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Abstract— We address the problem of finding useful invariant
funnels for dynamic walking robots, i.e. sets of initial conditions
from which continued walking in a stable manner is guaranteed.
The construction is based on transverse dynamics and sum-of-
squares verification. This paper makes two main contributions:
firstly, we show that for typical models of walking robots the
construction of such funnels can be significantly simplified by
use of a new phase variable. Secondly, we provide the first
hardware validation of the resulting funnels on an experimental
testbed.

I. INTRODUCTION

The development of legged robots that realise the stability,
efficiency and agility of human walking has been the subject
of intensive research in recent years (e.g. [1], [2], [3]). Under-
actuated ”dynamic walkers” can demonstrate amazing feats
of efficiency [4], but control design and stability analysis is
inherently difficult since their dynamics are highly nonlinear,
hybrid (mixing continuous dynamics with discrete impact
events), and the target motion is a limit cycle (or more
complex trajectory), rather than an equilibrium [3].

Efficient computation of basins of stability (or more gen-
erally forward-invariant sets) for dynamic walking robots
would be an enabling technology for numerous practical
problems. For example, they could be used to evaluate dif-
ferent robot designs [5], and to construct switching feedback
controllers with guaranteed stability [6], [7].

The most well-known tool for analysing the stability of a
nonlinear limit cycle is the Poincaré map [8], which describes
the repeated passes of the system trajectory through a single
transversal hypersurface. However, in general, the Poincaré
map cannot be found explicitly for nonlinear systems and
must be evaluated numerically. Furthermore, because the
evolution of the system is analyzed only a single hypersur-
face, regions of stability in the full state space are difficult
to evaluate, and design of continuous feedback control is not
straightforward.

Basins of stability for walking robots have been evalu-
ated using grid-based cell-to-cell mapping, e.g. [9], [10].
However, computational costs associated with exhaustive
simulation grows exponentially with the dimension of the
system. This motivates the search for alternative approaches.

In recent years, computational methods using sum-of-
squares representations and semidefinite programming [11]
have been developed for region-of-attraction estimation for
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Fig. 1. (a) Schematic diagram of the classic Compass-gait dynamic walker,
with actuation only at the hip; (b) Photo of the walker used in hardware
verification.

equilibria, e.g. [12], [13], and constructing feedback con-
trollers, e.g. [6], [14]. Notable applications have included
analysis of the falling-leaf mode of an F/A-18 fighter [15]
and control design for a perching glider [16].

These computational methods are extended to analyse the
stability of nonlinear hybrid limit cycles in [17], [18] by
leveraging the concept of transverse dynamics, previously
applied to local stability analysis and control of walking
robots in [19], [20]. In [17], [18] a new coordinate system
is defined on a family of transversal hypersurfaces which
move about the limit cycle in accordance to a phase variable.
Stability certificates can then be to be computed on the new
transversal coordinates.

In this paper, we make two significant contributions.
Firstly, we demonstrate that for typical models of walking
robots a significant simplification of the construction in
[17], [18] is possible by use of a new phase variable. The
relationship between this new phase variable and standard
choice used in the virtual constraints methodology (e.g. in
[2], [19]) is discussed in detail. Secondly, we validate for
the first time the resulting controller and invariant sets on an
experimental testbed, modelled after the classic Compass-
gait dynamic walker as shown in Fig 1.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a hybrid system, with state space x ∈ Rn and
continuous dynamics represented by

ẋ = f(x, u). (1)



On a given switching surface S− ∈ Rn the system (1)
undergoes an instantaneous update

x+ = ∆(x−) x− ∈ S−. (2)

Suppose x?(·) represents a periodic walking motion for the
system, i.e., a non-trivial T -periodic trajectory satisfying (1),
(2), with u?(·) the associated input trajectory.

The overall objective is to compute an invariant funnel
for periodic walking motion. That is, we seek to compute
a region of state space D ⊂ Rn around x?, from which
all solutions would remain in that region while maintaining
forward motion. For the hardware in Fig 1, forward motion is
defined as positive angular velocity for q2, thereby inducing
forward movement of the hip.

Our approach is to first construct a set of transverse
dynamics in regions around x?(·) as suggested in [17], which
in turn enables the search for a Lyapunov function in the
transverse dynamics to prove the invariance condition. For
completeness, we now briefly restate the transverse coordi-
nate construction from [17], highlighting improvements and
simplifications made in this paper.

We define a smooth local change of coordinates x 7→
(τ, x⊥). At each point t ∈ [0, T ], we define a hyperplane
S(t), with S(0) = S(T ). These transversal surfaces are
defined by

S(τ) = {y ∈ Rn : z(τ)T (y − x?(τ)) = 0} (3)

where z : [0, T ]→ Rn is a vector function defining the nor-
mal vector of each surface and would be optimised in Section
III. S(τ) is a valid transversal surface iff z(τ)T f(x?(τ)) >
0,∀τ ∈ [0, τ ].

Given a point x nearby x?(·), the phase variable τ ∈
[0, T ) represents which of these transversal surfaces S(τ)
the current state x inhabits; the vector x⊥ ∈ Rn−1 is the
transversal state representing the location of x within the
hyperplane S(τ), with x⊥ = 0 implying that x = x?(τ).
More precisely,

x⊥ = Π(τ)(x− x?(τ)) (4)

where Π(τ) is a projection operator constructed from z(τ),
as will be discussed in Section IV.

The dynamics of the system in these new coordinates can
be expressed as [17, Theorem 1] :

τ̇ =
z(τ)T f(x?(τ) + Π(τ)Tx⊥)

z(τ)T f(x?(τ))− ∂z(τ)
∂τ

T
Π(τ)Tx⊥

=:
n(x⊥, τ)

d(x⊥, τ)

(5)

ẋ⊥ = τ̇

[
d

dτ
Π(τ)

]
Π(τ)Tx⊥ + Π(τ)f

(
x∗(τ) (6)

+ Π(τ)Tx⊥

)
−Π(τ)f (x?(τ)) τ̇ .

The construction of z(τ) and Π(τ) in this paper has been
significantly simplified compared to that proposed in [17].
We achieve this by making three assumptions about the
properties of the system in consideration: its dynamics; its
switching surface S−; and its target trajectory x?.

First, we assume that the state space can be repre-
sented in terms of the configuration space and its velocities
x =

[
qT , q̇T

]T
; and that its dynamics can be written in the

form f =
[
q̇T , f̂(q, q̇, u)T

]T
.

This assumption is satisfied for mechanical systems writ-
ten in Euler-Lagrange form:

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u. (7)

or equivalently represented in n-dimensional state space with
x = [q1, q2, q̇1, q̇2]T and,

f̂(q, q̇, u) = M−1(q)[−C(q, q̇)q̇ −G(q) +B(q)u]

Second, we assume that the switching surface S− is a
hyperplane which can be entirely represented in terms of the
configuration space q. That is, it can be defined as aT q+b =
0 for some vector a of length n/2 and some scalar b.

Third, we assume that the periodic walking motion x?(·)
can be represented by a monotonic phase variable dependent
only on q. In particular for our system, this can be guaranteed
if x?(·) was designed by a set of virtual constraints. In a
virtual constraint, a monotonic phase variable τ(q) is used to
parameterize the motion of the robot within a step. Tradition-
ally, τ(q) would be synthesized from angular measurements,
an inclinometer, or some combination of these. We represent
the virtual constraint like so:

q := φ(τ) = [φ1(τ), · · ·, φn/2(τ)]T . (8)

III. VIRTUAL CONSTRAINTS AND PHASE VARIABLE
SELECTION

In this section, we first illustrate the use of a traditional
choice of phase variable in a virtual constraint, and its incom-
patibility with regional analysis. We then provide a simplified
and novel construction of a phase variable which addresses
these issues and significantly simplifies the construction of
transverse dynamics in Eqs. (5)-(6).

Throughout the remainder of this paper, we will illustrate
our method with our hardware platform, modelled after the
classic underactuated compass gait walker as shown in Figure
1. Here, q1 is referred to as the ‘swing leg’ while q2 is
referred to as the ‘stance leg’. The hybrid dynamics of the
walker can be found in the Appendix. Note that we adopt the
convention of positive angle as clockwise, hence the stance
leg angle, θst is monotonically increasing through a footstep.

Foot impact occurs when the swing leg hits the ground.
Hence, the switching surface S− as defined in the discrete
update Eq. (2) is

S− = {x ∈ Rn : q1 = 2q2}. (9)

With appropriate parameter configurations and control law,
the compass gait walker can follow a designated limit cycle
trajectory. Figure 2 plots the 4-dimensional state space of one
such limit cycle as tested in the hardware, with the stance leg
dynamics superimposed with the swing leg dynamics. The
green circles show the starting points for both the stance
leg and the swing leg immediately after impact; while the
magenta crosses illustrate the impact point.
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Fig. 2. The phase portrait for the compass gait hardware in limit cycle
motion.

A. The Traditional Phase Variable on the Compass Gait

Typically in virtual constraint design for the compass gait
walker [2], it is common to select the stance leg angle, θst,
as the phase variable, i.e.,

τ(q) = θst.

In Figure 3, we highlight the use of this traditional
choice of phase variable and the difficulties this presents
in transverse stability analysis. The black solid line shows
the same trajectory represented in Figure 2, with the black
arrow indicating the direction of the dynamics. Red arrows
drawn throughout the trajectory indicate the vector z(τ)
which represents the direction in which the phase variable
advances at that point.

In this case, the phase variable only advances in the
direction of the stance leg angle throughout the cycle and
hence θst is the only component in these vectors, i.e., z =
[0, 1, 0, 0]T . Note that monotonicity of the phase variable is
equivalent to the red arrows forming acute angles with the
direction of the black trajectory or zT ẋ > 0 – i.e., the flow
of the trajectory is constantly advancing the phase variable.

As per Eq. (3), the vertical blue lines in Figure 3 are sur-
faces transverse to z(τ). These transversal surfaces represent
the set of states that can be associated with a particular phase
value. For example, the leftmost transversal surface here
represents the set of possible states that can be associated
with τ ≈ −0.17 rads.

For simplicity, it is often assumed that switching occurs at
a predesignated phase θdst (see, e.g., [2, pp. 165-166]). This
assumes the switching surface S− to take the form,

S− = {x ∈ Rn : θst = θdst}. (10)

In Figure 3, this switching surface is equivalent to the
leftmost transversal surface. However, this could only occur
if one of the following two conditions hold true.

Condition 1: The point of impact always precisely equals
that of on the nominal trajectory. This essentially assumes a
finite-time controller guarantees the walker reach and remain
on the target trajectory within one foot step.
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Fig. 3. Illustration of traditional phase variable for the compass gait walker
– θst. Red arrows indicates the direction of z(τ) i.e., the direction in which
the phase variable is increasing; blue lines indicate the transversal surfaces
– the set of possible states corresponding to a particular phase value.

Condition 2: The walker has the ability to artificially trig-
ger impact at the instant the designated final phase variable
(θdst) is reached.

Both Conditions 1 and 2 are arguably difficult to realise
precisely with physical hardware. Indeed, if either conditions
were not perfectly followed, impact would naturally occur
when Equation (9) is satisfied, which is illustrated as black
dotted line in Figure 3.

Given the discrepancy between the switching surface that
this traditional choice of phase variable assumes – Eq. (10) –
and the “natural interpretation” of the switching surface – Eq.
(9) – the yellow shaded areas in Figure 3 mark problematic
regions for analysis. In these regions – which occur when
the Conditions 1 and 2 are not strictly met and the walker
deviates from the nominal trajectory – the state would be
undefined by this traditional phase variable. Therefore, any
feedback controller expressed as a function of this phase
variable would “run out of tape” in these shaded regions.

For transverse analysis, the shaded regions are undefined
as they are not associated with any phase variable. Intuitively,
if the leftmost and rightmost blue line aligned with the dotted
line, the yellow shaded regions would disappear. Figure 4
shows the result of such arrangement, which will now be
discussed.

B. Construction of a Novel Phase Variable

We now propose the construction of a new phase variable
which aligns with the switching surface, overcoming the is-
sues described in the previous section, and yet is significantly
simpler than the construction proposed in [17].
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Fig. 4. Illustration of a new phase variable for the compass gait walker
- a combination of both stance and swing angle. Red arrows indicates the
direction z(τ), i.e. the direction in which the phase variable is increasing.

Geometrically from Figure 4, to align the transversal
surfaces with the switching surface in Eq. (9) is equivalent
to enforcing the direction of the two outermost red arrows
being [−1, 2, 0, 0]T . To simplify derivations of the transverse
dynamics, we enforce |z| = 1, hence this condition becomes:

z(x+) = z(x−) =

[
−1√

5
,

2√
5
, 0, 0

]T
. (11)

For the compass-gait walker, we propose a simple
parametrization of z in terms of the angle of the red arrows
in Fig 4, ψ:

z(ψ(τ)) = [cos(ψ(τ)), sin(ψ(τ)), 0, 0]T , (12)

with
∂z(τ)

∂τ
= [− sin(ψ)ψ̇, cos(ψ)ψ̇, 0, 0]T .

Computations can be further simplified by parametrizing
ψ(τ) as a Bezier polynomial, which allows the enforcement
of (11) by simply fixing the first and last coefficients.

In addition to aligning with the switching surface, z(τ)
must ensure that the transformation to transverse dynamics
is well-posed. From Equation (5), it is apparent that the trans-
formation x 7→ (x⊥, τ) is ill-defined when the denominator
of τ̇ , or d(x⊥, τ), is zero, i.e.,

z(τ)T f(x?(τ), u?(τ))− ∂z(τ)

∂τ

T

Π(τ)Tx⊥ = 0. (13)

As derived in [17], the smallest transversal x†⊥ for which
(13) is true has norm

|x†⊥(τ)| = |z(τ)T f(x?(τ), u?(τ)))|
|∂z(τ)
∂τ |

.

Fig. 5. Illustration of the distance, d, to be optimized in order to maximise
the region that can be represented by the transverse dynamics.

In this paper, we modify the method of [17] by considering
the distance from x†⊥ to its projection on to the line spanned
by f(x?(τ), u?), as illustrated in Fig. 5. The resulting dis-
tance d approximates the distance from x†⊥ to the trajectory,
and is computed like so:

d = |x†⊥(τ)| cos(α) =
|z(τ)T f(x?(τ), u?(τ))|

|∂z(τ)
∂τ |

z(τ)T f̄(τ),

(14)
where f̄(τ) = f(x?(τ),u?(τ))

|f(x?(τ),u?(τ))| and α is the angle between
z(τ) and f(x?(τ), u?(τ)).

However, note that the denominator in (14) contains ∂z(τ)
∂τ .

The optimum solution may contain constant z(τ) for some
interval of τ ; thereby causing (14) to go to infinity. Hence,
instead of maximising (14), we find it is better numerically
posed to optimise for z by minimizing the inverse of (14):

arg min
z(τ)

(∫ T

0

|∂z(τ)
∂τ |

p

|z(τ)T f(x?(τ), u?(τ))zT f̄ |p
dτ

)1/p

(15)

s.t. z(x+) = z(x−) =

[
−1√

5
,

2√
5
, 0, 0

]T
z(τ)T f(x?(τ), u?(τ)) > δ.

The decision variables for the optimization are the co-
efficients of the Bezier polynomial defining ψ in (12). The
authors have had success setting p = 100 and δ = 0.06. With
a desktop computer equipped with a 3.4 GHz Intel i7 and
24 GB of RAM, this can be solved within 5 seconds with ψ
parameterised as a 5th order Bezier polynomial, with results
shown in Fig 4.

This construction is simpler than that in [17] since z only
has non-zero entries in θsw and θst, the optimization for
z(τ) can be directly computed from any virtual constraint
definition in the form of (8).

IV. TRANSVERSE ANALYSIS WITH A GEOMETRIC PHASE
VARIABLE VIA SUMS-OF-SQUARES PROGRAMMING

With the new simplified phase variable derived in Section
III, we now demonstrate transverse stability analysis leading
to an explicit region of stability in the full state space of the
compass gait walker. Our approach proceeds as follows:

1) Compute the transverse dynamics using the simplified
phase variable.



2) Design a stabilizing controller and derive an initial seed
for the Lyapunov function.

3) Define τ -varying regions around x?(·) for which the
invariance conditions will be checked.

4) Leveraging the S-procedure, iteratively maximise the
invariance region using sum-of-squares optimization.

We now explore each of these four steps, highlighting
improvements and simplifications made in this approach over
that reported in [17].

A. Transverse Dynamics Computation

The new simplified phase variable, as defined by z(τ)
in (12), enables significantly simpler computation for the
transverse dynamics. For the compass gait, the projection
operator, i.e. Π in (4), and its derivative can now be analyt-
ically computed:

Π(τ) =

 − sin(ψ(τ)) cos(ψ(τ)) 0 0
0 0 1 0
0 0 0 1


d

dτ
Π(τ) =

− cos(ψ(τ))dψdτ − sin(ψ(τ))dψdτ 0 0
0 0 0 0
0 0 0 0

 .
Note that the analytical construction of Π and d

dτΠ and the
resulting sparsity of these variables significantly simplifies
computations compared with methods suggested in [17].
Specifically, since

[
d
dτΠ(τ)

]
Π(τ)T = 0, the first term of (6)

goes to zero, resulting in vastly simpler transverse dynamics:

ẋ⊥ = Π(τ)(f⊥(τ)− f?(τ)τ̇) (16)

where f⊥(τ) = f
(
x∗(τ)+Π(τ)′x⊥, u(x⊥, τ)

)
and f?(τ) =

f(x?(τ), u?(τ)).
Using the transverse dynamics in (16), we can now con-

struct Lyapunov functions which prove orbital stability by
showing x⊥ → 0 as t→∞.

B. Stabilizing Controller and Initial Seed for the Lyapunov
Function

A natural candidate for a stabilizing controller and an
initial seed of a Lyapunov function can be obtained via the
solution of the transverse-jump-Riccati equation.

−Ṗ = ATP + PA− PB⊥R−1BT⊥P +Q⊥, t 6= ti

P (τ−i ) = Ad(τi)
TP (τ+

i )Ad(τi) +Qi, t = ti

where R,Q,Qi > 0;

B⊥ = Π(τ)
∂f(x?(τ), u?(τ))

∂u
−Π(τ)f(x?(τ), u?(τ))

∂τ̇

∂u
;

and A is the linearization of ẋ⊥ w.r.t. x⊥. Given the
simplification of the transverse dynamics in (16), a simplified
expression of A over [17, Eq. (18)] is:

A(t) = Π(t)

(
∂f(x?(t), u?(t))

∂x
Π(t)T

− f(x?(t), u?(t))
∂τ̇

∂x⊥

∣∣∣∣
x⊥=0

)
.

The solution of the transverse-jump-Riccati equation
forms a locally stabilizing, phase-varying feedback con-
troller:

u(τ, x⊥) = u?(τ)−R−1B⊥(τ)TP (τ)x⊥. (17)

The transverse-jump-Riccati solution also forms a lo-
cally valid Lyapunov function for the closed-loop system,
V (x⊥, τ) for a small region around x? like so

V (x⊥, τ) = xT⊥P (τ)x⊥. (18)

C. Invariant Funnels in the Full State Space
Using the transverse-LQR controller in (17), we verify the

stability of the closed loop system by constructing invariant
funnels around the nominal limit cycle. For brevity, we will
hereafter refer to the closed loop system as follows:

fcl(x) = f(x, u(τ, x⊥))

where u(τ, x⊥) is defined in (17).
To construct the invariant funnels, we seek to compute a

the τ -varying sets D(τ) such that for some t0 ∈ [0,∞),

x⊥(τ(t0)) ∈ D(τ(t0)) =⇒ x⊥(τ(t)) ∈ D(τ(t))

∀t ∈ [t0,∞).

We describe this invariant funnel as a τ -varying sub-level
set of a function V̌ (x⊥, τ):

D(τ) = {x⊥ | V̌ (x⊥, τ) < ρ(τ)}. (19)

In the continuous phase of the system, we require the
invariance condition on the boundary of the funnel:

V̌ (x⊥, τ) = ρ(τ) =⇒ V̇ (x⊥, τ) < ρ̇(τ). (20)

To allow the condition ˙̌V < ρ̇ to be verified via sums-
of-squares (SOS) programming, we multiply ˙̄V through by
d(x⊥, τ), with d(x⊥, τ) defined in Eq. (5). This results in
an equivalent Lyapunov condition in (22), as shown on top
of page 6. We also approximated the closed-loop dynamics
with a third-order Taylor series expansion. We will discuss
the ramification of the Taylor approximation in Section V.

In the discrete phase of the system, the condition to be
verified at the time of switching is:

V̌ (x+
⊥, τ

+) ≤ V̌ (x−⊥, τ
−). (21)

Applying the transverse transformation, this becomes:

V̌

(
Π(τ+

i )
[
∆i

(
x?(τi) + Π(τ−

′

i )x⊥

)
−

x?(τ+
i )
]
, τ+
i

)
− V̌ (x⊥, τ

−
i ) ≤ 0



DV :=
∂V̌

∂τ
n(x⊥, τ) +

∂V̌

∂x⊥

{
d(x⊥, τ)Π(τ)fcl

(
x∗(τ) + Π(τ)Tx⊥

)
−Π(τ)fcl (x

?(τ))n(x⊥, τ)

}
≤ d(x⊥, τ)ρ̇ (22)

D. Bilinear Search to Maximise Provably Stable Regions

Similar to [18], we verify the continuous (20) and discrete
(21) invariance conditions on the boundary of the invariant
funnel D by sampling N = 40 values of τ along the limit
cycle trajectory.

In theory, we can parameterise the Lyapunov function V̌
by polynomial in x⊥ and τ . However, this often leads to
numerical problems in the resulting SOS program due to the
high number of decision variables. We therefore parameterise
V̌ by incorporating a τ -varying matrix Φ to the ‘initial seed’
of the Lyapunov function in (18), like so:

V̌ = xT⊥(P (τ) + Φ(τ))x⊥.

We can now maximise the invariant funnel for the limit
cycle by using the integral of ρ as a surrogate for maximising
the volume of the regions. Hence, the verification using SOS,
with the S-procedure and Lagrange multipliers l1(x⊥, τ) and
l2(x⊥, τ) is:

max
V̌ ,ρ(τ),l1,l2

∫ T

0

ρ(τ)dτ (23)

subject to
−DV (x⊥, τ)− d(x⊥, τ)ρ̇

−l1(x⊥)(ρ− V (x⊥, τ)) ∈ SoS, (24)
d(x⊥, τ)− l2(x⊥)(ρ− V (x⊥, τ)) ∈ SoS, (25)

V̌ (x−⊥, τ
−)− V̌ (x+

⊥, τ
+) ∈ SoS, (26)

Vguess(Σjej , τ)− V̌ (Σjej) > 0, (27)
l2 ∈ SoS. (28)

Similar to [14], (27), is a constraint which prevents a large
ρ to be returned simply by the scaling of Φ; where ej is the
j-th standard basis vector for the state space Rn, and Vguess
is defined by (18).

As can be seen, the above optimisation program is non-
convex as the conditions are bilinear in the decision variables.
Hence, we perform a bilinear search for the funnel as shown
in Algorithm 1.

In our approach, we find that formulating ρ as a Chebyshev
polynomial reduces numerical problems in the resulting
SOS program, when compared with parameterizing it as a
piecewise polynomial or with a monomial basis.

V. NUMERICAL RESULTS

Using the SPOTless toolbox [21] and commercial solver
MOSEK version 7.1.0.46, we use Algorithm 1 to compute
an invariant funnel for our hardware model. The funnel is
shown in Fig. 6. We now address several observations from
our numerical implementation.

Algorithm 1 Maximising Invariant Funnel Volume
1: Initialise: set Φ = 0; and set ρ as the maximal con-

stant (via bisection search) that satisfies (20) and (21)
throughout the limit cycle trajectory;

2: converged = 0;
3: previousObj = 0;
4: while not converged do
5: Multiplier-step: Fix ρ and solve feasibility problem

to find Lagrange multipliers l1, l2 satisfying (24) to
(28).

6: ρ-step: Fix the l1, l2 and maximise the objective∫
ρ dτ in (23) satisfying (24) to (28).

7: if
∫
ρ dτ−previousObj

previousObj < ε then
8: converged = 1;
9: end if

10: previousObj =
∫
ρ dτ

11: compare integral with previous; save current integral
12: end while
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Fig. 6. Invariant funnel of the model based on the hardware.

A. Accuracy of Taylor Series Expansion

As mentioned in Section IV-C, we used a third-order
Taylor approximation along the limit cycle to verify the
invariance conditions using SOS. Hence, it was vital to
ensure the conditions are also satisfied on the original Euler-
Lagrange model.

For verification, we sampled 40,000 states on the bound-
ary of the funnel with the Euler Lagrange model; and all
achieved the required ˙̌V < ρ̇.

B. Numerical performance and implementation details

Several strategies which the authors have utilised to over-
come potential numerical issues common with large SOS
problems are now discussed.
• Numerical balancing. Similar to [6], solutions to the

jump-transverse-Riccati differential equation can have



a large range of eigenvalues, particularly for underac-
tuated systems such as the compass gait. In order to
avoid numerical issues in semidefinite programming, it
is vital to find a coordinate transformation

xb = Tx

where T numerically conditions the problem by ensur-
ing the matrices TTPT from (19) and TT (H(DV ))T
are as close to the identity matrix as possible; with
H(DV ) being the Hessian of DV from (22) evaluated
at x⊥ = 0.

• Solving a feasiblility problem to recover the analytic
centre solution. It is known that in practice, SDP
solvers may not return strictly valid certificates for
SOS programs, due to termination criteria and infeasible
methods in these solvers, and fundamental limitations
of floating-point implementations [22]. This poses a
problem in the ρ-step of our method as the SDP solver
often returns a maximised ρ that is slightly infeasible.
The slightly questionable ρ in turn causes questionable
solutions in the multiplier-step, thereby degenerating
into worsening numerical problems in subsequent iter-
ations. Solving the ρ-step problem twice – once as a
maximization problem to optimize funnel volume; and
a second time as a feasibility problem with a lower
bound for the previously optimized objective – ensures
a strictly feasible ρ is obtained at every iteration.

C. Example Implementation

A MATLAB implementation of the framework outlined
herein has been made available online at [23].

VI. HARDWARE EXPERIMENTAL VERIFICATION

To test the efficacy of the proposed transverse-LQR con-
troller and the verified invariant funnels in hardware, a
compass gait walker was constructed as shown in Fig. 1.

Video footage of the hardware setup and experiments is
included as a video attachment to this paper.

A. Hardware Experimental Setup and System Identification

The planar walker is mounted on a boom arm with a
counterweight, and hence walks in a circular path. The
dynamical effect of the boom and the counterweight is
approximated by using a different hip mass for inertial (mH )
and gravitational (mHg ) in the model. The full hybrid model
is shown in the Appendix.

Optical encoders measuring the absolute angle for the
inner leg, and the angle between the legs were installed,
from which q1 and q2 could be calculated in real-time. An
observer based on the linearized pendulum dynamics was
designed to observe velocities q̇1 and q̇2.

Specific information regarding the construction (including
CAD drawings) and system identification of the walker has
been made available in [24].

FullLyapSearch PhiOrder=6 profile for SOS Solver Q=[1 1 1 1], 
stableEpsilon=0, Qd factor=1, PFL=0, R Inverse=0.01
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Fig. 7. Hardware experimental results superimposed with the computed
invariant funnel.
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Fig. 8. Experimental results where disturbance torques were applied to
the hip motor. Note that all trajectories either (a) successfully re-enters the
invariant funnels after the disturbance; or (b) remain in the invariant funnel
throughout the disturbance.

B. Hardware verification of computed invariance funnels

Fig. 7 shows the phase portrait of 15 steps for the
walker while in stable walking motion. Note that while the
vibrations from the boom could be observed in the stance
leg; the trajectory remained within the invariant funnel as
predicted. The only exception occurs at the very beginning
of a few steps, which can be attributed to the vibrations
during impact, unaccounted for in our impact model which
assumes an inelastic collision with no slip or bounce.

To test the behaviour of the system closer to the boundary
of the invariant funnel, a disturbance torque in the hip motor
was applied at various stages of a step. The results are shown
in Fig 8. Note that all trajectories successfully re-enter or
remain in the invariant funnel after the disturbance torque
has been applied.



VII. CONCLUSION

We have addressed the problem of finding useful invariant
funnels for dynamic walking robots using transverse dynam-
ics and sum-of-squares verification. Further, the first hard-
ware validation of the resulting funnels were demonstrated
on an experimental testbed.

While the compass gait walker has been used as il-
lustration in this paper, this framework is applicable to
higher dimensional systems and will be the focus of future
work. Further, connections with robust stability analysis via
transverse contraction [25] [26] will also be explored.
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APPENDIX: HYBRID DYNAMICS OF
THE COMPASS GAIT WALKER

The continuous dynamics of the compass gait walker, as
shown in Fig. 1, can be represented in the form of Eq. (7),
with q = [θsw, θst]

T , and

M(q) =

[
M11 M12

M21 M22

]
(29)

M11 = ml2c +Ic; M12 = M12 = −ml2c −Ic+mllc cos(q1)
M22 = 2Ic + mHl

2 + 2m(l2 + l2c)− 2mllc(1 + cos(q1))

C(q, q̇) =

[
C11 C12

C21 C22

]
(30)

C11 = 0; C12 = −mllcq̇2 sin(q1) ;
C21 = −mllc (q̇1 − q̇2) sin(q1) ; C22 = mllcq̇1 sin(q1)

G(q) =

[
G1

G2

]
(31)

G1 = g0mlc sin(q1 − q2)
G2 = −g0 (mlc sin(q1 − q2) + (2ml −mlc + mHgl) sin(q2))

B(q) =

[
1
0

]
(32)

Assuming instantaneous and rigid impact of the swing leg
without rebound and slip, the impact model is defined as:

∆q =

[
−1 0
−1 1

]
(33)

∆q̇(q
−) = ∆q[H

+(q−)]−1H−(q−) (34)

where H+
1,1(q−) = p1 + p3

H+
2,1(q−) = H+

1,2(q−) = p2 cos(q−1 )− p1 − p3

H+
1,1(q−) = −2p2 cos(q−1 ) + p3 + 2p1

H−1,1(q−) = p1 − p2; H−2,1(q−) = −p1 + p2

H−1,2(q−) = p3 cos(q1)− p1 + p2; H−2,2(q−) = p3 cos(q1)
p1 = ml2c + Ic; p2 = lmlc; p3 = mH l

2 + 2ml(l − lc)


