
Pr
oo

f C
op

y

Juan Nieto
Jose Guivant
Eduardo Nebot
ARC Centre of Excellence for Autonomous Systems (CAS)
The University of Sydney, NSW, Australia
j.nieto@acfr.usyd.edu.au

DenseSLAM:
Simultaneous
Localization and
Dense Mapping

Abstract

This paper addresses the problem of environment representation for
Simultaneous Localization and Mapping (SLAM) algorithms.

One of the main problems of SLAM is how to interpret and syn-
thesize the external sensory information into a representation of the
environment that can be used by the mobile robot to operate au-
tonomously. Traditionally, SLAM algorithms have relied on sparse
environment representations. However, for autonomous navigation,
a more detailed representation of the environment is necessary, and
the classic feature-based representation fails to provide a robot with
sufficient information. While a dense representation is desirable, it
has not been possible for SLAM paradigms.

This paper presents DenseSLAM, an algorithm to obtain and
maintain detailed environment representations. The algorithm rep-
resents different sensory information in dense multi-layered maps.
Each layer can represent different properties of the environment, such
as occupancy, traversability, elevation or each layer can describe
the same environment property using different representations. Im-
plementations of the algorithm with two different representations for
the dense maps are shown.

A rich representation has several potential advantages to assist
the navigation process, for example to facilitate data association
using multi-dimensional maps. This paper presents two particular
applications to improve the localization process; the extraction of
complex landmarks from the dense maps and the detection of areas
with dynamic objects. The paper also presents an analysis of con-
sistency of the maps obtained with DenseSLAM. The position error
in the dense maps is analyzed and a method to select the landmarks
in order to minimize these errors is explained.

The algorithm was tested with outdoor experimental data taken
with a ground vehicle. The experimental results show that the al-
gorithm can obtain dense environment representations and that the
detailed representation can be used to improve the vehicle localiza-
tion process.

The International Journal of Robotics Research
Vol. 25, No. 8, August 2006, pp. xxx-xxx
DOI: 10.1177/0278364906067379
©2006 SAGE Publications
Figures appear in color online: http://ijr.sagepub.com

KEY WORDS—simultaneous localization and mapping
(SLAM), EKF-SLAM, autonomous mapping

1. Introduction

Map building is the process of obtaining a representation of
the environment using external sensory information.A mobile
robot can use a wide variety of sensors to obtain information
about the environment. Typical sensors are cameras, lasers,
radars and sonars (Montemerlo and Thrun 2004; Jose and
Adams 2005). Since the observations are taken from sensors
on-board the robot, an estimate of the robot pose is necessary
in order to build the map.

Building a representation of the environment with an au-
tonomous robot, given the robot pose (Elfes 1989b; Kuipers
and Byun 1991; Devy et al. 1995; Jensfelt and Kristensen
2001) is considered a problem solved today. However, the
robot pose will in general be unknown, and the mapping
process will have to be done simultaneously with the robot
localization.

Simultaneous localization and mapping algorithms pro-
vide a means to localize the robot using observations of the
environment. Since SLAM algorithms build a map simulta-
neously with the localization process, they do not require an
a priori map. The SLAM problem was introduced eighteen
years ago (Smith, Self, and Cheeseman 1987). This seminal
paper explained the need for concurrently estimating the vehi-
cle pose and map position, and presented a stochastic solution
based on the use of an Extended Kalman Filter (EKF). These
foundations have served as the basis for most of the current
solutions. The vehicle takes observations of the environment
using sensors such as range lasers, and identifies features that
are incorporated in the map as landmarks. EKF-SLAM main-
tains a state vector with the robot pose and landmark positions.
The map is then constructed as an on-line data fusion prob-
lem and an estimate of uncertainties in the robot pose and
landmark locations is maintained.

1

Pr
oo

f C
op

y

2 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2006

One of the issues in SLAM algorithms is the computa-
tional cost, which grows quadratically with the number of
landmarks in the map, O(n2). To overcome this problem, ef-
ficient solutions have appeared (Knight, Davison, and Reid
2001; Williams 2001; Guivant 2002). By creating local maps,
only the landmarks in a local region have to be updated. The
computational cost is then quadratic with the number of land-
marks in the vehicle’s vicinity. The local maps are periodically
fused with the global map. Sub-optimal SLAM algorithms
that are able to reduce the computational cost to constant time,
O(1) have also appeared (Bailey 2002; Bosse et al. 2003).

An important issue with stochastic SLAM is environment
modeling. SLAM maps are typically sparse and are built up of
isolated landmarks observed in the environment. This makes
the representation appropriate only for localization purposes.

The next generation of autonomous systems will be re-
quired to operate in more complex environments. A sparse
representation formed only by isolated landmarks will in gen-
eral not fulfill the necessities of an autonomous vehicle, and a
more detailed representation will be needed for tasks such as
place recognition or path planning. Furthermore, not only is a
dense representation of the environment required, but also an
algorithm that is able to obtain multi-layered maps (Lacroix
et al. 2002), where each layer represents a different property of
the environment, such as occupancy, traversability, elevation,
etc.

This paper presents DenseSLAM (Nieto, Guivant, and
Nebot 2004b). The algorithm is able to construct detailed
multi-layer descriptions of the environment. It combines fea-
ture maps with other dense metric sensory representation.
DenseSLAM is based on the Hybrid Metric Maps (HYMMs)
introduced by Guivant et al. (2004). The global features map
is partitioned into a set of connected local regions, which pro-
vides a reference for a detailed multi-dimensional descrip-
tion of the environment. The HYMM framework permits the
combination of efficient feature-based SLAM algorithms for
localization and dense mapping representations such as occu-
pancy grids (OGs).

A more comprehensive environment representation allows
the vehicle localization process to be improved. This paper
presents two cases where the dense maps are used to aid vehi-
cle localization. The first one shows how to detect and incor-
porate complex landmarks that cannot be detected from only
one vantage point. The second one shows how the dense repre-
sentation can be used to detect regions with potential dynamic
objects. This information will help to prevent the vehicle from
using dynamic objects for the localization process.

The format of this paper is as follows. Section 2 introduces
the problem of feature-based SLAM. Section 3 explains the
solution presented here for the DenseSLAM problem. Sec-
tion 4 discusses consistency in DenseSLAM. Section 5 shows
different possible representations to be used for the dense
maps. Section 6 presents applications of dense mapping and
Section 7 presents experimental results. Finally, conclusions
are presented in Section 8.

2. Stochastic SLAM

To obtain a representation of the world, robots must possess
sensors able to acquire external information. In addition, a
robot usually has sensors to predict its position. Unfortunately,
all sensors are subject to errors (sensor noise). Thus any solu-
tion to the SLAM problem will need to incorporate the sen-
sor’s noise into the models in order to be able to fuse data
taken at different times.

Probabilistic methods are the common factor among
SLAM algorithms available today (Thrun 2002). This is be-
cause they are able to incorporate the sensors noise into the
models. Furthermore, because the observations of the external
world are taken relative to the vehicle position, the uncertainty
accumulated over time in the robot pose will be propagated to
the map. Therefore, the errors in the vehicle position will be
correlated with the map. Probabilistic methods are also able
to model the correlations between vehicle pose and the map.

Finding a solution to the stochastic SLAM problem in-
volves evaluating the next probability distribution.

P(xk|Zk, Uk, x0) (1)

where xk depicts the variables used to represent the vehicle
pose xv

k
and the map position xm

k
at time k.

xk =
[

xv
k

xm
k

]
(2)

Zk represents the set of observations received until time k.

Zk = [z0, z1, ..., zk]T (3)

Uk represents the set of control inputs received until time k.

Uk = [u0, u1, ..., uk]T (4)

and x0 represents the initial information.
The recursive EKF-SLAM is performed as a sequence of

predictions and updates.
The predicted mean and covariance are calculated as:

x̂− =
[

x̂−
v

x̂−
m

]
=

[
f(x̂v, u)

x̂m

]
(5)

P− = ∇fxP∇fT

x + ∇fuQ∇fT

u (6)

where f represents the relation between the past estimated
robot pose and the predicted according to the new control
inputs received u. Since the map is assumed to be formed
by stationary landmarks, the map position does not change
during the prediction step. P represents the covariance matrix
and Q the covariance matrix of the noise in the control inputs.
The Jacobians in eq. (6) are:

∇fx = ∂f
∂ x̂

∣∣∣∣
(x̂,u)

(7)

∇fu = ∂f
∂u

∣∣∣∣
(x̂,u)

Pr
oo

f C
op

y

Nieto, Guivant, and Nebot / DenseSLAM 3

On arrival of a new observation, the state vector is updated as:

x̂+ = x̂− + Wνi (8)

P+ = P− − WSWT (9)

where W is the Kalman gain, νi is the innovations vector and
S is the innovation covariance matrix.

3. DenseSLAM

Mapping techniques that are able to handle vehicle uncer-
tainty such as EKF-SLAM are not able to obtain dense rep-
resentations due to the extremely high computational burden
involved. On the other hand, mapping algorithms that are able
to obtain detailed representations such as Occupancy Grids
(Elfes 1989a), are known to have problems coping with vehi-
cle pose uncertainty. The concept of DenseSLAM was intro-
duced in Nieto, Guivant, and Nebot (2004b) as

The process of simultaneous vehicle localization
and dense map building.

DenseSLAM is then a more ambitious problem than classic
feature-based SLAM.A solution for DenseSLAM will have to
deal with computational and consistency issues, arising from
the dual purpose of trying to obtain a dense representation
while simultaneously doing localization.

This section explains the framework on which Dense-
SLAM is built, the Hybrid Metric Maps.

3.1. The HYbrid Metric Maps (HYMMs)

The Hybrid Metric Maps (HYMMs) algorithm (Guivant et al.
2004; Nieto, Guivant, and Nebot 2004b) presents a novel so-
lution for addressing the mapping problem with unknown
robot pose. The HYMM is a mapping algorithm that com-
bines feature maps with other metric sensory information.
The approach permits the localization of the robot and at the
same time constructs a detailed environment representation
(DenseSLAM).

Rather than incorporating all the sensory information into
a global map, the algorithm maintains a features map and
represents the rest of the sensed data in local maps defined
relative to the feature positions. A joint state vector with the
vehicle pose and the feature positions is maintained and the
dense maps are stored in a separate data structure. When new
observations are received, the state vector is augmented with
the feature positions and the rest of the information is fused
into the local regions. The main difference between feature-
based SLAM and DenseSLAM is that feature-based SLAM
incorporates the features into the map and neglects the rest
of the information, whereas DenseSLAM has the ability to
maintain all the sensory information to build a detailed envi-
ronment representation.

The algorithm works as follows. When the robot starts to
navigate, it will extract features from the environment that will
be incorporated in the state vector. The feature map will be
used to partition the global map into smaller regions, Figure 1
illustrates this process. The dense sensory information will be
represented in these local regions. Figure 2 shows a hypotheti-
cal dense map. The figure shows the division of the global map
into smaller regions and the dense multi-layer maps obtained
by DenseSLAM. Each of these layers depicts different envi-
ronment properties. The global dense map consists of a set of
local maps defined relative to the feature positions. Figure 3
shows a basic diagram of the algorithm. (See also Extension 1
for a movie that illustrates how the algorithm works.)

The main characteristic of DenseSLAM is the local repre-
sentation used to fuse the dense information. The motivation
behind the relative representation is to reduce correlations
between states. Using this relative representation, the states
represented in a local frame become strongly correlated and
the states represented in different frames become weakly cor-
related. This is the key which allows the decorrelation of the
dense maps with the rest of the system making the represen-
tation tractable.

It will be shown that the estimation of the features map and
the localization process obtained with DenseSLAM are opti-
mal in respect of estimates using only feature-based SLAM.
Moreover, the estimates can be improved if the dense infor-
mation is used to assist the SLAM process (e.g., during the
data association process).

The next sections explain the fundamental aspects of the
algorithm.

3.2. Fundamental Principle of DenseSLAM

Since the observations of the world are taken relative to the
vehicle pose, any environment representation created will be
correlated with the vehicle pose. Augmenting the state vector
with all the information rendered by the sensors and maintain-
ing the correlations is infeasible because of the computational
burden involved. Therefore, DenseSLAM incorporates a set
of landmarks in the state vector and the rest of the sensed data
is decorrelated and stored in a separate data structure.

The approximation made by the algorithm consists of rep-
resenting the dense information in the local regions without
including the correlations between the locally represented in-
formation and the rest of the system. These correlations will
be zero only when there is full correlation between the local
property (expressed in global coordinates) and the features
that define the respective local frame (assuming the same un-
certainty magnitude), so their relative positions are perfectly
known. Although it can be proved that in a SLAM process
the map becomes fully correlated in the limit (Gibbens, Dis-
sanayake, and Durrant-Whyte 2000), in practice only high
correlation is achieved. However, it can be demonstrated that
the assumptions made by the HYMM framework are, in prac-

Pr
oo

f C
op

y

4 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2006

Xv(k)

Xv(0)
Landmarks

Local Regions: Divisions

Fig. 1. Landmarks map (“o”) and a particular partition of the global map in local regions. As shown, not all the landmarks are
needed as vertex points in the regions definition.

Fig. 2. Hypothetical multi-layer dense map. The “*” represent the landmark positions and the map layers depict different
environment properties captured by the sensors.

Pr
oo

f C
op

y

Nieto, Guivant, and Nebot / DenseSLAM 5

Fig. 3. HYMM algorithm flow diagram. When a sensor frame is obtained, first a feature extraction algorithm is applied and
the features extracted are added to the feature-based SLAM. Then the algorithm looks for new local regions (LR) and fuses
all the sensory information in the respective local frames. zf

k represents the observations associated with features and zd
k

the
rest of the observations (dense maps). xv represents the vehicle position and xf

m
the feature map.

tice, very good approximations for SLAM problems. The next
paragraphs explain two well known properties of SLAM that
justify the approximations made in the HYMMs.

1. Geographically close objects have high correlation:
If a set of observed objects are geographically close
from the vehicle viewpoint, then the error resulting
from the vehicle pose uncertainty will be a common
component of these estimated objects’ positions. This
is a typical situation in SLAM where the vehicle ac-
cumulates uncertainty in its estimated position and in-

corporates observations that are used to synthesize a
map. Because of this the estimates of objects that are
geographically close will present similar uncertainties
(high cross-correlations).Any update of a particular ob-
ject will imply a similar update of any object sufficiently
close to the first one. Figure 4 shows an example of
a typical SLAM map. The figure shows a landmarks
map with its uncertainty bounds. It can be seen that the
uncertainty is very similar in landmarks that are geo-
graphically close.

Pr
oo

f C
op

y

6 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2006

(a) (b)

Fig. 4. Map Correlation: The figures show that geographically close objects possess similar uncertainty. Figure (a) shows how
the landmarks that are being observed have similar uncertainty to the robot pose. (b) Shows how the estimated landmarks’
means are updated after the vehicle closes the loop. The dots represent landmark position estimates over time. High correlation
in geographically close objects is one of the SLAM characteristics; because the vehicle will observe close objects at similar
instants it will propagate similar uncertainty to the objects.

2. The relative representation stores close objects in local
coordinate frames and then permits the reduction of
correlation to the rest of the map (Guivant and Nebot
2003):Assume a landmark can be represented in a local
frame in the following way:

xL = h(xv, z, xb) (10)

where xL represents the relative landmark position, xv

the vehicle position, z the observations and xb the posi-
tion of the landmarks that define the local frame (base
landmarks).

Taking into account that the observation errors are inde-
pendent of the vehicle position (as it is always assumed
in SLAM), the cross-correlation between the vehicle
and the landmark in the local frame will be:

PvL = Pvv∇hT

xv
+ Pvb∇hT

xb
(11)

where Pvv represents the vehicle states covariance, Pvb

the cross-correlation between the vehicle states and the
base landmarks position estimated and ∇hxi

= ∂h
∂xi

is
the Jacobian matrix of h with respect to the state xi .

Taking for example the one dimensional case, eq. (10)
becomes:

xL = h(xv, z, xb) = xv + z − xb (12)

Applying eq. (12) to (11):

PvL = Pvv(1) + Pvb(−1) = Pvv − Pvb (13)

Equation (13) shows that if the magnitudes of Pvv and
the covariance of the base landmarks Pbb are similar,
when the robot is highly correlated with the base land-
marks there will be almost no correlation between the
robot position and the local landmark (PvL) and then no
correlation between the relative landmark and the rest
of the map. Since the relative and the base landmarks
are geographically close, whenever the robot observes
the local landmark it will be highly correlated with the
base landmarks. This fact will reduce the correlation
between the local landmark and the robot and therefore
the correlation between the local landmark and the rest
of the map will be reduced as well.

A more direct way of observing the decorrelation ef-
fect is by evaluating the cross-correlation between a
landmark in the global frame with a landmark repre-
sented in a local frame and comparing this with the
cross-correlation of the same two landmarks, both rep-
resented in the global frame. In a similar manner to
eq. (11), the cross-covariance matrix between the j -th
landmark and a locally represented landmark can be
evaluated in the following way:

PjL = Pjb∇hT

xb
+ PjG∇hT

xG (14)

where the prefix j means the j -th landmark, b the base
landmarks that define the local frame, L the locally
represented landmark and G the position of the local
landmark in the global frame. Then given Pjb, PjG and
the transforming function from the global to the local

Pr
oo

f C
op

y

Nieto, Guivant, and Nebot / DenseSLAM 7

frame h, it is possible to evaluate the cross-correlation
between the local landmark and the j landmark in the
map. Although the effect of decorrelation happens re-
gardless of the particular local representation used, find-
ing an expression to demonstrate that PjL << PjG will
be dependent on the local representation used. Equa-
tion (14) shows that for a particular local representation
h, the decorrelation effect between the local object and
the rest of the map will depend on the cross correlation
between the rest of the map and the base landmarks and
the cross correlation between the rest of the map and
the local represented object in the global frame.

A numerical example is shown next to illustrate the
decorrelation effect using local representation. In the
example presented, three landmarks are used to define
the axes of a local region.

EXAMPLE 1. Figure 5(a) shows the simulation environment
utilized to illustrate the decorrelation effect. In order to show
the decorrelation effect, a local region is defined using three
landmarks and another landmark is locally represented in this
local frame. The i-th landmark is then represented in the local
frame after a few observations which ensures high correla-
tion with the base landmarks. After that, the landmark is not
observed again, as it actually occurs with the dense sensory
information (it is assumed that is not possible to observe ex-
actly the same point of the environment more than once). The
blue solid line in Figure 5(a) shows the local frame axis and
the red dotted line the local landmark position xLi . The cyan
dashed line joins the local represented landmark xL

Li
with a

global landmark xLj . The cross-correlation between xLj and
the local i-th landmark will be evaluated when the i landmark
is represented in the local frame xL

Li
and when it is represented

in the global frame xG
Li

.
Figure 5(b) shows the evolution in time of the correlation

coefficient of the i landmark represented in global coordinates
xG

Li
, with the landmarks used to define the local frame. The

solid line depicts the cross-correlation in the east axis and the
dashed line in the north axis. The different colors represent
the cross-correlation with the different base landmarks. As
can be seen, the landmark xG

Li
possesses high correlation with

the base landmarks. This is due to the geographical proximity
between the landmarks. Figure 5(c) shows the correlations
between xG

Li
and xLj in red, and the correlations between the

j landmark and the landmark i represented in the local frame
xL

Li
(eq. (14)) in blue. The correlation was reduced from almost

one when the landmark was represented in global coordinates,
to almost zero when the landmark was represented in the local
frame.

Finally Figure 5(d) shows the variance of the landmark i.
The blue line depicts the variance when the landmark is in the
local frame and the red line when it is in global. Because of
the high correlation between xG

Li
and the base landmarks, the

uncertainty in their relative position is very low, and so is the
variance of xL

Li
.

In summary the relative representation used by Dense-
SLAM permits the local represented information to be decor-
related with the rest of the system. This permits the incorpo-
ration of more information without increasing the computa-
tional cost.

3.3. Relative Representation

This section discusses different ways of defining the local
frames and explains the one used in this paper.

The most common relative representation employs two
landmarks to represent the local frames (Guivant and Nebot
2002b) and defines rectangular local regions. The rectangular
representation has an important shortcoming when used as the
local regions in DenseSLAM; it presents problems in terms of
map coverage. Figure 6(a) shows a hypothetical map division
using rectangular local regions. As seen in the figure, some
local regions overlap. In addition, some areas of the map are
not covered by any local region. A solution for covering the
whole area would be to overlap all the regions. However this
would be inefficient in terms of computation and memory,
and also will add difficulty to the global map recovery task.
A better solution for covering the whole area in an efficient
manner will be to define all the local regions in a form such
that they share a common axis, thus avoiding overlapping or
gaps between different local maps. Figure 1 shows a possible
map division using three landmarks for the bases. Unlike the
rectangular representation, the angle between the axes is not
restricted to a particular value, the angle is defined by the land-
mark positions, and can be different for different regions. In
this case the global map is partitioned into local triangular re-
gions (LTRs). Because the local regions always have common
vertices, the whole area can be covered without overlapping
regions. Note that this is not a particular property of the tri-
angular division, it is actually a consequence of not confining
the angle between the axes to a fixed value, so avoiding the
restriction of the local maps to homogeneous regions.

More than three landmarks could be used to define local re-
gions, presenting similar characteristics to the LTRs in terms
of map coverage. Figure 6(b) shows an example of a map
division using more than three landmarks; four and five land-
marks were used to delimit the regions. Using more than three
landmarks will imply defining more than one frame per local
region, which will give more robustness to the representation
but will add complexity to the implementation. The complex-
ity arises from the larger number of landmarks needed to form
a region and the repetition of information in different frames.
The representation used in this paper employs three landmarks
to delimit the local regions. This is the most efficient represen-
tation for our purpose, since it involves the smallest number
of landmarks while assuring full coverage of the area.

Pr
oo

f C
op

y

8 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2006

(a)

(b)

Fig. 5. Decorrelation effect: (a) shows a zoom of the navigation environment where three landmarks were used to define a
local region and one landmark xLi (red dashed line) was represented in this local frame. (b) Shows the correlation between
the landmark i represented in the global frame and the base landmarks. (Continues on next page)

Pr
oo

f C
op

y

Nieto, Guivant, and Nebot / DenseSLAM 9

(c)

(d)

Fig. 5. Decorrelation effect: (Continued from previous page) (c) Shows the decorrelation effect; when the landmark i is
represented in local coordinates (blue line) the cross-correlation with other landmarks is considerably reduced in respect to
the correlation between other landmarks and the landmark i in global coordinates (red line). (d) Shows the landmark deviation
when it is represented in local (blue line) and global (red line) coordinates.

Pr
oo

f C
op

y

10 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2006

Xv(k)

Xv(0)

Xv(k)

Xv(0)

(a) (b)

Fig. 6. Figure (a) shows an example of a map division using rectangular regions; (b) shows a map division using four and five
landmarks to delimit the regions.

3.3.1. Local Triangular Regions (LTRs)

Figure 7 shows an example of a LTR. Any point that belongs
to a LTR can be characterized by a convex linear combination
of the three vertex points (landmark positions) associated with
this subregion. In Figure 7 a LTR �i is defined by the vertex
points {Li,1, Li,2, Li,3}. A local coordinate frame is defined
based on the three vertex points according to:

ai = Li,2 − Li,1 = [ax, ay]T

bi = Li,3 − Li,1 = [bx, by]T (15)

Any point that belongs to �i can be expressed in the global
frame as:

x = Li,1 + α · ai + β · bi (16)

= (1 − α − β) · L1 + α · Li,2 + β · Li,3

α > 0, β > 0

α + β ≤ 1

∀ x \ x ∈ �i

Furthermore any function of the global position x can also
be locally defined as a function of the local coordinates of x
and the vertices points:

z = f (x) = f (Li,1 + α · ai + β · bi) (17)

Lx
ia

ib

1,iL

2,iL

3,iL

Fig. 7. Detail of an individual LTR defined by three vertex
points, {Li,1, Li,2, Li,3} and the direction vectors, {ai, bi}.

Using (15) and (16) an expression for the local coordinates
(α, β) can be derived.

α = (xy − L1y)d13x − (xx − L1x)d13y

d13xd12y − d13yd12x

(18)

β = (xx − L1x)d12y − (xy − L1y)d12x

d13xd12y − d13yd12x

where x = [xx, xy] are the global coordinates of the local
point and dij = Lj − Li = [dijx, dijy]T . In general, any local
point can be expressed as:

xL = [α, β]T = h(xv, z, L) (19)

Pr
oo

f C
op

y

Nieto, Guivant, and Nebot / DenseSLAM 11

where xL represents the local state, xv the robot pose, z the
observations and L the set of landmarks that defines the local
region.

Assume a vehicle is exploring the environment and measur-
ing different properties such as soil salinity, humidity, terrain
occupancy, etc. Not necessarily all the sensory information
has to be used for the robot localization process. Nevertheless,
it may be desired to maintain all the information for additional
tasks, such as path planning, or for example the detection of
a particular property in the environment. The classic SLAM
algorithm uses features extracted from sensed data for the lo-
calization process and neglects the rest of the information.
DenseSLAM also uses a features map, but in addition the
algorithm integrates all the sensory information using local
representation. The dense maps obtained consist of map lay-
ers, where each layer represents the information coming from
different sensors, or the same sensor information represented
in different forms.

It is worth making clear that the framework is not restricted
to any particular representation for the local maps. The only
restriction is that the representation used needs to be defined
relative to the feature positions.

3.4. Base Landmarks Selection

To minimize the error in the position of the dense information,
the framework establishes some conditions that have to be
attained by potential landmarks before forming the vertices
of a LTR. This section presents these conditions.

• The landmarks that define a LTR must have high corre-
lation. As explained in Section , DenseSLAM uses the
fact that in SLAM geographically close objects pos-
sess high correlation and so their relative position is al-
most independent of the vehicle pose uncertainty. This
makes the locally represented objects have very weak
correlation with the rest of the system which allows
the algorithm to neglect these correlations. In partic-
ular, because the locally represented entities are not
used directly for the localization process, the frame-
work does not introduce any inconsistency at all in the
system (Section 4.1 will explain this aspect in more
detail).

The ideal situation for the algorithm is when all land-
marks and objects in a common local region are fully
correlated and present the same uncertainty values. In
this case their relative position is perfectly known (zero
uncertainty) and the correlation between the locally rep-
resented objects and the rest of the system will be zero.
The higher the cross-correlation among objects in the
global frame, the lower the uncertainty of their relative
position.

Therefore, it can be deduced that the higher the cor-
relation between the base landmarks and the locally

represented objects (local map), the better the quality
of the local map. In particular, since the axes of the local
frame are defined based on the relative position of the
base landmarks (Figure 7) it is also important to have
high correlation among those landmarks that form a
base. High correlation will prevent deformations in the
frame after the landmark positions are updated. Fig-
ure 8 clarifies this with an example. In Figure 8(a) the
region is defined with three landmarks that do not pos-
sess high correlation, and an object is defined relative
to this base. After the landmarks are updated, the local
region is misshapen and so is the object. Figure 8(b)
shows the same example, but now the region is formed
after the landmarks have achieved high correlation. Af-
ter the update, the local region has moved without ma-
jor changes in shape. This is the consequence of having
low/high correlation among the base landmarks.

• The landmarks must also be geometrically well condi-
tioned (to avoid degeneration). This condition is related
to the geometry of the local region. Before defining a
local region, the angle between the local axes has to
be checked. Figure 9(a) shows an ill conditioned LTR.
This case is referred to as ill conditioned because two
axes are “too close” to each other, a situation that could
make the triangle flip over. Deciding when the axes
are too close or when a region is ill conditioned is a
process that involves not only the cross correlation be-
tween the landmarks but also the individual uncertainty.
With the individual uncertainty and the correlations, it
can be predicted how much a landmark can change its
position after an update, and then predict if any poten-
tial region could flip over. An easy and conservative
test can be done by considering the landmarks to be
independent (no correlation) and then comparing the
uncertainty bounds of the landmarks against the oppo-
site axis. For example, in Figure 9(a), if the uncertainty
bound (ellipse) of L2 has contact with its opposite axis
(formed by L1 and L3), then the region could flip over.
In the example presented, the uncertainty bounds of L2

have contact with the opposite axis, and so the region
is said to be ill conditioned. This is a very conserva-
tive test, since the fact that there is correlation between
landmarks will restrict the relative movements.

• New regions should not overlap with old regions: The
last condition to check is that the regions do not overlap
to avoid repetition of the information. Figure 9(b) shows
an example of two overlapped regions.

Having verified all these conditions, a new local region can
be created and a new local dense map will be built using an
adequate representation.

Pr
oo

f C
op

y

12 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2006

−50 −40 −30 −20 −10 0 10 20 30 40 50
−40

−30

−20

−10

0

10

20

30

40

(a)

−50 −40 −30 −20 −10 0 10 20 30 40 50
−40

−30

−20

−10

0

10

20

30

40

(b)

Fig. 8. Figure (a) shows a LTR and an object represented locally for the case where the landmarks possess low correlation. The
solid red line denotes the actual axes and object position. The green dashed line denotes the object after the region is defined
and the landmarks are updated. The object is misshapen due to the low correlation in the base landmarks. (b) shows a LTR
and an object defined inside for the case where the landmarks possess high correlation.

Pr
oo

f C
op

y

Nieto, Guivant, and Nebot / DenseSLAM 13

(a) (b)

Fig. 9. Figure (a) shows a LTR which is not geographically well conditioned: the region could flip over. The dots represent
the base landmark positions and the ellipses the uncertainty bounds. Figure (b) illustrates a case where two LTRs overlapped.

3.4.1. Virtual landmarks

There will be situations where part of the map cannot be in-
cluded inside any local region. For example an environment
with buildings. If the sensors cannot see through the building’s
walls and the robot cannot go inside the building, using the
method presented, no regions could include the whole walls,
since all the landmarks will be outside. In order to include the
walls and keep the same type of regions throughout the map,
the local regions could be formed with two real landmarks,
and one virtual landmark, which could be created inside the
building. The virtual landmark will have to be created when
the vehicle is highly correlated with the other two landmarks.
The difference between using two (the third landmark is ar-
tificial so does not have information) or three landmarks will
be reflected in the accuracy of the dense map. The more land-
marks used to define the axes of the local region, the less
correlated will be the local map with the rest of the system.

Note that the only purpose of the virtual landmark is to
have only one type of local region throughout the whole map,
which then makes the implementation of the algorithm easier.
However, a different strategy could be adopted, and in circum-
stances where a part of the environment is not enclosed by any
LTR, a different type of region could be used. For example,
three landmarks could be used to delimit the axes, and one
axis could be extended to go inside the building. This strategy
is more robust since three landmarks are used to create the
local region but as mentioned before, this requires the algo-
rithm to have different types of local regions and to have a
mechanism to distinguish between the different scenarios to
apply to each particular configuration.

3.5. Error Estimation in the Relative Represented Objects

It was mentioned in Section that the information fused in the
local maps is decorrelated from the rest of the system. This
was the main motivation behind the use of local representa-
tion for the dense maps; to reduce these correlations and then,
even when they are not maintained, to make the approach a
close approximation to an “optimal DenseSLAM”. Neglect-
ing these correlations does not introduce any inconsistency
into the system, since only the landmark map is used for lo-
calization. The effect of the decorrelation will be an error in
the position of the dense maps. This section derives the er-
ror introduced in the dense map resulting from neglecting the
correlation with the landmark map.

Once the location of an environment property is fused in-
side the local regions, the algorithm never changes its local
coordinates (α, β). A change in these coordinates can be pro-
duced by two means: direct observation of the property or
through cross-correlation with the rest of the system. In this
section we investigate the changes in the dense property posi-
tion produced by cross-correlation with the rest of the system.
Using the relative representation to define the dense maps re-
sults in a significant reduction in the correlation between the
dense map locations and the rest of the system. Nevertheless,
there will be some correlation due to the local vehicle uncer-
tainty. The evaluation of this error is derived next.

After the vehicle takes new observations, the update pro-
duced to the first moment of the state vector is given by:

x̂+ = x̂− + �x (20)

Pr
oo

f C
op

y

14 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2006

where

�x = P−∇hxS−1ν (21)

Assume a range and bearing observation of the i-th landmark
is taken

z =
[

hr(x̂−
v , x̂−

Li)

hθ(x̂−
v , x̂−

Li)

]
(22)

and the innovations vector ν and innovations covariance S are
calculated:

S−1 =
[

S1 S2

S3 S4

]
(23)

ν =
[

νr

νθ

]
(24)

Using eq. (21) it can be shown that the update produced in
the mean of a non-observed landmark j due to the correlation
with the vehicle and landmark i will be:

�xj = (Pjv∇hT

rv
+ Pji∇hT

ri
)(S1νr + S2νθ)

+ (Pjv∇hT

θv
+ Pji∇hT

θi
)(S3νr + S4νθ) (25)

where Pjv is the cross-covariance matrix between the land-
mark j and the vehicle pose. Pji is the cross-covariance be-
tween the landmarks j and i, and:

∇hrv = ∂hr

∂xv

(26)

∇hri = ∂hr

∂xLi

(27)

∇hθv = ∂hθ

∂xv

(28)

∇hθi = ∂hθ

∂xLi

(29)

Equation (25) represents the error in the location of the dense
maps that the algorithm makes, by not considering the correla-
tion between the dense information and the rest of the system.
An example where eq. (25) is calculated for a local and for a
global landmark is presented next.

EXAMPLE 2. The changes in position of a local represented
landmark resulting from the correlation with the rest of the
map are evaluated here, using the environment presented in
Example 1. In Figure 10(a) the dashed line shows the evolution
in time of the landmark i represented in local coordinates xL

Li
,

and the solid line illustrates the landmark position evolution
when the landmark is expressed in global coordinates xG

Li
. The

lines depict the distance in meters of the landmark position
with respect to the initial position estimated. The landmark is
observed several times and once it is highly correlated with

the base landmarks, it is not observed again. This is to imitate
what actually occurs with the dense information, where there
is no data association process. This means that once an ob-
servation is fused, it is assumed that the same point is never
observed again. Since the landmark in this example is not di-
rectly observed, the changes in position are only due to the
correlations with the rest of the map. Therefore the lines in
Figure 10(a) are a representation of the error introduced by
ignoring the update term shown in eq. (25), when the land-
mark is represented in local and in global coordinates. It can
be observed that even when the position of the landmark in
global coordinates changes more than 50 centimeters with re-
spect to the initial position, its local coordinates only change
approximately 6 centimeters when the loop is closed (largest
update) and is rapidly stabilized to an almost constant value,
while the global position continues changing. This 6 centime-
ters change in the local landmark coordinates is the error that
the algorithm will make by not considering the correlations
between the dense maps and the rest of the system, which as
shown, is reduced drastically using the relative representation
in comparison with the error produced using the global frame
to represent the dense maps.

The points in Figure 10(b) depict the changes in position
of the landmark i in global coordinates. The initial position is
the bottommost point and then the estimate starts to move to
where the actual landmark position is located.

4. Consistency in DenseSLAM

This section discusses consistency in DenseSLAM. The next
subsection will introduce a new concept named Unidirec-
tional Information Flow UIF, which is used to demonstrate
that the landmark map and the localization process obtained
with DenseSLAM are optimal in comparison with feature-
based SLAM.

4.1. The Unidirectional Information Flow (UIF)

DenseSLAM is built upon two key variants of the basic SLAM
algorithm.

• The relative representation. The representation stores
the dense information in local coordinate frames re-
ducing the cross-correlation between the dense repre-
sentation and the landmark map.

• The Unidirectional Information Flow. The represen-
tation considers information going from the feature-
based SLAM to the dense maps. There is no direct
information flow from the dense maps to the feature-
based SLAM. We have called this effect Unidirectional
Information Flow (Nieto, Guivant, and Nebot 2004a).
As a result of the UIF property, it is possible to aug-
ment the feature-based SLAM algorithm to obtain a

Pr
oo

f C
op

y

Nieto, Guivant, and Nebot / DenseSLAM 15

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time(s)

D
is

ta
nc

e(
m

)

(a)

36 36.2 36.4 36.6 36.8 37 37.2 37.4 37.6 37.8

13.8

14

14.2

14.4

14.6

14.8

15

15.2

East (metres)

N
or

th
 (

m
et

re
s)

(b)

Fig. 10. Figure (a) shows the changes in the landmark’s position, the solid line depicts the changes when the landmark is
represented in global coordinates and the dashed line when it is represented in a global frame. The points in (b) depict the
changes in position of the landmark i in global coordinates. The initial position is the bottommost point and then the estimate
starts to move to the actual landmark position.

Pr
oo

f C
op

y

16 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2006

more detailed representation. The UIF guarantees the
system remains consistent. This characteristic ensures
that DenseSLAM will never perform worse than a stan-
dard feature-based SLAM.

The concept of Unidirectional Information Flow (UIF) for
state-space estimation is now introduced, and the manner in
which the HYMM representation uses this concept to ensure
consistency in DenseSLAM is explained.

The notion of UIF is relevant to systems where the state-
vector is divided into two groups: (i) states that both give to
and receive information from the rest of the system and (ii)
states that only receive information. These latter states are said
to possess UIF. They are a set of states that receive indirectly
the information obtained by the other states, but they do not
give information back to the rest of the system.

Example 3 clarifies the idea, applying the UIF concept to
the feature-based SLAM problem.1

EXAMPLE 3. Consider a landmark map where a subset of
landmarks N1 is estimated by the SLAM algorithm and where
a second set of landmarks N2 is observed only once. The
latter set will not provide information to the rest of the system
(because they are observed only once). However, because they
are correlated to the set N1 as a result of robot pose uncertainty
they will receive information from N1. As a consequence it
is not necessary to maintain the cross-correlation within the
landmarks set N2, only the cross correlation between N1 and
N2 will be necessary. A full filter implementation without
considering UIF will require the update of a covariance matrix
of (N1 +N2)(N1 +N2). By considering the UIF property only
N1(N1 + N2) + N2 elements of the covariance matrix have to
be maintained. If N1 << N2, then the computational burden
will be drastically reduced using the UIF concept.

The UIF is a general concept that can be used in different
applications. Take for example an autonomous robot perform-
ing SLAM, and at the same time tracking people. Assume the
motion model for the people is a random walk model. The
state vector will consist of the robot pose, the static landmark
positions and the states used to model the motion of the peo-
ple, for example, speed and position. In general, there will
be no information flow from the people’s track to the robot
pose, because the robot motion model will be more accurate
than the random walk model used for the people tracks. How-
ever, the static landmarks have a noiseless model, so the robot
will use the information coming from the landmarks to lo-
calize itself and its position for the tracking. This is a clear
example where without adding restrictions to the system about
how the information flows, the system naturally behaves un-
der the UIF assumption. There is information flowing from
the feature-based SLAM to the people tracks, but not informa-

1. The example does not try to present a solution to the traditional feature-
based SLAM problem, it is actually trying to illustrate the UIF concept in a
very well known problem.

tion from the people tracks to the robot pose and the landmark
position estimates. An application similar to this example was
introduced in Wang (2004), where a vehicle does SLAM in
the streets of a city, and at the same time the observations
are used to track the cars moving around the vehicle. The im-
plementation presented in Wang (2004) uses the information
from the SLAM in the tracking algorithm, but it does not use
the information from the tracking in the SLAM.

4.2. UIF in DenseSLAM

DenseSLAM uses the UIF to incorporate more information
into the map representation. The algorithm maintains a joint
state vector with the vehicle pose and feature positions and
the dense maps are stored in a separate data structure.

This section demonstrates that by using the UIF concept,
DenseSLAM can be decoupled into two problems: the classic
feature-based SLAM and the estimation of the dense map.

Solving the DenseSLAM problem using a Bayesian for-
mulation requires the evaluation of the following probability
distribution:

P(xk, f, d|Zk, Uk, x0) (30)

∝ P(zk|xk, f, d)P (xk, d, f |Zk−1, Uk, x0)

where xk is the robot pose vector at time k, f is the features
map, d is the dense map, Zk is the set of observations received
until time k, zk are the observations at time k, Uk are the control
inputs and x0 the initial conditions.

Once the features are extracted, the observations can be
divided into two groups; the observations belonging to the
feature map and the ones belonging to the dense map.

P(zk|xk, f, d) = P(zf

k |xk, f)P (zd

k
|xk, d) (31)

Now assume that the dense map does not provide any infor-
mation to the robot pose and the feature map, then:

P(xk, f |Zk, d, Uk) = P(xk, f |Zk

f
, Uk) (32)

This concept is illustrated in Figure 11. There is information
going in both directions between the robot and the feature
map, and information going from the robot and feature map
to the dense map, but not information going directly from the
dense map to the rest of the system. This is in accordance with
what happens in practice during SLAM where geographically
close objects present high correlation having high mutual in-
formation. If they share the same information, then only a
selected part of the map needs to be used for the SLAM pro-
cess (e.g., feature map). The rest of the information can be
maintained and used for other tasks. For example, it can be
used to maximize (or accumulate) all the information gath-
ered from the sensors, e.g., to get an occupancy grid map
(Nieto, Guivant, and Nebot 2004b), and then be used for the

Pr
oo

f C
op

y

Nieto, Guivant, and Nebot / DenseSLAM 17

Dense
Map

Robot Pose

Feature
Map

Information
Flow

Fig. 11. Unidirectional Information Flow effect in Dense-
SLAM: The information between the features map and robot
pose is bidirectional while the information between robot
and dense map is unidirectional.

path planning algorithm. Applying eqs (31) and (32) to 30,
the following result can be derived:

P(xk, f, d|Zk, Uk, x0)

∝ P(zf

k |xk, f)P (xk, f |Zk−1
f

, Uk, x0)

P (zd

k
|xk, d)P (d|Zk−1) (33)

The first factor on the right term of eq. (33) (second line) is a
Bayesian feature SLAM, and the second factor (third line) cor-
responds to the dense Bayesian map estimation. This equation
demonstrates that by virtue of the Unidirectional Information
property the DenseSLAM problem can be decoupled into two
problems: the estimation of the feature-based SLAM and the
estimation of the dense map. This decoupling effect makes
possible the implementation of an efficient algorithm able to
obtain dense representations. Note that because of this decou-
pling effect, DenseSLAM can be implemented on top of any
feature-based SLAM. This is one of the main characteristics
of DenseSLAM, it is not restricted to a particular SLAM al-
gorithm. For simplicity this paper presents implementations
using a standard EKF-SLAM, but any of the efficient feature-
based SLAM techniques (Knight, Davison, and Reid 2001;
Williams 2001; Bailey 2002; Guivant 2002; Bosse et al. 2003)
are equally valid.

5. Dense Maps Representation

One of the main strengths of DenseSLAM is the fact that
it is not restricted to any particular local representation. The
only condition required by the algorithm is to fuse the sen-
sory information into a local representation whose frames are
determined by the position of a set of landmarks.

This section shows two representations that can be used to
represent the dense sensed information; DenseSLAM using
Occupancy Grid (OG) and Sum of Gaussians (SOG) repre-
sentation. These two representations with different charac-
teristics were chosen in order to show the flexibility of the
algorithm to represent the sensory information. Implementa-
tions of DenseSLAM using the two representations will be
presented in the experimental section.

5.1. DenseSLAM Using Occupancy Grid
(OG-DenseSLAM) Maps

The occupancy grid (OG) mapping technique (Elfes 1989b)
represents the environment with a grid of fixed resolution.
The OG is a multidimensional grid that maintains stochastic
estimates of the occupancy state of each cell. As mentioned
before, one of the main problems with OG maps is the lack
of a method to include the correlations between cells. The
technique assumes that the state variables of each cell are
independent, an assumption that yields inconsistent results.
This section addresses the problem of obtaining consistent
OG maps. It will be shown that by using DenseSLAM it is
possible to obtain grid maps, even in cases where the robot
pose uncertainty is large.

DenseSLAM uses the landmark map to define the bound-
aries of a local grid map (see Figure 2). These local regions
are then used as frames to fuse the dense information. In tradi-
tional OG maps, a grid of fixed resolution covering the region
of interest is defined prior to starting the mapping process.
DenseSLAM does not predefine the region of interest. The al-
gorithm defines local OG maps at the time the robot explores
new areas and incorporates more landmarks. In addition, dif-
ferent grid granularity can be assigned to each individual local
OG map.

OG-DenseSLAM presents several advantages in compari-
son with classic OGs. First, OG-DenseSLAM overcomes the
main problem of the classic OG framework: the local rep-
resentation used by DenseSLAM allows the corrections to
be propagated to the grid maps, which makes the final map
consistent with the landmarks map and the robot localization
process. In addition DenseSLAM naturally overcomes two
other problems of traditional OGs: (i) DenseSLAM does not
limit the grid to an area previously defined, instead local re-
gions are created when new areas are explored and (ii) the
algorithm permits regions to be defined with different resolu-
tions, enabling the construction of maps with different levels
of detail, depending on the importance of particular areas.

5.1.1. Observation Model

A stochastic sensor occupancy model is defined as:

P(r|s(Ci) = Occ) (34)

Pr
oo

f C
op

y

18 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2006

where r represents the sensor readings and s(Ci) the state of
the cell Ci which has two possible values; occupied or free.

The sensor occupancy model is obtained from the sensor
model applying Kolmogorov’s theorem (Elfes 1989a). Closed
form solutions for eq. (34) can be derived for certain sensor
models and numerical solutions are used in other cases. Dif-
ferent closed forms approximations for eq. (34) can be found
in the literature (Pagac, Nebot, and Durrant-Whyte 1998; Ribo
and Pinz 2001). The next example presents an occupancy
model for the one-dimensional case.

EXAMPLE 4. Equation (35) illustrates an approximated
closed form solution for the one-dimensional case (Leal
2003).

P(r|s(Ci) = Occ) =

(1 − pmax) + (pmax − 0.5)(1 − λ) −1 ≤ λ ≤ 0
0.5 + (pmin − 0.5)λ 0 < λ ≤ 1 ∧ r ≤ ru

0.5 r > ru

(35)

where λ = (1 − 2λr) and λr is the normalized sensor model;
pmin and pmax correspond to the maximum and minimum of
the occupancy model; and ru corresponds to the closest range
where:

0.5 + (pmin − 0.5)λ = 0.5 (36)

See Appendix A in Leal (2003) for more details about this
closed-form solution.

5.1.2. Update

OG approaches use Bayes formulation to fuse the sensor in-
formation collected.

P(s(Ci) = Occ|rk+1) =
P(rk+1|s(Ci) = Occ)P (s(Ci) = Occ|rk)∑

s(Ci)
P (rk+1|s(Ci) = Occ)P (s(Ci) = Occ|rk)

(37)

where rk+1 represents the set of observation vectors received
until time k and P(s(Ci) = Occ|rk) is the previous estimate
of the cell state. It is important to note that the vehicle pose is
assumed to be known in OG approaches, so the left term in eq.
(37) should actually be written as P(s(Ci) = Occ|rk+1, xv),
where xv represents the vehicle pose. To avoid repetition in
the notation, xv is not written here.

In practice the update is often solved using Odds formu-
lation (Moravec 1988; Thrun 2002). The odds of a variable
x with probability P(x) is defined as P(x)

1−P(x)
. The logarithmic

form is used because it is computationally advantageous. The
update using log Odds formulations is expressed as (for the

sake of brevity, s(Ci) = Occ is noted as Ci):

log
P(Ci |rk+1)

1 − P(Ci |rk+1)
= log

P(Ci |rk)

1 − P(Ci |rk)

+ log
P(Ci |rk)

1 − P(Ci |rk)
+ log

1 − P(Ci)

P (Ci)
(38)

where P(Ci) is the prior which is usually set to 0.5 and so
the last term goes to zero. Note that eq. (38) does not need a
normalization factor as in eq. (37).

5.2. DenseSLAM Using Sum of Gaussians
(SOG-DenseSLAM)

This section presents a SOG-DenseSLAM algorithm. A SOG
distribution is used to represent the sensory information. This
SOG is then fused into the map using local representation
in the same form as the OGs in the previous section. It is
important to clarify that the final SOG map does not represent
a distribution, therefore cannot be used for recursive mapping.
However, the 2D PDF representation can be used, for example
to assist the data association process via scan correlation or
for localization after a final map has been obtained with SOG-
DenseSLAM.

5.2.1. Observation Model

An n-dimensional Gaussian distribution is defined as

g(x; x̄, P) � 1√
(2π)n |P| exp

(
−1

2
(x − x̄)T P−1(x − x̄)

)

(39)

where x̄ and P are the mean and covariance, respectively. An
n-dimensional sum of Gaussians (SOG) is defined as the sum
of k scaled Gaussians.

G(x) �
k∑

i=1

αig(x; x̄i , Pi) (40)

where, for a normalized SOG, the sum of the scaling factors
αi is one.

Any set of point measurements with Gaussian noise can be
represented as a SOG. In particular, a range and bearing mea-
surement in polar coordinates zi = (ri, θi) with covariance
matrix R, can be represented in cartesian coordinates as

xi = f (zi) =
[

ri cos θi

ri sin θi

]
(41)

with covariance matrix

Pi = ∇fzi
Ri∇fT

zi
(42)

where ∇fzi
= ∂f

∂zi
.

Pr
oo

f C
op

y

Nieto, Guivant, and Nebot / DenseSLAM 19

Figure 12 shows an example of a laser scan represented
as a SOG. In this example, the SOG representation was built
with Gaussians of equal height, which means that the scaling
factors in eq. (40) are equal to

√
(2π)n |P|, where P is the

Gaussian covariance matrix.

5.2.2. Update

To understand the update it is necessary, first, to clarify what
the Gaussians are actually representing. The Gaussians rep-
resent the probability of the area under the Gaussian shape
being occupied. But they do not formally represent a proba-
bility distribution, thus the representation cannot be used for
recursive data fusion. However, the Gaussians give a good
representation of the shape of the environment. The strategy
for the update will be to cover the areas where observations
are received with the smallest possible number of Gaussians.
This could be done for example by fusing two Gaussians that
are close in only one Gaussian with mean equal to the average
of the means and variance equal to the sum of the variances.

The algorithm implemented here works as follows:

1. When an observation frame is received, it is represented
as a SOG as shown before.

2. To fuse the new SOG, a nearest neighbor algorithm as-
sociates each Gaussian from the a priori map that is
inside the sensor view, with a Gaussian from the obser-
vation SOG.

3. A dmin value is defined, so if two Gaussians from the a
priori map and the observation scan are associated and
the distance between the Gaussians mean is smaller
than dmin then the two Gaussians will be fused in one
new Gaussian.

4. The Gaussian’s fusion consists of obtaining a new
Gaussian from the two associated Gaussians. This is
done as follows. The mean of the new Gaussian xnew is
equal to the average of the means.

xnew = xpriori + xobs

2
(43)

To obtain the new Gaussian variance σnew, the variances
of the two associated Gaussians are first analyzed.

If the sum of the Gaussian variance from the a priori
map and the Gaussian variance from the observation is
smaller than k · dmin:

σpriori + σobs ≤ k · dmin (44)

then the covariance matrix of the new Gaussian is equal
to the sum of the covariances.

Pnew = Ppriori + Pobs (45)

If the sum of the Gaussian variance from the a priori
map and the Gaussian variance from the observation is
larger than k · dmin then the covariance matrix of the
new Gaussian is equal to the covariance matrix of the
a priori Gaussian:

Pnew = Ppriori (46)

This last point is to ensure that the Gaussians’ variance
will not continue growing when more observations are
received, so if the sum of the Gaussians is large in com-
parison with the distance between them, then the co-
variance of the new Gaussian stays as the one from the
a priori Gaussian.

Experimental results of OG-DenseSLAM and SOG-
DenseSLAM will be presented in Section 7.

6. DenseSLAM: Applications

This section shows how the detailed multi-dimensional envi-
ronment description obtained by DenseSLAM can be used to
improve the vehicle navigation process. Two particular appli-
cations are shown. (i) Complex landmarks can be extracted
and incorporated as they become identified using the dense
representation. The incorporation of landmarks into the nav-
igation map will improve the vehicle localization process.
(ii) The dense maps can be used to estimate the variations in
time of the areas explored by the robot which can be used to
discriminate whether a region has potential dynamic objects.
This information will help to prevent the vehicle from using
dynamic objects for the localization process.

6.1. High Level Landmarks (HLLs)

One of the main problems in SLAM algorithms is the er-
ror accumulation resulting from non-linearities in the system.
This error accumulation can be reduced if more information is
added into the localization map, because the vehicle error will
remain smaller. Among the reasons to avoid including more
landmarks is the computational burden required to maintain
the map. However, in many situations, even when the compu-
tational cost may not be a problem, the difficulties of finding
stable and easily detectable features cause the algorithm to
use only a small number of landmarks for the localization pro-
cess, which results in a major accumulation of errors resulting
from non-linearities.

DenseSLAM yields a rich environment representation,
which gives the possibility of adding landmarks extracted
from the dense maps into the landmarks map. In many sit-
uations an object cannot be detected using the measurements
taken from only one vantage point. This can be for a variety
of reasons: occlusion between objects, the size of the object
in relation to the sensor field of view, an inappropriate fea-
ture model, or just because the nature of the sensor makes

Pr
oo

f C
op

y

20 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2006

−2 0 2 4 6 8 10

−2

0

2

4

6

8

(a)

(b)

Fig. 12. Figure (a) shows the set of raw range-laser data points transformed to a sensor-centric coordinate frame. (b) Shows
the SOG representation of this scan.

Pr
oo

f C
op

y

Nieto, Guivant, and Nebot / DenseSLAM 21

the estimation of the landmark location impossible from only
one vantage point (e.g., wide-beam sonar: McKerrow 1993;
Leonard et al. 2002). Estimating partially observable features
has been an important research topic in computer vision using
stereo vision and bearing only information, where the initial-
ization of the feature position is a significant problem. The
problem of partially observable features has also been stud-
ied for localization and SLAM applications. In Leonard et al.
(2002) an approach is presented that delays the decision to
incorporate the observations as map landmarks. Consistent
estimation is achieved by adding the past vehicle positions to
the state vector and combining the observations from multiple
points of view until there is enough information to validate
a feature. In McKerrow (1993), intersection of a range of
constant depth of ultrasonic sensors is used to determine the
location of features from multiple vantage points.

Having a comprehensive representation of the environment
will enable a delayed processing to determine whether part of
the map can qualify as a landmark. The rich representation
obtained by DenseSLAM will enable postprocessing capa-
bilities to continuously detect high-level landmarks using the
dense map layers. The newly detected landmarks can then
be added to the feature map. This approach has the potential
of incorporating a large number of landmark models, some
of them to be applied online at the time the observations are
taken and the rest to run in the background when computer
resources become available. The landmarks can then be in-
corporated into the features map.

6.1.1. HLLs Initialization

When a HLL is detected, it has to be incorporated in the state
vector in order to be used for SLAM. The HLLs cannot be
initialized directly with the information extracted from the
dense maps since this will violate the UIF principle. Thus,
once the HLL is detected it will remain as a passive landmark
until the vehicle actually observes it again. At that moment,
the HLL will be initialized using the new observations.

6.1.2. HLLs Representation

The only condition for the incorporation of a HLL is to rep-
resent the information in the same form as the feature map.
In the implementations presented in this paper EKF-SLAM
is used, thus the HLLs have to be represented in state vector
form.

The HLLs could be represented using geometric parame-
ters. Experimental results of SLAM using trees as landmarks
are presented in Guivant (2002). An EKF is run which esti-
mates the trees’ parameters, which consist of the center and
the diameter of the trees’ trunks. In Thrun et al. (2001) an
algorithm is presented that employs expectation maximiza-
tion to fit a low-complexity planar model to 3D data collected
by range finders and a panoramic camera. After this model is

obtained, its parameters could be added to the state vector to
represent a HLL.

In this paper we opted for representing the HLLs as a local
coordinate system and a template which is defined relative to
the local axes. The templates are formed with the information
extracted from the dense maps. Scan correlation is used in
order to generate observations of the landmarks (see Nieto,
Bailey, and Nebot 2005 for more details). An example of this
representation is shown in Figure 13. Figure 13(a) shows a
HLL extracted from the OG map layer obtained by Dense-
SLAM. The figure shows the landmark template and the local
coordinate system. Figure 13(b) shows the same HLL but now
extracted from the SOG layer.

6.2. Dynamic Environments

Most of the mapping algorithms assume the world is static
(Thrun 2002). Dynamic environments require an extension of
the typical representation used for static environments. That
extension should allow for modeling the temporal evolution of
the environment. Dynamic objects can induce serious errors
in the robot localization process. Only a few approaches that
include moving objects have been presented so far. The next
paragraphs review some of them.

A SLAM algorithm with generic objects (static and dy-
namic) is presented in Wang (2004). Similar to classic SLAM,
the approach calculates the joint posterior over robot and ob-
ject’s pose, but unlike traditional SLAM it includes also the
object’s motion model. The problem is shown to be computa-
tionally intractable and so a simplified version called SLAM
with Detection and Tracking of Moving Objects (SLAM with
DATMO; Wang, Thorpe, and Thrun 2003) is presented. The
latest algorithm decomposes the estimation process into two
separate problems: (i) the SLAM problem, using static land-
marks as the classic approach, and (ii) the detection and track-
ing of moving objects, using the robot pose estimated by the
SLAM algorithm. This simplification makes updating both
the SLAM and the tracking algorithm possible in real-time
since they are now considered to be two independent filters.

In Hähnel et al. (2003) an algorithm for mapping in dy-
namic environments is presented. The aim of the approach
is to determine which measurements correspond to dynamic
objects and then filter them out for the mapping process. The
approach uses the EM algorithm; the expectation step com-
putes an estimate of which measurements might correspond
to static objects. These estimates are then used in the maxi-
mization step to determine the position of the robot and the
map.

An approach called Robot Object Mapping Algorithm
(ROMA) is presented in Biswas et al. (2003). The main goal is
to identify non-stationary objects and model their time vary-
ing locations. The approach assumes that objects move suffi-
ciently slowly that they can safely be assumed static for the
time it takes to build an occupancy grid map of the whole

Pr
oo

f C
op

y

22 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2006

(a) (b)

Fig. 13. The figure shows a HLL extracted from the dense maps. (a) Shows the HLL represented using the OG map and (b)
the SOG map.

area explored by the robot. Assuming the robot is able to ac-
quire static occupancy grid maps at different times, changes
in the environment are detected using a differencing tech-
nique. The algorithm learns models of the objects using EM.
The expectation step calculates the correspondences between
objects at different points in time and the maximization step
uses these correspondences to generate refined object models,
represented by occupancy grid maps.

The algorithms presented in Wang, Thorpe, and Thrun
(2003) and Montemerlo, Thrun, and Whittaker (2002) have
one thing in common; they rely on pre-defined models of the
specific objects they aim to track. ROMA, however, is able to
learn about the shape of the objects, but the algorithm presents
a number of limitations. Objects have to move slowly (it is
not able to cope with fast-moving objects such as people); it
is assumed the robot is able to obtain static maps at different
times. The results presented include only four different ob-
jects in an environment where these objects can be perfectly
segmented from a laser scan. The extension to a real environ-
ment with a larger number of objects may not be possible and
will be computationally very expensive.

If navigation is the primary objective, the accurate shape
of objects, or even their classification may not be important
in general. What may be more useful is an algorithm able to
identify observations that may be coming from objects that are
not static and eliminate them from the list of observations to
be used for the navigation process. Furthermore the algorithm
could identify areas where it is more likely to find dynamic
objects (e.g., a corridor where people walk) and then avoid
their use or give a low priority to observations coming from
objects in those areas.

The rich environment representation obtained by Dense-
SLAM allows a map layer identifying the most likely areas to
possess dynamic objects to be built. As shown in Biswas et al.
(2003), dynamic objects can be identified by differentiation of

maps taken at different times. There are two different classes
of object motions in a dynamic environment; slow motion, as
for example the motion of a bin, which will be static during
most of the day but will eventually be moved; and fast motion,
such as people. The next subsections show how, using Dense-
SLAM, and applying a straightforward differentiation, it is
possible to identify regions with dynamic objects for either
fast or slow motion objects.

6.2.1. Slow Motion

One of the main problems with the differentiation is that maps
obtained at different times will have different uncertainty. If a
global map is maintained and two maps acquired at different
times need to be differentiated, the uncertainty in the maps
will make the matching process very difficult.

In DenseSLAM the global map is divided into smaller re-
gions, so the whole map can be differentiated by applying
differentiation between the corresponding local regions. As a
consequence, the differentiation process will be prone only to
local errors (which as shown in Section 3.5 are much smaller
than the global ones) eliminating detection errors due to the
uncertainty between maps acquired at different moments.

A particular case where the DenseSLAM representation
will not present advantages over other approaches is in multi-
robot mapping. If multiple robots are used to map an area,
each robot will form the map using different local regions.
If the objective is to detect dynamic objects by fusing the
maps built by different robots, a global map will have to be
used and DenseSLAM loses advantages with respect to other
approaches.

6.2.2. Fast Motion

Fast motion can be captured by differentiation, in a similar
way to slow motion. The main difference is that the differ-

Pr
oo

f C
op

y

Nieto, Guivant, and Nebot / DenseSLAM 23

−60 −40 −20 0 20 40 60 80 100

0

50

100

150

200

East (metres)

N
or

th
 (

m
et

re
s)

Fig. 14. Satellite picture of the experimental environment with the trajectory reported from the GPS.

entiation is done over shorter periods of time and only in the
region under the sensor view. As in the detection of objects
with slow motion, using DenseSLAM the differentiation is
done using local regions instead of the global map. The mo-
tion detection will be included in a map layer as will the other
properties captured by the sensors, then the global position of
the dynamic map will be updated together with the other map
properties (color, occupancy, etc.).

It is important to note that fast motion detection can be also
done with other techniques that are able to create a dense map
in proximity to the vehicle position. The advantage of Dense-
SLAM is that the dense representation is already obtained,
therefore, the detection of moving objects is a straightforward
procedure that does not add computational cost.

7. Experiments

This section presents experimental results in an outdoor en-
vironment. Figure 14 shows a satellite picture of the envi-
ronment used for the experimental test. The environment is a
large area of 120 by 200 metres and the run is approximately
1 km long.

The experimental platform used for the experiments is a
conventional Holden UTE (see Extension 4). The platform is
equipped with Sick lasers, a linear variable differential trans-
former sensor for the steering mechanism, back wheel veloc-
ity encoder, inertial unit, compass and GPS. The inertial unit

and wheel encoder were used for the vehicle dead-reckoning
process, and a Sick laser was used to take external observa-
tions. The dataset used for the experimental results and movies
of the experiment can be downloaded at Guivant and Nebot
(2002a). See also Extension 2.

7.1. DenseSLAM

Figure 15(a) presents the results obtained with the dead reck-
oning sensors. The figure shows the path obtained with the
motion model and the GPS information. Because of the na-
ture of the environment (buildings and trees), GPS was not
always available. However, there were still some sections of
the path where the GPS was available with good quality and
could be used as a reference. Figure 15(b) shows the result
obtained with the classic EKF-SLAM. The landmark mean
and the 3σ ellipses covariance bounds are also shown. The
vehicle starts to move at (0, 0) coordinates. The vehicle ini-
tially completes a couple of loops in the car park area near
the ACFR building and then it moves to the top part of the
run. This is the part that presents the largest uncertainty. A
zoom-in of the top part is shown in Figure 16.

In order to test the DenseSLAM algorithm, the GPS in-
formation was fused with the feature-based SLAM to obtain
a laser image of the environment that is used as a reference
to compare with the estimates by DenseSLAM. Figure 17
shows the laser image obtained with the GPS information

Pr
oo

f C
op

y

24 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2006

−40 −20 0 20 40 60 80
−40

−20

0

20

40

60

80

100

120

140

160

180

East (metres)

N
or

th
 (

m
et

re
s)

−40 −20 0 20 40 60 80
−40

−20

0

20

40

60

80

100

120

140

160

180

East (metres)

N
or

th
 (

m
et

re
s)

(a) (b)

Fig. 15. The dark line in (a) shows the path obtained with the dead-reckoning sensors and the position reported by the GPS is
depicted by the light line. (b) Shows the result obtained with the SLAM algorithm. The ellipses represent the 3σ bound for
the landmarks uncertainty.

and the final map obtained with DenseSLAM. The dense map
was obtained by fusing the raw laser observations into the
local regions. The figure also shows the landmark positions.
Because of the large number of buildings present in the envi-
ronment, virtual landmarks (see Section 3.4.1) were needed
to incorporate the walls into the map. This is why some extra
landmarks can be observed in Figure 17 with respect to the
feature-based SLAM result.

Figure 18 shows a zoom of the top part of the run. Figure
Figure 18(a) shows the result obtained by DenseSLAM before
closing the loop. The figure also shows the laser image used
as a reference. The error in the estimated map before closing
the loop can be easily observed. Figure 18(b) shows the result
after closing the first loop.Although there is still some residual
error, it is clear how the estimated map has been corrected.
Looking at Figure 15(b) it can be seen that there is some
remaining uncertainty in these landmarks even after the loop
is closed. This is because the vehicle does not return to the
top part of the run after closing the first loop. As a result, the

error in that region is not reduced as much as in the bottom
part of the run. Nevertheless, an important correction in all
the regions has still been made.

7.2. Multi-Layer Maps

To illustrate the multi-layer capabilities of DenseSLAM, an
implementation of the algorithm which obtains different rep-
resentations using the laser information was carried out.

The experimental results are obtained using a part of the
run presented before. The use of a smaller area provides a
clearer illustration of the multi-layer concept. Figure 19 shows
the section of the run utilized. The green solid line depicts
the vehicle trajectory as reported by the GPS. The blue dots
represent a laser image obtained using SLAM in combination
with GPS.

Three different map-layers were acquired using the laser
information. The first layer was obtained by fusing the raw
observations. The second layer was obtained by implement-

Pr
oo

f C
op

y

Nieto, Guivant, and Nebot / DenseSLAM 25

Fig. 16. Zoom in of the top part of the environment. The
figure presents the result obtained with the feature-based
SLAM.

ing OG maps inside the local regions. And the third layer
consists of a Sum of Gaussians (SOG) representation of the
environment.

Figure 20 shows the map obtained fusing the raw observa-
tions in the local regions. Figure 21 illustrates the occupancy
map layer obtained by DenseSLAM. The grid resolution is
0.5 meters. Figure 22 shows the SOG map layer acquired.
The figure shows the ellipses which represent the 1σ bounds
for the Gaussians covariance. The SOG map was obtained us-
ing a dmin = 0.5 meters for the nearest neighbor algorithm.
Figure 23 illustrates the SOG map result. The SOG surface
was built using a grid of 0.5 meters. Finally, Figure 24 illus-
trates the three map layers obtained, from bottom to top, the
figure shows the raw data map, the SOG and the OG layer.

7.3. Applications

7.3.1. High Level Landmarks (HLL)

An algorithm to detect high level landmarks (HLLs) was run
using the representations obtained with DenseSLAM. The im-
plementation creates two map layers, a SOG and a OG layer.

Since the environment is dominated by buildings, the HLLs
were defined as corners. To make the HLLs more “unique”,
in the implementation presented the algorithm searches for

Fig. 17. Final map obtained with DenseSLAM. The light
points represent the laser image obtained using GPS and
SLAM. The dark points depict the dense map estimated by
DenseSLAM.

pairs of corners (two corners in proximity). Thus, for a part
of the map to qualify as a HLL, it needs to have two corners
and the corners need to be closer than a predefined distance.
A template area is delimited around the two corners, and if the
SOG map-layer under the template area possesses more than
a minimum number of Gaussians, the template is accepted as
a HLL.

The first step is then to search for corners, this was done us-
ing the OG map layer. Figure 25 shows the result of the corner
detector algorithm.A Harris corner detector was implemented
and run in the OG layer. The crosses represent the position
of the corners identified. After the corners are detected, the
algorithm searches for pairs of corners whose distance apart
is less than 7 meters. Then a rectangle area around the two
corners is delimited and the HLL is extracted from the SOG
taking the Gaussians under the rectangle. A HLL is accepted
only if it possesses a minimum number of Gaussians.

In this implementation the HLLs’ templates are the Gaus-
sians extracted from the SOG-map layer. Figure 26(a) illus-
trates the HLLs found. The figure shows the laser image, the
corners detected and the HLL bounds are represented by the

Pr
oo

f C
op

y

26 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2006

(a) (b)

Fig. 18. The lighter points represent the laser image obtained using GPS/SLAM. The darker points represent the final map
obtained with DenseSLAM. Figure (a) shows the result before closing the loop, and (b) after the loop is closed.

rectangles. Nine HLLs were accepted by the algorithm. Fig-
ure 26(b) shows the HLLs map. The points represent the mean
value of the Gaussians that form the templates for the land-
marks. After the HLLs are detected, they are incorporated in
the state vector. The landmarks extracted from the dense map
cannot be immediately initialized because that will violate the
UIF condition, which will introduce inconsistencies into the
system. Then, the HLLs are incorporated in a list of passive
landmarks. These passive landmarks will be added into the
state vector the next time the vehicle observes them again.
For the implementation presented here, SOG-correlation is
used in order to generate observations of the SOG-templates
(Bailey 2002; Nieto, Bailey, and Nebot 2005).

7.3.2. Dynamic Maps

The slow motion detection algorithm was also tested. Fig-
ure 27(a) and (b) show images of OG map layers obtained in
the car park area at different times. The map shown in Fig-
ure 27(b) was obtained after three cars were removed from
the car park area.

The detection of dynamic objects is done by a function run-
ning in the background which differentiates maps obtained at

different times. Not only will the dynamic objects be cap-
tured by the differentiation, but also the borders of the static
objects resulting from sensor noise. To eliminate this effect, a
Gaussian lowpass filter is run after the differentiation which
removes the contours of the static objects. After this, a thresh-
old operation is done, and then cells with difference in oc-
cupancy greater than 0.5 are set as dynamics, and cells with
difference less than 0.5 remain as statics. After applying the
thresholds the result is a binary map with values 1 for the
dynamic cells and 0 for the static cells. The dynamic map
layer can be fused with the a priori dynamic map simply by
applying a logical OR operation.

The slow motion detection was run using the maps shown
in Figure 27(a) and (b). The grid cells detected as dynamics are
depicted with lighter color in Figure 27(a). As can be seen,
variations have been identified in two different places. The
first place on the right is where two cars were parked, and the
second spot is where a third car was parked.

The main objective pursued here to identify dynamic re-
gions is to avoid the use of possible landmarks formed by
dynamic objects. Then, after the algorithm detects dynamic
areas, the result is superimposed with the navigation map and
the landmarks that are under one of the dynamic areas are

Pr
oo

f C
op

y

Nieto, Guivant, and Nebot / DenseSLAM 27

−50 −40 −30 −20 −10 0 10 20 30 40
−30

−20

−10

0

10

20

30

40

50

East(metres)

N
or

th
(m

et
re

s)

Fig. 19. Experimental environment. The green solid line depicts the vehicle trajectory as reported by the GPS. The blue dots
represent a laser image obtained using SLAM in combination with GPS.

−50 −40 −30 −20 −10 0 10 20 30 40
−30

−20

−10

0

10

20

30

40

50

East(metres)

N
or

th
(m

et
re

s)

Fig. 20. Map obtained by DenseSLAM, by fusing the raw observations into the local regions.

Pr
oo

f C
op

y

28 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2006

Fig. 21. The surface represents the OG map obtained with OG-DenseSLAM.

−40 −20 0 20 40 −40 −20 0 20 40
−30

−20

−10

0

10

20

30

40

50

East(metres)

N
or

th
(m

et
re

s)

Fig. 22. SOG map layer. The ellipses represent the 1σ bounds for the Gaussians covariance.

Pr
oo

f C
op

y

Nieto, Guivant, and Nebot / DenseSLAM 29

Fig. 23. The surface represents the SOG map obtained with SOG-DenseSLAM.

Fig. 24. Three map layers obtained with the laser information. From bottom to top, the raw data, the SOG and the OG layers.

Pr
oo

f C
op

y

30 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2006

Fig. 25. OG map layer with corners detected.

removed from the state vector. Figure 28 shows the HLLs
map and the dynamic areas detected which are denoted by
lighter points. The HLL represented with a dashed line is
clearly under one of the dynamic detected regions, and then
it is removed from the landmarks map.

8. Conclusions

Traditionally, SLAM algorithms have relied on sparse envi-
ronment representations. A substantial number of works have
appeared during recent years with the objective of reducing
the computational complexity of SLAM algorithms. Most of
these approaches are based on Kalman filters, which require
the map to be modeled in the state-vector form. Consequently,
the environment representation maintained by SLAM algo-
rithms is a landmarks map where the landmarks are extracted
from sensory information that possesses particular features,
and the rest of the information is rejected. One important prob-
lem with traditional SLAM algorithms is that the sparse repre-
sentation maintained cannot provide enough information for
autonomous navigation. Despite the large number of works
focusing on issues related to the computational complexity of
SLAM algorithms, very little work has been done to investi-
gate representations alternative to the classic feature-based.

This paper presented the Simultaneous Localization and
Dense Mapping (DenseSLAM) problem and an algorithm
which is able to obtain dense multi-layer representations. The

algorithm presented combines feature maps with other dense
metric sensory representations. The approach allows dense
multi-layer environment representations to be obtained. Each
layer can represent different properties of the environment,
such as occupancy, traversability, elevation or each layer can
describe the same environment property using different rep-
resentations. The consistency of the maps was analyzed and
it was shown that the algorithm is able to obtain dense maps
without losing consistency.

In addition, to be a prerequisite for autonomous naviga-
tion, a detailed environment representation also permits im-
provement of the vehicle localization process; two applica-
tions were shown (i) complex landmarks that cannot be ob-
served from only one vantage point were extracted from the
dense maps and added into the navigation map, and (ii) the
dense representation was used to obtain a map layer of dy-
namic areas. This map is then used to detect dynamic objects
that could potentially be used as valid static landmarks.

Experimental results in an outdoor environment were pre-
sented which validated the algorithm.

Acknowledgments

This work was supported by the ARC Centre of Excel-
lence programme, funded by the Australian Research Council
(ARC) and the New South Wales State Government. Also
special thanks to QSSL for donating copies of the QNX

Pr
oo

f C
op

y

Nieto, Guivant, and Nebot / DenseSLAM 31

−50 −40 −30 −20 −10 0 10 20 30 40
−30

−20

−10

0

10

20

30

40

50

East(metres)

N
or

th
(m

et
re

s)

(a)

−40 −30 −20 −10 0 10 20 30 40
−30

−20

−10

0

10

20

30

40

50

East(metres)

N
or

th
(m

et
re

s)

(b)

Fig. 26. Figure (a) shows the HLLs detected. The rectangles represent the bounds used to define the landmarks template. (b)
Shows the HLLs map where the points represent the mean of the Gaussians and the axes the position of the local coordinate
systems.

Pr
oo

f C
op

y

32 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2006

(a) (b)

Fig. 27. Slow motion detection algorithm. (a) and (b) show the OG map obtained at two different times. In (b), three cars have
been removed from their parking places which are shown in (a) in lighter color. Two spots have been identified as dynamics.
The first spot is the detection of two cars that were near and the second spot for the third car removed.

−40 −30 −20 −10 0 10 20 30 40
−30

−20

−10

0

10

20

30

40

50

East(metres)

N
or

th
(m

et
re

s)

Fig. 28. The lighter points denote the two dynamic areas found. The HLL represented with dashed line is removed from the
landmarks map since it is located under one of the dynamic areas detected.

Pr
oo

f C
op

y

Nieto, Guivant, and Nebot / DenseSLAM 33

Momentics Professional Development suite used to imple-
ment the real time data acquisition system for the vehicle.

References

Bailey, T. 2002. Mobile Robot Localisation and Mapping in
Extensive Outdoor Environments. PhD thesis, University of
Sydney, Australian Centre for Field Robotics.
Biswas, R., Limketkai, B., Sanner, S., and Thrun, S. 2003.

Towards object mapping in non-stationary environments
with mobile robots. IEEE International Conference on In-
telligent Robots and Systems, volume 1, pp. 1014–1019.

Bosse, M., Newman, P. M., Leonard, J. J., and Teller, S. 2003.
An atlas framework for scalable mapping. IEEE Interna-
tional Conference on Robotics and Automation, volume 2,
pp. 1899–1906.

Devy, M., Chatila, R., Fillatreau, P., Lacroix, S., and
Nashashibi, F. 1995. On autonomous navigation in a nat-
ural environment. Journal of Robotics and Autonomous
Systems (16):5–16.

Elfes,A. 1989a. Occupancy Grids: A probabilistic framework
for robot perception and navigation. PhD thesis, Depart-
ment of Electrical Engineering, Carnegie Mellon Univer-
sity.

Elfes, A. 1989b. Using occupancy grids for mobile robot per-
ception and navigation. IEEE Computer 22:46–57.

Gibbens, P. W., Dissanayake, G. M. W. M., and Durrant-
Whyte, H. F. 2000. A closed form solution to the single de-
gree of freedom simultaneous localisation and map build-
ing (slam) problem. Proceedings of the 39th IEEE Confer-
ence on Decision and Control, volume 1, pp. 191–196.

Guivant, J. 2002. Efficient Simultaneous Localization and
Mapping in Large Environments. PhD thesis, University
of Sydney, Australian Centre for Field Robotics.

Guivant, J. and Nebot, E. 2002a. Acfr, experimental outdoor
dataset. http://www.acfr.usyd.edu.au/homepages/academic/
enebot/dataset.htm.

Guivant, J. and Nebot, E. 2002b. Improving computational
and memory requirements of simultaneous localization
and map building algorithms. IEEE International Confer-
ence on Robotics and Automation, volume 3, pp. 2731–
2736.

Guivant, J. and Nebot, E. 2003. Solving computational and
memory requirements of feature-based simultaneous lo-
calization and mapping algorithms. IEEE Transactions on
Robotics and Automation (19):749–755.

Guivant, J., Nieto, J., Masson, F., and Nebot, E. 2004. Naviga-
tion and mapping in large unstructured environments. The
International Journal of Robotics Research 23(4):449–
472.

Hähnel, D., Triebel, R., Burgard, W., and Thrun, S. 2003.
Map building with mobile robots in dynamic environ-
ments. IEEE International Conference on Robotics and
Automation, volume 2, pp. 1557–1563.

Jensfelt, P. and Kristensen, S. 2001. Active global local-
ization for a mobile robot using multiple hypothesis
tracking. IEEE Transactions on Robotics and Automation
17(5):748–760.

Jose, E. and Adams, M. 2005. Millimetre wave radar spectra
simulation and interpretation for outdoor slam. IEEE In-
ternational Conference on Intelligent Robots and Systems.

Knight, J., Davison, A., and Reid, I. 2001. Towards constant
time SLAM using postponement. IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 405–
413.

Kuipers, B. and Byun, Y. 1991. A robot exploration and map-
ping strategy based on a semantic hierarchy of spatial rep-
resentations. Journal of Robotics and Autonomous Systems
(8):47–63.

Lacroix, S., Mallet, A., Bonnafous, D., Bauzil, G., Fleury, S.,
Herrb, M., and Chatila, R. 2002. Autonomous rover navi-
gation in a unknown terrains: Functions and integrations.
The International Journal of Robotics Research 21(10–
11):917–942.

Leal, J. 2003. Stochastic Environment Representation. PhD
thesis, University of Sydney, Australian Centre for Field
Robotics.

Leonard, J. J., Rikoski, R. J., Newman, P. M., and Bosse, M.
2002. Mapping partially observable features from multi-
ple uncertain vantage points. The International Journal of
Robotics Research 21(10):943–975.

McKerrow, P. J. 1993. Echolocation - from range to outline
segments. Intelligent Autonomous Systems, pp. 238–247.

Montemerlo, M. and Thrun, S. 2004. A multi-resolution pyra-
mid for outdoor robot terrain perception. Proceedings of
the AAAI National Conference on Artificial Intelligence.

Montemerlo, M., Thrun, S., and Whittaker, W. 2002. Condi-
tional particle filters for simultaneous mobile robot local-
ization and people-tracking. IEEE International Confer-
ence on Robotics and Automation, volume 1, pp. 695–701.

Moravec, M. P. 1988. Sensor fusion in certainty grids for mo-
bile robots. AI Magazine (2):61–77.

Nieto, J., Bailey, T., and Nebot, E. 2005. Scan-slam: Com-
bining ekf-slam and scan correlation. International Con-
ference on Field and Service Robotics, pp. 129–140.

Nieto, J., Guivant, J., and Nebot, E. 2004a. Denseslam: The
unidirectional information flow (uif). 5th IFAC Symposium
on Intelligent Autonomous Vehicles.

Nieto, J., Guivant, J., and Nebot, E. 2004b. The hybrid metric
maps (hymms):A novel map representation for denseslam.
IEEE International Conference on Robotics and Automa-
tion, pp. 391–396.

Pagac, D., Nebot, E., and Durrant-Whyte, H. 1998. An ev-
idential approach to map-building for autonomous ve-
hicles. IEEE Transactions on Robotics and Automation
14(4):623–629.

Ribo, M. and Pinz,A. 2001.A comparison of three uncertainty
calculi for building sonar-based occupancy grids. Journal

Pr
oo

f C
op

y

34 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2006

of Robotics and Autonomous Systems 35:201–209.
Smith, R., Self, M., and Cheeseman, P. 1987. A stochastic

map for uncertain spatial relationships. Fourth Interna-
tional Symposium of Robotics Research, pp. 467–474.

Thrun, S. 2002. Robotic mapping: A survey. Exploring Artifi-
cial Intelligence in the New Millenium. Morgan Kaufmann.

Thrun, S., Burgard, W., Chakrabarti, D., Emery, R., Liu, Y.,
and Martin, C. 2001. A real-time algorithm for acquir-
ing multi-planar volumetric models with mobile robots.
The 10th International Symposium of Robotics Research
(ISRR’01).

Wang, C.-C. 2004. Simultaneous Localization, Mapping and
Moving Object Tracking. PhD thesis, Robotics Institute,
Carnegie Mellon University.

Wang, C.-C., Thorpe, C., and Thrun, S. 2003. Online simulta-
neous localization and mapping with detection and track-
ing of moving objects: Theory and results from a ground
vehicle in crowded urban areas. IEEE International Con-
ference on Robotics and Automation.

Williams, S. B. 2001. Efficient Solutions to Autonomous Map-
ping and Navigation Problems. PhD thesis, University of
Sydney, Australian Centre for Field Robotics.

