analyze the
resulting control law using Lyapunov theory.

Let us choose the heading error, eh = λ − ε, as an
output function, and attempt to regulate it using input–output
linearization.

Differentiating eh with respect to path-length, we obtain:
e�

h = 2 sin λ
r − tan φ

l = ec.
We differentiate this again, obtaining

e��
h = 2 cos λ

r
ec − sec3 φ

lv
u. (9)

In this equation we note that the control appears explicitly, so a
natural approach would be to introduce a fictional control input
ū and set

u = lv cos3 φ

�
−ū + 2 cos λ

r
ec

�
(10)

rendering the dynamics from ū to eh linear, in fact just a
double integrator. However, since the range r is unknown to
the controller, we cannot do this.

We then “almost feedback linearize” the system, and treat
the first term in (9) like an uncertainty. The second term is
canceled with the nonlinear control law: u = lv cos3 φ(aec +
beh)

As given in Section 4, then we have

e��
h +

�
a − 2 cos λ

r

�
e�

h + beh = 0. (11)

If r is large, this is “almost” like the linear system e��
h + ae�

h +
beh = 0, and it is clear that, by choosing a and b, both the errors
eh and ec = e�

h can be made to converge in any desired fashion.

4.2. Control law analysis

Since our control law only “almost” linearized the system,
we need some further analysis to understand how the system
will behave.

The following simple theorem says this: if we start with zero
errors, we will continue to have zero errors and achieve a perfect
docking manoeuvre. Another way to put this is that if, at any
time, the state (r, λ, ε, φ) ∈ M then it will stay in M .

Theorem 2. Suppose the vehicle system (1) and (2) has the
desired heading and curvature, i.e. eh(0) = 0 and ec(0) = 0,
then the vehicle will perform a perfect docking manoeuvre, as
per Definition 1. �
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Proof of Theorem 2. It is clear from the equation of the system
(11) that, eh(t) = 0 and ec(t) = 0 at some time t , then they
have been, and will be, zero for all time. This implies, then, that
λ = ε for all time, and the claim follows from Theorem 1. �

Now suppose the state starts outside M , that is, with
incorrect heading and curvature. Now we’d like to know
something about convergence to the target sub-manifold. The
dynamics of (11) are those of a linear system with time-varying
coefficients, and can be analyzed with Lyapunov theory.

Theorem 3. Consider the function

V (eh, ec) := be2
h + e2

c . (12)

This is a positive-definite quadratic form in the heading and
curvature errors, and may be considered as the distance to the
target sub-manifold.

Let [s1, s2], s2 > s1 be any path interval over which
V (eh, ec, s) �= 0 and the following inequality holds:

a − 2 cos λ/r > 0. (13)

Then V (eh(s2), ec(s2)) < V (eh(s1), ec(s1)). That is, over any
interval of non-zero length, the norm of the errors strictly
decreases. �
Proof of Theorem 3. For the proof of this theorem, consider
the following linear parameter-varying realization of the system
(11), with a state x = [ehec]T:

x � = Ax + Bw (14)
z = Cx . (15)

where

A =
�

0 1
−b 2 cos λ/r − a

�
, B =

�
0
1

�
, C =

�
0 1

�
.

Furthermore, consider the Lyapunov function V (x) = xT Px
where

P =
�

b 0
0 1

�
. (16)

The derivative of this Lyapunov function with respect to
distance travelled reduces to

V (x)� = −2e2
c (a − 2 cos λ/r). (17)

Now, for any s in the interval [s1, s2], it follows from
V (eh, ec, s) �= 0 that x(s) �= 0. Since x is observable from
ec, it follows that
� s2

s1

ec(s)2ds > 0,

and since inequality (13) holds, clearly

δ := 2
� s2

s1

ec(s)2
�

a − 2 cos λ(s)
r(s)

�
ds > 0.

Now,

V (eh(s2), ec(s2)) = V (eh(s1), ec(s1))

+
� s2

s1

V (eh, ec)
�ds,

= V (eh(s1), ec(s1)) − δ

< V (eh(s1), ec(s1)),

and the theorem is proved. �
This theorem reflects the following physically meaningful

problem: When the vehicle is very close to the desired target
location, large gains are required to make it swing around and
track the correct path.

It should be noted that if the range is measurable, either
through some other sensor device, or through vision-processing
techniques such as stereopsis, optical flow or image looming,
this problem will still be present. Indeed, suppose the control
law (10) were used, then as the range decreased the gains would
be come extremely large, due to the 1/r term. The actuator
constraints on any real system would thus prevent the exact
feedback linearization which is attempted.

5. Robustness

It has been mentioned in the literature that a particularly
important test of a docking algorithm is the robustness of its
terminal positioning precision to imperfect modeling of the
kinematics and camera calibration [27,19].

The parameters chosen for the simulation were: l = 1 m,
v = 1 m/s, a = 4, b = 4.04. The initial conditions were
r(0) = 7 m, λ(0) = π/4 rad, ε = π/4 rad, φ = π/8 rad.

These parameters imply that the area in which the path could
begin to diverge is approximate 2/a = 0.5 m. Note that in
all simulated cases, the terminal positioning error was much
smaller than this.

In all the following simulations, the control law is derived
as above, as though all parameters were nominal. We then
simulate a system where parameters are perturbed by some
amount.

5.1. Camera calibration

Here we simulate the effect of incorrect camera calibration.
We skew the measurement of λ and the optical flow in a way
consistent with an incorrect assumption on the focal length of
the camera. We introduce the ratio k f as the true focal length
divided by the assumed focal length.

This parameter was varied from 0.6 to 1.8. In Fig. 3 we
see graphical plots of trajectories, and numerical data for the
final range and final-angle error. It is clear that, although
the trajectories throughout the middle stage of the docking
manoeuvre vary widely, in all cases the robot docked with less
than 1 cm positioning error, and less than 10◦ angle error.

5.2. Control input gain

We now move on to consider errors in the kinematic model,
specifically, in the steering wheel system. Firstly, we investigate
what happens if the relationship between the control input and
steering-wheel movement is not what we expect. Instead of
the assumed relation φ̇ = u, we instead simulate the system
φ̇ = kuu, where ku is an unknown gain term.



774 E.M.P. Low et al. / Robotics and Autonomous Systems 55 (2007) 769–784

Fig. 3. The effect of incorrect camera calibration.

Fig. 4. The effect of incorrect u → φ̇ gain.

Fig. 4 depicts the trajectories and error data as ku is varied
from 0.2 to 5. It is noted that increasing ku significantly, which
means that our control input is stronger than we expect, has
little effect on the performance of the vehicle. A larger effect is
observed when the control input is weaker than expected, but
performance is still very good.

Fig. 5. The effect of erroneous measurement of φ.

Reducing it significantly (to around 0.2) results in some
large oscillations in the trajectory, and errors in both final
position and final angle. However, reduction of ku even to 0.5,
meaning our control input is half as strong as we think, does not
significantly degrade performance.

5.3. Measurement of steering-wheel angle

The control law (4)–(6) depends explicitly on our knowledge
of the current steering wheel angle, φ. In the next set of
simulations we consider what happens when this information
is wrong. Suppose φ is read by a potentiometer which is not
tuned correctly, so the resulting measurement is a fixed gain of
what it should be. Hence, in the calculation of our control law
we replace φ with kφφ.

Fig. 5 shows the resulting trajectories as kφ is varied from
0.6 to 1.4. Once again, it is seen that the middle stages of the
trajectory are strongly affected, but the terminal errors remain
quite small. We note that the terminal position was very small
for all cases, but as kφ got very large, the angle error did
increase notably.

5.4. Steering-wheel angle saturation

In the last set of simulations, we suppose that the steering-
wheel angle is restricted to be within some range of angles. This
will obviously be true for many practical robotic vehicles, and
essentially results in a lower bound on the turning-circle radius.

We represent this with the constraint |φ| ≤ φs .
In Fig. 6 we depict four trajectories, and four sets of terminal

error data. These are for the cases where, firstly, the steering
wheel angle is not restricted, and then when it is restricted by
φs = π/4, π/6, and π/8, respectively. In the first three cases
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Fig. 6. The effect of saturation of the steering wheels.

the saturation has little, if any, effect on the performance. In the
final case, the performance was significantly degraded, simply
because the car could not turn around fast enough to get on the
right path.

These simulations show that the control law derived above,
which does not explicitly account for steering-wheel saturation,
does handle sufficiently small levels of saturation without any
degradation in performance.

5.5. Some comments on simulation results

These four sets of simulations show promising prospects
for application of our control law when kinematic and camera
models are subject to large errors. As has been said in the
literature, an important issue in docking problems is robustness
of terminal positioning, and in each simulated case above
remarkable robustness was observed.

6. A vision-based docking system

In this section, we present a vision-based docking system
depicted in Fig. 7 for implementing the behavior-based control
law, which is strongly dependent on information from a video
camera. We first describe a vision system for recognizing
and maintaining a target of interest on an image plane as
well as providing control information for the control law.
We then discuss the experimental setup and finally report on
experimental results.

Our vision-based docking system uses three reference
frames as presented in Fig. 8:

• A global frame, �g� attached to the static world that is useful
for inferring the final heading of the wheeled robot at dock
position.

• A robot frame, �r� attached to the wheeled robot for
describing the velocities of the wheeled robot.

• A camera frame, �c� attached to the camera for describing
relative motion of the dock target and the camera.

6.1. Vision-based object recognition

A fundamental problem from the computer vision point of
view is to design a vision system to recognize an object of
interest in an environment. There are many advanced computer
vision algorithms to recognize an object of interest in an
environment and to achieve detection of image features such
as corners or contours, see [30,31] and references therein.
However, detailed considerations of these algorithms are
beyond the scope of this work. The common understanding
among researchers in the area of computer vision is that
selection of computer vision algorithms for object recognition
is highly application dependent and a compromise between a
few practical factors such as robustness of algorithms, amount
of useful information which can be extracted from image
sequences, computational efficiency and accuracy.

Our vision system is based on the concept of the active
vision paradigm [31], which encourages the use of compact and
immediate representations of an environment. In other words,
the vision system recognizes an environment by recognizing
individual landmarks or objects rather than maintaining dense
maps of an environment. The key advantage of the active vision

Fig. 7. A vision-based docking system.
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Fig. 8. Position of wheeled robot with respect to the global frame.

paradigm is the use of prior knowledge of an object in an
environment to simplify selection and application of computer
vision algorithms to image sequences.

To simplify the complexity of selection and computation of
computer vision algorithms, we choose the object of interest
as a black rectangular cardboard against white background
environment. We choose the corners of the black rectangular
cardboard as image features of interest. As a result, we use a
corner detection algorithm [32] in computer vision to detect
the image features. For purposes of completeness, we briefly
describe the corner detection algorithm in Appendix A.

In practice, directly applying the corner detection algorithm
leads to a resultant of too many corners that are not well
localized, as shown in Fig. 9. We provide an algorithm for
achieving good localization of corners.

First, we separate the resultant corners into different clusters
based on a Euclidean distance measure and each cluster will
eventually contain a localized corner. The coordinates of the
localized corner is computed by averaging the coordinates of
all resultant corners in each cluster.

Second, we are interested in detecting only the four corners
of the object, a black rectangular cardboard. To isolate these
corners, we assume that the object is always maintained within
an adaptive number of pixel rows from the center of the image
plane. All localized corners outside this boundary are regarded
as false corners. Then by checking that each vertical side of
the object will give two localized corners having almost the
same column coordinates will further isolate the right corners
belonging to the object. Fig. 9 shows four distinct localized
corners of the object which are subsequently used as feedback
information to control the angular rate of a pan video camera to
maintain the object within the camera field of view at all times.
Details are given in the following section.

The vision system described in this section is suitable for ex-
perimental investigation of various vision-based control strate-

(a) Poor localization of corners.

(b) Good localization of corners.

Fig. 9. Resultant corners computed by corner detection algorithm.

gies in a laboratory setting. Specifically, for experimental in-
vestigation of vision-based wheeled robot navigation prob-
lems [33] and biologically inspired decentralized control strate-
gies, which arise in very recent research in vision-based multi-
ple mobile robots coordination [34] and flocking [35,36].



E.M.P. Low et al. / Robotics and Autonomous Systems 55 (2007) 769–784 777

Fig. 10. Saccadic redirection of a pan camera to locate and track an object of interest on the center of image plane.

6.2. A visual gaze algorithm for a pan video camera

A video camera placed on a wheeled robot at any
initial position is usually not pointing in a good direction
to view relevant parts of an environment where enough
visual information can be extracted for completing a task.
Furthermore, as a wheeled robot moves, a video camera might
lose sight of an object of interest in an environment. Now, the
problem is how to ensure a video camera placed on a wheeled
robot always maintains an object of interest within a limited
camera field of view?

In this section, we present a visual gaze algorithm based
on the concept of eye–head coordination [15]. The visual
gaze algorithm illustrated in Fig. 7 permits automatic control
of a pan video camera that attempts to maintain an object
of interest on the center of the image plane. Consequently,
continuous visibility of the object for the entire docking process
is achieved.

The visual gaze algorithm exhibits the following capabili-
ties:

• When a wheeled robot is located at an initial position
and orientation, the pan camera does a 180◦ scan of the
environment to locate the object of interest on the center of
the image plane. This is referred as the initialization stage
for the camera. Fig. 10 displays an image sequence for the
initialization stage which is similar to the behavior of an
insect moving its eyes when controlling its direction of gaze.

The initial pan angle of camera, Rip is determined during
the initialization stage. The angle Rip is defined as the angle
between the heading of the wheeled robot and the optical
axis of the camera where the object is on the center of the
image plane.

• A proportional controller for the pan camera is employed to
maintain an object of interest on the center of image plane
while the wheeled robot is moving. The control signal, Rp(t)
is computed by evaluating the coordinates of the localized
corners on the image plane, which give measurements of
two distances d1 and d2 from each side of the image plane,
illustrated in Fig. 7, and a gain, Kpan, given in (18).

Rp(t) = Rip − Kpan(d1 − d2). (18)

• In the situation when the motion of the wheeled robot is
abrupt, the visual gaze algorithm has the ability to perform a
rescan of the environment to search for the object of interest
and resume tracking of the object.

• It is understandable that blurred images from video camera
are of little use. This problem may occur due to poor video
signal transmission or abrupt motion of the robot. The visual
gaze algorithm will send a command to stop the motion of
the wheeled robot and resume motion once a sharp image is
captured.

6.3. Calculation of control information for the control law

In the previous section, we have discussed how to develop a
wheeled robot with the ability to recognize and track a dock
target in an environment using a pan video camera. In this
section, we provide an account of the calculation of visual
parameters, namely λ, � and λ̇ require by the control law, (6).

The relative bearing to the target denoted as angle λ in Fig. 2
can be directly obtained from a pan video camera along with the
visual gaze algorithm. The angle λ corresponds to angle Rp(t)
in Fig. 11.

We denote �Vd as the desired final heading vector of the
wheeled robot at dock position. Fig. 11 shows that �Vd in �g� is
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Fig. 11. Top view of a typical trajectory execute by a wheeled robot from any initial pose of wheeled robot to a dock position which is close to (x, y, θ) =
(∼0, ∼0, ∼θd ).

denoted as �Vdg = − cos θd ĩ + sin θd j̃ . The angle θd is defined
as an abstract bearing of the wheeled robot at dock position. We
obtained �Vd in �c� denoted as �Vdc = T (θ) �Vdg by applying the
transformation in (19). The angle θ is obtained using odometry.

T (θ) =




− sin θ cos θ 0

0 0 1
− cos θ − sin θ 0



 . (19)

The LOS vector in �c� is denoted as �VLOSc = sin λ ĩ + cos λ k̃.
It is clear that � in Fig. 2 is the angle between �VLOSc and �Vdc.
The computation of � is given in (20).

� = cos−1

� �VLOSc
� �Vdc

� �VLOSc� × � �Vdc�

�

. (20)

Next, we describe a technique to obtain λ̇, the angular rate of
a pan camera by optical flow computation. The relative motion
between a point in the 3D world relative to the camera [32],
described in �c�, is given in (21).

V = −T − ω × P (21)

where T =
�
Tx Ty Tz

�
and ω =

�
ωx ωy ωz

�
is the

linear and rotational velocity of pan camera relative to global
frame, �g�. Both velocities are described in the camera frame,
�c�. P =

�
X Y Z

�
is the 3D world point relative to �c�.

Now, projecting P onto the image plane is given by (22),
where f denotes the focal length of camera expressed in pixels
and cx and cy denote the center coordinates of the image plane.

x = f
X
Z

+ cx y = f
Y
Z

+ cy . (22)

The image motion model, also known as optical flow, perceived
by the camera results from the projection of the velocity field
on the image plane as given in (23).

vx = Tz x − Tx f
Z

+ ωx xy
f

− ωy

�
f + x2

f

�
+ ωz y

vy = Tz y − Ty f
Z

− ωy xy
f

+ ωx

�
f + y2

f

�
− ωz x . (23)

Till now a single point, P is considered. To define optical
flow globally, assume that P lies on a surface. Hence optical
flow is generated from motion and texture intensity over a
surface patch. We use [28] for optical flow computation and
the algorithm is briefly described in Appendix B.

To increase computational efficiency for optical flow
computation, we consider only a small region on an image
plane. This region is segmented from other regions by
evaluation of the coordinates of the localized corners.

It is known that optical flow computation is an approxi-
mation and consists of erroneous vectors. We repeat the work
of [37] in which only optical flow vectors lower than an error
threshold are used to recover angular motion of the pan camera.
Fig. 12 shows the improved optical flow vectors.

The visual gaze algorithm enables the pan video camera
to point directly at the dock target and continuously attempts
to maintain the target on the center of image plane. We
can separate the image motion model into translational and
rotational component given in (24) by assuming that Tx = Ty =
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(a) Noisy optical flow vectors before thresholding. (b) Noisy optical flow vectors before thresholding.

(c) Improved optical flow vectors after thresholding. (d) Improved optical flow vectors after thresholding.

Fig. 12. Optical flow vectors over a surface patch with translational motion.

ωx = ωz = 0.

vx = Tz x
Z

− Ωx , Ωx = ωy(1 + x2)

vy = Tz y
Z

− Ωy, Ωy = ωy xy.

(24)

We recover λ̇, which is represented as ω̂y , by choosing
a region, R, on the image plane where there is sufficient
correctness of optical flow vectors based on least square
methods in (25).

ω̂y =

�
R

(vy xy − vx y2)

�
R

y2 . (25)

Lastly, it is required to stop the wheeled robot in front of
the dock target. The image of the dock target gets bigger as
the wheeled robot moves toward it. The distance between the
localized corners of the dock target on the image plane gives
an indication of the actual distance between the wheeled robot
relative to the dock target in �g�. We use this information to stop
the wheeled robot when it is approaching near the dock target.

6.4. Experimental setup

The proposed control law was experimentally verified using
the vision-based docking system in Fig. 7. This section
describes the experimental setup and reports the results.

The experiments were carried out on a Pioneer 3 wheeled
robot from ActivMedia. The wheeled robot is equipped
with a pan-tilt-zoom (PTZ) color video camera. The control
algorithms operate at a calculation period of 0.5 s, computer
vision algorithms and data logger were implemented in C++
with the ARIA [38] software development environment running
in the Linux operating system. A resolution of 320×240 pixels
was selected for image processing.

A simplified version of the control law in (6) was
investigated by experiments using a unicycle wheeled robot,
shown in Fig. 13. In this case, the proposed control law becomes
ω := u = aec + beh . We are concerned with controlling the
turning rate of the wheeled robot. The following parameters
were used, Kpan = 0.16, a = 0.1 and b = 0.32 and the
linear velocity of the wheeled robot is v = 0.1 m/s. The v

and ω of the wheeled robot are related to the velocity of the
left and right wheel of the wheeled robot by ωl = v − lω and
ωr = v + lω respectively, where l is half the distance between
the two wheels.

6.5. Experimental results

Experimental results are presented for two cases where
the wheeled robot was located at initial pose of (x, y, θ) =
(3.0 m, 0.72 m, π

2 ) and (x, y, θ) = (2.6 m, 0.82 m, π
2 )

respectively. The objective of the experiments was to dock the
wheeled robot in front of the target which corresponds to a
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Fig. 13. Experimental setup: wheeled robot and dock target.

Fig. 14. Resultant trajectory of wheeled robot for θd = 0◦.

position close to (x, y) = (∼0 m, ∼0 m) with a desired
heading of θd = 0◦ and θd = 30◦, respectively. Figs. 14 and
16 display the resultant trajectories of the wheeled robot based
on measurements from odometry. Figs. 15 and 17–19 contain
various results obtained from the experiments. These results are
described as follows:

• For all experiments conducted, the final heading, θR of
wheeled robot was within 0.2 rad.

• The time response of λ was not equal to � at t = 0. At some
point in time, λ was kept close to �. This is the key condition
for the CNG Principle in order for a wheeled robot to travel
along a circular path to the final position.

• The snapshots in Figs. 18 and 19 display the docking
process of the wheeled robot for the two different cases. The
snapshots are described as follows. First, display in (a), the
wheeled robot locates and locks target. Then, display in (b)
and (c), the wheeled robot approaches the dock target based
on CNG while fixing on the dock target using the visual gaze
algorithm. And, display in (d), the wheeled robot’s docking
position (x, y, θ) = (∼0, ∼0, ∼θd) and its camera’s view.

Lastly, experimental results also verified the CNG Principle.
Specifically, by keeping λ equal to � for the entire docking

Fig. 15. Time response of angles θR , �, λ for θd = 0◦.

Fig. 16. Resultant trajectory of wheeled robot for θd = 30◦.

Fig. 17. Time response of angles θR , �, λ for θd = 30◦.

process, the trajectories taken by the wheeled robot were
circular as depicted in Figs. 14 and 16.
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Fig. 18. Snapshots of the docking process for θd = 0◦.

7. Conclusion

We have presented a vision-based docking system for
controlling a wheeled robot to perform docking. The docking
system consists of a behavior-based control law based on a
navigation technique called the CNG Principle and a vision
system design. The behavior-based control law is strongly
dependent on information from a video camera. We have
described a vision system design that consists of pan video
camera and a visual gaze algorithm which mimics behavior
of insects. Also, computer vision algorithms are presented to
recognize objects of interest and to compute visual parameters
required by the behavior-based control law. The vision-
based docking system was experimentally investigated using a
wheeled robot and a pan video camera in a laboratory setting.

Experimental results verified the applicability of the control law
and the concept of the navigation technique. We believe that
the vision-based docking system would have applications to
manufacturing industries and autonomous highway systems.

Appendix A. Algorithm for corner detection

For each image frame, I (x, y), the following is required to
detect whether a given pixel (x, y) is a corner feature:

• Compute the image intensity gradient in the vertical and
horizontal direction, (Ix , Iy), using the gradient filter. The
image intensity gradient is shown in Fig. A.1.

• Let W be a square region of support of N × N pixels
(typically, N = 5). At every image point, (x, y), compute
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Fig. 19. Snapshots of the docking process for θd = 30◦.

the matrix, (A.1), using all pixels in the window, W .

M =





�

pi∈W
Ix (pi )

�

pi∈W
Ix (pi )Iy(pi )

�

pi∈W
Iy(pi )Ix (pi )

�

pi∈W
Iy(pi )



 . (A.1)

This matrix characterizes the structure of the grey level in
M . This is given in the eigenvalues, λ1 and λ2, of M and its
geometric interpretation.

If λ1 = λ2 = 0, it implies no intensity change in W . If
λ1 > 0 and λ2 = 0, it implies strong gradient change in one
direction in W .

If the smallest eigenvalue, λ1 ≥ λ2 > 0 of matrix M
and λ2 is greater than a prefixed threshold, τ , then the pixel,
(x, y), is considered a corner.

Appendix B. Algorithm for optical flow

Applying Lucas and Kanade, [28], the input is a time-
varying sequence of n images, E1, E2, . . . , En . Let Q be a
square region of support of N × N pixels (typically, N = 5).
• Prefilter each image with a Gaussian filter of standard

deviation, σ = 1.5 along each dimension.
• The optical flow can be estimated within Q as the constant

vector, v̄, that minimizes the function in (B.1).

ξ [v] =
�

pi∈Q
[(∇E)Tv + Et ]2 (B.1)

where pi is each point within the N × N patch, Q.
The solution to this least squares problem is given in

(B.2).

v̄ =
�
v̄x
v̄y

�
= (AT A)−1 ATb (B.2)
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(a) Original image frame.

(b) Intensity gradient in the x-direction.

(c) Intensity gradient in the y-direction.

Fig. A.1. Image intensity gradients.

where

A =





∇E(p1)
∇E(p2)

...

∇E(pN x N )




(B.3)

and

b =
�
Et (p1) Et (p2) · · · Et (pN x N )

�
. (B.4)
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