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Abstract—This paper is about automatic calibration of a
camera-lidar system. The method presented is designed to be
as general as possible allowing it to be used in a large range of
systems and applications. The approach uses normalized mutual
information to compare camera images with lidar scans of the
same area. A camera model that takes into account orientation,
location and focal length is used to create a 2D lidar image,
with the intensity of the pixels representing a feature of the
lidar scan that is chosen depending on the application. Particle
swarm optimization is used to find the optimal model parameters.
The method presented is successfully validated on a variety of
cameras, lidars and locations, including scans of both urban and
natural environments.

I. INTRODUCTION

This paper looks at a method for automatically aligning
a camera and a lidar scanner using scans of an arbitrary
environment. The method estimates the extrinsic and some
intrinsic parameters of the camera in an automated process
with minimal human interaction. This process is designed to
work for a large variety of laser scanners and cameras used in
a range of environments.

Accurate calibration between lidar scanners and cameras
is important as it allows each point in the cloud produced
by the scanner to have a colour associated with it. These
coloured points can then be used to build up richer models
of the area. This calibration is quite challenging due to the
very different modalities of the sensors and the nature of the
output information. Due to the difficulty of aligning the sensors
the majority of these systems are calibrated by hand. This is
currently done using reflective markers, chequerboards or by
painstakingly hand labelling large numbers of points. These
methods are slow, labour intensive and often produce results
with significant errors.

Automatic calibration is important for mobile robots relying
in multi sensor modalities. The most current common approach
is to perform calibration once using manual methods and as-
sume this calibration remains unchanged for a period of time.
In practice however, the calibration is rapidly degraded due
to the robot motion, particularly for mobile robots working in
rough environments such as mining trucks. Robust automatic
calibration methods would allow robots to work in rough
environments for longer periods of time.

Several automated methods for aligning the cameras do
exist, however, all of these methods are only designed to work
for a fairly small range of situations and lidar types. The
lidar sensors these methods work with can be roughly divided

into three main categories: i) Terrestrial systems that make a
single high resolution scan of an area from a fixed location,
ii) airborne systems that perform a similar task to terrestrial
systems from the air and iii) mobile systems, such as the
velodyne that are used to make a large number of very coarse
scans of an environment and are typically used for navigation.
There are also two different types of cameras that are often
used in conjunction with these scanners, regular colour and
multi- and hyperspectral cameras. Hyperspectral cameras have
hundreds of colour bands and operate by scanning a single line
of pixels over an area.

The attempt in this paper is to create a method that can
correctly find the calibration for a lidar-camera system that
can be used regardless of the exact type of sensors involved.
The method also attempts to successfully operate in both urban
and natural environments.

II. RELATED WORK

The work done in this area can be roughly divided into three
groups, calibration of aerial scans, fixed ground based scans
and mobile ground scans.

In the aerial scans application a recently proposed method
by H. Li et al makes use of edges and corners [1]. Their
method works by constructing closed polygons from edges
detected in both the lidar scan and images. Once the polygons
have been extracted they are used as features and matched to
align the sensors. The method was only intended for and thus
tested using aerial photos of urban environments.

A Mastin et al achieved registration of an aerial lidar scan
by creating an image from it using a camera model [2]. The
intensity of the pixels in the image generated from the lidar
scan were either the intensity of the return the laser had or
the height from the ground. The images were compared using
mutual information and optimization was done via downhill
simplex. This method operated quickly and produced accurate
results although its search space was rather limited requiring
an initial guess of the orientation of the camera that was correct
to within 0.5 degrees for roll and pitch. The method was only
tested in an urban environment where buildings provided a
strong relationship between height and image colour.

For the alignment of fixed ground based scans in urban
environments a large number of methods exist that exploit the
detection of straight edges in a scene [3], [4]. These straight
lines are used to calculate the location of vanishing points
in the image. While these methods work well in cities and



with images of buildings they are unable to correctly register
natural environments due to the lack of strong straight edges.

The registration of mobile ground scans is particularly
challenging due to the low resolution of the lidar used. A
recent approach that overcomes this issue has been presented
by Levinson [5]. The method calibrated the extrinsic parame-
ters of a camera-velodyne system using a set of 100 image
scan pairs. Their method involves finding edge images for
both the laser and camera images and using an element wise
multiplication of these images, assuming that when the sum
of this is maximized the two sensors are correctly aligned.
There is also some extra processing done to improve the
robustness and convergence of the method. A closely related
work was recently presented [6]. The authors developed a
method to calibrate a velodyne-camera system by maximizing
the mutual information between laser reflectivity and optical
images. There are two main differences with our system. First,
our approach can be applied to a larger variety of environments
since is not based on the solely use of reflectivity for the
laser image. We found reflectivity to be uninformative in
natural environments such as the mining data evaluated. The
second difference regards the optimization method. In [6] the
optimization is done by the Barzilai-Borwein (BB) steepest
gradient ascent algorithm. We use particle swarm optimisation
which is not restricted to convex problems and so allows us
to perform single-scan calibration.

From a more theoretical view on the calibration [7] looked
into different techniques for generating an image from a 3d
model so that mutual information would successfully regis-
ter the image with a real photo of the object. They used
NEWUOA optimization in their registration and looked at
using the silhouette, normals, specular map, ambient occlusion
and combinations of these to create an image that would
robustly be registered with the real image. They found surface
normals and a combination of normal and ambient occlusion
to be the most effective.

A fairly in depth look at many of the different methods for
aligning images with lidar scans can be found in [8].

III. METHOD

Figure 1 shows a block diagram of our approach. The image
is first converted to grey scale and histogram equalization is
performed on the image. For the data given by the lidar, first
the feature to use in colouring the image is chosen and the
corresponding value for each point is generated. Once this
had been done a camera model is used to create the 2D
image from the point cloud. Normalized mutual information
is used as a measure to compare the cameras image with
the generated image. This process was repeated for changing
camera model parameters using particle swarm optimization.
The optimization continues until all the particles converge
and a global maximum for the normalized mutual information
between the images is found.

Fig. 1. Overview of alignment method

A. Lidar features

For the normalized mutual information (NMI) to correctly
calibrate the system there has to be a strong statistical depen-
dence between the colour of pixels in the camera image and the
one generated for the lidar. The normals of the points and the
return intensity of the lidar are used to achieve this. Normals
are used as there is a fairly strong relationship between the
angle of a surface and its perceived colour as was shown in
[7].

Two different methods are used for estimating the normals.
For the dense scans produced by the Riegl lidar, the normal
vectors of the points are estimated by taking the difference
between consecutive points in the scan. For sparse datasets,
such as the velodyne this was found to give poor results and so
a far more accurate, though slower method was implemented.
A plane is approximated at the location of each point. This is
done by first placing the points into a k-d tree. From this, the
eight nearest neighbours to each point are found. The normal
vector is calculated from the eigenvectors and eigenvalues of
the covariance matrix C, given by equation 1 [9].

C =
1

8

8∑
i=1

(pi − c)(pi − c)T (1)

Where pi is the i-th nearest neighbour location and c is
the location of the point. The smallest eigenvalue of C’s
corresponding eigenvector is the best estimate of the normal



vector of the plane. Once this vector has been obtained the
angle between it and the horizontal x− z plane is calculated
and stored for use in the image generation process. The angle
between the normals and a horizontal plane was used as it was
assumed that most of the light was coming from above and
thus this angle had the largest influence on intensity. Normals
also have the advantage over many other methods of colouring
the pixels in that they are independent of the location of
the camera and so can be precalculated. This is important as
the calculation of the image from the lidar scan is the most
computationally expensive step in the optimization.

The intensity of the return of the rays in the lidar scan was
also used as a feature. This gives a strong relationship as both
laser reflectance and the camera pixel intensity primarily rely
on the reflectance of the target material. It has the advantage,
over any technique that makes use of the distance, in that it can
detect a difference in the colour of an object. This allowed it
to achieve the best registration on our second dataset (ACFR)
due to aligning several lines that were painted on the side of a
building. For the velodyne dataset the intensity of returns was
of limited use as each laser appeared to give different readings
for the same object.

A parameter that was also looked into was how areas
where no lidar readings are obtained are treated. These areas,
if included as features, could often enhance the registration
accuracy. A strong example of this is the shape of the skyline
in the lidar images. However, it could also lead to situations
where it caused misregistration, for example by aligning the
shadow cast by objects in the lidar with objects in the scene.

Histogram equalization is performed on all features to
improve how they would be distributed into the bins during
the mutual information calculation.

B. Mutual Information

Mutual information is a measure of how similar one signal
is to another. It was first developed in information theory
using the idea of Shannon entropy [10]. Shannon entropy is
a measure of how much information is contained in a signal
and its discrete version is defined as [11]:

H(X) = H(pX) =
n∑

i=1

pilog(
1

pi
) (2)

where X is a discrete random variable with n elements and
the probability distribution pX = (p1, ..., pn). For this purpose
0log∞ = 0.

Using this idea of Shannon entropy, mutual information is
defined as

MI(M,N) = H(M) +H(N)−H(M,N) (3)

where H(M,N) is the joint entropy which is defined as

H(M,N) = H(p(m,n)) =
∑
m

∑
n

p(m,n)log(
1

p(m,n)
)

(4)

Mutual information when used for registration purposes
suffers from an issue in that it can be influenced by the
amount of total information contained in images causing it
to favour images with less overlap [12]. This is solved by
using a normalized mutual information metric defined as

NMI(M,N) =
H(M) +H(N)

H(M,N)
(5)

In practice, for images, the required probabilities p(M) and
p(N) can be estimated using a histogram of the distribution
of intensity values.

Normalized mutual information is used as the metric for
evaluating the strength of the alignment between the two
images as it automatically takes into account the non-linear
relationship between angle and intensity. It also accounts for
issues such as how different materials could appear dissimilar
in different sensor modalities. This strength means that it can
be assumed that the global maximum of normalized mutual
information (NMI) is when the images are best aligned.

C. Camera model

To convert the lidar data from a list of 3D points to a 2D
image that could be compared to the camera’s images, the
points are first pass into a transformation matrix that aligns the
camera’s and the world axis. After this has been performed,
one of two basic camera models is used. For standard cameras
a pin-hole camera model is used as defined in equations 6 and
7. For hyperspectral cameras, a panoramic camera model that
projects the points onto a cylinder is used, a rough depiction
of this is shown in figure 2. This model projects the points
using equations 8 and 9 [13].

xcam = x0 −
cx

z
+ ∆xcam (6)

ycam = y0 −
cy

z
+ ∆ycam (7)

xcam = x0 − c arctan(
−y
x

) + ∆xcam (8)

ycam = y0 −
cz√
x2 + y2

+ ∆ycam (9)

where
xcam , ycam are the x and y position of the point in the
image.
x, y, z are the coordinates of points in the environment.
c is the principle distance of the model.
x0 , y0 are the location of the principle point in the image.
∆x , ∆y are the correction terms used to account for several
imperfections in the camera.

These models ignore the effects of several other parameters
such as the x and y axis of the camera not being perfectly
parallel and the radial distortion of the lens. The ignoring of
these effects can be justified as for a hyperspectral camera
with a resolution of 10000 by 60000 it was shown in [13] that



Fig. 2. Cylinder model used to represent hyperspectral camera

Fig. 3. Images of mining area output by the panoramic camera model

the error caused by these parameters was less than 10 pixels.
This level of error in the images was taken to be acceptable.
An example of the output of the camera model can be seen in
figure 3.

D. Optimization

Depending on the assumptions made by the camera model
and the accuracy of the initial scans position the problem
has four to nine variables to solve. This search space is also
highly non-convex with a large amount of local maximums.
An example of the typical shape of NMI for a single scan
alignment is plotted in two dimensions in figure 4. With the
simple histogram method of calculating the mutual informa-
tion used in this paper there is no information on the deriva-
tives available. These difficulties were further compound by
the relatively expensive process of generating an image from
a pointcloud that is required for every function evaluation.

The fairly large range that the correct values could lie in
coupled with the local maximums meant that simple gradient
accent type methods as used by others to solve image lidar
registration [2], [8], [6] could not be used here. To solve
these problems particle swarm optimization was used [14],
[15]. Particle swarm optimization works by placing an initial
population of particles randomly in the search space. Each
iteration a particle moves to a new location based on three
factors: i) it moves towards the best location found by any
particle, ii) it moves towards the best location it has ever found

Fig. 4. Example of NMI values for changing roll and yaw

itself and iii) it moves in a random direction. The optimizer
stops once all particles have converged. The entire algorithm
for registration is shown in section III-E [15].

E. Algorithm

Let
ri(t) be the position of particle i at time t
vi(t) be the velocity of particle i at time t
pi,Ln be the local best of the ith particle for the nth

dimension
pgn be the global best for the nth dimension
n ∈ 1, 2, ...N
t is the time
∆t is the time step
c1 and c2 are the cognitive and social factor constants
φ1 and φ2 are two statistically independent random

variables uniformly distributed between 0 and 1
w is the inertial factor

for each itertaion l do
if f(ri(l + 1)) > f(pi,L(l)) then

pi,L(l + 1) = ri

end
if f(ri(l + 1)) > f(pg(l)) then

pg(l + 1) = ri

end
vin(t+ ∆t) =
wvin(t) + c1φ1[pi,Ln − xin(t)]∆t+ c2φ2[pgn − xin(t)]∆t
rin(t+ ∆t) = rin(t) + ∆tvin(t)

end

IV. RESULTS

The method was tested on three different datasets. The
first dataset was obtained from an open pit mine in Western
Australia containing detailed scans and hyperspectral images
of cliff faces. A second dataset was obtained next to the



Australian Centre for Field robotics (ACFR) building. The
third dataset used was the KITTI dataset [16] which contains
velodyne scans and greyscale images from a moving car.

For all datasets the particle swarm optimizer was started
with 200 particles and run until the particles all converged to
within 0.1 in all dimensions of each other. This usually took
100 to 200 iterations

The code was written in Matlab with mex files written in
c++ and CUDA created for the generation of the lidar images
and mutual information calculations. The code was run on a
dell latitude E6150 laptop with an Intel i5 M520M CPU and
a NVS3100 GPU. Each function evaluation took around 0.01
seconds. The total runtime for the code was 3 to 10 minutes
for the mine and ACFR dataset and 2 to 4 hours for a series
of 100 image-scan pairs used in the KITTI dataset.

A. Mine experiment

The method was tested on a dataset of an open pit mine in
Western Australia previously used in [17]. The feature used
to colour the lidar image was the normals. This was used
as no intensity of return was available. The areas where no
readings were given by the lidar were coloured black and used
in the registration as the strong skyline helped the alignment
converge to the correct solution.

The laser used was a Riegl LMS-Z420i and the hyperspec-
tral camera was a Neo HySpex VNIR and SWIR, the setup is
shown in figure 5. RTK GPS was used to provide the exact
location of the camera and laser scanner, however at two of the
locations (a2 and a3) this signal failed and only a standard GPS
location was given. The hyperspectral camera was readjusted
and the focal length changed before taking each image so its
intrinsics cannot be assumed to be the same between images.
Scan and image pairs from four different sections of the mine
were used. These images were taken over the course of two
days. These areas of the mine were labelled a1,a2,a3,a4. An
initial guess at the orientation of the camera was made. This
guess was chosen such that a comparison of the hyperspectral
and initial lidar scan could clearly show the alignment to be
incorrect by a few degrees. The initial location of the camera
was taken to be the GPS coordinates. The initial guess of the
values can be found in table I

1) Optimization: Each optimization was run twice, each
time with different set of parameters θ. Equation 10 shows
the configurations evaluated.

θ1 = [roll, pitch, yaw, c] (10)
θ2 = [roll, pitch, yaw, c, x, y, z]

The search space for the optimizer was constructed based
on the assumptions:

• The roll, pitch and yaw of the camera were within 10,
20 and 5 degrees respectively of the lasers.

• The cameras principal distance was within 20 pixels of
correct (for this camera principal distance ≈ 1320).

• The x, y and z coordinates were either correct or within
4, 4 and 0.5 meters of correct.

Fig. 5. Hyperspectral camera and lidar setup used to collect data

θ site ∆x ∆y ∆z roll pitch yaw c
0 a1 0 0 0 0 0 -44 1320
1 a1 0 0 0 -0.1 0.1 -45.1 1332
2 a1 -0.138 -0.109 -0.196 -0.82 0.1 -45.2 1334
0 a2 0 0 0 0 0 37 1320
1 a2 0 0 0 -2.6 5.9 39.1 1321
2 a2 0.230 0.895 0.265 -2.5 5.6 40.4 1315
0 a3 0 0 0 0 5 5 1320
1 a3 0 0 0 -1.1 6.1 5.1 1326
2 a3 -0.02 -0.03 0.459 -1.1 6.1 5.1 1326
0 a4 0 0 0 0 4 50 1320
1 a4 0 0 0 -1.1 3.3 54.1 1337
2 a4 -0.098 -0.386 -0.319 -1.2 3.7 53.8 1338

TABLE I
PARAMETERS FOUND FOR CAMERA MODEL CAMERA MODEL. θ0 IS THE

INITIAL VALUES

2) Mine results: For the mine dataset no ground truth as to
the orientation between the lidar and the hyperspectral camera
was available. This means that no quantitative evidence as to
the accuracy of the alignment can be given. However some
indication as to the effectiveness of the method can be gained
by viewing of the data1.

The parameters that were found are listed in table I. In the
absence of ground truth values few conclusions can be drawn
from the table alone and so the results of four different scans
are shown in figure 7. For a4 an image generated by using the
calibrated camera to colour the point cloud is shown in figure
6, this gives some indication to the accuracy as the only points
clearly miscoloured are caused by lidar returns off dust and
tape that was blowing in the wind. Note when viewing the
outputs that while a tripod with the hyperspectral calibration
board (for reflectance) is present in most of the images, it was
often moved between the time the hyperspectral image and the
lidar scan were taken meaning it cannot be used to judge the
quality of the alignment. On visual inspection it can clearly
be seen that for all runs the approach converges to a solution
that appears correct. For the areas a4 and a1 the RTK GPS
was operating and so any variation in position can be taken
as error. For dataset a1 the results are within 0.4m of each

1All the results are shown in movie attached



Fig. 6. Point cloud of a4 coloured by the visible bands of the calibrated
hyperspectral image

Scan roll pitch yaw x y z c
2 190.4 -2.4 -90.0 -0.59 0.46 0.03 763.3
3 -51.0 1.4 -91.1 -0.42 0.21 0.62 788.4
4 -30.7 -0.9 -89.6 -0.39 0.53 0.05 755.0

measured - - - ≈-0.6 ≈0.2 ≈0.2 -

TABLE II
CALIBRATION VALUES FOR ACFR DATASET

other while a4 the error is 0.5m. These errors in translation
were expected since in the mining dataset does not have close
objects (25-30 metres to target) which makes the cost function
less sensitive to errors in translation. This problem was also
noted in [6].

B. ACFR experiment

A Specim hyperspectral camera and Riegl VZ1000 lidar
scanner were mounted on top of a Toyota Hilux and used
to take a series of 4 scans of the ACFR building from the
park next to it, the setup is shown in figure 8. The scanner
output gave the location of each point as its latitude, longitude
and altitude. While the location of the scanner was recorded
its orientation was not. The focal length of the hyperspectral
camera was adjusted between each scan. The intensity of
return were taken as features and areas with no return were
not included in the NMI calculation.

The search space for the optimizer was constructed assum-
ing the following:

• The roll, pitch and yaw of the camera were within 10,
10 and 5 degrees respectively of the lasers.

• The cameras principal distance was within 50 pixels of
correct (for this camera principal distance ≈ 770).

• The x, y and z coordinates were within one meter of
correct.

1) ACFR results: Of the four scans taken, three had solu-
tions that converged. The last scan contained large amounts of
shadow that obscured many of the features and may have been
the cause of its failure. The calibration values obtained can be
seen in Table II. As the orientation of the vehicle when taking
the scans was not recorded no information as to the accuracy
of the angle can be given. However as the sensors are in a
fixed relative position if the sensors are correctly aligned the

Fig. 7. Results of optimization. To visualize results strong edges in the lidar
data have been found and are overlaid in blue on top of the red hyperspectral
image. Each area has shown the rgb bands of the hyperspectral (top), the
initial guess (middle) and the alignment found changing θ2. The sites from
top to bottom are a1, a2, a3 and a4.



Fig. 8. Setup used to collect ACFR data

Fig. 9. Calibrated camera image of ACFR projected onto point cloud

x,y,z values should all correspond to the distance between the
sensors and any difference in them can be taken as error in
the method.

The accuracy of the results were visually checked by
projecting the calibrated camera image onto the point cloud as
is shown in figure 9. Any misregistration can then be seen from
the miscolouring of objects. Visually the results appear fairly
accurate as even for thin objects such as light poles and tree
trunks the colour is mostly correct, this goes against what table
II shows though as significant differences in the location of
the sensors epically in the z direction can be seen. This is due
to the small effect that displacements of this magnitude have
on the image. This issue is further compounded by the very
similar effect that focal length and a shift in z have leading to
the larger difference in z. The issue may be reduced by using
a camera with known intrinsics or by taking a large series of
scans and processing them all simultaneously as is done for
the KITTI dataset.

C. KITTI experiment

Due to the lower resolution of the velodyne it was found that
roughly 95% of the pixels in each image generated had no laser
data, because of this only the areas where laser readings were
given were considered in calculating the NMI. The normals
were used as features, as for the intensity of return each
laser gave significantly different readings for the same surface

calibration roll pitch yaw x y z
ground truth -89.56 0.06 -89.87 -0.007 -0.063 -0.267

calculated -89.72 0.70 -90.13 -0.013 -0.087 -0.314

TABLE III
CALIBRATION VALUES FOR KITTI DATASET

making this information of limited use. In the KITTI dataset
the lidar was a Velodyne HDL-64E, the car was equipped
with 4 cameras of these only the leftmost grayscale camera
was used [16]. The dataset had a camera to lidar calibration
provided that had been obtained using the method outlined
in [18]. This was further refined by the manual selection of
related points. A projection matrix giving the intrinsics of the
camera was also provided.

The test was conducted by taking every 20th frame from the
first 1000 frames of drive 71. This drive was through a very
busy area with a large number of pedestrians crossing the road
and passing close by. This gave the method its best chance of
success as the numerous close objects ensured that an incorrect
location of the camera would suffer from easily noticeable
parallax error. The search space for the optimization was set
so that x, y and z were within 0.5 meters of correct. Roll and
yaw angles were within 15 degrees of correct and pitch angle
was within 3 degrees. The small search space with pitch was
to compensate for an issue encountered with the velodyne.
Due to the fairly small vertical angle the scan covered for
pitch angles much outside this range only a few points overlap
with the image. These points tended to all have roughly the
same normal values and so resulted in a high NMI value if
aligned with a section of solid colour in the camera image.
The parameters for the intrinsics of the camera model were
taken from the KITTI calibration and assumed to be correct.

1) KITTI results: The values converged to as well as the
ground truth calibration provided can be seen in table III. The
method achieved a registration that was within 60mm and 1
degree of the ground truth. However, on close visual inspection
of the data the alignment can be seen to in some respects be
superior to that taken as the ground truth. This is demonstrated
in figure 10.

V. COMPARISON WITH OTHER METHODS

An implementation of A Mastin et al method of using the
depth image was created [2] and tested on the ACFR and
mine dataset, however no images were successfully aligned
using this method. This failure was expected as in most cases
only a very rough guess as to the correct calibration was given
where the error far exceeded the assumptions of accuracy the
method made. This meant that the gradient accent optimizer
failed to find the global maximum. In the velodyne dataset at
the time the testing was being done, only one other method [5]
was found that attempted calibration under similar conditions.
This method was able to achieve accurate calibration in five
minutes, significantly faster than the proposed method. It also
successfully operated over a slightly larger search space. The
drawback of this method however, is that it cannot be used for



Fig. 10. A frame from the KITTI dataset with velodyne data overlaid in
green. Optimized calibration on top, ground truth on bottom. Note the slight
misalignment of the faces of the people on the left

a single image-scan pair. This is due to a step in the method
where an average of all the images is subtracted from each
image.

VI. CONCLUSION

A method for aligning images with lidar scans of the same
area was presented. This method operates by creating an image
using a camera model and coloured using either the normals
or return intensities. Normalized mutual information is then
used to compare the images and maximized to find the best
alignment. This method is demonstrated to successfully work
on three datasets with very different environments and sensors
showing that it can be applied for a wide range of applications.
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