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Abstract

This paper presents a solution to the problem of unsupervised classification of dynamic ob-
stacles in urban environments. A track-based model is introduced for the integration of 2D
laser and vision information that provides a robust spatio-temporal synthesis of the sensed
moving obstacles and forms the basis for suitable algorithms to perform unsupervised classi-
fication by clustering. This work presents various contributions in order to achieve accurate
and efficient performance, initially using laser tracks for classification, and then incorporat-
ing visual tracks to the model. A procedure is proposed for accurate unsupervised classi-
fication of dynamic obstacles using a laser stamp representation of the tracks. Laser data
is then integrated with visual information through a single-instance visual stamp represen-
tation, which is finally extended using a multiple instance framework to robustly deal with
challenges associated with perception in real-world scenarios. The proposed algorithms are
extensively validated with a simulated environment. Experiments with a research vehicle in
an urban environment demonstrate the performance of the approach with real data. The
experimental results reach an accuracy of over 92% for obstacle classification, finding the
clusters that correspond to the main obstacle classes in the data.

1 Introduction

Accurate classification of obstacles from a moving vehicle is a vital component in any architecture developed
to achieve some level of autonomy or to provide situation awareness information to drivers. In these scenarios,
the considered obstacle classes usually determine different responses or levels of assessment related to the
situation. Class information can be integrated within the global navigation architecture, for example, in
obstacle avoidance, mapping or tracking modules. In assistance systems for commercial cars, classes can be
used to trigger the corresponding alarms or actions.

The 2007 Urban Darpa Grand Challenge competition (DARPA, 2007) is a clear example of the importance
and difficulty of obstacle classification for fully autonomous architectures. Although extensive research has



been undertaken towards obtaining accurate classification through on-board sensors, the competition proved
to be “challenging” and only 6 teams out of the initial 89 teams qualified and successfully completed the final
course. The most demanding situations arose in scenarios populated with dynamic objects perceived from an
observer that was also moving. A consistent understanding of the world that includes and characterizes the
dynamic nature of the obstacles is relevant beyond this particular competition. This capability has strong
implications for any robotic system that performs perception tasks in real-world unstructured environments.

Classification of obstacles is one of the main challenges towards increasing safety in non-autonomous road
vehicles. In this case, the aim of perception is to provide complementary information to a driver in control
of the vehicle. Great effort has been concentrated on the development of safety technologies for intelligent
transportation systems (ITS), including systems such as adaptive cruise control (ACC) (Yamamura et al.,
2001), advanced drive assistance systems (ADAS) (Petersson et al., 2006) and collision mitigation (CM)
architectures (Jansson, 2005). As new and cheaper communication technologies become available, there has
been an increase in vehicle-to-vehicle and vehicle-to-infrastructure communication systems (Worral, 2009),
where data is shared to plan and react accordingly and avoid risky situations. These systems are constrained
by the coverage of radio communication and infrastructure, and vehicle-centered sensing approaches are still
needed in rapidly changing and uncontrolled scenarios such as urban environments.

In spite of the various safety improvements achieved in the automotive industry in the last decade, there
still exists a significant number of traffic incidents. Statistics extracted from the 2008 USA Traffic Safety
Annual Assessment (NHTSA, 2008) show that the great majority of deaths and injuries involved cars, trucks,
bikes, and pedestrians, for totals of over 37 thousand killed and 2.3 million injured. The number of incidents
involving dynamic obstacles reaches an average of 70% over different types of vehicles, which highlights the
importance of dealing with the classification of dynamic obstacles for safety navigation in urban vehicles.

This paper is concerned with the unsupervised classification of dynamic obstacles in urban environments
using 2D laser and visual data. A track-based model is used as the basic representation within the proposed
architecture that provides robust spatio-temporal synthesis of the sensed moving obstacles and forms the
basis for algorithms to perform unsupervised classification by clustering. This model effectively considers the
information from each of the obstacles’ tracks, i.e., sequences of laser segments and images that are extracted
from each track. The diagram in Figure 1 presents the proposed processing architecture with references from
each component to the corresponding section in the paper.

The structure of the paper is as follows. Related work and contributions are considered in Section 2. The use
of laser tracks for unsupervised classification of dynamic obstacles is presented in Section 3. The proposed
approach is based on the formulation of laser stamps to capture shape information from the sensed dynamic
objects and a laser stamp similarity measure suitable for similarity-based clustering. Clustering methods
are explored and an extension of affinity propagation (AP) algorithm is derived to attain efficient clustering
using laser stamps. Section 4 integrates visual track information for unsupervised classification. The scheme
builds on the laser stamp representation and incorporates visual information for improving the clustering.
A learning method based on positive-only learning (PL) that exploits a priori clustering given by the laser is
introduced to compute visual similarity. Section 5 presents an approach based on multiple instance learning
(MIL) to extend the visual model by utilizing full sequences of images. Instead of describing tracks by
one representative image only, complete sequences are now considered, allowing the architecture to adapt
to more challenging real-world scenarios. Experimental results are presented in Section 6 employing data
collected in urban environments using a research vehicle equipped with a 2D Sick laser and a high-resolution
color monocular camera. Discussion on lessons learned and conclusions are finally included in Section 7 and
Section 8.
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Figure 1: Processing pipeline of the proposed track-based architecture. Each module presents a different
processing component that incrementally includes additional capabilities to the model. Module (a) illustrates
the input sensor data that includes 2D laser and vision information. The modules in (b) (detailed in Section 3)
use laser tracks for unsupervised classification. The components in (c) integrate visual track information to
the architecture with increasing complexity. Section 4 uses single-instance visual stamps, whereas Section 5
expands the visual model by utilizing full sequences of images.

2 Related Work and Contributions

A large body of work has been presented on unsupervised classification using laser and vision. A vast
majority of the work using vision only has been mostly aimed to perform automatic discovery of classes
for visual recognition tasks. The work in (Burl et al., 1998), for instance, solves the model learning stage
using expectation-maximization (EM) (Dempster et al., 1977). A constellation of features configuration
(Fischler and Elschlager, 1973) is utilized and promising subsets of features and positions are evaluated in an
iterative scheme, generating a model that minimizes a log-likelihood formulation. The work in (Weber et al.,
2000) builds on this scheme proposing complementary unsupervised segmentation and feature extraction
procedures for complete classification with no manual intervention. Highly textured regions are identified
for stable feature extraction, and a clustering scheme that favors large clusters of features that correspond
to the objects (rather than the background) is introduced to perform automatic segmentation and feature
selection.

Specific techniques when using video sequences, rather than still images, have also been addressed by different
researchers, in what is often called learning from tracking (Ramanan and Forsyth, 1999). The main idea
behind these approaches is to capture dependencies between parts or features locally and over time. The
approach in (Leordeanu and Collins, 2005) models the temporal correlation of parts belonging to the same
objects with respect to the independent behavior of the rest of unrelated parts. The work from (Stauffer and
Grimson, 2000) is also relevant since it uses motion segmentation and tracking to learn patterns for objects
and activities using visual sequence information. This is achieved by considering a codebook representation
and performing hierarchical classification. A self-similarity based scheme is proposed in (Shechtman and
Irani, 2007), suitable for measuring similarity between images and across video sequences. This approach
introduces a novel self-similarity descriptor that computes similarity of local intensity patterns in images,
and seamlessly extends to sequences of images for video matching.



This tracking intuition has also been recently applied to unsupervised classification using laser. In (Luber
et al., 2008) unsupervised classification is achieved by learning exemplars built from laser scans, recovering
the appearance and dynamics of objects. This approach relies on obtaining very dense scans of human-like
(pedestrians and skaters) and cyclists objects, from a slow moving robot. Independent observations are
considered for the tracks, and Markov models used to deal with the changing appearance over time. The
work in (Schultz et al., 2003) proposes a similar scheme for tracking using exemplar models, combining in
this case laser and visual information.

The fusion of laser and visual information has received considerable attention regarding intelligent trans-
portation systems, where classification approaches have been been mostly concentrated on fully supervised
techniques. In this line of research the focus is on combining the salient characteristics of the sensing modal-
ities to perform accurate classification. The work in (Monteiro et al., 2006) performs detection, tracking and
classification fusing different classifiers and combining the estimation from the various modules probabilis-
tically. The approach in (Premebida et al., 2009) proposes alternative centralized and decentralized fusion
architectures to address the classification of pedestrians. Detection and tracking of cars and pedestrians is
achieved in (Spinello et al., 2009) by combining visual and laser information using implicit shape models and
conditional random fields (CRF) (Ramos et al., 2007).

2.1 Contributions

To the best of our knowledge, this work presents the first integrated architecture to perform unsupervised
classification of dynamic obstacles combining laser and visual data for autonomous navigation in urban
environments. The main contributions of this work are:

• The introduction of laser stamps and the formulation of a measure to compute similarity between
these laser stamps. An extension of AP for performing similarity-based incremental clustering of
dynamic obstacles through the associated stamp similarities.

• The representation of visual tracks through visual stamps using a single-instance feature-based
approach and the formulation of a visual similarity learning method based on PL considering a
priori clustering. A combined similarity measure is presented and an iterative clustering algorithm
based on AP is derived for combined laser and visual clustering.

• The extension of the visual similarity learning approach based on the MIL framework that uses
visual stamps derived from full sequences of images and better deals with challenges associated with
perception in real-world scenarios.

3 Laser Stamps for Unsupervised Classification

This section explores unsupervised classification of dynamic obstacles using laser information. Temporal
integration of dynamic information is addressed by combining the scans generated by tracks in the environ-
ment. The main concept behind the proposed techniques is that, by formulating an appropriate track-based
representation, distinctive descriptors can be obtained to perform unsupervised classification. The clustering
scheme should efficiently operate without using ad-hoc features or a number of clusters defined a priori. The
architecture in this section uses the information provided by a 2D laser mounted on a moving vehicle as the
input, and provides the output as the grouping associated with the sensed obstacles.

The proposed approach relies on the formulation of laser stamps and a similarity measure that is associ-
ated with these stamps. Unsupervised classification is then addressed through clustering, with focus on
pairwise approaches using stamp similarities as point-to-point distances. The methodology for performing
unsupervised classification of dynamic obstacles using laser can be summarized in two main stages:
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Figure 2: Laser tracks for stamp representation. (a) shows the vehicle (red triangle) navigating among static
and dynamic obstacles. The obstacle inside the black rectangle has been detected and tracked, and the
corresponding sequence of scans is extracted for stamp construction. (b) presents a zoom-in of the track in
(a), showing the particles from the tracker in blue dots, and an arrow indicating the direction of movement.
Note that no scan is extracted from the static object on the right. In both images, dashed green lines
indicate the reference trajectory for the moving vehicle, and dashed red lines the trajectories followed by
the obstacles. The simulated environment introduced here is detailed in Section 3.3. Note that there is no
obvious relationship between the obstacles’ contours and the images used for each of them; the associations
are made only for evaluation purposes using the simulated data.

• The generation of laser stamps from the laser tracks defined by the dynamic obstacles (Section 3.1).

• The similarity-based clustering of these tracks using the derived stamp similarities (Section 3.2).

3.1 Laser Stamps for Dynamic Obstacle Representation

The approach proposed to generate laser stamps from the laser tracks defined by the dynamic obstacles,
is composed of the following stages: 1) the extraction of laser tracks, 2) the computation of laser stamps
and 3) the associated stamp similarity. Section 3.1.1 presents a scheme for the extraction of laser tracks
that combines dynamic obstacle detection and tracking. A multi-level laser stamp representation for shape
synthesis of the laser tracks is introduced in Section 3.1.2 together with the stamp similarity measure in
Section 3.1.3.

3.1.1 Laser Tracks

The extraction of laser scans corresponds to the first module in Figure 1(b) of the processing pipeline, and
is therefore important since the robustness of subsequent representation and clustering procedures depends
on the quality of the extracted tracks.

The specific setup integrates a dynamic obstacle detection module together with a Bayesian multiple target
tracker. A probabilistic laser-based motion module based on (Katz et al., 2008) first detects dynamic behavior
in the laser coordinate frame given the current laser scan sk at time k. This method implements a spatio-
temporal correspondence procedure based on scan registration. Using the obtained correspondences, robust
detection is performed by casting the decision problem in a probabilistic framework that considers sensor



noise and computes occlusion verification. At a high level of abstraction, this procedure can be described by
the following pseudo-code function interface:

[

Zdyn
k ,Pdyn

k

]

= motion detector(sk), (1)

where Zdyn denotes the set of observations zdyn for the detected obstacles in laser coordinates, with each
zdyn indicating the centroid of the laser segment. Pdyn denotes the set of corresponding segmented laser
returns P dyn for the detected obstacles. The segmentation of laser returns is performed using agglomerative
hierarchical clustering in an Euclidean space (Duda et al., 2001) with a predefined distance threshold of 0.3
m.

The tracker uses the sample based joint probabilistic filter scheme by (Frank et al., 2003) performing multiple

target tracking to estimate 2D position and orientation of obstaclesXdyn
k = (xk, yk, φk) at time k. The tracker

uses a constant velocity model for the process and the observations are provided by segments obtained from
the current laser scan sk by applying clustering. Process and observation noise are assumed to be zero-mean
Gaussian with known covariances; i.e., σx = 1.5 m, σy = 1.5 m, σφ = 0.2 rad, σr = 0.15 m, σθ = 0.02 rad.
Tracks are initialized using information provided by the motion detection module. Each track corresponds to
only one dynamic obstacle in the scene. The combined use of the tracker and the detected objects (provided
by the motion detection module) allows the system to update the states and incorporate new tracks. This
tracking procedure maintains the state of dynamic obstacles and provides the corresponding sequences of
scans observations, and can be denoted through the following pseudo-code function:

[

T dyn
k ,X dyn

k

]

= tracker
(

Zdyn
k ,Pdyn

k ,X dyn
k−1

)

, (2)

where T dyn
k collects sequences of scans Tdyn

k that correspond to the set X dyn
k of dynamic obstacles in the

scene. The number of subsequent laser scans did not appear to be crucial in our experiments, as long as
each tracked object contained a few scans with sufficient shape structure. There is therefore no particular
constraint regarding the length of the tracks used for the representation.

Figure 2 exemplifies the procedure to extract laser scans from tracks associated with moving obstacles.
Figure 2(a) shows the simulated environment with the vehicle navigating among moving and static obstacles.
One particular track is used in this scenario to illustrate the extraction of laser tracks, indicat ed in the image
by the black rectangle. Figure 2(b) shows a zoom-in of the chosen track in (a). This image also includes the
particles from the tracking process that correspond to this particular track.

3.1.2 Laser Stamp Representation

The aim of the method presented in this section is to obtain a robust and distinctive stamp representation
suitable for unsupervised classification through similarity-based clustering. The stages for processing incom-
ing laser tracks include the alignment of subsequent scans for each track, and the computation of multi-scale
occupancy grids for the registered laser segments.

The term stamp is inspired by the modeling approach, where a distinctive mark or “signature” is used to
symbolize tracks that might change over time. A laser stamp is defined as a pyramidal grid representation
for a dynamic object, constructed by aligning subsequent laser scans from the extracted track and building
a multi-level occupancy grid (Moravec and Elfes, 1985) of the registered returns. This provides a solid basis
for shape synthesis that deals with the difficulties of inferring spatial appearance. The proposed scheme
combines the characteristics of least-mean-square error based alignment with the advantages of occupancy
grid modeling for range information. This occupancy grid is extended into a multi-scale representation for
further robustness.

The proposed representation uses pyramidal levels that can be adjusted in the maps by setting different OG
resolutions. This approach is closely related to the multi-scale schemes used in computer vision techniques
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Figure 3: Laser stamp representation. (a) shows the sequence of some of the segmented scans extracted in
global coordinates for the track in Figure 2, using colors to differentiate each of the scans. (b) illustrates the
scans from (a) aligned and normalized (to center coordinates (0,0)) using the ICP registration procedure.
(c) shows the corresponding different grids (stacked together) for each of the levels of a stamp of L = 3 and
Res1 = 0.15 m. Note that the units in (a) and (b) are meters, whereas (c) shows the corresponding grid
representation in cell units rotated 90◦ with respect to the aligned scans in (b).

for shape synthesis sharing several important characteristics. First, the multiple levels allow the model to
capture shape at different scales. Grids at the top of the pyramid tend to capture more coarse underlying
features in the aligned scans, such as the spanned area (Lazebnik et al., 2006). Finer levels, on the other
hand, capture smaller details in the grids. Another salient characteristic of pyramidal representations is
an increased insensitivity to small rotations. As illustrated in (Bosch et al., 2007), they perform robustly
even in presence of small pose variations. This is important when using aligned scans as the input, possibly
subject to minor uncertainty in orientation due to noise in the tracker. Multi-scale representations provide
efficient ways to compute similarity for pyramid matching (Grauman and Darrel, 2005).

Considering sequences of scans provided by laser tracks as in Figure 2, stamps are obtained through two
stages: alignment of segments, with the input given by the segments belonging to each of the laser tracks in
Tdyn

k (as provided by (2)), and the multi-level stamp computation, generating multi-level stamps S from the
aligned segments.

Laser segments are aligned using the iterative closest point (ICP) registration procedure (Besl and McKay,
1992). In this work, the quaternion based method from (Horn, 1987) is used for the representation of poses
and transformations, where the alignment of segments uses a local coordinate frame attached to each of the
dynamic obstacles in the tracks. The employed specific variant of ICP (Rusinkiewicz and Levoy, 2001) uses
constant weighting for the pairs of points and rejects the pairs which are not mutually nearest neighbors for
more robust alignment.

The computation of stamps uses the set of aligned segments for each of the laser tracks. Let B(i) denote the
set of aligned segments for the track i. The set is first normalized to obtain an absolute, pose independent

set B
(i)

k = {b̃ik}. This normalization is performed with respect to location and heading given by the objects’

2D pose provided by the tracker. Using the normalized set B
(i)

k , the grid at resolution ℓ (with 2ℓ cells) is
constructed as follows. Following the notation from (Elfes, 1989), let S(ℓ)(Cm) be the state variable that
stores the probability P (S(ℓ)(Cm) = Occ) of the cell Cm at resolution ℓ of being occupied. Since the cell
states are exclusive, P (S(ℓ)(Cm) = Occ) + P (S(ℓ)(Cm) = Free) = 1. The evaluation of the posterior over



the occupancy of each grid cell is based on binary Bayes filters:

P
(

S(ℓ)(Cm) = Occ | Bk

)

∝ P
(

b̃ik | S(ℓ)(Cm) = Occ
)

P
(

S(ℓ)(Cm) = Occ | Bk−1

)

, (3)

where Bk represents the set of normalized observations received until time k, P
(

S(ℓ)(Cm) = Occ | Bk−1

)

the

previous estimate of the cell state and P
(

b̃ik | S(ℓ)(Cm) = Occ
)

is the sensor occupancy model. Assuming

the laser scanner possesses independent Gaussian noise in the range and bearing readings r = [rr, rθ]
T which

generated the {b̃ik}, the laser sensor model follows:

P (r | z) = 1√
2πσrσθ

exp

[

−1

2

(

(rr − zr)
2

σr

+
(rθ − zθ)

2

σθ

)]

, (4)

where z = [zr, zθ]
T represent the actual observations, and σr and σθ the standard deviations in range and

bearing, respectively. The sensor occupancy model is then obtained from the laser sensor model applying
the Kolmogorov’s theorem (Elfes, 1989). In particular, this work uses the solution for the two-dimensional
case presented in (Leal, 2003).

A thresholding stage is finally used to obtain a clean occupied/free stamp representation S(ℓ), providing
advantages that have been validated through extensive experimental evaluation. This thresholding is useful
as a filtering mechanism, since it allows the system to deal with noisy scan segments that might be extracted
from dynamic obstacles due to, for instance, pitching of the vehicle. When these scans are incorporated into
the representation they are normally filtered out through the thresholding due to their low frequency of oc-
currence. The thresholding can be denoted as the operator Thres(•, Tstamp), for a level Tstamp. Considering
L different levels in the representation, the full multi-scale stamp is then defined as:

SL =
{

S(ℓ)
}

=
{

Thres
(

P
(

S(ℓ)(Cm) = Occ | Bk

)

, Tstamp

)}

, (5)

for ℓ ∈ {1, 2, . . . , L}. A L-scale stamp will then be composed of L OG layers of different resolution. Con-
sidering an initial grid resolution Res1 at ℓ = 1, the L levels are computed with a spatial resolution that
doubles the immediate finer one.

The alignment and multi-level computation stages for constructing laser stamps are illustrated in Figure 3
for the laser track shown in Figure 2. Figure 3(a) presents the sequence of segmented scans for the track,
and Figure 3(b) shows the aligned and normalized segments using the ICP procedure. Figure 3(c) presents
the computed stamp for a 3-level1 stamp of L = 3 and Res1 = 0.15 m. In this case, and throughout this
work, the threshold level used for the stamps is Tstamp = 0.5.

3.1.3 Laser Stamp Similarity

The laser stamp representation is accompanied by an associated measure to compare and evaluate the simi-
larity between different descriptors. Different measures can be used to compute similarity (or dissimilarity)
between data points. A direct measure of similarity is the distance between data points, where various
different metrics and formulations (e.g., Euclidean (Bishop, 2006) or Mahalanobis (Rousseeuw and Leroy,
1987)) can be used. Non-metric functions can also be considered providing large values when points are sim-
ilar. The correlation coefficient ρ(xi,xj) =

σik√
σiσk

(Duda et al., 2001), for instance, provides values between

-1 and 1, with σi and σk the variances of xi and xj and σik the cross-correlation. ρ2ik = 1 indicates that
points are completely correlated and ρ2ik = 0 if they are uncorrelated. An approach using this correlation
coefficient is then preferred in this work since such a normalized measure is suitable for combination with
other normalized similarities derived from probability estimates. This section formulates a stamp similarity
measure based on correlation for the multi-level description of the tracks presented in Section 3.1.2.

1This work uses 3-level stamps, which provide good results empirically validated.



The formulation of stamp similarity follows the approach presented in (Grauman and Darrel, 2005) for
pyramid matching. Intuitively, pyramid matching is evaluated by using a sequence of increasingly coarser
grids over the feature space, and computing the distance at each level of resolution (Lazebnik et al., 2006).
Let SL

I and SL
J be two L-scale laser stamps, as given in (5). The stamp similarity between the laser stamps

SL
I and SL

J can be defined as:

simlaser

(

SL
I , S

L
J

)

= η

L
∑

ℓ=1

wℓ ρ2(ℓ) (SI , SJ ) , (6)

where wℓ is the weight at level ℓ, ρ2(ℓ) is the similarity between SI and SJ at the pyramid level ℓ, and η
a normalization factor. The experiments in this work use a squared normalized 2D correlation coefficient
(González and Woods, 1996) for the computation of ρ as:

ρ(ℓ) (SI , SJ) =

∑

x,y S
(ℓ)

I (x, y) S
(ℓ)

J (x, y)
√

∑

x,y S
(ℓ)

I (x, y)
2
∑

x,y S
(ℓ)

J (x, y)
2
, (7)

where S
(ℓ)

(x, y) =
[

S(ℓ)(x, y)− S
(ℓ)
]

and S is the mean of S. Two stamps that are similar at level ℓ will

be perfectly correlated, and then ρ2(ℓ) = 1. On the other hand, two completely different stamps will have

ρ2(ℓ) = 0.

Because of the pyramidal structure of the stamps, the level ℓ will also consider the contributions at the finer
level ℓ + 1. The levels are then weighted using wℓ = 1

2L−ℓ , where ℓ is the current level, and L the total
number of levels. The weight associated with each of the levels is, indeed, inversely proportional to the cell
width at that level. The normalization factor is then set to η = 1/

∑L
ℓ=1 wℓ.

3.2 Similarity-based Clustering

The last stage for unsupervised classification in Figure 1(b) involves clustering laser stamps producing
grouping for the tracks. Having obtained laser stamps and similarities from laser tracks in Section 3.1,
the focus is now on achieving accurate unsupervised classification of tracks through efficient clustering.
Considering potential clustering alternatives, affinity propagation (AP) (Frey and Dueck, 2007) is introduced
to perform similarity-based clustering using stamp similarities. AP clustering seamlessly integrates within
the intended unsupervised scheme, remaining independent from ad-hoc laser features, and without assuming
a number of classes known a priori.

The most commonly used clustering techniques can be arranged into central grouping and similarity-based
clustering. Traditional central grouping clustering uses some mixture model or parameterization of the data.
Methods such as K-means and mixture models using expectation-maximization (EM) algorithm (Dempster
et al., 1977) provide good quality results when the data adjusts to the pre-defined models, given a suitable
features representation. These approaches have interesting geometric properties such as scatter, centroids,
or exemplars (particular data points that describe clusters in a compressed way) important when modeling
uncertainty or compressing the representation. In many applications, however, the data might not adjust
well to the models or suitable feature descriptions might be hard to obtain. Fortunately, in many of these
cases it is often possible to obtain a measure of similarity between examples, and similarity-based approaches
have shown salient capabilities in a variety of related scenarios. Hierarchical schemes (Duda et al., 2001) and
spectral clustering (Shi and Malik, 2000) are fully local techniques using pairs of point-to-point similarity
for partitioning. One of the main disadvantages of this is the possible lack of homogeneity in the clusters.
These approaches do not actually require that all the points within a cluster be similar to a single center.
Moreover, they usually require the number of clusters be defined a priori. This issue is mitigated in AP,
which achieves intercluster homogeneity performance similar to central clustering representations.



AP clustering is introduced in next subsection as a feasible solution for pairwise clustering using similar-
ities that combines the main advantages of central grouping and similarity-based techniques. Incremental
alternatives for clustering are explored in Section 3.2.2, where a novel formulation is proposed for incre-
mental affinity propagation (AP) clustering. This incremental scheme is able to efficiently perform on-line
classification and to deal with very large datasets.

3.2.1 Affinity Propagation (AP) for Clustering

Affinity propagation (AP) (Frey and Dueck, 2007; Dueck and Frey, 2007) integrates some of the advantages
of model-based representations into a graph-based pairwise clustering approach. As in other pairwise tech-
niques, AP directly examines similarity between pairs of data points. In this case, however, the clustering
considers a probabilistic model to describe the data distribution. By recursively propagating affinity mes-
sages, the method is able to robustly learn a mixture model of the data, avoiding potential bad initialization
issues and wrong decisions. Moreover, AP is able to consider pairwise relationships globally and identify clus-
ter centers or exemplars. This is an important capability of the scheme, providing exemplars that synthesize
and compress the information in the clusters.

The basic AP algorithm considers two types of messages derived from the following constraints. First, no
cluster can be without an exemplar. Second, the clusters must contain at least one member in addition to the
exemplar. Based on these constraints, the scheme works by exchanging messages between data points based
on pairwise similarities, where each type considers a different kind of competition. Messages are combined
to find the points that are exemplars, and the association of points with these exemplars. “Responsibility”
is the message r(i, k) sent from the data point i to each candidate exemplar point k. This type of message
denotes how suitable a point k is as exemplar for a point i, considering other potential exemplars for i. The
“availability” a(i, k) message sent from candidate exemplar point k to point i accumulates evidence for how
appropriate it would be for point i to choose point k as its exemplar.

Considering a dataset D with N data points, the goal is to produce a set of indices {c1, c2, . . . , cN} indicating
the index of the corresponding exemplar for the data points; i.e., if the point i is an exemplar then ci = i.
Let {sim(i, k)} represent a set of real valued pairwise similarities between data points in D. The similarity
sim(i, k) indicates how well the data point k is an exemplar for the data point i. The number of clusters
needs not to be specified a priori. Instead, AP takes as input a real number sim(k, k) for each data point k
that influences the number of clusters. These values are set to the same value if all data points are equally
suitable as exemplars and can be varied to obtain different number of clusters. The median of the input
similarities produces a large number of clusters, and the minimum results in a small number. Availabilities
and responsibilities are combined into the net similarity NS to finally identify the exemplars, where this
net similarity is defined as in (Dueck, 2009) as the sum of the similarities of non-exemplar data points to
their exemplars, plus the sum of the exemplar preferences (i.e., the term (r(i, k) + a(k, i)). AP effectively
maximizes this net similarity NS as the objective function for clustering.

3.2.2 Incremental Clustering

There are several reasons to consider incremental approaches when performing unsupervised obstacle clas-
sification through clustering. First of all, obstacle classification in robotics is an incremental process and
therefore additional obstacle classes might need to be defined on-the-fly. On-line solutions often need to
be produced since other modules might depend on clustering solutions obtained at running time. Timing
related to the computation of very large datasets is another important factor. Two different alternatives
to perform incremental clustering through pairwise grouping using similarities are examined below: naive
incremental and incremental clustering using exemplars. A new approach called Incremental AP is then
proposed which uses concepts from AP within an incremental framework.

Naive incremental clustering is a direct, “brute force” implementation of incremental clustering where the
dataset is updated with new samples and clusters are recomputed each time for the fully updated dataset.



Algorithm 1: Function exemplar() to compress data for incremental clustering.

Input : indices {c∗i } of exemplars, and dataset of points D+

Output: reduced dataset D+, and similarity matrix {sim}+

// Compress dataset using exemplars:

1 forall the i = c∗i ∈ {c∗i } do
2 D+(j)∗ ← fExemplar (D

+, i, c∗i , ζ)

3 D+ ← D+∗

// Compress similarity:

4 {sim}+ ← get sim (D+, D+)

The approach first updates the dataset, concatenating the previous dataset D− with the new data Dnew

into D+. Similarity is then computed for the fully updated dataset. This incremental procedure is exact in
the sense that the similarity is computed using the full updated dataset D+. It is, however, markedly slow
because of the computation of the full similarity.

The use of compressed similarities in an incremental clustering approach appears like a natural improvement
to reduce similarity computation. The incremental framework proposed in (Valgren et al., 2007) addresses
this compression for spectral clustering using exemplars. The key concept is to obtain representatives to
replace clusters’ members, in order to compress the dataset from previous iterations and reduce similarity
computation. The iterative procedure aims to estimate the number of clusters on-line, a feature that is not
directly provided by standard spectral clustering. If an exemplar-based clustering is utilized, the scheme
naturally provides the clusters’ representatives needed in the framework achieving incremental clustering
using exemplars.

Replacing clusters’ members by exemplars through a function exemplar as shown in Algorithm 1, greatly
increases the performance of the algorithm regarding the computation of similarity. In this case, similarity
computation (as indicated in Algorithm 1 through the external function get sim that computes similarity
between sets of data points following Equation 6) involves new data points and only exemplars from the
previous iterations, which are much fewer than the original data points. A straightforward implementation
includes each of the exemplars to the compressed dataset as indicated by the function fExemplar:

fExemplar

(

D+, i, c∗i
)

= D+(i). (8)

This implementation provides the maximum compression, replacing each entire cluster by its corresponding
exemplar D+(i). However, since the approach uses compressed similarities, the clustering results are only
approximate.

Incremental Affinity Propagation (AP) This section builds on the general framework for incremental
clustering using exemplars introduced above. By exploiting the highly compressed similarities this scheme is
more efficient in terms of computation at the expense of reducing the quality of the clustering. This trade-off
between accuracy and computation time can be balanced by replacing each of the clusters by a set of data
points instead of single exemplars. A representation using a collection of data points appears to be closer
to AP clustering. Indeed, AP constitutes a pairwise clustering scheme with a global scope in the sense that
the grouping incorporates the information from all the data points and not only neighbors. A set of points
replacing the clusters better captures the fact that all the points, and not just the exemplars, are important
for clustering. An approach for incremental AP clustering considering these issues is proposed below.

Effectively, the AP incremental clustering uses a modified function fExemplar to compress the dataset based
on the function exemplar from Algorithm 1. The idea is to select each of the exemplars together with a
collection of additional data points to replace the clusters. Since in AP all the points in the clusters are
connected to their corresponding exemplars, each collection can be visualized as a constellation of data points
with an exemplar center. Denoting this function as fAPExemplar, the following definition selects exemplars



together with a number of data points for each cluster:

fAPExemplar

(

D+, i, c∗i
)

= D+(i) ∪ Const,

Const = {D+(k)}, ∀k ∈ c∗i , k 6= i, |Const| = KAP ,
(9)

where Const = {D+(k)} includes KAP neighbors of the D+(i) exemplars to the compressed datasets. The
number of neighbors KAP provides a tuning mechanism for the exemplar algorithm. KAP can select very
dense constellations for light compression (thus slow computation) and high accuracy, or fewer points for
strong compression and less accurate but faster computation. This parameter links in the extremes the two
approaches presented before. Although KAP can be set to a fixed value, information provided by the AP
clustering process can be integrated for an automatic selection for each cluster.

An automatic selection of neighbors is proposed based on information provided by the AP algorithm. Recall-
ing from Section 3.2.1, AP maximizes the net similarity NS as the objective function, where NS is defined
as the total sum of the similarities of non-exemplar data points to their exemplars. A similar concept can be
specified for each of the clusters with respect to their exemplars. For each cluster j, the cluster net similarity
NSj

is defined as the net similarity restricted to the cluster, i.e., the sum of similarities of non-exemplar data
points to the exemplar in the cluster j. Larger NSj

indicates that the cluster j better fits in the complete
dataset of points. Conversely, lower NSj

means the cluster is not well represented. This concept of cluster
net similarity can be used to find the appropriate number of neighbors to effectively represent each cluster.
Considering negative similarities with a maximum value for net similarity of zero2, the number of neighbors

K
(j)
AP for each cluster j can be defined as:

K
(j)
AP =

NSj

NS

N, (10)

where N is the total number of data points. This equation provides a simple mechanism to select the number
of neighbors for each cluster, where few points are selected if the cluster net similarity is high, and more

are needed for clusters with low net similarity. The number of neighbors K
(j)
AP should be consistent with the

actual size of each cluster, and can be further limited to maintain a bounded complexity:

K
(j)
AP = min

(

NSj

NS

N,Nj,KMax

)

, (11)

where Nj is the number of data points in cluster j, and KMax is the maximum number of neighbors. It is
important to note that although clusters are replaced by exemplars and neighbors and are not further used
in the AP incremental clustering, they can actually be maintained for future use.

3.3 Simulation

The performance of unsupervised classification using laser stamps is demonstrated here using the simulated
environment shown in Figure 2(a). This simulator produces both laser and visual data3 sensed from a vehicle
navigating in an environment populated with static and dynamic obstacles, in an area of approximately 100
by 100 meters. Nine different possible obstacle classes 1 to 9 are employed which consider various distinct
synthetic shapes (shown using solid black in Figure 2(a)). Dynamic obstacles follow randomly generated
reference trajectories with changing speeds. During navigation, observations are logged using the laser
returns sensed by the moving vehicle on the surrounding obstacles. Images are associated with each of the
obstacles from a database obtained from the public labeled LabelMe dataset (Russell et al., 2008). These
images are randomly selected from a subset of segmented images which are obtained by querying for labels in
the dataset with the following ‘class:label’ associations: 1:bike, 2:pedestrian, 3:car, 4:bus, 5:truck, 6:animal,
7:dog, 8:boat, and 9:other.

2Note, however, that most similarity measures can be made negative through simple operations.
3Only laser data is used in this section, visual information is considered in Section 4.3.
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Figure 4: Performance of incremental clustering. Accuracy, computation time, and number of clusters
for the incremental methods versus the number of data points. In the plots, blue ‘△’, black ‘◦’, and
red ‘�’ curves correspond to naive, incremental using only the exemplars and AP incremental (Kmax =
20) clustering methods, respectively. Solid lines represent the mean performance, and error bars indicate
standard deviations.

Table 1: Confusion matrix using AP incremental clustering. Rows denote real (ground truth) classes and
columns the AP classification results. The accuracy (in %) and the obtained number of clusters are shown
at the bottom.

Class 1 Class 2 Class 3
Class 1 (bike) 167 0 0

Class 2 (pedestrian) 0 155 16
Class 3 (car) 0 8 125

Accuracy (%) = 95.34
Number of clusters = 10

The evaluation presented here considers a three-class scenario which includes a labeled dataset of 471 tracks
with a number of tracks per class (1/2/3) of 167/163/141 extracted using the procedure presented in Sec-
tion 3.1.1. Laser stamps are then computed from the laser tracks following Section 3.1.2, with pairwise
similarities computed as presented in Section 3.1.3. The performance of the AP incremental clustering ap-
proach presented in Section 3.2.2 is validated for the three-class scenario, considering the three incremental
methods: naive incremental, incremental using only the exemplars, and AP incremental clustering. Incre-
mental clustering is evaluated for each of the three methods considering fixed segments of size L drawn
from the dataset. Effectively, these segments of L = 20 data points are randomly extracted from the total
labeled dataset and sequentially added to the previous data to produce an incremental clustering scenario.
This process is repeated 100 times, randomly shuffling the dataset each time such that 100 different random
sequences are considered. The evaluation criterion used for the algorithms throughout this work is both the
accuracy and the number of clusters, and here computation time is also reported for completeness. Mean
and standard deviations are obtained for accuracy, computation time and number of clusters for each of the
methods with respect to the number of data points. The results of this experiment are shown in Figure 4.



As can be seen in the plots, the naive incremental approach (blue ‘△’ curve) is the most accurate of the
three, reaching an accuracy of 96.37% at the end of the sequence. The computation in this case takes 2.77
secs (σ = 0.1), and detects 18 clusters. Incremental using only the exemplars clustering (black ‘◦’ curve)
is much faster (0.0506 secs with σ = 0.01) but its accuracy is below 80%. AP incremental clustering (red
‘�’ curve) reaches 94.65% (σ = 1.81) in 0.72 secs (σ = 0.14) while detecting 10.8 clusters (σ = 1.31) using
functions implemented in Matlab and running on a 2.33 GHz processor. The performance of this AP in-
cremental approach is comparable to the performance obtained using the naive incremental clustering. AP
incremental reaches the accuracy of the naive approach after roughly 100 data points, with considerably
lower computation times and fewer detected clusters. Table 1 shows results for one instance4 selected from
this experiment, with an accuracy of 95.34% and finding 10 clusters.

Additional experiments were undertaken (not included in this paper for space reasons) considering a nine-
class scenario achieving similar results. The experimentation shows that the laser-based architecture is very
accurate for unsupervised classification. It also indicates that using laser information only, the system tends
to over-cluster the data and generates a large number of clusters. This issue is addressed in further sections
by incorporating vision into the clustering process.

4 Integrating Vision for Unsupervised Classification

The results derived from the classification of laser stamps above suggest that, although the method is very
accurate, it tends to over-cluster. An excessive number of generated clusters might not be suitable for many
applications that make use of the classification outcome. This section builds on the results of similarity-
based classification using laser data and integrates visual information in order to improve the clustering for
unsupervised classification of dynamic obstacles. The algorithms aim to improve the models associated with
dynamic obstacles using visual information5 and a given initial clustering, as produced by the unsupervised
classification of laser tracks from Section 3.

The proposed architecture uses images provided by a color monocular camera as the input, where each of
the images is associated with each of the laser tracks. The clustering results obtained using laser are also
considered as inputs. The output of the system is the grouping produced for the sensed dynamic obstacles.
The incorporation of vision into the process follows a structure similar to the sequence used for processing
laser information. The methodology for combining visual and laser modalities contains two main stages:

• The processing of visual tracks to obtain visual stamps (Section 4.1).

• The computation of a combined laser and visual similarity for similarity-based clustering (Sec-
tion 4.2).

4.1 Visual Stamps for Dynamic Obstacle Representation

This section presents a visual representation that is suitable for combining with laser tracks. Throughout
this section it is assumed that one image containing the dynamic object can be extracted for each track and
used in the visual representation. This assumption simplifies the presentation of concepts and algorithms
for visual integration, providing a framework that is extended in Section 5 for complete sequences of images.
The proposed algorithm is composed of the following stages: 1) the computation of visual stamps and 2)
their corresponding similarity.

4Experiments in Section 4 build on this particular instance and results when dealing with combined clustering in a three-class

scenario.
5The emphasis of the unsupervised algorithms presented hereafter is on schemes able to learn accurate models in times

suitable for retraining but not necessarily in real-time.



Figure 5: Visual stamps using a single-instance representation. The visual stamp S
(i)
visual for each track i is

modeled using a feature vector f
(i)
visual extracted from one of its images. For the computation of similarity

between two tracks i and k, a combined visual stamp S
(i,k)
visual is arranged by stacking up the individual

stamps.

4.1.1 Visual Stamp Representation

This section introduces a single-instance feature-based approach for the visual stamps that utilizes only
one image per track that can be chosen, for instance, by random selection out of the entire track. This
“single-instance” term follows the standard framework of discriminative supervised learning (Duda et al.,
2001), where data points are represented by feature vectors from some data space X of d dimensions, i.e.,
X = R

d. The goal here is to learn a classifier function f , such that f : X → Y, where Y = {−1, 1} (or
equivalently Y = {0, 1}) are labels indicating the classes for binary classification. A training dataset of N
pairs {(x1, y1), (x2, y2), . . . , (xN , yN )} is used in the training stage to learn the function f , where xi ∈ X and
yi ∈ Y. This classifier function f can then be used to predict the labels for new data points in a posterior
inference stage.

Although labels are not explicitly mentioned at this stage, the terminology is convenient since it refers to one
image out of several possible images in the track. It is assumed that each laser track generates a sequence of
region of interest (ROI) in images that can be obtained through calibration (described in Section 6.1), and
one of these images is chosen from the sequence containing the object of interest.

The process to obtain single-instance visual stamps and combined visual stamps from visual tracks is il-
lustrated in the diagram in Figure 5. Each track i is described by a visual stamp following a feature
representation as:

S
(i)
visual = f

(i)
visual, (12)

where f
(i)
visual ∈ R

d is the feature vector, and d is the number of visual features extracted from the represen-
tative image. This work uses a dense representation of features for the images (Dalal, 2006), where different
image features are densely extracted over each entire image, and then stacked together into a single high-

dimensional feature vector f
(i)
visual. This approach allows the combination of various types of robust features

and has been extensively used for object detection (Viola and Jones, 2004; Lowe, 2004). For the comparison
of two tracks i and k, a combined visual stamp is arranged by stacking up the individual stamps:

S
(i,k)
visual =

[

S
(i)
visual

S
(k)
visual

]

. (13)

This representation allows to obtain the similarity function in a discriminative supervised learning framework.



4.1.2 Visual Stamp Similarity

This section presents a method to learn visual similarity. Rather than constructing an explicit function
to directly compute distance as in Section 3.1.3 for laser data, a learning approach is used to estimate
visual similarity. An initial process providing an accurate but over-clustered a priori grouping of tracks
(i.e., the laser-based results as presented in Section 3) determines a positive-only learning (PL) scenario.
Examples included in the same clusters share common characteristics since they belong to the same class.
These examples can be considered similar and constitute the positive training set in a supervised scheme.
No assumption can be made regarding examples between different groups which depend on the (unknown)
underlying classes of the groups and therefore define unlabeled training data.

For the sake of generality, the formulation of PL learning follows standard learning notation introduced
in Section 4.1.1. Let x denote a data point or example, and y ∈ {0, 1} be a binary label. Let l be an
additional random variable such that l = 1 if the example x is labeled, and let l = 0 if x is unlabeled. For
the positive-only scenario, labels are certain only when l = 1, that is y = 1 (positive examples). l = 0
indicates that the examples are unlabeled, then either y = 1 or y = 0 may be true. PL learning estimates
a continuous classifier function f(x) such that f(x) = p(y = 1|x), given positive and unlabeled examples
grouped in triples in P = {(xp, yp, lp)} and U = {(xu, yu, lu)} respectively.

There are two main approaches to learn a classifier in a positive-only scenario. The more common one is to
identify examples likely to be negative and then apply a standard learning method to these and to the positive
examples (Yu, 2005). The other approach is to weight the unlabeled examples and then train a classifier
using these and the positive examples (Elkan and Noto, 2008). This latter approach is used in this work,
since it provides a general framework for learning that includes a mechanism for choosing different weights
for the different unlabeled examples. Section 4.1.2 formulates the visual similarity learning algorithm using
the positive-only (PL) learning framework. As in (Elkan and Noto, 2008), the experiments in this work use
the SVM library from (Chang and Lin, 2008) (extension for “weighted instances”) with probability output
estimates as described in (Wu et al., 2003). Experiments have been undertaken using weighted instances for
boosting (Freund and Schapire, 2006) achieving equivalent performance in most of the cases.

Visual Similarity Positive-only Learning This section formulates the visual similarity learning al-
gorithm using the positive-only learning (PL) framework. The proposed scheme follows the traditional
training-inference (Duda et al., 2001) procedure. By exploiting a priori clustering, positive and unlabeled
training data can be extracted from each pair of clusters to learn similarity models using the PL frame-
work. Once similarity models are obtained for each pair of clusters, similarity measures sim are inferred by
computing the corresponding similarity function. This process is presented below.

Let {cini} = {c1, c2, . . . , cn} indicate the initial clustering, and sim
(i,k)
visual the visual similarity to be estimated

for the pair (ci, ck), with ci, ck ∈ cini. Appropriate positive and unlabeled P and U training sets can be
generated by considering the pairs of clusters of interest. Effectively, for the pair of clusters (ci, ck), the
positive set is P = {(xp, yp, lp)}, where:

xp =
{

S
(m,n)
visual

}

, ∀S(m)
visual, S

(n)
visual such as

m ∈ ci, n ∈ ci, m 6= n, or

m ∈ ck, n ∈ ck, m 6= n;

(14)

with yp = 1 and lp = 1, for all elements p in P . This includes all the possible combinations for the visual
stamps in each cluster i and k. The unlabeled set is U = {(xu, yu, lu)}, where:

xu =
{

S
(m,n)
visual

}

, ∀S(m)
visual, S

(n)
visual such as

m ∈ ci, n ∈ {cini\{ci ∪ ck}}, or

m ∈ ck, n ∈ {cini\{ci ∪ ck}};
(15)



with lu = 0 for all elements u in U (unknown yu). This comprises all the possible combinations for the visual

stamps between each cluster i and k and the rest of the clusters. For both P and U , S
(m,n)
visual follows (13) for

combined stamps.

Considering P and U , the visual similarity model f(x) for the pair of clusters (ci, ck) is obtained using the

algorithm from (Elkan and Noto, 2008). The actual similarity sim
(i,k)
visual is then evaluated by instantiating

the learned model:
{

sim
(i,k)
visual

}

= f (xt) , (16)

for the pair of clusters (ci, ck), where xt is the inference set:

xt =
{

S
(m,n)
visual

}

; ∀S(m)
visual, S

(n)
visual such as

m ∈ ci, n ∈ ck,
(17)

which includes all the combinations of visual stamps between the clusters i and k. In this manner,
{

sim
(i,k)
visual

}

generates both discrete classification (i.e., {ŷt} ∈ {0, 1} indicating ‘dissimilar’ and ‘similar’)

and probability estimates of similarity for each of the data points in xt.

The complete process described in this section comprising (14)-(17) can be summarized through the following
function:

{

sim
(i,k)
visual

}

= learn VisualSimil({cini}, Svisual) , (18)

which obtains the visual similarity for all given data points with respect to all pairs of clusters given the
clustering {cini}.

4.2 Laser and Vision Similarity-based Clustering

Having presented a visual representation and an approach to learn visual similarity in Section 4.1, this section
formulates the integration of laser and vision for similarity-based clustering.

4.2.1 Combined Similarity

The approach for combining laser and visual similarities is based on a linear combination. Each separate
similarity is weighted based on information derived from the visual learning process, considering the level of
certainty achieved in the estimation process.

Let sim
(i,k)
comb denote the combined similarity for the clusters i and k, for a given initial clustering {ci}. The

combined similarity is defined as:

sim
(i,k)
comb = w

(i,k)
visual . sim

(i,k)
visual + w

(i,k)
laser . sim

(i,k)
laser , (19)

where sim
(i,k)
visual derives from the visual similarity

{

sim
(i,k)
visual

}

obtained from (18), and sim
(i,k)
laser is the laser

similarity that produced the clustering {ci}. The weights w
(i,k)
visual and w

(i,k)
laser denote the importance given

to the visual and laser similarities in the combination. The higher the value for a particular weight, the
more the combined similarity relies on this individual contribution. The visual similarity method described

in Section 4.1.2 provides probability estimates of similarity sim
(i,k)
visual for all data points between pairs of

clusters. In this case, a higher visual similarity between the clusters i and k will “link” these clusters stronger

through the combined similarity. The inclusion of the components sim
(i,k)
visual and w

(i,k)
visual accounts for the

underlying uncertainty of the visual similarity estimation process, as described below.

The approach to deal with this uncertainty uses the discrete classification set {ŷt} obtained from Section 4.1.2,

associated with the continuous estimated similarities. Let Tpos denote the N
(i,k)
similar data points classified as



Algorithm 2: Iterative combined clustering.

Input : initial clustering {cini}, set of visual stamps Svisual, set of laser similarities {simlaser}
Output: indices {ci} indicating clusters for data points

// Initialization:

1 {ci} = {cini}, {simcomb} = {simlaser}
// Iterative clustering:

2 while not converged do
// Learn visual similarity:

3

{

sim
(i,k)
visual

}

← learn VisualSimil({ci}, Svisual)

// Combined similarity update:

4 forall the i, k ∈ ci do

5 w(i,k) ← N
(i,k)
similar

N
(i,k)
total

6 sim
(i,k)
comb ← w(i,k) . sim

(i,k)
visual + (1− w(i,k)) . sim

(i,k)
comb

// Reclustering:

7 {ci} ← cluster({simcomb})

‘similar’ in the discrete classification for visual similarity, i.e., ŷj = 1 for all j ∈ Tpos. The term sim
(i,k)
visual is

defined as the mean visual similarity over the members of Tpos as:

sim
(i,k)
visual =

(

1

N
(i,k)
similar

)

∑

j∈Tpos

sim
(i,k)
visual

∣

∣

∣

j
. (20)

The weight w
(i,k)
visual associated with the visual similarity is defined as:

w
(i,k)
visual =

N
(i,k)
similar

N
(i,k)
total

, (21)

where N
(i,k)
total is the total number of data points for the clusters i and k. The weight w

(i,k)
laser for the laser

similarity is defined as the complement of the weight for visual similarity, i.e., w
(i,k)
laser = 1 − w

(i,k)
visual. The

parameters defined in (20)-(21) utilize only data points classified as ‘similar’. This provides an adaptive
contribution of the individual similarities, tuned with respect to the certainty (or uncertainty) obtained from
the visual estimation process.

4.2.2 Iterative Combined Clustering

This section incorporates the combined visual and laser similarity formulated above into an iterative scheme
for similarity-based clustering. The proposed framework allows the refinement of the clustering by means of
iteratively learning the visual similarity, computing the combined similarity, and reclustering. The algorithm
for iterative combined clustering is shown in Algorithm 2.

Considering an initial clustering {cini} generated by a set of laser similarities simlaser , and a set of visual
stamps Svisual, the goal is to refine the initial clustering producing a more accurate clustering {ci}. The
algorithm is initialized in step 1, setting the current clustering {ci} and combined similarity {simcomb} to the
input values, {cini} and {simlaser} respectively. Then, it iteratively repeats three main operations in steps
2-7 until a convergence criterion is reached. The convergence criterion used in this work is a given number of
iterations with no change in clustering. Visual similarity is first learned in step 3 using the approach denoted
by (18) and the current clustering. In steps 4-6, the combined similarity is updated following (19), considering
the laser similarity and the current estimation of visual similarity. Finally, the combined similarity is used
in step 7, where clustering is recomputed using the AP similarity-based clustering.



Table 2: Set of visual features for the visual stamp representation.

Type Feature Dimen.

Shape
Straight lines 4
Canny 6

Color

RGB histogram 27
RGB min/max/index min/index max/channel 5
HSV histogram 27
HSV min/max/index min/index max/channel 5
Color gradient histogram 36
Intensity and entropy histogram 21

Texture

Steerable pyramid histogram 609
Steerable pyramid min/max 2
SIFT, # descriptors, # descriptors normal. 130
Haar features 24
MSER 4
PHOG 40

4.3 Simulation

The performance of the clustering scheme for combined clustering using laser and vision is evaluated for
the three-class scenario. The dataset introduced in Section 3.3 is utilized in this case considering one image
associated to each of the tracks. Extracted tracks now provide laser stamps, together with associated images
that correspond to the underlying class. Visual stamps are computed for each of the images associated with

the tracks following (12), such that data points
{

S
(i)
laser , S

(i)
visual

}

contain both laser stamps S
(i)
laser and visual

stamps S
(i)
visual.

In this evaluation a standard set of features is utilized for visual stamp representation. The features extracted
for each of the images include a variety of shape, color and texture features, with a total of 14 different types
as shown in Table 2. Shape is captured computing straight line features (i.e., # lines, # lines (normalized),
length of longest line, feature indicating if longest line is vertical), and Canny edges (i.e., # features, #
features (normalized), # straight lines in Canny edges, # straight lines in Canny edges (normalized), length
of longest straight line in Canny edges, feature indicating if longest straight line in Canny edges is vertical).
Color features comprise 3D histograms of the RGB and HSV channels, minimum and maximum values for
the channels, color gradient histograms, and intensity and entropy histograms. Texture features include
steerable pyramid (Simoncelli and Freeman, 1995) coefficients of the image, the minimum and maximum
steerable pyramid coefficients, SIFT features (Lowe, 2004), Haar features (Viola and Jones, 2004), maximally
stable extremal regions (MSER) (Matas et al., 2002), and pyramid histograms of oriented gradients (PHOG)
(Bosch et al., 2007). By concatenating all these features, feature vectors fvisual of dimension d = 940 are
obtained for each track.

Algorithm 2 is used for iterative combined clustering, with laser similarities {simlaser} provided by (6). An
initial clustering {cini} is utilized for starting the iterative procedure, given by the laser stamps and indicated
by the results shown earlier in Table 1. As shown in the table, the accuracy obtained through laser stamps
only is 95.34% with 10 obtained clusters. The goal of the iterative process that includes visual information
is to refine this clustering, reducing the number of clusters while maintaining high accuracy. Figure 6 shows
results of the iterative combined clustering process for this three-class scenario.

The procedure converges in four iterations, as shown in solid red ‘�’ plots in the top left and right images
of Figure 6 for the clustering accuracy and number of clusters respectively. As can be seen, the number of
clusters is substantially reduced from 10 to 3 clusters with no significant reduction in accuracy (95.34% to
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Figure 6: Iterative combined clustering. The top left and right images show in solid red ‘�’ the evolution
of clustering accuracy and the number of clusters with respect to the number of iterations. Results for the
standard visual similarity estimation are also included for comparison in dashed black ‘◦’. Bottom images
(a)-(c) present the confusion matrices obtained at different iterations.

94.4%). The use of a standard classifier that assumes unlabeled data points as negative is also included for
comparison, i.e., an SVM classifier using positive training data points and considering unlabeled as negative
data points. Dashed black ‘◦’ plots indicate the evolution of this simplified approach into the iterative
scheme, which converges early in three iterations after reducing the number of clusters from 10 to 7. The
bottom images (a)-(c) show a visual representation of the confusion matrices obtained at different iterations.
Gray level in each cell indicates accuracy, with white cells representing zero and black indicating maximum
accuracy. The confusion matrices show strong diagonal, with minimum hits in the off-diagonal terms that
would indicate incorrect classification.

The experiments show that the system is able to maintain high accuracy for combined laser and vision
unsupervised classification while notably reducing the number of clusters. For the presented three-class
scenario, the accuracy was maintained over 94% and 3 clusters that corresponded to the obstacle classes
were found from an initial estimation of 10 custers produced by the laser data only. The experimentation
shows that if the visual similarity estimation process is able to learn accurate models then the system
converges without major oscillations. This is due to the fact that through the combined similarity (together
with the weights) the regrouping tends to reduce the number of clusters from an initial accurate a priori
clustering.

5 Extended Visual Stamps for Dynamic Obstacle Representation

The visual model proposed above is restrictive regarding sequences of images derived from demanding real-
world visual tracks. Visual tracks obtained using real platforms can be affected by anomalies that are
detrimental to the classification process, including slight sensing errors, occlusion, errors in the calibration
and timing of the sensors, projection artifacts and errors such as misalignment of the ROIs in the images
with respect to the dynamic obstacles. The extraction of training examples from this challenging scenario
is a difficult task. Variations in appearance can affect the visual representation where models are obtained
from possibly incorrect observations.

The scenario defined by visual tracks presents different representation alternatives. A single-instance rep-
resentation (as in Section 4) can be used assuming that one image can be extracted to robustly synthesize



Figure 7: Visual stamps using a multiple instance MIL representation. The MIL visual stamp S
(i)
visual for

each track i is modeled using a bag of feature vectors f
(i)
visualj

extracted from each of the images. For the

computation of similarity between two tracks i and k, a combined MIL visual stamp S
(i,k)
visual is arranged by

stacking up pairs of individual feature vectors from both bags.

the appearance of the dynamic object in the entire sequence. Due to the inaccuracies described earlier, this
simplification can potentially select suboptimal training examples. More robust representations with mul-
tiple training examples can also be used, utilizing full sequences and without assuming any representative
image for the tracks. Data point instances xi generated for the images can be regarded as independent visual
stamps for traditional single-instance learning. This can lead to poor performance (Babenko et al., 2008) in
the learning process, confusing the classifiers by assuming that all instances are significant. Another option
is to consider a bag X containing several data point instances, each of these obtained from the images in the
track. Each bag can then be used as the visual stamp for the track in a multiple instance learning (MIL)
(Long and Tan, 1996; Dietterich et al., 1997) representation. This MIL representation nicely captures the
structure of the problem, where bags of data points instances are obtained from tracks. MIL is used in this
section to represent extended visual stamps, providing a versatile framework that is suitable for learning.

5.1 Multiple Instance (MIL) Framework

Supervised learning for sets can be formulated following (Dietterich et al., 1997). In this case, data is
represented by bags Xi = {xi1, . . . ,xib} of data points xij from some space X = R

d such that xij ∈ X . The
data space for the bags is denoted by X b, where b is the cardinality for the bags assumed fixed for notational
simplicity. The goal is to learn a classifier function F : X b → Y, where Y = {−1, 1} (or equivalently,
Y = {0, 1}) for binary classification. A training dataset of N pairs {(X1, y1), (X2, y2), . . . , (XN , yN )} is used
in the training stage to learn the function F , where each Xi ∈ X b and yi ∈ Y is a bag label. This classifier
function is then used to predict the labels for new bags in an inference stage. In MIL (Dietterich et al.,
1997), a bag label is positive if at least one of its instances is positive, that is:

yi = max
j

(yij), (22)

where yij are the instance labels (yij ∈ Y) that are assumed to exist but are not known during training.
Several algorithms have been proposed to solve the MIL problem, most involving a generalization of existing
algorithms to the multiple instance formulation.

5.2 MIL Visual Stamp Representation

This section presents the formulation of the extended MIL visual stamps. A MIL representation is used now
for the tracks, where MIL visual stamps and combined MIL stamps are derived. The process for obtaining
these MIL visual stamps and combined MIL visual stamps is shown in Figure 7.



Each track i can be described by a MIL visual stamp as a bag of feature vectors:

S
(i)
visual =

{

f
(i)
visual1, . . . , f

(i)
visualb

}

, (23)

where f
(i)
visualj

∈ R
d is a feature vector extracted from each of the b images in the track as in Section 4.1.1.

For the comparison of two tracks i and k, a MIL combined visual stamp can be arranged stacking up pairs
of individual feature vectors from the individual MIL stamps:

S
(i,k)
visual =

{[

f
(i)
visualm

f
(k)
visualn

]}

; ∀ f (i)visualm
, f

(k)
visualn

such as

f
(i)
visualm

∈ S
(i)
visual, f

(k)
visualn

∈ S
(k)
visual.

(24)

(23)-(24) define bags of feature vectors consistent with the MIL framework introduced above in Section 5.1.
In summary, bags are used to represent visual tracks as extended MIL visual stamps, and then arranged into
MIL combined visual stamps for computing similarity.

5.3 MIL Visual Stamp Similarity

The procedure for obtaining visual similarity described in Section 4.1.2 is originally formulated based on
single-instance visual stamps. This section details how this can be adapted to deal with the multiple in-
stance model. Two issues need to be considered to perform this upgrade: (i) the MIL stamp representation
formulated in (23)-(24) should be used as the new visual stamps for the tracks, and (ii) suitable MIL classifiers
need to be integrated into the visual similarity learning algorithms.

The pseudo-function in (18) summarizes the procedure to obtain visual similarity given single-instance visual
stamps Svisual and an initial clustering {cini}. Visual stamps are effectively used within this process when
visual similarity models are obtained for pairs of clusters using a positive-only learning approach (i.e., using
(Elkan and Noto, 2008)). This algorithm can be adapted to support MIL stamps by using MIL classifiers
instead of standard classifiers. In this work, this is achieved using the MILBoost (Viola et al., 2005) classifier,
with prior distribution indicating weighted bags instead of weighted instances. MILBoost derives the multiple
instance variant of boosting (Freund and Schapire, 2006). The weak classifiers used within the boosting were
implemented using decision stumps. These stumps perform weak classication by defining thresholds along
each of the dimensions of the feature space. The learning process achieved good convergence at 40 iterations.

The iterative combined clustering algorithm presented in Section 4.2.2 uses (18) (see Algorithm 2, step 3)
to iteratively learn visual similarity and improve clustering. By considering the adapted procedure to learn
visual similarity using MIL stamps described above, the iterative process is suited to handle the extended
visual stamps.

6 Results

This section shows experimental results of the track-based classification algorithm in urban scenarios. As
in Section 4, the goal is to integrate visual information with laser data to obtain accurate classification
by clustering with a reduced number of clusters representing the underlying obstacle classes. Visual tracks
obtained from real platforms (such as the experimental vehicle shown in Figure 8(a)) present very demanding
classification scenarios with perception issues that affect the classification process. To cope with these
challenges the extended visual stamps for track-based classification introduced in Section 5 are considered
here for the visual models.



(a) Experimental vehicle
(b) Data in urban scenarios

Figure 8: Image (a) presents the experimental vehicle used for data collection in urban environments. A 2D
Sick laser and a high-resolution monocular camera are mounted at the front and on the roof of the vehicle
respectively. Images in (b) show different examples of the registered laser and vision data provided by the
experimental platform.

6.1 Experimental Platform

The sensor data used in the experiments comprises 2D laser and visual information. The considered platform
consists of the experimental vehicle shown in Figure 8(a). This research vehicle is equipped with a 2D laser
at the front mounted at a height of 1 m, and a high-resolution monocular color camera on the roof. The
2D laser is a SICK LMS291 (Sick, 2005) and the camera is an iDS UI2250C (iDS, 2008) with resolution of
1280x1024. These sensors are integrated through a PC104 machine running real-time QNX (QNX, 2005).
The system provided by (ACFR et al., 2006) is used to log the data. Images are provided by the iDS
camera at 5 Hz, and laser scans are logged using the 2D Sick laser in high speed mode at 75 Hz. Collected
datasets consist of 60 minutes of data of sequences of images temporally correlated with laser scans. In the
experiments, the speed of the experimental platform varies between 0-40 km/h through city-like campus
roads and streets in and around the University of Sydney campus.

The projection of the laser returns onto the camera images is achieved by estimating the transformation from
the laser to the image coordinate frame using the camera/laser calibration procedure described in (Zhang
and Pless, 2004). In this approach, estimates for the extrinsic transformation parameters are obtained by
performing constrained non-linear optimization using training data. This data is obtained by positioning
a planar calibration pattern (a checkerboard) in various poses. Registration information is also used to
consider ROIs on the images. Clusters of laser returns are used to determine ROIs taking into account the
mean range to the objects in the laser coordinate frame. Examples of the registered laser and vision data
together with the ROIs for some of the obstacles are shown in Figure 8(b).

6.2 Experiments

The objectives of the experiments are (i) to demonstrate the performance of the track-based algorithms for
unsupervised classification in urban scenarios combining laser and vision, and (ii) to compare the extended
MIL visual stamp representation introduced in Section 5 with respect to the single-instance approach used



Table 3: Confusion matrix using AP clustering. The accuracy (in %) and the obtained number of clusters
are shown at the bottom.

Class 1 Class 2 Class 3
Class 1 (bike) 25 3 0

Class 2 (pedestrian) 6 113 3
Class 3 (car) 2 0 59

Accuracy (%) = 93.37
Number of clusters = 8

in Section 4. The experiments utilize data collected using the research experimental vehicle described in
Section 6.1.

The data collected in urban environments includes three main obstacle classes: 1:bike, 2:pedestrian and
3:car; and therefore the datasets are manually labeled according to these classes for ground thruth. The
total number of processed tracks is 211, with a number of obstacles per class (1/2/3) of 33/116/62. The
extracted laser tracks also determine visual tracks through sensor registration. Complete sequences of images
contained in the visual tracks are now used to obtain extended visual stamps, using the multiple instance
(MIL) framework presented in Section 5. MIL visual stamps are computed for the tracks following (23),

such that data points
{

S
(i)
laser , S

(i)
visual

}

contain both laser stamps S
(i)
laser and extended visual stamps S

(i)
visual.

The set of features used in the experiments is the set presented in Section 4.3 (detailed in Table 2). By

concatenating all these features, feature vectors f
(i)
visualj

of dimension d = 940 are obtained for each of the
instances included in the bags representing the tracks. Combined MIL visual stamps are computed following
(24).

Following the processing sequence from Figure 1, classification using laser is first performed, providing an
initial clustering on which visual tracks build upon. Then, visual information is incorporated consider-
ing extended visual stamps in order to refine the classification results. Finally, the performance of the
single-instance visual stamp approach from Section 4 is compared with the MIL extended visual stamp
representation from Section 5 using real-world data.

6.2.1 Track-based Classification using Laser

This section describes unsupervised classification using laser stamps only. Laser stamp similarity simlaser

is computed for the laser stamps
{

S
(i)
laser

}

of dataset described above following the procedure presented in

Section 3.1.3 (see (6)). AP clustering is then applied using the Matlab MEX code from (Frey and Dueck,
2007), classifying the tracks in an unsupervised manner as presented in Section 3.2.1. Ground truth labels
are only used to compute classification accuracy. The obtained results are very accurate, reaching 93.37%
with 8 clusters. Table 3 presents these classification results through the corresponding confusion matrix.
Table 4 shows the same AP clustering results with the ground truth class distribution (classes 1, 2, and 3)
indicated for each of the obtained clusters. Classes corresponding to the exemplars (Exemplar Class) in the
clusters are also shown. The total number of exemplars associated with each of the classes in this experiment
is indicated in the last row in Table 4. As can be seen, class 1 (bike) is entirely captured by one exemplar,
while the other two classes are represented by few exemplars that capture various views of the obstacles.
The performance of the laser-based scheme was not affected by the speed of the objects; the system was
able to incorporate tracks to the database for classification as long as they were consistently detected and
tracked by the laser scanner operating in high-speed mode.



Table 4: AP clustering results. Rows contain the real (ground truth) classes for each of the obtained clusters
indicated in the first column. The last column shows the class that corresponds to the exemplar in each
cluster. The last row shows the total number of exemplars identified for each of the classes.

Cluster Class 1 Class 2 Class 3 Exemplar
1 3 10 0 2
2 0 0 10 3
3 2 22 2 2
4 1 38 1 2
5 0 43 0 2
6 2 0 25 3
7 25 3 0 1
8 0 0 24 3

Ex. per class 1 4 3

6.2.2 Track-based Classification Integrating Vision

Visual information is now used to improve clustering by integrating extended visual stamps into the clustering
process, using the iterative combined clustering scheme from Section 4.2.2 extended in Section 5. The
accuracy obtained through unsupervised classification using laser stamps only is 93.37% with 8 obtained
clusters. The goal of the iterative process is to incorporate visual information to refine the clustering.

Iterative combined clustering is evaluated using laser stamps S
(i)
laser and extended visual stamps S

(i)
visual. Laser

similarities {simlaser} are obtained from laser stamps, providing the initial laser clustering {cini} shown in
Tables 3-4. As described in Section 5, extended visual stamps are combined with laser for iterative combined
clustering using Algorithm 2. Convergence of the iterative scheme is achieved when the reclustering stops
changing the grouping. Figure 9 shows results of this iterative combined clustering process.

The procedure converges in five iterations, as shown in solid red ‘�’ plots in the top and center images of
Figure 9 for clustering accuracy and number of clusters, respectively. The number of clusters is markedly
reduced from 8 to 3 clusters, with no significant reduction of the accuracy (93.37% to 92.9%). The bottom
images (a)-(c) show a visual representation of the confusion matrices obtained at different iterations. The
confusion matrices show strong diagonal, with minimum hits in the off-diagonal terms. The total computation
time of the iterative process for convergence is 18 minutes running unoptimized Matlab code on a 2.33 GHz
processor, suggesting that the scheme is suitable for on-line retraining. The obtained computation time
indicates that by providing a vehicle with the proposed architecture, the system could regularly retrain the
models of the surrounding dynamic obstacles to achieve an adaptive behavior for long term navigation tasks.

6.2.3 Single-instance versus Extended Visual Stamps

The single-instance approach used in Section 4 is compared here with the MIL extended visual stamp
representation introduced in Section 5. The goal is to evaluate the performance of the simplified visual
scheme when dealing with more demanding visual tracks in urban scenarios, provided in this case by the
dataset collected using the experimental vehicle. Using this data the experiment below computes iterative
combined clustering using laser and single-instance visual stamps.

Recalling from Section 4.1, one image is extracted from each track to obtain the single-instance visual stamp
representation. The procedure for the evaluation randomly selects individual images from the complete
sequences of images for each of the visual tracks. For each of the tracks, the selected image is used to
compute a single-instance visual stamp that is then used into the iterative combined clustering process in
the same manner as in Section 4.2.2. The same process is evaluated 100 times with different seeds and
computed until convergence for each case. Results of this experiment are overlaid in the top and center
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Figure 9: Iterative combined clustering in track-based classification. The top and center images plot in
solid red ‘�’ the evolution of clustering accuracy and the number of clusters (with respect to the number of
iterations) when using the MIL extended visual stamps. (a)-(c) present the confusion matrices obtained at
different iterations. Light blue areas in top and center plots indicate iterative combined clustering perfor-
mance when using single-instance visual stamps as detailed in Section 6.2.3.

images in Figure 9 together with the results previously obtained using the MIL extended visual tracks for
comparison. The light blue areas indicate the evolution of the 100 iterative clustering processes when using
single-instance visual stamps, and solid red ‘�’ curves show the performance when considering the extended
visual stamps already presented in Figure 9.

As can be seen, the use of single-instance visual stamps notably deteriorates the performance in this demand-
ing urban dataset. Clustering quality is reduced with worst cases reaching accuracies of 87%. Moreover, the
iterative procedure is not capable of minimizing the number of clusters with a maximum refinement that
obtains 5 clusters. When using the MIL extended visual stamps, on the other hand, the iterative combined
process is able to maintain high accuracy and reduce the number of clusters to the correct number that
corresponds to the obstacle classes in the data.

7 Discussion

The proposed algorithm for track-based unsupervised classification using 2D laser and vision deploys a hier-
archical formulation regarding the way sensor data is globally processed. The sensor hierarchy provides the
means to decouple the sensor modalities to address problems separately and achieve unsupervised classifica-



tion. This “laser then vision” scheme omits, however, the multi-modal nature of the sensor data that could
be considered and benefit some of the low-level processing stages. It also explains the reasons behind the
classification failures, i.e., errors in the initial clustering produced by the laser are carried on to the second
stage where vision is incorporated. This second stage uses the results from the a priori clustering and is
then unable to correct the misclassified situations (as can be seen in Figure 9).

The emphasis on this work is on the development of unsupervised algorithms capable of learning accurate
models. The experiments showed high performance regarding accuracy and computation times that suggests
that on-line retraining for ITS is feasible. For example, the retraining may be needed in a scenario where the
ITS moves from a city like environment to a farm. The concept of on-line introduced in the paper is from the
point of view of the application rather than the algorithms. We believe that the vehicle can use the first few
minutes to gradually update the models (retraining) without need to do this instantaneously. The presented
scheme does not perform real-time classification, since this was considered beyond the scope of this work. The
algorithms were implemented using unoptimized Matlab code, and therefore the reported computation times
could be considerably reduced utilizing optimized C/C++ code. The fact that the proposed architecture
obtains high-quality unsupervised classification would permit the potential incorporation of supervised stages
for real-time computation.

8 Conclusions

This work developed solutions to the problem of unsupervised classification of dynamic obstacles by intro-
ducing a track-based model for the integration of laser and visual information. Regarding the processing of
laser tracks, this work contributed a representation called laser stamps and a similarity measure, together
with an incremental approach for AP clustering to produce efficient clustering of laser stamps for on-line
clustering. With respect to visual information, visual stamps were introduced to describe visual tracks using
a single-instance feature-based formulation for images representative of the entire tracks. A method based on
PL learning was introduced to compute visual similarity building on results obtained from the laser stamp
formulation. The visual similarity measure was then combined with the laser similarity and integrated into
an iterative combined clustering scheme. Finally, extended visual models were proposed by exploiting full
sequences of images from the visual tracks to better cope with challenging real-world scenarios. MIL was
introduced to deal with the multiple visual stamps that are derived from visual tracks and used to extend
the visual similarity learning approach.

The whole architecture was successfully validated through experiments for track-based unsupervised classi-
fication using data collected in urban environments. The experiments demonstrated the high-quality perfor-
mance of the scheme, with accuracy of over 92% and finding the 3 clusters that corresponded to the obstacle
classes in the data. Moreover, the system was able to robustly refine an initial clustering given by the laser
while maintaining accurate grouping. It was also shown that the MIL extended visual stamp representation
has improved performance regarding unsupervised classification when using real-world visual tracks obtained
in urban scenarios.

The proposed architecture achieves good results in unsupervised classification of dynamic obstacles. There is,
however, room for improvement with various possible extensions that can be considered. A natural extension
of this work is to use 3D laser sensing instead of 2D, for example utilizing data provided by a Velodyne sensor
(Velodyne, 2008). The advantages of 3D data (e..g., more dense scans, invariance against nodding of the
vehicle and wider field of view) could improve the processing stages at the expense of an increase in the
associated cost. A 3D Velodyne sensor is approximately ten times more expensive than a standard 2D Sick
laser and this is a limiting factor for its application in the context of automotive applications. Multi-layer
laser scanners, such as the Ibeo Lux (Ibeo, 2009), could potentially establish an interesting trade-off both
between 2D and full 3D representations and costs. The use of RADAR (Jansson, 2005) for obstacle detection
is widely spread in commercial vehicles due to reliability and cost and its use to obtain the initial classification
estimates (instead of laser sensors) is worth exploring.



This work assumes a hierarchical flow in the processing of the sensor data establishing precedence of laser
over vision. This occurs, for instance, in the stages performing motion detection and object tracking as
well as in the aligning procedure used to produce laser stamps. Although the performance of these modules
is satisfactory, “simultaneous” laser and vision processing could have been considered to further boost the
efficiency. Detection and tracking in the laser coordinate frame and also in the image (Sun et al., 2006) could
be used to increase range and resolution and to better deal with occlusions. Alignment of laser scans could
also benefit from vision, integrating visual features as in CRF-matching (Ramos et al., 2007). This could
potentially provide more robust association for creating the stamp representation.
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