
Noname manuscript No.
(will be inserted by the editor)

Track-based self-supervised classification of dynamic obstacles

Roman Katz · Juan Nieto · Eduardo Nebot · Bertrand Douillard

the date of receipt and acceptance should be inserted later

Abstract This work introduces a self-supervised architec-
ture for robust classification of moving obstacles in urban
environments. Our approach presents a hierarchical scheme
that relies on the stability of a subset of features given by
a sensor to perform an initial robust classification based on
unsupervised techniques. The obtained results are used as
labels to train a set of supervised classifiers. The outcomes
obtained with the second sensor can be used for higher level
tasks such as segmentation or to refine the within-clusters
discrimination. The proposed architecture is evaluated for
a particular realization based on range and visual informa-
tion which produces track-based labeling that is then em-
ployed to train supervised modules that perform instanta-
neous classification. Experiments show that the system is
able to achieve 95% classification accuracy and to maintain
the performance through on-line retraining when working
conditions change.

Keywords Self-supervised learning · Obstacle classi-
fication · Learning and adaptive systems · Intelligent
vehicles

1 Introduction

Accurate classification of dynamic obstacles from a moving
vehicle is a vital component in any architecture developed
to achieve some kind of autonomy (see, for example, the ur-
ban Darpa Grand challenge DARPA (2007)), or to provide
situation awareness information to drivers (Sun, Bebis, and
Miller 2006). In either case, the considered classes usually

Roman Katz · Juan Nieto · Eduardo Nebot · Bertrand Douillard
ARC Centre of Excellence for Autonomous Systems
Australian Centre for Field Robotics
The University of Sydney
Sydney, NSW 2006, Australia
E-mail: r.katz@acfr.usyd.edu.au

determine different responses or levels of assessment related
to the situation. Class information can be integrated, for in-
stance, within the global navigation architecture, in obstacle
avoidance, mapping or tracking modules. These classes can
be used to trigger/manage the corresponding alarms or ac-
tions in driver assistance systems for commercial cars.

Perception and classification of moving obstacles in ur-
ban environments is a particularly challenging task. Several
different reasons contribute to this. First of all, there might
be many different obstacles (with particular dynamics) in-
volved in this scenario, such as pedestrians, cars, trucks, and
bikes. The observer should be able to first detect these vari-
ous agents from different positions/angles and cope with oc-
clusion, while considering at the same time its own dynam-
ics. Environmental conditions could affect the performance
not only in terms of perception, but also in the classifica-
tion. Even when a classifier might be well posed for some
particular scenario (for the one it has been trained), chang-
ing conditions might indeed affect its accuracy while acting
beyond the range where it can generalize.

In this work, we present a multi-sensor architecture to
perform automatic moving obstacle classification. As one
of the principles of this work, we perform fusion of a sen-
sor particularly well suited to perform a task, together with
others that complement the architecture and provide robust-
ness. The second core idea in this work is the necessity to
have an unsupervised module in our architecture. This is not
only motivated by the constraints linked to hand labeling in
supervised techniques, but also by the need of a classifier
which adapts internal models when the working conditions
change beyond its generalization capabilities.

We propose a hierarchical architecture that relies on the
stability of a subset of features given by a sensor to per-
form an initial robust classification based on unsupervised
techniques. The obtained results are then used as labels to
train a set of supervised classifiers. Although the architec-



2

ture is general and can be instantiated in a variety of ways,
we demonstrate the applicability and validity of the concepts
for a particular instance using range and visual informa-
tion. A track-based labeling is first achieved using laser data,
which is then employed to train a supervised modules to
perform instantaneous classification. We introduce a multi-
resolution grid representation for the tracks captured by the
laser named stamp. By using stamps, shape and dynamic
information can be robustly processed, and accurate labels
obtained in an unsupervised manner. The generated labels
train a set of supervised classifiers, based on the laser itself
and on visual information from a monocular color camera.

The structure of this paper is as follows. We first present
related work in Section 2. Our general self-supervised ap-
proach is introduced in Section 3. Key concepts and main
contributions are described, with emphasis on a particular
instance based on laser and visual information. Section 4
explains how an accurate unsupervised labeling can be ob-
tained by using track information of dynamic obstacles by
means of stamps. Section 5 presents the use of these unsu-
pervised labels for training supervised classifiers. Section 6
illustrates the performance of the system through experi-
ments, focusing on (i) generalization and (ii) adaptive ca-
pabilities. Generalization is explored by evaluating the clas-
sification performance of the system using all the incoming,
instantaneous sensory information. Adaptability is evaluated
by applying the self-supervised architecture to online re-
training. Conclusions and future work are finally discussed
in Section 7.

2 Related work

There has been extensive research on object classification in
machine learning and robotics, in terms of supervised and
unsupervised classifiers, and their different possible com-
binations. Supervised approaches are usually more accurate
than unsupervised ones because the training data contain the
input vectors, together with the corresponding labels. Un-
supervised schemes, on the other hand, do not use label-
ing information and must act only based on the input vec-
tors, usually clustering groups within the data (Duda et al
2001). The integration of these two paradigms might have
different goals. When considering partially labeled datasets
(sets with labeled and unlabeled samples), the combination
can be performed to bias a supervised classifier using infor-
mation coming from the unsupervised module. Semi-super-
vised learning (Cohen et al 2002), for instance, considers
large amounts of unlabeled data, and a small subset of la-
beled one. This has, in fact, important implications since it
is often very expensive to collect labeled data in real appli-
cations. Manual labeling can be actually infeasible in au-
tonomous robotics. Our approach falls in the category of

unsupervised techniques with automatic generation of la-
bels. This automatic label generation becomes a core con-
cept within an architecture aimed at performing robust clas-
sification, in long term navigation with changing environ-
ments.

Self-supervised schemes using no labels have also been
proposed in the literature. Weber et al (2000) propose visual
object classes that are automatically learned, by first identi-
fying salient features and then performing robust clustering.
The work presented by Luo and Savakis (2001) approaches
visual segmentation as a hierarchical, two-stage classifica-
tion process. The first stage performs unsupervised cluster-
ing on the images, identifying regions of high confidence.
This information is later used to train a supervised classifier
that acts on the low-confidence regions. These papers re-
late to our approach in the sense that salient, stable features
are also used in a first, unsupervised procedure. In our case,
rather than identifying high confidence regions sequentially,
this invariance is analyzed a priori in the features’ space,
such that a posterior unsupervised clustering can achieve
high-confidence labeling.

Some other approaches perform unsupervised classifi-
cation of dynamic objects using spatio-temporal representa-
tions. The work by Luber et al (2008) performs classifica-
tion by obtaining exemplar-models for representing varying
appearance of objects in 2D laser scans. Their exemplar rep-
resentation, as opposed to the one by Schultz (2006), inte-
grates both classification and tracking, and is able to learn
various models (such as pedestrians, skaters) autonomously.
Our work is closely related to theirs, in the sense that we also
aim at capturing time-varying appearance of dynamic obsta-
cles for classification. However, we use in our work a differ-
ent representation for fusing range information in general
urban environments, a scenario that tends to present very
different challenges in terms of planarity, complexity and
involved dynamics.

Several papers have presented self-supervised classifi-
cation architectures in robotics applications, mostly focused
on terrain classification. Here, “supervisors” or labeling mod-
ules that are based on one kind of sensor usually train sep-
arate classification modules with different sensory inputs.
The work by Brooks and Iagnemma (2007), for instance,
presents a self-supervisory mechanism that learns visual ap-
pearance of terrain classes based on vibration sensing. The
acquired knowledge is then transferred to a visual classifier
that identifies terrain classes in the distance. A similar ap-
proach is taken by Stavens and Thrun (2006), where an in-
ertial sensor based estimator learns terrain roughness in an
unsupervised fashion, then the data trains a laser to detect
rough terrain. The work by Dahlkamp et al (2006) identi-
fies traversable terrain by combining long range monocular
camera with short range laser scanner. This paper addresses



3

self-supervision in autonomous navigation, with particular
emphasis on the classification of dynamic obstacles.

3 Overview and contributions

This section introduces our approach for dynamic obsta-
cle classification. Key concepts of the self-supervised ar-
chitecture are first described, with emphasis on an instance
based on 2D laser and visual information. Although the pro-
posed scheme is general and can be applied to many differ-
ent situations, we aim at dealing with this popular scenario
in sensor-based autonomous navigation. The main contribu-
tions of this work are then summarized.

3.1 Overview

This paper proposes a self-supervised architecture for robust
classification of moving obstacles in urban environments. A
high-level diagram with the main functional components of
our scheme is shown in Figure 1. Two fundamental types
of processing are presented in the proposed scheme; track-
based classification and instantaneous classification.

The first stage of the architecture considers track-based
classification of dynamic obstacles. The “batch” informa-
tion contained in the tracks is here used to produce accurate
labeling that is then employed to train supervised modules
that perform instantaneous classification. The goal here is
to use unsupervised algorithms together with pre-processed
laser data in order to produce an initial classification. Due to
the considered track-based representation, this initial stage
is not suitable for performing online classification and there-
fore this class information is transfered to modules that em-
ploy a different set of features to achieve instantaneous clas-
sification.

The reason for propagating accurate unsupervised clas-
sification of tracks to supervised modules is two-fold. First,
classification can be extended by training classifiers using
more general features that do not depend on particular con-
ditions, and might use different or complementary sensory
modalities. Second, adaptability capabilities can be incorpo-
rated in the system. This is indeed a very important feature
regarding robust classification for long term autonomous nav-
igation. Let’s consider, for instance, a scenario where work-
ing conditions can change drastically. These changes might
affect the performance of one particular sensor if no online
tuning is available in the system. However, if the system
can adjust (or retrain) regularly based on updated conditions,
then it could maintain a robust performance over time.

3.2 Contributions

The main contributions of this work are: a procedure for ac-
curate unsupervised generation of labels using a new tracks
representation based on stamps, and its integration within a
self-supervised learning architecture.

• The first contribution is a methodology for performing
accurate labeling using tracks, depicted as the top pipe-
line in Figure 1. The scheme first identifies persistent
tracks using a hidden Markov model (HMM). The ap-
proach uses a novel tracks representation using stamps,
which gives a robust basis for shape synthesis. Stamp
features are finally extracted and discriminant ones se-
lected for accurate unsupervised label generation by clus-
tering.
• The second contribution is the integration of the previ-

ous methodology for unsupervised generation of label-
ing within a self-supervised learning architecture. The
transfer of information from the inferred unsupervised
classes to supervised modules (as illustrated in the bot-
tom N processes in Figure 1) provides the system with
the ability to better generalize to different sensory inputs
and features. Moreover, online long term adaptability ca-
pabilities are included in the classification architecture.

4 Temporal-based classification: unsupervised
generation of labels

This section presents how accurate labeling can be performed
using the information in the laser tracks defined by dynamic
objects. Considering a laser scanner as the base sensor, we
can extract laser tracks by performing detection and tempo-
ral association of moving obstacles. An approach for unsu-
pervised generation of labels is proposed that relies on iden-
tifying persistent tracks and modeling them using stamps. A
stamp in this work (as detailed in Sec. 4.2) refers to a range-
based multi-resolution map that represents a track and pro-
vides a mechanism for data integration and feature extrac-
tion. The proposed procedure can be described through its
main modules:

1. Computation of track persistency: the reliability of the
stamp representation for the tracks relies on identifying
those laser tracks that actually correspond to dynamic
objects. The belief that a track corresponds to a moving
obstacle is defined using a persistency measure, and a
probabilistic approach is proposed to compute this per-
sistency using HMM.

2. Representing tracks via stamps: stamps are constructed
from persistent tracks by aligning the corresponding scans
for each of the tracks and building an occupancy grid
(OG) of the registered returns.



4

Fig. 1 High-level diagram of the self-supervised architecture. The top pipeline relies on a stable feature detection module, which takes inputs from
a base sensor and feeds them into an unsupervised clustering process. The labels generated are then used to train a set of N supervised classifiers.

3. Extracting features from persistent stamps: once stamps
have been obtained, features that synthesize the classes
for the underlying dynamic obstacles are extracted. These
features are also combined with information about the
dynamics of the tracks.

4. Stamp features selection for labeling: clustering is per-
formed on the possible subsets of features to find the
optimal combination for unsupervised generation of la-
bels.

In the following sections we describe in detail these four
stages for unsupervised labeling.

4.1 Computation of track persistency

A stable feature extraction module (as shown in the top pipe-
line in Figure 1) needs to capture the appropriate informa-
tion encoded as a vector feature representing the dynamic
objects in the scene. The robustness of the subsequent unsu-
pervised clustering procedure depends not only on the type
of features, but also on the quality of the information con-
tained in the perceived tracks. In this work, persistency refers
to the belief that a track actually corresponds to a moving
obstacle.

This section presents the use of HMMs to identify per-
sistent tracks in a probabilistic framework. The inputs for
HMM-based persistency computation are provided by the
combination of tracking and motion detection modules based
on laser measurements. The tracking module estimates past
and present location of the dynamic objects around the ve-
hicle, i.e., the corresponding track for each of the objects.
The tracker uses obstacles detected as dynamic for initial-
ization, and updates the tracks based on laser information.
At the same time, sequences of HMM observations are gen-
erated for each track. These HMM observations are based
on the re-detection of dynamic objects, and are obtained by
combining detection and tracking. Objects that are indeed
dynamic will tend to be re-detected often, and should lead to

high persistency in the tracks. Conversely, false detection of
static obstacles (e.g., due to noise) will not occur frequently
and should decrease the persistency. Details of the HMM
model for persistency computation are first introduced. The
tracker and detection modules are then presented, together
with their combination towards obtaining suitable HMM ob-
servation sequences. Finally, the instantiation of the obser-
vation model and transition matrix is shown, integrating ob-
servation sequences into the HMM for persistency compu-
tation.

4.1.1 HMM formulation and notation

A hidden Markov model (HMM) (Rabiner 1990) is pro-
posed to solve the estimation of persistency for each of the
tracks. Let the state Xk denote the hidden state and Yk the ob-
servation. The corresponding graphical model for this HMM
is shown in the left image of Fig. 2. In our problem, there are
two possible discrete states Xk ∈ {1,2}, where Xk = 1 and
Xk = 2 represent “persistent” and “unpersistent” states (i.e.,
Xk ∈ {Persistent,Unpersistent}), respectively. Effectively,
Xk indicates whether the whole track is persistent given ob-
servations until time k. We find a solution to the stochas-
tic estimation of track persistency by recursively evaluating
P(Xk | Yk) as:

P(Xk = j | Yk) ∝ P(Yk | Xk = j)P(Xk = j | Yk−1)

= P(Yk | Xk = j)∑
i

A(i, j)P(Xk−1 = i | Yk−1),
(1)

where A(i, j) = P(Xk = j | Xk−1 = i) is the transition ma-
trix expressing the probability a track changes between dif-
ferent states Xk ∈ {Persistent,Unpersistent}, P(Yk | Xk) the
observation model, and Yk the set of observations received
until time k. The initial state distribution is given by π(i) =
P(X1 = i). The structure of this HMM, depicting the transi-
tions between the numbered states, is shown graphically in
the right diagram of Fig. 2.



5

Fig. 2 HMM to compute track persistency. Left image shows the graphical model of the HMM, where Xk denotes the hidden state and Yk its
observation. The right image illustrates the HMM transition diagram, for the states Xk ∈ {1 : Persistent,2 : Unpersistent}.

4.1.2 Observations through detection and tracking

The generation of HMM observation sequences is addressed
by first integrating a motion detection module together with
a multiple target tracker. The specific setup is composed as
follows. A probabilistic laser based motion module based on
Katz et al (2008) first detects possible dynamic behavior in
the laser coordinate frame, given the current laser scan `k.
This procedure can be described by the following pseudo-
code function interface:[
zdyn

k ,Pdyn
k

]
= motion detector(`k), (2)

where the zdyn denotes the observation of the detected obsta-
cles in laser coordinates, and Pdyn contains the correspond-
ing segmented laser returns for the detected obstacles. The
segmentation of laser returns is performed using agglomer-
ative hierarchical clustering in a Euclidean space, applying
a predefined distance threshold (in this work 0.3m).

The tracker uses the sample based joint probabilistic fil-
ter scheme by Frank et al (2003), performing multiple target
tracking to estimate 2D position and orientation of obsta-
cles Xdyn

k = (xk,yk,θk) at time k. The observations are pro-
vided by segments obtained from the current laser scan `k.
Tracks are initialized using information provided by the mo-
tion detection module, where each track corresponds to only
one dynamic obstacle in the scene. The combined use of the
tracker and the detected objects allows the system to update
the state and incorporate new tracks. Simultaneously, HMM
observations Yk can be generated for each track. The HMM
observation

Yk ∈ {Redetected,NonRedetected}

indicates whether each track is re-detected at time k (with
respect to k−1), or it is not re-detected. This tracking proce-
dure that maintains the state of dynamic obstacles and pro-
vides HMM observations can be denoted through the fol-
lowing pseudo-code function:[
Yk,X

dyn
k

]
= tracker

(
`k,z

dyn
k ,Xdyn

k−1

)
. (3)

Sequences of Yk from (3) are stored in Yk for each of
the tracks over time, and used for HMM persistency com-
putation. Segments of laser returns Pdyn from (2) are also
stored for each of the tracks, and used to construct the stamp
representation in Section 4.2.

4.1.3 HMM model instantiation

The entire observation sequence Yk for each track is used to
obtain the corresponding estimation of persistency through
(1). This work fuses the HMM observation by proposing a
suitable HMM observation model. The idea is to use a model
that favors persistency if the detector observes dynamic ob-
jects that have been previously detected. Conversely, the model
slowly decreases the persistency belief if the objects are not
often re-detected. This filtering aims at dealing with false
positives in the dynamic obstacle detection. It also provides
a refreshing mechanism for the cases where dynamic ob-
jects suddenly become static. Considering discrete observa-
tions Yk ∈ {Redetected,NonRedetected}, we can represent
the observation model as a matrix Bk(i, l) = P(Yk = l | Xk =

i):

Bk(i, l) =
[

C1 (1−C1)

(1−C2) C2

]
, (4)

with typical values of C1 = 0.8 and C2 = 0.6 empirically
obtained.

The transition matrix A(i, j) is learned from a manually
annotated set of tracks. This is done (as in Torralba et al
(2003)), by counting the number of transitions between the
various states Xk. The initial state distribution is assumed
uniform, that is, π(i) = P(X1 = i) = 0.5,∀i ∈ {Persistent,
Unpersistent}.

4.2 Representing tracks via stamps

The aim of the method presented in this section is to ob-
tain a robust and distinctive representation named stamp to



6

200 400 600 800 1000 1200

100

200

300

400

500

600

700

800

900

1000

(a)

−2 −1 0 1 2 3 4 5 6 7 8

5

6

7

8

9

10

11

12

X

Y

(b)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

9.5

10

10.5

11

11.5

12

12.5

13

X

Y

(c)

Fig. 3 Scan alignment for a track that leads to the stamp representation. (a) shows an example of car tracking, where the laser scan is projected
onto the image. (b) presents the sequence of all the segmented scans extracted for the track. (c) illustrates the scans in (b) aligned using the ICP
registration procedure.

describe the laser tracks. The term stamp is inspired by the
modeling approach, where a distinctive mark or “signature”
is used to symbolize tracks that might change over time.
A stamp is defined as a pyramidal grid representation for
a track, constructed by aligning subsequent scans that be-
long to the track and building a multi-level occupancy grid
(Moravec and Elfes 1985) of the registered returns. This pro-
vides a solid basis for shape synthesis that deals with the
difficulties for inferring spatial appearance, combining least-
mean-square error alignment with occupancy grids. This oc-
cupancy grid is further extended into a multi-scale represen-
tation for increased robustness.

This section uses segments of laser returns (or just seg-
ments) Pdyn for each of the persistent tracks (see Section 4.1)
to build the stamps. Each of the these segments contain laser
returns, extracted from the original laser scans in (2). The
images in Fig. 3(a)-(b) show an example of the input for gen-
erating stamps using the scans defined by persistent tracks.
Considering segments of scans Pdyn for each of the tracks
as the input, the algorithm (i) computes segment alignment,
and (ii) obtains the stamps from these aligned segments.
These two components are detailed below.

4.2.1 Alignment of segments

The laser segments are aligned using the iterative closest
point (ICP) registration procedure by Besl and McKay (1992).
ICP aligns data points which in this work are the laser re-
turns contained in the segments. Given a set of m measure-
ment data points Pdyn = {bi} and a reference point set X =

{a j} considered fixed containing n points, ICP finds a trans-
formation vector to align the measurement data points of
Pdyn to the reference points of X . By recursively executed
applying ICP for each of the successive segments in the track

we obtain a final set Bk = {b̃i1 , . . . , b̃ik} of aligned scans for
the track, with the index k ordering the points sequentially.

4.2.2 Stamp computation

Considering now for each of the persistent tracks the corre-
sponding set of aligned segments Bk, we can formulate the
computation of the stamps following Elfes (1989). We first
define a state variable S(Cm), that stores the probability of
the cell Cm being occupied P(S(Cm) = Occ). Since the cell
states are exclusive, P(S(Cm) = Occ)+P(S(Cm) = Free) =
1. The evaluation of the posterior over the occupancy of each
grid cell is based on binary Bayes filters:

P(S(Cm) = Occ | Bk) ∝

P(b̃ik | S(Cm) = Occ) P(S(Cm) = Occ | Bk−1)),

(5)

where Bk represents the set of observations received until
time k, P(S(Cm) = Occ | Bk−1) the previous estimate of the
cell state, and P(b̃ik | S(Cm)=Occ) is the laser sensor model.
A thresholding stage (with value T hres) is finally used to
obtained a clean Occ/Free representation. A full stamp can
now be computed for an initial grid resolution Res0, by com-
puting an occupancy grid (OG) for the L grids, each with a
spatial resolution that doubles the immediate finer one. A
stamp of level L will then be composed of L OG layers of
different resolution.
Figure 3(c) shows the final aligned laser returns for our per-
sistent track example. Figure 4 presents the computed stamp
for the example introduced in Fig. 3. The images in Fig. 4(a)-
(c) show the corresponding grids for a stamp of L = 3 and
Res0 = 0.15m (for thresholding T hres = 0.5).



7

Y

X

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

(a)

Y

X

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(b)
Y

X

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(c)

Fig. 4 From aligned scans to stamps. Stamp corresponding to the aligned scans for the track in Fig. 3. Images in (a),(b) and (c) show the
corresponding different grids for each of the levels of a stamp of L = 3 and Res0 = 0.15m. Note that the stamps have been rotated 90◦ with respect
to the aligned segments in Fig. 3(c).

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(a)

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(b)

Fig. 5 Stamps for two different track instances: dynamic car in (a), and a moving pedestrian in (b). Tracks represented using stamps with levels
L = 3 and Res0 = 0.15m. Corresponding grids for each of the stamp levels shown for both cases on the right. Note that the stamps have been
rotated 90◦ with respect to the aligned segments.

4.3 Extracting stamp features

Once persistent stamps have been obtained, we extract fea-
tures aimed at capturing the class of the dynamic object that
defined the track. By using a multi-level representation for
the stamps, features that can be efficiently computed on each
of the levels are considered. Effectively, a compact feature
scheme is used, integrating spatial features from the stamps
with information about the dynamics of the tracks.

Our approach introduces the use of combined features
for stamps, following the scheme presented by Tsuchiya and
Fujiyoshi (2006) for visual surveillance. Specifically, stamp
features include three different types of features: shape-based
fShape, texture-based fTexture, and motion-based fMotion. The
first two feature types (shape and texture-based) are com-

puted for each l = [1, . . . ,L] for a stamp of level L, whereas
the motion-based features are directly derived from the tracks.

Shape-based features include f (l)AspRatio aspect ratio and

f (l)Compact compactness. Aspect ratio measures relative size
w.r.t. the size of the main axes of the stamp:

aspect ratio =
length of minor axis
length of major axis

. (6)

Compactness quantifies the shape complexity of the object
as a ratio between perimeter and area:

compactness =
perimeter

area
. (7)

The texture-based features include f (l)Connect 8-connectivity

and f (l)NumCells number of cells. n-connectivity is a simple
measure that quantifies the smoothness/continuity of the stamp.



8

Table 1 Stamp features for the car (C) and the pedestrian (P) stamps
from Fig. 5. Both stamps with levels L = 3 and Res0 = 0.15m.

fAspRatio fCompact fConnect fNumCells

C P C P C P C P

l = 1 0.02 0.46 7.11 3.75 0.9 4.25 41 16

l = 2 0.03 0.55 5.57 4 2.43 4 42 9

l = 3 0.06 1 5.17 5 2.83 3 23 4

It can be easily computed using masks, or by counting the
n neighbors for each of the cells and adding the final count
and normalizing for the complete grid. The number of cells
f (l)NumCells is a 0-connectivity texture measure which naturally
computes the size of the stamp.

The images in Fig. 5 show two track instances for a dy-
namic car in (a), and a moving pedestrian in (b). We have
represented each of these tracks using stamps with levels
L= 3 and Res0 = 0.15m, as presented in Sec. 4.2. The corre-
sponding grids for each of the levels of the stamps are shown
for both tracks on the right side of the Fig. 5(a) and (b).
Shape-based ( fAspRatio and fCompact ) and texture-based fea-
tures ( fConnect and fNumCells) for these tracks are presented in
Table 1. The values indicate the computed results for each of
the features, for all the grid levels (l = 1,2,3) in the stamps.
Columns in the table indicate features, grouping same fea-
tures for both the car stamp (C) and the pedestrian stamp
(P) for comparison purposes. As can be seen in the table,
stamp features tend to capture the intuition of the underly-
ing objects in most of the levels. Aspect ratio fAspRatio is
usually small for elongated objects like cars, whereas pedes-
trians’ ratio present more balanced overall shapes closer to
unity. Pedestrians are often compact in their corresponding
stamp grids, then compactness feature fCompact is smaller
than for more irregular objects like cars. Regarding texture-
based features, 8-connectivity fConnect tends to be small for
man-made, regular objects like cars, whereas pedestrians pre-
sent higher values representing more texture. Finally, the
number of cells fNumCells captures the size of the objects ac-
cordingly for both cars and pedestrians.

The dynamics of the tracks is considered within the motion-
based feature fMotion for the stamps. Moving objects might
present changing dynamic behavior over time. It seems suf-
ficient, however, to just compute the maximum speed of
the tracks to reason about objects’ dynamics in most of the
cases1. We therefore consider the feature fMotion = fMaxSpeed
maximum speed of the track for our stamp features repre-
sentation. In order to obtain a feature vector independent of
the number of levels in the stamp we first compute the min-
imum and maximum values for the shape and texture-based

1 Other measures like maximum acceleration could be also consid-
ered

features as:

fShape =
[
min
(

f (l)AspRatio

)
,max

(
f (l)AspRatio

)
,min

(
f (l)Compact

)
,

max
(

f (l)Compact

)]
,

fTexture =
[
min
(

f (l)Connect

)
,max

(
f (l)Connect

)
,min

(
f (l)NumCells

)
,

max
(

f (l)NumCells

)]
,

(8)

where min
(

f (l)
(•)
)

and max
(

f (l)
(•)
)

are the minimum and maxi-
mum values for the feature f(•) operating along l = [1, . . . ,L]
for a stamp of level L. By concatenating this shape and tex-
ture features together with the motion-based feature, we ob-
tain the final stamp feature vector fStamp as:

fStamp =
[

fShape, fTexture, fMotion
]
, (9)

for a full stamp feature of size 9 that include four shape, four
texture, and one motion feature.

4.4 Stamp feature selection for labeling

The unsupervised label generation is based on a clustering
algorithm. Given a clustering algorithm, different feature
spaces will result in different sets of clusters. In consequence,
we evaluate all the different feature spaces by testing the
clustering algorithm on all the possible subsets of features.
The accuracy of the clustering for each case is evaluated us-
ing a manually labeled set2. It is obtained by comparing the
number of matches between the cluster index and the true
label.

Stamp features seem to well capture salient character-
istics of dynamic objects. However, a subset of these stamp
features might actually provide the best results for label gen-
eration given a particular clustering algorithm. In this sec-
tion we find the optimal combination of features for un-
supervised generation of labels by testing clustering on all
possible subsets of stamp features. We use the expectation-
maximization (EM) algorithm (McLachlan and Krishnan 1997;
Dempster et al 1977) to find the parameters of a mixture of
Gaussians that best partitions our feature space. We analyze
the “optimal” subset of stamp features, that is the particular
combination which provides the best separation of classes
(i.e. the most discriminative features). Since for this evalua-
tion true labels were made available through hand labeling,
we compute the error for all the possible subsets.

For completeness, we compare the chosen EM clustering
with some other popular algorithms. Performance is eval-
uated not only for EM clustering but also for hierarchical

2 Note that this annotated dataset is only used in the de-
sign/validation stage, similarly as the one used for the HMM. Different
labeled datasets are used in the rest of the work only for accuracy eval-
uation.



9

schemes and spectral clustering. Hierarchical schemes (Duda
et al 2001) perform clustering by partitioning the data us-
ing trees, based on some distance metric on the data points.
Spectral clustering (Ng et al 2001) performs graph partition-
ing using matrices derived from the data. This is achieved by
computing global similarity and partitioning the data using
eigenvectors. Locally scaled spectral clustering (LS) (Zelnik-
Manor and Perona 2004) has been shown to better deal with
multi-scale data. In this case similarity is computed using
statistics of neighboring points, such that the mean distance
to the Kth neighbors.

These three different methods were analyzed using 153
tracks, for stamps of level L = 3 (Res0 = 0.15m). The tracks
were manually labeled for the classes ‘bike’, ‘pedestrian’,
and ‘car’, with bike including bicycles and motorbikes, and
car containing all possible automobiles (cars, trucks, etc.).
Since these three classes include most dynamic objects in
urban scenarios, they will be used throughout the rest of the
paper. Figure 6 presents the error in clustering with respect
to all possible combination of stamp features, for the evalu-
ated clustering methods. Clustering error for the three meth-
ods is computed using all combinations of features. The er-
ror for each method is then sorted in increasing order, for a
clear visualization in Figure 6. Due to this rearrangement,
same error do not necessarily correspond to the same fea-
tures combination in different methods.

This experimental evaluation validates our initial elec-
tion of clustering approach, showing that EM achieves the
best clustering performance for particular subset of stamp
features. In fact, EM reaches an accuracy of 92.81% (for the
error of 0.0719 shown in the plot), slightly outperforming
locally scaled spectral clustering (LS) (for a local scale of
K = 5). The optimal subsets of stamp features that corre-
spond to the best EM clustering accuracy include these two
combinations:

Comb1 = {max
(

f (l)AspRatio

)
,max

(
f (l)Compact

)
,

min
(

f (l)NumCells

)
, fMaxSpeed}

Comb2 = {max
(

f (l)AspRatio

)
,min

(
f (l)Connect

)
,

min
(

f (l)NumCells

)
, fMaxSpeed}.

The features in these two combinations Comb1 and Comb2
suggest that, in order to obtain the best clustering accuracy
for unsupervised generation of labels, the stamp features as-
pect ratio fAspRatio, number of cells fNumCells, and fMaxSpeed
must be selected. In addition, optimal subsets need to in-
clude either compactness fCompact or 8-connectivity fConnect .
As a matter of fact, they both quantify very similar entities,
since the shapes given by compactness and connectivity fea-
tures are highly correlated.

As suggested by Luber et al (2008) through the analy-
sis of track velocities, the use of speed-based features only

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

Possible combination of features

E
rr
o
r

 

 

Hierachical Clust.

Spectral Clust. (LS)

EM

Fig. 6 Stamp features selection through clustering. Plot showing the
error in clustering for different clustering methods, for all possible
combination of features. EM clustering outperforms the other meth-
ods, reaching an accuracy of 92.81%.

would not provide enough clustering accuracy for label gen-
eration. Our results are consistent with theirs: using EM al-
gorithm and the maximum speed of the track fMaxSpeed , we
have achieved an accuracy of just 63.69%.

5 Instantaneous classification

This section builds upon the architecture for self-supervised
classification introduced in Section 3, focusing on the trans-
fer of information from inferred unsupervised labels to su-
pervised modules (bottom processes in Figure 1). The sys-
tem uses unsupervised labels (computed through appropri-
ate processing of the information provided by a base sensor)
to train a set of supervised classifiers. The main objective of
the self-supervised approach is to use a sensor that provides
stable features, to train a noisier one. The features obtained
with the second sensor can be used for higher level tasks
such as segmentation or even a better discrimination within
clusters. The implementations presented in this paper use
laser for the unsupervised stage and cameras for the super-
vised one.

Having obtained unsupervised labels from laser tracks
(Section 4), this section presents its utilization in training a
set of supervised classifiers. Specific features based on laser
and visual information are first introduced and then used
in supervised classification, demonstrating the validity of
the self-supervised architecture for classification. We finally
combine the separate self-supervised classifiers to obtain a
unique output classification result.



10

5.1 Features for supervised classification

We first introduce the chosen features to represent laser in-
formation that corresponds to dynamic obstacles in the scene.
Features in this case are based only on geomectric informa-
tion and estimated velocities obtained from laser data. No
filtering or additional information is included using stamp
features. Here, we emphasize geometric features extracted
directly from laser segments which are obtained by cluster-
ing the laser scans using a threshold in the Euclidean space
of the points. Instantaneous velocities and running maxi-
mum speeds are also considered in the features. The reason
for this is that, at this stage, we want to avoid the use of
delayed features to be able to classify obstacles on-the-spot.

Laser features can be summarized as: flsr1 number of
points in the cluster, flsr2 - flsr3 normalized point covariances
in X and Y, flsr4 range to the cluster, flsr5 cross-section, flsr6

linear error (mean error of points to a fitted straight line),
flsr7 2nd order error (mean error of points to a fitted 2nd or-
der curve), flsr8 curvature coefficient (2nd order coefficient
for the approximated curve), flsr9 L-shape error (mean error
of points to a fitted L-shape open polygon), flsr10 norm of the
speed, and flsr11 norm of running maximum speed. Consid-
ering all these individual laser features, the final laser feature
vector is composed as flsr = [ flsr1 , flsr2 , . . . , flsr11 ]

T .
Since we also want to integrate visual information while

using the labels automatically generated from laser data, a
correspondence between laser and vision data needs to be
established. The visual features need to be correlated to the
sensor designated as the base sensor, in our case the laser.
This is done by projecting the laser returns onto the camera
images, using the calibration procedure described by Zhang
and Pless (2004). This is the first step in order to extract
visual features from the images provided by a monocular
color camera. In a second step, projected clusters are used to
define regions of interest (ROI) in the camera images. Size
of the ROIs is adjusted according to a simple heuristic that
takes into account the mean range to the objects in the laser
coordinate frame.

Our approach is based on the extraction of a large and
generic set of features (?), in contrast to the other classic ap-
proach based on the extraction of a small class-specific set of
features. In each of the ROI defined by the laser clusters, we
extract a set of visual features fvisual of dimension 940. Each
of them includes: texture information containing the steer-
able pyramid (Simoncelli and Freeman 1995), coefficients
of the ROI, together with the minimum and maximum one,
3D histograms of the RGB and HSV channels of the ROI,
Haar features (Viola and Jones 2004), Canny edges (Canny
1986), number of pixels detected as belonging to an edge,
number of straight lines, SIFT features (Lowe 2004), pyra-
mid histograms of oriented gradients (Bosch et al 2007), and
maximally stable extremal regions (Matas et al 2002).

Table 2 Classification accuracy [mean/σ ] (in %) for the supervised
classifiers.

Laser Vision

UL TL UL TL

Logitboost 93.37/1.37 97.37/0.69 92.95/0.83 95.18/1.06

SVM 94.51/0.86 96.02/0.66 91.47/1.94 92.95/0.47

LD 82.41/2.31 92.04/0.91 84.6/2 92.17/1.54

UL: training with unsupervised labels

TL: training with true labels

Clustering accuracy [mean/σ ] = 96.22/0.83

5.2 Supervised classifiers

This section provides a first empirical analysis of the pro-
posed architecture which validates the use of unsupervised
labels to train supervised classifiers. Based on the compari-
son of supervised classifiers presented by Caruana and Nicu-
lescu-Mizil (2006), we evaluate three classifiers with dif-
ferent characteristics: Logitboost, Support Vector Machines,
and Linear Discriminant classifiers. These classifiers are in-
troduced below.

Boosting algorithms incrementally combine “weak” base
classifiers to produce an output that can be significantly bet-
ter than the base ones. We use the Logitboost version of
boosting (Friedman et al 2000), implemented with decision
stumps (two-node decision trees) as these weak classifiers.
One of the characteristics of Logitboost is that it is able to
provide as the output the probabilities over the classes to-
gether with the estimated labels, that is P(Q| f ), where Q de-
note the classes, and f the features. This is done by consid-
ering a generalized additive model and logistic regression.
Support Vector Machines (SVM) perform classification by
finding the optimal margin with respect to the support vec-
tors, defined as the data samples along the decision bound-
aries. In our experiments, we used the library provided by
Chang and Lin (2008). Multi-class probability estimates can
be obtained by using the SVM extension proposed by Wu
et al (2003). Linear discriminants (LD) are very simple clas-
sifiers that use hyperplanes defined as decision boundaries
in order to separate different regions of a high-dimensional
input space (Duda et al 2001).

The first set of evaluations presented in this section aims
at assessing which classifier (amongst SVMs, Logitboost
and LD classifiers) performs the best, when the general ar-
chitecture presented in Figure 1 is instantiated with a laser as
Base Sensor and Sensor 1, and a monocular color camera as
Sensor 2. During this initial testing phase, the various can-
didate classifiers are assigned to each sensor input in order
to evaluate the classification performance. The performance
of these classifiers is evaluated using unsupervised gener-



11

Table 3 Classification accuracy [mean/σ ] (in %) for combined classi-
fiers.

Accuracy

SVM for laser (UL) 94.51/0.86

Logitboost for vision (UL) 92.95/0.83

Combined (UL) 96.49/0.5

ated labels (UL) for training. For comparison purposes, the
evaluation is also performed training the classifiers with true
labels (TL) obtained from manual annotation. In all these
cases (and throughout this work), classification accuracies
are always computed using the true labels (TL), regardless
of whether the classifiers have been trained using true (TL)
or unsupervised labels (UL). Test error was estimated us-
ing n−fold cross validation. Results are averaged over the n
runs. In our initial validation we used a dataset containing
2286 laser and vision feature points, out of 171 tracks. Each
of these points corresponds to a vector containing laser flsr
and vision fvision features, determined by laser clusters from
tracks and their corresponding ROI in the images. In the re-
mainder of this paper, we will refer to these laser and vision
feature points as samples. The selection of these tracks is
based on the procedure introduced in Section 4.1 such that
the confidence that they correspond to actual dynamic ob-
jects is very high. Persistent tracks are identified first, and
stamp features are extracted for unsupervised generation of
labels. Using also these persistent tracks, samples for super-
vised classification are extracted. The classification involves
the three classes bike, pedestrian and car. The datasets have
been manually labeled for these classes for evaluation pur-
poses.

Table 2 presents the classification results using five-fold
cross validation, for Logitboost, SVM and LD classifiers,
using laser and vision. Classification performance is shown
using the mean and standard deviation (σ ) of the accuracy.
Training was computed using both track-based unsupervised
generated labels (UL) and true labels (TL). For Logitboost,
the learning process achieved reasonable convergence at 40
iterations. The best empirical results for SVM were obtained
for a soft margin (C-SVC) con figuration (with C = 1) that
allows some of the training points to be misclassified, and
using an RBF exponential kernel of the form e−γ|u−v|2 with
γ = 1. The track-based unsupervised generation of labels
is computed within the five-fold cross validation procedure,
reaching an average accuracy of 96.22% (σ = 0.83). Thanks
to the very accurate track-based unsupervised labeling ob-
tained using persistent stamps, accuracy of the supervised
classifiers is very high.

Table 4 Computation times [mean/σ ] (in secs). The times reported
for the training stage correspond to total times for the entire dataset,
whereas the times for the inference stage correspond to average times
per data point.

Training time Inference time

Unsupervised labeling (EM) 25.18/9.87

SVM for laser (UL) 0.44/0.03 0.02/0.01

Logitboost for vision (UL) 21.65/0.62 0.41/0.02

Table 5 Confusion matrix (in %) for the combined approach.

Bike Pedestrian Car

Bike 88.72 3.8 7.49

Pedestrian 0.66 94.83 4.51

Car 1.83 1.09 97.08

5.3 Combined classification

Based on the previous analysis, appropriate classifiers for
each modality are chosen. The classifiers with the best in-
dividual performance previously tested in Section 5.2 are
now combined to obtain a final, unified output classification.
SVM and Logitboost gave almost equal results, being SVM
slightly better for laser and Logitboost for vision detection
(Table 2 (grayed cells)). Therefore, since none of these two
algorithms show a clear advantage over the other, we chose
to combine the SVM result obtained with laser, and the Log-
itboost result obtained with vision.

The combination of classifiers is achieved using Bayesian
averaging (Hoeting et al 1999; Bishop 2006). Bayesian av-
eraging uses the posterior probabilities given by different
classifiers. In our case, these are directly provided by Log-
itboost, and can be also obtained in SVM (see Section 5.2).
Bayesian averaging combines K different models as:

P(Q| f ) =
K

∑
k=1

P(Q|Mk, f )P(Mk| f ), (10)

where P(Q|Mk, f ) is the posterior for the models, and P(Mk| f )
the posterior model probability, for each model Mk. In our
implementation, P(Q|Mk, f ) is the output from both clas-
sifiers, SVM for laser (M1), and Logitboost for vision (M2).
The model probability P(Mk| f ) is assumed constant for both
models, and is learned a priori by counting the distribution
over the classes from the small annotated dataset used in
Section 4.4. As before, the performance is evaluated using
2286 samples from 171 persistent tracks, and five-fold cross
validation.

Table 3 shows the classification result obtained in this
experiment, together with the accuracies previously obtained
for the individual classifiers. The combined approach im-
proves the performance of the individual classifiers, reach-
ing an accuracy of 96.49%, reducing the standard deviation



12

Table 6 Precision and recall [mean/σ ] (in %) for the combined ap-
proach.

Bike Pedestrian Car

Precision 82.15/18.63 94.85/1.1 97.08/0.21

Recall 96.86/1.44 92.04/13.69 89.5/8.11

to almost half of the values for the separate classifiers. The
computation times involved in the stages of the combined
classification are shown in Table 4. The times reported for
the training stage correspond to total times for the entire
training sets, whereas the times for the inference stage corre-
spond to average times per data point. A confusion matrix is
also used here (and throughout this work) to show the per-
formance in the classification. In a confusion matrix rows
denote real (ground truth) classes and columns refer to the
estimated classes. The corresponding confusion matrix in-
dicating the accuracy (in %) for the classes bike, pedestrian
and car for the combined approach is shown in Table 5. This
confusion matrix shows a strong diagonal, with highly accu-
rate results, particularly for the classes pedestrian and car.
The lower accuracy in the class bike (although still accu-
rate) compared to pedestrian and car is due to the unbal-
anced representation of the classes in the dataset. In fact, the
percentage of samples belonging to this class is quite small
(only 6%). This leads to a smaller number of training sam-
ples of this class being selected (with respect to the other
two classes) in the cross validation procedure, which then
induces a slightly inferior performance. Another represen-
tation of this confusion matrix is shown through precision
and recall values presented for the combined approach in
Table 6.

6 Experimental evaluation

This section presents experiments showing the performance
of the proposed architecture. There are two main goals in-
volved in the experiments. Firstly, the generalization of the
system is evaluated. Initial experiments in this section use
the information of all the incoming tracks, that is all the “un-
persistent” tracks received, without limiting classification to
persistent tracks and their samples. Secondly, the adaptive
capabilities are explored. This is done by performing on-line
retraining through the self-supervised scheme.

The datasets were obtained in an outdoor, urban envi-
ronment at the University of Sydney campus, using the sys-
tem provided by ACFR et al (2006). They consist of a se-
quence of images temporally correlated with laser scans.
The images were provided by an IDS camera of resolution
1280×1024 at 5Hz, whereas the laser scans were obtained
by a Sick scanner LMS291 in high speed mode (500kBps).
The speed of the vehicle varied between 0-40km/h during

Table 7 Confusion matrix (in %) for combined approach using general
samples. Classification accuracy of 95.78% (σ = 0.09).

Bike Pedestrian Car
Bike 77.14 5.71 17.14

Pedestrian 0.55 94.13 5.32
Car 2.04 1.43 96.53

Table 8 Precision and recall [mean/σ ] (in %) for combined approach
using general samples.

Bike Pedestrian Car

Prec.
All features 71.11/10.08 94.12/1.24 96.53/0.67

No speed feats. 26.33/14 92.29/1.85 95.31/0.79

Rec.
All features 96.64/0.7 91.14/10.44 82.32/8.42

No speed feats. 75.67/37.84 59.83/4.79 83.01/9.79

60 minutes of logged data. As mentioned earlier, the al-
gorithmic procedure presented by Zhang and Pless (2004)
was used to compute the camera-laser calibration. Datasets
consist of 364 tracks, generating 2822 samples. The num-
ber of classes for classification is again three, for the classes
bike, pedestrian and car. Datasets have been annotated ac-
cordingly for evaluation purposes. We use in these exper-
iments Logitboost for classification of vision features (40
iterations), and SVM for laser features (RBF kernel, with
γ = 1 and C = 1). Combined classification integrates these
two separate classifiers using Bayesian averaging. Five-fold
cross validation procedure is used in all the experiments.

6.1 Classification of general samples

The experiments shown in previous sections for validating
the self-supervised architecture have been properly evalu-
ated in the sense that the training data subsets are completely
disjoint from the testing subsets. However, the evaluation
has been constrained to persistent tracks, and to their cor-
responding persistent samples. In the following experiment,
rather than processing only the tracks identified as persis-
tent, we extract and process all samples.

Effectively, we perform classification of general samples
derived from all tracks. Persistency of the tracks is still eval-
uated to allow an accurate unsupervised generation of labels
as described in Section 5. Stamp-based unsupervised labels
are used to train SVM and Logitboost classifiers. However,
inference is performed using general samples, that is all the
samples corresponding not only to persistent tracks but also
to unpersistent tracks (tracks that might not correspond to
actual moving obstacles). Using the full set of laser features
(that is, all features in flsr of size 11) the combined classi-
fication reaches an accuracy of 95.78% (σ = 0.09), for the
confusion matrix shown in Table 7. In fact, this performance



13

almost equals the high accuracy for combined classifica-
tion using persistent samples only, as presented in Table 3
(grayed cell).

Precision and recall values are shown for this case in
Table 8, for the first and third (“all features”) rows. When
removing speed features from the laser feature vector flsr =

[ flsr1 , flsr2 , . . . , flsr9 ]
T , the combined classification accuracy

reaches 94.46% (σ = 0.84), achieving also in this case an
excellent “track independent”, on-the-spot classification. Sec-
ond and fourth rows rows in Table 8 present the precision
and recall values for this track independent case. As can be
seen, the classification performance remains very high when
using general samples. The use of instantaneous information
only without considering track speed related features does
not greatly affect the accuracy of the self-supervised classi-
fication. However, speed features help to differentiate some
of the classes. The removal of these features is detrimental
for the classes bike and pedestrian, as illustrated in the pre-
cision and recall results in Table 8.

Inference times in this experiment are similar to the ones
shown in Table 4. As presented, the total inference time is
below 0.5 secs using non-optimized Matlab routines, sug-
gesting that the system is able to perform real-time classifi-
cation of general samples in an equivalent optimized archi-
tecture.

6.2 Classification of corrupted data

This section evaluates the advantages of having a self-supervised
scheme with an unsupervised module in the architecture,
such that adaptive tuning of the classifiers can be done on-
the-fly. One way to assess this is by analyzing if the re-
training capability, for instance, is able to cope with mal-
functioning behavior in one of the sensors. This is done, in
our case, by applying a perturbation to one of the sensors
(camera) and evaluating its performance. We specifically ap-
ply additive i.i.d. random noise with unit variance to each of
the RGB channels in the ROI images, prior to obtaining the
visual features. This is illustrated in the example shown in
Figure 7 for the ROI that corresponds to a pedestrian.

The evaluation is undertaken adding different propor-
tions of corrupted images (between 0% and 100%) to the
datasets, for the following two scenarios:
(i) Standard supervised approach. This setup replicates the
case where no unsupervised module is present in the sys-
tem, and the working conditions suddenly change. We train
the vision supervised classifier with a training set that is not
corrupted, and the true labels. Inference is then performed
using corrupted sets. Note that since this approach relies on
provided labels and can only be trained once, it is not able
to re-train on-the-fly.
(ii) Self-supervised scheme. In this case the self-supervised
architecture proposed in this paper is used. Training is per-

100 200 300 400 500 600 700 800 900 1000 1100

100

200

300

400

500

600

700

430 440 450 460 470 480 490 500

250

300

350

400

450

500

10 20 30 40 50 60 70

50

100

150

200

250

Fig. 7 Perturbation of the visual sensor. Additive random noise is ap-
plied to each of the RGB channels in the ROI images, as shown on the
bottom images for the ROI corresponding to the detected pedestrian.

formed using sets of corrupted data, and track-based unsu-
pervised generated labels. Inference is then performed using
corrupted sets. Training the system with corrupted data sim-
ulates on-line retraining of the classifier, which is possible
by the self-supervision capabilities of the system.

Figure 8 shows the results obtained for these two differ-
ent setups. The plots indicate the accuracy for each method
for different levels of corrupted data. As can be seen, the
supervised scenario is initially more accurate than the self-
supervised because of the use of true labels (TL) for training.
However, as the amount of corrupted data increases (level of
noise), the accuracy of the supervised approach is notably
affected by this demanding scenario. The self-supervised ap-
proach, on the other hand, is able to adapt on-line thanks to
the unsupervised module performing label generation. The
self-supervision capabilities allow the system to maintain a
high classification accuracy above 90%.

Computation times in Table 4 show that the total training
time is below 50 seconds. This indicates the feasibility of the
architecture for on-line retraining, which can be regularly
performed in an efficient manner due to the reduced training
times.



14

−20 0 20 40 60 80 100 120
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Corrupted data (in %)

A
c
c
u
r
a
c
y

 

 

Supervised

Selfsupervised

Fig. 8 Vision classification accuracy (in %) for two setups using gen-
eral samples: Supervised (i) and Self-supervised scheme (ii). The ac-
curacy (with error bars indicating standard deviation) is shown for both
approaches using different levels of corrupted data.

7 Conclusions and future work

This paper introduced a self-supervised multi-sensor archi-
tecture to perform automatic moving obstacle classification.
The approach relies on obtaining persistent and discrimina-
tive features from a sensor. Unsupervised clustering is used
to achieve robust automatic labeling, and this information is
then used to train a set of supervised classifiers with the aim
of achieving instantaneous classification.

The introduction of laser stamp allows us to derive a
highly accurate procedure for unsupervised generation of
labels. The integration of this labeling methodology within
a self-supervised learning scheme provides our architecture
with additional capabilities such as generalization and adapt-
ability. Experiments show that the system performs robustly,
obtaining accurate individual and combined classification
rates for the three classes bike, pedestrian and car. The sys-
tem is able to generalize well, achieving high classification
rates for general samples, based on the training provided by
persistent information. The self-supervised scheme presents
advantages compared to supervised approaches, in terms of
adaptability obtained with on-line retuning capabilities.

The architecture evaluated in this work assumed that the
number of classes was known for the automatic generation
of labels based on clustering. This seems to be a valid as-
sumption considering that a priori knowledge can include,
for instance, most of the possible classes for moving objects
present in urban environments. Available methods, however,
can perform clustering using variable or no predefined num-
ber of classes (e.g., VBEM Attias (1999)). We therefore in-
tend to evaluate these approaches to further assess if they
could provide more adaptability and accuracy to the self-
supervised system.

8 Acknowledgments

The authors would like to thank Oliver Frank for provid-
ing the multiple target tracking code. This work is supported
by the Australian Research Council (ARC) Centre of Excel-
lence program and the New South Wales Government.

References

ACFR, of Sydney TU, LCR, del Sur UN (2006) PAATV/UTE Projects.
Technical Report ACFR

Attias H (1999) Inferring Parameters and Structure of Latent Vari-
able Models by Variational Bayes. In: Proceedings of the Fif-
teenth Conference on Uncertainty in Artificial Intelligence, Mor-
gan Kaufmann, San Francisco CA

Besl P, McKay N (1992) A Method for Registration of 3-D Shapes.
IEEE Transactions on Pattern Analysis and Machine Intelligence
14(2):239–256

Bishop CM (2006) Pattern Recognition and Machine Learning.
Springer

Bosch A, Zisserman A, Munoz X (2007) Representing Shape with
a Spatial Pyramid Kernel. In: CIVR ’07: Proceedings of the 6th

ACM International Conference on Image and Video Retrieval,
ACM, Amsterdam, The Netherlands, pp 401–408

Brooks CA, Iagnemma KD (2007) Self-Supervised Classification for
Planetary Rover Terrain Sensing. In: 2007 IEEE Aerospace Con-
ference, IEEE, Big Sky, Montana

Canny JF (1986) A Computational Approach to Edge Detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence
8(6):679–698

Caruana R, Niculescu-Mizil A (2006) An empirical comparison of su-
pervised learning algorithms. In: ICML ’06: Proceedings of the
23rd International Conference on Machine Learning, ACM, New
York

Chang C, Lin C (2008) A Library for Support Vector Machines. http:
//www.csie.ntu.edu.tw/~cjlin/libsvm/

Cohen I, Cozman FG, Bronstein A (2002) The Effect of Unlabeled
Data on Generative Classiffiers, with Application to Model Selec-
tion. HP Laboratories Palo Alto

Dahlkamp H, Kaehler A, Stavens D, Thrun S, Bradski G (2006)
Self-supervised Monocular Road Detection in Desert Terrain. In:
Robotics: Science and Systems, MIT Press

DARPA DARPA (2007) DARPA Urban Challenge. http://www.

darpa.mil/grandchallenge/

Dempster A, Laird NM, Rubin DB (1977) Maximum Likelihood from
Incomplete Data Via the EM Algorithm. Journal of the Royal Sta-
tistical Society 39(1):1–38

Duda R, Hart P, Stork D (2001) Pattern Classification. John-Wiley,
New York

Elfes A (1989) Occupancy Grids: A Probabilistic Framework for Robot
Perception and Navigation. PhD thesis, Department of Electrical
and Computer Engineering, Carnegie Mellon University

Frank O, Nieto J, Guivant J, Scheding S (2003) Multiple Target Track-
ing using Sequential Monte Carlo Methods and Statistical Data
Association. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems, IEEE, Las Vegas, USA

Friedman JH, Hastie T, Tibshirani R (2000) Additive Logistic Re-
gression: a Statistical View of Boosting. Annals of Statistics
28(2):337–374

Hoeting J, Madigan D, Raftery AE, Volinsky CT (1999) Bayesian
Model Averaging: A Tutorial. Statistical Science 14(4):382–401

Katz R, Nieto J, Nebot E (2008) Probabilistic Scheme for Laser Based
Motion Detection. In: IEEE/RSJ International Conference on In-
telligent Robots and Systems, IEEE, Nice, France, pp 161–166

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.darpa.mil/grandchallenge/
http://www.darpa.mil/grandchallenge/


15

Lowe D (2004) Discriminative Image Features from Scale-invariant
Keypoints. International Journal of Computer Vision 60(2):91–
110

Luber M, Arras KO, Plagemann C, Burgard W (2008) Classify-
ing Dynamic Objects: An Unsupervised Learning Approach. In:
Robotics: Science and Systems, MIT Press

Luo J, Savakis AE (2001) Self-supervised Texture Segmentation
using Complementary Types of Features. Pattern Recognition
34(11):2071–2082

Matas J, Chum O, Urban M, Pajdla T (2002) Robust Wide Baseline
Stereo from Maximally Stable Extremal Regions. In: British Ma-
chine Vision Conference 2002, British Machine Vision Associa-
tion

McLachlan G, Krishnan T (1997) The EM Algorithm and Extensions.
Wiley Series in Probability and Statistics

Moravec H, Elfes A (1985) High Resolution Maps from Wide Angle
Sonar. In: International Conference on Robotics and Automation,
IEEE

Ng A, Jordan M, Weiss Y (2001) On Spectral Clustering: Analysis and
an Algorithm. In: NIPS: Advances in Neural Information Process-
ing Systems 14

Rabiner LR (1990) A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition. In: Waibel A, Lee K (eds)
Readings in Speech Recognition, Morgan Kaufmann Publishers
Inc., pp 267–296

Schultz D (2006) A Probabilistic Exemplar Approach to Combine
Laser and Vision for Person Tracking. In: Robotics: Science and
Systems, MIT Press

Simoncelli E, Freeman W (1995) The Steerable Pyramid: A Flexi-
ble Architecture for Multi-Scale Derivative Computation. Interna-
tional Conference on Image Processing 3:444–447

Stavens D, Thrun S (2006) A Self-supervised Terrain Roughness Es-
timator for Off-road Autonomous Driving. In: Conference on Un-
certainty in AI (UAI), Cambridge, MA

Sun Z, Bebis G, Miller R (2006) On-Road Vehicle Detection: A Re-
view. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 28(5):694–711

Torralba A, Murphy K, Freeman WT, Rubin MA (2003) Context-based
Vision System for Place and Object Recognition. In: ICCV ’03:
Proceedings of the 2003 ICCV International Conference on Com-
puter Vision, IEEE, Nice, France

Tsuchiya M, Fujiyoshi H (2006) Evaluating Feature Importance for
Object Classification in Visual Surveillance. In: ICPR ’06: Pro-
ceedings of the 18th International Conference on Pattern Recogni-
tion, IEEE Computer Society, Washington, DC, pp 978–981

Viola P, Jones M (2004) Robust Real-time Object Detection. Interna-
tional Journal of Computer Vision 57:2

Weber M, Welling M, Perona P (2000) Towards Automatic Discovery
of Categories. In: CVPR ’00: Proceedings of the 2000 Conference
on Computer Vision and Pattern Recognition (CVPR ’00), IEEE
Computer Society, Hilton Head Island, South Carolina

Wu T, Lin C, Weng RC (2003) Probability Estimates for Multi-class
Classification by Pairwise Coupling. Journal of Machine Learning
Research 5:975–1005

Zelnik-Manor L, Perona P (2004) Self Tuning Spectral Clustering. In:
NIPS: Advances in Neural Information Processing Systems 17

Zhang Q, Pless R (2004) Extrinsic Calibration for a Camera and
Laser Ranger Finder (Improves Camera Intrinsic Calibration). In:
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, IEEE, Japan


	Introduction
	Related work
	Overview and contributions
	Temporal-based classification: unsupervised generation of labels
	Instantaneous classification
	Experimental evaluation
	Conclusions and future work
	Acknowledgments

