
Learning to Detect Loop Closure from Range Data

Karl Granström and Jonas Callmer

Div. of Automatic Control, Dept. of Electrical Engineering
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Abstract—Despite significant developments in the Simulta-
neous Localisation and Mapping (SLAM) problem, loop clo-
sure detection is still challenging in large scale unstructured
environments. Current solutions rely on heuristics that lack
generalisation properties, in particular when range sensors are
the only source of information about the robot’s surrounding
environment. This paper presents a machine learning approach
for the loop closure detection problem using range sensors.
A binary classifier based on boosting is used to detect loop
closures. The algorithm performs robustly, even under potential
occlusions and significant changes in rotation and translation.
We developed a number of features, extracted from range data,
that are invariant to rotation. Additionally, we present a general
framework for scan-matching SLAM in outdoor environments.
Experimental results in large scale urban environments show
the robustness of the approach, with a detection rate of 85%

and a false alarm rate of only 1%. The proposed algorithm can
be computed in real-time and achieves competitive performance
with no manual specification of thresholds given the features.

I. INTRODUCTION

For the last fifteen years, the robotics community has experi-

enced a tremendous effort to find robust and general solutions

for the Simultaneous Localisation and Mapping (SLAM) prob-

lem. The main motivation is the primary importance of this

task for reliable autonomy in unknown environments. Despite

significant developments in reducing the computational cost

and increasing the robustness of SLAM algorithms, operation

in large scale environments is still difficult mainly due to

data association issues. In particular, the loop closing problem,

where the robot needs to identify previously visited locations,

is of crucial importance. An incorrect loop closure detection

can significantly jeopardise the consistency of the map. In a

robot configuration where only range sensors are available,

identifying loop closures can be very challenging especially

due to changes in the robot’s viewpoint or dynamic objects in

the environment.

To illustrate the difficulty of this problem, consider the

example shown in Figure 1. A quick look at the laser scans

depicted in the figure would indicate that they were obtained

at different locations. In reality, the scans were obtained from

very close positions, but at different times and with different

orientation. The right scan is rotated 180 degrees with respect

to the left scan, and in the right scan two cars have been parked

along the side of the road (the L-shaped point clusters, slightly

right of the origin in the highlighted areas, are two vehicles).

This example demonstrates that identifying loops can be very

difficult, especially when the environment is observed from
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Fig. 1. Illustrative example of the loop closure detection problem. Despite the
significantly different appearance of two laser scans depicted in the picture,
both scans were obtained in the same location but rotated 180 degrees with
respect to each other. Further changes include two cars observed in the right
scan that are not present in the left scan. The highlighted areas correspond to
regions of significant differences between the scans due to occlusions.

different orientations. In addition to the vantage point problem,

it is very common in practical applications to close a loop

after several hundreds of metres or even kilometres. As a

consequence, the robot’s pose uncertainty can be significantly

large, further complicating data association.

In this paper, we cast the problem of loop closure detection

as a classification task. By introducing a number of features,

especially designed to have small variance against different

viewpoints, we are able to learn a classifier for real-time

loop closure detection. The classification technique employed

is based on AdaBoost [1] which builds a strong classifier

by concatenating very simple decision rules. The result is a

powerful non-linear classifier with very good generalisation

properties [2], [3].

The main contribution of this paper is an automatic proce-

dure for loop closure detection using elements of statistical

learning. This is achieved by using a combination of rotation

invariant features extracted from laser scans. The approach is

extensively evaluated using 800 laser scan pairs from three

different urban data sets. As a secondary contribution, the

loop closure detection algorithm is integrated into a scan-

matching SLAM framework using the Exactly Sparse Delayed-

State Filter (ESDF), and combined CRF-matching [4] and ICP

[5] for scan alignment. This is demonstrated in a data set about

2 kilometres long.

The paper outline is as follows. The subsequent section

presents related work. The loop closure detection algorithm
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is presented in Section III. Section IV presents the SLAM

framework adopted which efficiently handles long trajectories.

The features are evaluated in Section V-A. Experiments on

loop closure detection are presented in Section V-B and results

from a full SLAM experiment are provided in Section V-C.

Finally, Section VI concludes the paper.

II. RELATED WORK

In this section we summarise relevant work on loop closure

detection and large-scale SLAM.

SLAM algorithms based on raw laser scans have been shown

to present a more general solution than classic feature-based

[6]. For example, in [7]–[9], raw laser scans were used for

relative pose estimation. The mapping approach presented in

[6] joins sequences of laser scans to form local maps. The

local maps are then correlated with a global laser map to

detect loop closures. Laser range scans are used in conjunction

with EKF-SLAM in [10]. The authors introduced an algorithm

where landmarks are defined by templates composed of raw

sensed data. The main advantage claimed is that the algorithm

does not need to rely on geometric landmarks as traditional

EKF-SLAM. When a landmark is re-observed, raw points could

be augmented with new sensor measurements, thus improving

the representation of landmarks. The authors also introduced

a shape validation measure as a mechanism to enhance data

association when landmarks are re-observed. In summary,

the main advantage in all these works is the ability of the

algorithms to work in different environments due to the general

environment representation obtained from raw sensor data.

Mapping algorithms based on laser scans and vision have

shown to be robust. The work presented in [11] performs

loop closure detection using visual cues and laser data. Shape

descriptors such as angle histograms and entropy are used to

describe and match the laser scans. A loop closure is only

accepted if both visual and spatial appearance comparisons

credited the match. In [12], laser range scans are fused with

images to form descriptors of the objects used as landmarks.

The laser scans are used to detect regions of interest in the

images through polynomial fitting of laser scan segments while

the landmarks are represented using visual features.

The approach presented in this paper uses only laser in-

formation. Perhaps the most relevant work is the algorithm

presented in [8], [13] where consecutive laser scans comprise

submaps. Feature descriptors of the maps are composed using

a histogram representation. The feature representation allows

the authors to match local maps without prior knowledge of

their relative position. The histogram method utilises entropy

metrics, weighed histograms and quality metrics. The results

presented in [13] show 48% detection rate for a 1% false

alarm rate. These results are improved slightly in [8] to a 51%
detection rate for the same false alarm rate.

In this paper we present a solution to the loop closure

problem based on a machine learning approach. A similar

classification approach based on AdaBoost was used by Arras

et al [14] for detecting people from laser scanners in a

cluttered office environment. The approach was based on the
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Fig. 2. Diagram depicting the learning and SLAM phases of algorithm.

classification of laser segments as whether or not belonging

to a pair of legs. Detection rates of over 90% were achieved.

Using the same ideas, place recognition was performed in

indoor environments in [15].

III. LOOP CLOSURE DETECTION

This section describes the main algorithm of the paper; the

loop closure detection procedure. In the following section, loop

closure is integrated with a SLAM framework for large scale

mapping.

A. Algorithm Overview

We perform loop closure detection from a pair of 2D

laser scans composed of range and bearing data. Our loop

detection algorithm uses the same principle as standard scan

matching algorithms; loops are detected by comparison of

laser scans. The main difference between our algorithm and

traditional scan matching approaches is the introduction of

rotation invariant features describing the laser scans. These

features are combined in a non-linear manner using a boosting

classifier which outputs the likelihood of the two scans being

matched.

Figure 2 presents a diagram with the stages of the algorithm.

In the learning phase, pairs of laser scans and the correspond-

ing assignments (match or non-match) are input to AdaBoost.

From the laser points, rotation invariant features are initially

extracted. Examples of the features employed are length, area,

curvature of the scan, etc. (a detailed description of the features

is presented in the next subsection). AdaBoost greedily builds

a strong classifier by a linear combination of simpler, weak,

classifiers. In our implementation these classifiers are decision

stumps which provide very nonlinear decision boundaries. The

same strategy has been employed for face detection in [16].

This procedure notoriously enhances the capabilities of the

resulting classifier. As more decision stumps are added, the

classification error on the training data goes to zero. Although
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this might be interpreted as overfitting, [1] shows that it also

generalises well on testing data.

Once the classifier has been built, loop closure detection

can be performed in a SLAM framework as Figure 2 (right)

indicates. If a loop closure is detected, a laser scan alignment

procedure is performed with a corresponding update in the

map. We describe the particular SLAM framework employed

in Section IV.

B. Laser Features

The laser range sensors used in experiments have a 180
degree field of view. The sensors deliver scans l = {ri, αi}

N
i=1

where ri is range, αi is bearing, and N is the number

of laser returns in the scan. Together, a forward scan and

a backward scan create L, which gives a full 360 degree

view of the surroundings. A laser scan can be described in

Cartesian coordinates L = {xi}
N
i=1 = {xi, yi}

N
i=1, where

xi = ri cos(αi) and yi = ri sin(αi). We use 360 degree

laser scans to achieve a general solution that is invariant to

rotation. One might think that considering 360 degree laser

scans guarantees rotation invariance, however as two laser

scans are rarely taken in the exact same position that is not the

case. We also show that the method works in the 180 degree

case as well, although in that case loop closure can only be

detected from the same direction.

A 360 degree laser scan consists of 722 laser points, and

a data set can contain up to several hundred thousand laser

scans. Hence there is a need to reduce the size of the data

dimension. The method of reducing the dimension we use is

to employ features, thus reducing the dimension of each laser

scan to the number of features used. A feature f is defined as

a function that takes a laser scan L and returns a real value. In

this paper we are interested in features that describe different

geometric properties of the laser scan, such as the area covered

by the scan, the average range, the circularity of the scan and

the sum of the distances between consecutive points.

We use 20 features in this paper, and thus each laser scan is

compressed into a feature vector f of length 20. Some of the

features we use are closely related, e.g. #1 and #4 as well as

#5, #10 and #11. It is not easy to discern why the use of all

of them is better than just using e.g. #1 and #10. However we

do not concern ourselves with that problem, instead we feed

all 20 features to AdaBoost. Given the training data, finding

out which features are better than others, and how to best

combine them, is a task performed entirely by AdaBoost.

The laser range sensors time out after a certain distance de-

termined by the sensor itself. Therefore a maximum range gate

rmax is used in some features to remove measurements whose

range is too long. In experiments we set rmax = 50 metres.

Some of the features described here were also employed in

[14]. All features listed below are invariant to rotation:

1) Area: Measures the area covered by a laser scan. Points

whose range is greater than rmax have their range set to rmax.

farea =

N−1
∑

i:1

riri+1 sin

(

αi+1 − αi

2

)

(1)

2) Average Range: Measures the average range of a scan.

Ranges greater than or equal to rmax are set equal to rmax.

faverage range =
1

N

N
∑

i=1

min (ri, rmax) (2)

3) Centroid: Measures the distance from the origin to the

mean position. This feature captures whether the laser points

are concentrated to one part of the euclidean space around

the robot (longer distance), or are scattered evenly around the

robot (shorter distance). The mean position is calculated as
[

xmean

ymean

]

=

[

1

N

∑

i: ri<rmax
xi

1

N

∑

i: ri<rmax
yi

]

. (3)

The distance to the origin is then calculated as

fmean centroid =
√

x2
mean + y2

mean (4)

4) Close Area: Measures the area covered by the laser scan,

excluding the area covered by range measurements whose

range is greater than or equal to rmax. This feature will be

significantly different from feature #1 if the robot is standing

in an open area, e.g. a field.

fclose area =
∑

i: ri<rmax

r2
i sin

(

δα

2

)

, (5)

where δα is the angle interval at which range measurements

are taken. If 361 range measurements are acquired in a 180

degree field of view, then δα = 180

361−1
degrees.

5) Close Distance: Measures the sum of the distances

between consecutive points whose range is smaller than rmax,

excluding distances that are larger than a maximum distance

gate, gmax dist. In experiments we set gmax dist = 2.5 metres.

di = ‖xi − xi+1‖ i : ri, ri+1 < rmax (6a)

fclose dist =
∑

j: dj<gmax dist

(

dj

)

(6b)

where ‖.‖ is defined as the Euclidean distance.

6) Circularity Radius: The circularity feature fits a circle to

the points in the laser scan, whose range is smaller than rmax,

in a least squares sense. This returns a centre point xc, yc and

a range rc for the fitted circle. The value of the feature is the

radius of the circle rc.

7) Circularity Residual: This feature is defined as the

residual sum of squares, after fitting a circle to the points

as with the previous feature:

fcircularity =
∑

i: ri<rmax

(

rc −
√

(xc − xi)2 + (yc − yi)2
)2

(7)

8) Curvature Mean: The curvature features are based on

the curvature along the points in the laser scan. Let xa =
[xa, ya]T , xb = [xb, yb]

T and xc = [xc, yc]
T be three con-

secutive points, let A be the area covered by the triangle with

corners in xa, xb and xc, and let da, db and dc be the distances

between the points. The curvature of the boundary at xb is

calculated as

k =
4A

dadbdc

(8)
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The curvatures over all points, excluding points whose range

is greater than or equal to rmax, are calculated. This feature

returns the mean value of the curvatures.

9) Curvature Standard Deviation: This feature is defined

as the standard deviation of the curvatures computed above.

10) Distance: Measures the sum of the distances between

consecutive points, excluding points whose range is greater

than or equal to rmax.

fdist =
∑

i: r{i,i+1}<rmax

√

(xi − xi+1)2 + (yi − yi+1)2 (9)

11) Far Distance: Measures the sum of the distances

between all consecutive points, i.e. including points whose

range is greater than or equal to rmax.

ffar dist =

N−1
∑

i=1

√

(xi − xi+1)2 + (yi − yi+1)2 (10)

12) Number of Groups: This feature measures the number

of groups (clusters) in the scan. A group is defined as a cluster

of laser points in which the distance between consecutive

points is less than a maximum distance gate gmax dist, also

used in feature #5. To be considered a group, the cluster has

to contain more than a certain number of points specified by

the minimum group size gate gmin size. In experiments we set

gmin size = 3 points.

13) Mean Group Size: This feature is defined as the mean

group size after detecting and clustering the laser points into

groups as in the previous feature.

14) Maximum Range: Measures the number of points in

the laser scan whose range is greater than or equal to the

maximum range gate.

fmax range =
∑

i

1 {ri ≥ rmax}, (11)

where

1 {ri ≥ rmax} =

{

1 if ri ≥ rmax

0 otherwise
(12)

15) Mean Angular Difference: Measures the sum of the

angles between consecutive point to point vectors. Given two

consecutive laser points Li and Li+1, a vector that connects

the points is given as x̄i,i+1 = [xi+1 − xi , yi+1 − yi]
T . The

feature is calculated as

fMAD =
∑

i:r{i,i+1,i+2}<rmax

arccos

(

x̄T
i,i+1x̄i+1,i+2

||x̄i,i+1|| ||x̄i+1,i+2||

)

.

(13)

16) Mean Deviation: Measures the mean deviation from

the mean of the laser scan. The feature is calculated as

fmean deviation =
1

N

∑

i:ri<rmax

√

(xi − xmean)2 + (yi − ymean)2,

(14)

where xmean and ymean is calculated as in (3).

17) Regularity: Measures the regularity of the laser scan,

which is defined as the standard deviation of the distances

between consecutive points in the laser scan. Laser points

whose range is greater than or equal to rmax are excluded.

Let di,i+1 be the distance between the laser points with

indices i and i + 1, and let d̄ be the mean value of di, ∀ i :
ri < rmax. The regularity feature is then calculated as

fregularity =

√

√

√

√

1

N − 1

∑

i: r{i,i+1}<rmax

(

di,i+1 − d̄
)2

(15)

18) Size: Measures the number of points which has a range

shorter than rmax.

fSize =
∑

i

1 {ri < rmax}, (16)

where

1 {ri < rmax} =

{

1 if ri < rmax

0 otherwise
(17)

19) Standard Deviation of Distance to Mean: Measures the

standard deviation of the point-wise distances to the mean

position. The mean position is calculated as in (3), and the

distance from point i to the mean is

di,mean =
√

(xi − xmean)2 + (yi − ymean)2. (18)

The feature is given as the standard deviation of di,mean for

i : ri < rmax.

20) Standard Deviation of Range: Measures the standard

deviation of all the ranges that are less than or equal to rmax.

The feature is calculated as

fstd range =
1

N − 1

∑

i:ri<rmax

√

(ri − rmean), (19)

where rmean is the mean of all the ranges that are less than or

equal to rmax.

These 20 features are computed for both scans in the

pair and the absolute difference between them is passed

to the classifier in the next step. Given two scans k and

k + 1, the set of extracted features is f(Lk,Lk+1) =
[

f1(L
k,Lk+1), . . . , f20(L

k,Lk+1)
]

, where fi(L
k,Lk+1) =

‖fi(L
k) − fi(L

k+1)‖.

C. Classification and Boosting

We briefly review boosting in this section. As training data,

n pre-labeled laser pairs are provided,
(

f(L1
1, L2

1), y1

)

, . . . ,
(

f(L1
n, L2

n), yn

)

, (20)

where yi is a binary variable, yi = {0, 1} for negative (non-

matching) and positive (matching) laser pairs, respectively and

f is a set of features. Let Nn and Np denote the number

of negative pairs and positive pairs respectively. AdaBoost is

an iterative procedure that consecutively adds weak classifiers

to a set of previously added weak classifiers to find a good

combination that constitutes a strong classifier. The weak

classifiers adopted are decision stumps defined as:
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c(f(Lm
i ,Ln

i ), θ) =

{

1 if pf < pλ

0 otherwise
(21)

with parameters θ = {f, p, λ}, where p is the polarity (p =
±1), f is the particular feature selected and λ is a threshold.

To add a new weak classifier to the set, the training data is

classified using the set of previously added weak classifiers.

The weak classifier that improves the classification the most

is added to the set of weak classifiers. The training data is

weighted to ensure that the newly added classifier was the

one that minimized the misclassified data the most. After

the classifier has been added, the weights are updated. The

procedure is repeated until T weak classifiers have been

added. Each weak classifier can be added several times, each

time with a new threshold. The set of T weak classifiers

together create the strong classifier. AdaBoost is described in

Algorithm 1.

IV. SIMULTANEOUS LOCALISATION AND MAPPING

The section before presented the procedure used to associate

scans. In order to build a global map of the environment

we need to build a framework that stores the information

acquired during the data collection process. We use a SLAM

algorithm based on a Exactly Sparse Delayed-state Filter

(ESDF) [17]. Each pose in the trajectory based state vector

is associated to a laser scan acquired at that location. The

classifier presented before is used to detect loop closures

between poses. Odometry and relative pose estimation after

loop closure detection (difference in position and heading) are

calculated using laser scan alignment.

Once we have detected an association between scans, an

alignment process estimates the sensor displacement. A Con-

ditional Random Field-match (CRF-match) [4] followed by

Iterative Closest Point (ICP) is used for the scans’ alignment.

The ICP algorithm [5] is used to refine the scan alignment

result obtained by the CRF-match.

A. Exactly Sparse Delayed-state Filters

The ESDF maintains a delayed state vector containing the

poses of the vehicle’s trajectory. The state vector is augmented

with a new pose when a new laser scan is acquired. In

information form the information matrix is sparse without

approximation, which results in an estimation comparable

to the full covariance matrix solution while prediction and

update can be performed in constant time regardless of the

information matrix size.

B. Laser Scan Alignment

CRF-match [4] is a feature based probabilistic method that

finds the most likely of all point to point associations between

two laser scans. The method can align scans without the

need for an initial guess of the alignment. ICP can give an

alignment with better quality, however the square cost function

minimized by ICPcontains many local minima. Therefore

the algorithm requires good initialisation to ensure correct

convergence. CRF-match followed by ICP gives a very robust

alignment process.

Algorithm 1 AdaBoost

Input:
(

f(L1
1, L2

1), y1

)

, . . . ,
(

f(L1
n, L2

n), yn

)

Initialize weights: W i
1 = 1

2Nn
if yi = 0, W i

1 = 1

2Np
if yi = 1

1: for t = 1, . . . , T do

2: Normalise the weights:

W̃ i
t =

W i
t

∑Nn+Np

j=1
W

j
t

, i = 1, . . . , Nn + Np (22)

3: Select the best weak classifier, i.e. the one that mini-

mizes the weighted error:

ǫt =

n
∑

i=1

W̃ i
t

∣

∣c(f(L1
i , L2

i ), θ) − yi

∣

∣ (23)

4: Define ct(f(L
1,L2)) = c(f(L1,L2), θt) where θt is the

minimizer of ǫt.

5: Update the weights:

W i
t+1 = W̃ i

t β
1−ei

t , (24)

where ei = 0 if f(L1
i , L2

i ) is classified correctly and 1
otherwise, and βt = ǫt

1−ǫt
.

6: end for

The strong classifier is:

c
(

f(L1
i , L2

i )
)

=

{

1
∑T

t=1
αtct

(

f(L1
i , L2

i )
)

≥ K
∑T

t=1
αt

0 otherwise
(25)

where K ∈ [0, 1] and αt = log 1

βt
.

Output: c
(

f(L1
i , L2

i )
)

C. Vehicle Motion Model

The vehicle motion model is

xv(tk+1) = xv(tk) ⊕ u(tk+1) (26a)

=





xv(tk)
yv(tk)
φv(tk)



⊕





u1(tk+1)
u2(tk+1)
u3(tk+1)



 (26b)

=





xv + u1 cos (φv) − u2 sin (φv)
yv + u1 sin (φv) + u2 cos (φv)

φv + u3



 , (26c)

where time indices have been omitted in the last row for the

sake of brevity. xv(tk) is the current vehicle pose at time tk, ⊕
is the compounding operator from [18]. In our implementation,

the input signal u(tk) = [u1(tk) u2(tk) u3(tk)]T corresponds

to translation and rotation, calculated from alignment of con-

secutive laser scans using ICP.

V. EXPERIMENTAL RESULTS

We performed experiments using data from four data sets.

The first two data sets were collected along residential and

business streets in the vicinity of the University of Sydney,

Australia. Both data sets were acquired during day time and

contain moving objects such as cars and people. The data sets

are approximately 0.65 and 2 kilometres long.
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Fig. 3. Error rates for different values of T . The values of T used are marked
with dots, the steady error levels of around 4% suggest that there is no clear
overfitting.

TABLE I
BEST FEATURES FOR LOOP CLOSING

TEST 1

Training Round 1 2 3 4 5 50

Added Feature 1 4 15 12 10 . . .

Total Error [%] 12.0 12.0 9.5 8.6 8.0 4.0

TEST 2

Feature Removed 12 4 15 1 3 17

Total Error [%] 4.44 4.39 4.39 4.38 4.30 4.16

The third data set was obtained from the Robotics Data

Set Repository (Radish) [19]1. This data set was collected

in Kenmore, QLD, Australia. It is about 18 kilometres long.

From these three data sets we identified a set of 400 matching

and 400 non-matching laser pairs. The fourth data set, also

collected around the University of Sydney, is approximately 2
kilometres long. It was used in a SLAM experiment, where we

also used GPS to collect ground truth data.

10-fold cross validation was used to estimate the false alarm

and missed detection error rates. The results from each of the

ten folds are pooled together. As the shuffling of the laser pairs

have a slight impact on the results, 10-fold cross validation can

be performed several times, each time with a new order. The

results from all 10-fold cross validations are then averaged.

Unless otherwise stated, all error rates are estimated from 100
10-fold cross validations.

To determine a good number of training rounds, we trained

strong classifiers for T between 1 and 1000 rounds. The error

rates for each Ti are shown in Figure 3. Since the error rates

remains approximately constant after T = 50, we choose

to train the strong classifier for 50 rounds in all our tests.

A lower number of training rounds is preferred, since the

computation time for classification of laser pairs increases

when more features are added to the strong classifier. Figure 3

1Thanks to Michael Bosse for providing the data set.
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Fig. 5. The blue solid graph shows the ROC curve for the strong classifier,
and the green dashed graph shows the ROC curve for the strong classifier
combined with scan alignment and shape validation.

also suggests that overfitting is not a concern for the task.

A. Loop Closure Feature Analysis

During training, AdaBoost selects the best feature in each

training iteration. By examining which features are chosen

earlier during training, it can be determined which are the most

significant features for classification. Table I shows results

for two tests using the 800 pre-labeled laser pairs. The table

presents total error rates, i.e. the sum of false alarm and missed

detection. The error rates can be compared to blind guessing

which would yield a 50% error rate.

1) Test 1: A strong classifier is trained and Table I shows

which features are chosen in the first rounds, and how the

error rate decreases as more features are added. The first two

added features, #1 and #4, correspond to Area and Close area

features. They represent the most informative features and are

closely related since both are area measures of the scan. The

20



third feature, #15, is Mean Angular Difference, and the fourth

and fifth, #12 and #10, are Mean Group Size and Distance.

As can be seen in Table I, the reduction in error rate decreases

as more features are added.

2) Test 2: For this test we start by training a strong

classifier, the False Alarm and Missed Detection rates are

estimated to 4.26% of the 400 non-matching pairs and 3.75%
of the 400 matching pairs, giving a total error rate of 4.0% of

the 800 pairs. We then proceed to remove each feature, one at

a time, and train new classifiers on the remaining 19 features.

Results from this are presented in Figure 4, where the indices

on top of the bars denote the eliminated features.

Figure 4 shows that removing feature #1 increases Missed

Detection rate the most, and removing feature #15 increases

the False Alarm rate the most. If total error is considered,

removing feature #12 has the largest negative impact. Results

for the 6 features whose removal have the most negative

impact on total error are presented under Test 2 in Table I.

The four features chosen first in Test 1, #1, #4, #15 and #12,

also have the most negative impact on the Missed Detection

rate, and together with feature #3 have the most negative

impact on the False Alarm rate.

B. Loop Closure Results

The two most important characteristics for a classifier are

false alarm and detection rates. We examined the two rates

for different match thresholds by changing K in Eq. (25). The

detection and false alarm rates for each threshold are estimated

using 400 10-fold cross validations on the set of 800 pre-

labeled data pairs.

1) Classification Accuracy: We measure the accuracy of the

resulting classifier using the area under the Receiver Operating

Characteristic (ROC) curve. The ROC curve is shown as the

solid blue curve in Figure 5. A threshold K = 0.59 gives a

false alarm rate of 1% and a detection rate of 85%. The area

under the curve is approximately 0.99.

The classifier’s invariance to rotation was tested on a large

set of laser scan pairs. Each pair was initially classified, then

one of the laser scans was rotated arbitrarily between 90 and

180 degrees and the pair was classified again. Out of 50451
laser scan pairs, 98.4% received the same classification as in

the previous case.

2) Shape Validation Supported Classifier: The false alarm

rate is further reduced when the classifier is combined with

laser scan alignment using CRF-match, ICP and shape vali-

dation. Shape validation evaluates the laser scan alignment by

finding the percentage of nearest neighbour point pairs that fall

within a certain distance d. If the number is above a threshold

N%, the validation test is passed.

In this setting, a loop closure is accepted if a pair of scans

is classified as a match and the computed alignment passes

the shape validation test. This, however, will also decrease

the detection rate so the shape validation thresholds must be

a compromise between false alarm rate and detection rate.

Empirically, we have found that N = 90% and d = 1 metre

works well in the present application. A shape validation

supported classifier with a threshold K = 0.57 gives a false

alarm rate of 1% with a detection rate of 89%. In Figure 5,

the dashed green curve is a ROC curve for the same 400 cross

validations as were used to draw the solid blue curve. The

area under the green ROC is just over 0.99.

3) Time Complexity: Our implementation classifies 800
pairs of laser scans in just under 32 seconds, on average 0.04
seconds per pair. About 95% of the computation time is spent

calculating the feature values, which in a SLAM setting only

has to be performed once per laser scan. The time spent by the

−400 −350 −300 −250 −200 −150 −100 −50 0 50
−100

−50

0

50

100

150

200

250

300

East [m]

N
o
rt

h
 [

m
]

 

 

GPS

ESDF

D.R.

(a) (b)

Fig. 6. (a) Estimated vehicle trajectory, GPS and dead reckoning. The ring marks the starting point, the stars mark the end points. (b) Laser map overlaid
on an aerial photograph. Each laser scan was transformed to its respective pose and plotted on top of the photograph.
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classifier (without feature extraction) averages at only 0.002
seconds per pair.

C. SLAM Experiment

For the laser based SLAM experiment, a strong classifier

was trained on the second data set which contains forward

and backward facing laser scans. However, the fourth data set

used for localisation and mapping only contains forward laser

scans.

The resulting state vector contains 1800 augmented poses,

each one associated to a laser scan. In the information matrix,

98.5% of the (1800 ∗ 3)2 elements are exactly zero, and thus

the matrix is highly sparse. In total, 85759 pairs of laser scans

were tested against each other, out of which 85 were classified

as matching. 42 were correct loop closures, the remaining 43
were false alarms giving a false alarm rate of 0.05%. All false

alarms were refused by the shape validation, i.e. no incorrect

updates were made in the filter. There were a few missed

detections due to occlusion from other vehicles. Vehicle move-

ment was estimated by the alignment of consecutive laser

scans using ICP. The estimated trajectory is compared to GPS

(estimated ground truth) and SLAM with only dead reckoning

(without loop closure detection) in Figure 6a. The performance

with our loop closure detection; ESDF in Figure 6a, is clearly

better than the performance without it; D.R. in Figure 6a.

A laser map from the data set is overlaid on an aerial

photograph in Figure 6b. The map shows a good fit to the

image.

Another interesting observation is that the laser matching

method, designed and trained for a full 360 degree view,

performs well in the 180 degree view.

VI. CONCLUSIONS

This paper presented a machine learning procedure for

loop closure detection. Features invariant to viewpoint were

designed and combined into a boosting classifier. Using the

proposed method, laser scans can be correctly matched re-

gardless of the alignment, enabling loop closure detection from

arbitrary directions. The classifier performance is encouraging,

with good detection rates for low false alarm rates. Addition-

ally, a SLAM experiment demonstrates that reliable localisation

and mapping can be achieved in a complex outdoor environ-

ment using our framework. The classifier, designed and trained

for 360 degree laser scans, performs well even if only 180
degree laser scans are available.

The work by Bosse et al [8] is, to the best of our knowledge,

the largest results for laser scan-based SLAM. While our maps

are smaller in size than their maps, at a false alarm rate of 1%
we achieve a detection rate of 85% compared to their lower

rate of 51%.
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