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Abstract—Over the last few years, electronic vehicle guid-
ance systems have become increasingly more popular. However,
despite their ubiquity, performance will always be subject to
the availability of detailed digital road maps. Most current
digital maps are still inadequate for advanced applications in
unstructured environments. Lack of up-to-date information and
insufficient refinement of the road geometry are among the
most important shortcomings. The massive use of inexpensive
GPS receivers, combined with the rapidly increasing availability
of wireless communication infrastructure, suggests that large
amounts of data combining both modalities will be available in a
near future. The approach presented here draws on machine
learning techniques and processes logs of position traces to
consistently build a detailed and fine-grained representation of
the road network by extracting the principal paths followed by
the vehicles. Although this work addresses the road building
problem in dynamic environments such as open-pit mines, it is
also applicable to urban environments. New contributions include
a fully unsupervised segmentation method for sampling roads and
inferring the network topology, a general technique for extracting
detailed information about road splits, merges and intersections,
and a robust algorithm that articulates these two. Experimental
results with data from large mining operations are presented to
validate the new algorithm.

Index Terms—Digital road maps, data mining, machine learn-
ing, GPS, road safety.

I. INTRODUCTION

IN the last few years, the wide availability of commercial
digital road maps has enabled a large number of vehi-

cle navigation and guidance applications. Commercial vector
maps have managed to cover to a great extent the major road
networks in urban areas, achieving a level of accuracy in the
order of a few to a few tens of meters. The combination
of these digital maps with precise positioning systems has
allowed the development of numerous in-vehicle applications
that provide navigation aid and driving assistance. However,
there exists a much wider range of potential applications
beyond those aimed at enhancing driver convenience. As
shown in [1], [2], [3], detailed road maps could also be used
to improve road safety by means of lane keeping, rollover
warning, obstacle detection and collision avoidance systems.

A fundamental limitation of commercially available road
maps is their lack of fine-grained information. Standard high-
end road safety applications require not only accuracy but
also a superior level of detail, and currently this can only be
achieved by the use of probe vehicles and manual surveying
methods. The resulting map is therefore very expensive and
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time-consuming to build and update. Many authors [4], [5],
[6], [7] propose that, instead of using a single dedicated
probe to generate such an enhanced map, a large number
of inexpensive low-precision information sources could yield
similar or even better results. With the emergence of low-
cost positioning devices and the accelerated development of
wireless communication systems [8], integrated data gathering
and processing becomes feasible at a very large scale. This
allows large volumes of position data to be recorded and used
for learning or updating the road map. Even though the data
is polluted with noise and outliers, its abundance compensates
for its lower quality. The resulting road map is not only more
precise and more refined, but can also be updated continuously
as new information becomes available.

An important distinction is to be made between the usual
notion of a road map and the enhanced maps which are the
focus of this article. Commercially available GPS devices
usually contain a digital map which they use for localization
and for providing directions to the user. However, their lack
of detail renders them ineffective for road safety applications.
In contrast, the class of refined maps that are the focus of the
present work do have a lot potential when it comes to safety.
These enhanced maps are much richer in detail and contain far
more information. They not only describe the road geometry
and the network topology but also contain statistics about the
way agents move.

In order to distinguish between the two classes of maps, the
term Principal Road Path map is introduced here. Principal
road path (PRP) maps will be used hereafter to refer to
the class of enhanced maps previously described. The name
emphasizes the importance of typical driving behavior in road
safety applications. Its meaning as well as its motivation will
be explained in more detail in the following sections.

A. Principal road paths and road safety
PRP maps enable numerous road safety applications. For

instance, an adaptive cruise control system could operate
basing its decisions on curvature and elevation in order to
minimize rollover risk. Also, a high degree of map detail
would enable precise lane-level tracking for a lane departure
warning mechanism and even fault detection for inferring ob-
structed sections in a road. Several degrees of driver interaction
are possible, ranging from unobtrusive driving assistance to
full automatic control. Also, wireless communication systems
could allow information to be shared across multiple nearby
agents. This would enable vehicles to incorporate context-
aware systems, and eventually to develop cooperative decision-
making schemes.
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An important area of application of PRP maps is mining
safety. Every year there are a large number of accidents
involving collisions between haul trucks and other mine re-
sources such as light vehicles, graders and loaders. Many of
them result in fatalities and significant loss of equipment and
production.

Previous work has shown the importance of situational
awareness in mining safety [9], [10]. To predict and prevent
potential collisions, a safety system requires more than just
a road map. A comprehensive approach to risk assessment
must incorporate information about the typical behavior of the
vehicles within the map, including the paths they usually take
at each intersection. This information is very important and
can be represented in a PRP map.

B. Related work

There has been a significant amount of work on autonomous
road map construction using image processing techniques. For
the problem of road extraction from aerial and SAR images,
the interested reader should turn to [11], [12], [13] and the
references therein. A few of these approaches [14], [15] define
a fully probabilistic model of the road network. The problem
of road generation is then cast as performing inference on the
model, which the authors accomplish using either numerical
optimization or statistical sampling techniques. Also, the work
in [7] proposes a method where image processing tools are
applied to vector data. After constructing a two-dimensional
histogram from GPS data logs, the authors recover the skele-
ton of the network by means of simple linear filtering and
morphological operations.

Approaches based purely on vector data also abound in the
literature. Some of these [16], [4] assume the existence of an
initial base map, consisting of a commercially available road
map or constructed from a grey scale image [17]. From this
initial estimate, the authors progressively refine the map by
fusing it with GPS information. Other approaches build the
map from the start assuming no prior knowledge. For instance,
the authors of [4], [18] draw on the field of computational
geometry and use the sweep-line algorithm to efficiently build
a travel graph from vector data. Others [19] construct the graph
by defining a clustering scheme to link GPS traces together.
The approach introduced in [6] defines a graph-matching
technique that is incremental and specifically designed for real-
time applications. One of the approaches that is most relevant
to the one presented here is the work of [5]. In this case,
the strategy consists of placing road seeds and linking them
together according to transition counts.

This article is organized as follows. Section II presents
the road model utilized throughout the rest of the paper.
The fundamental components of the map building algorithm,
Sampling and Linking, are presented in sections III and IV
respectively. Results are presented in Section V along with a
thorough discussion and a brief comparison to other mapping
algorithms. Section VI draws conclusions and discusses future
research directions.

II. ROAD MODEL

This section explains the road model adopted throughout
this work. Before explaining the algorithm itself, it is nec-
essary to lay the foundations by setting forth in words the
way a road network is conceived. First, the structure that is
chosen for representing the map is described. Then, each of
its constituent elements is explained in turn. This discussion
serves as a starting point for developing the algorithm in full
depth and leads seamlessly into Section III, where all the
details are given.

A. Representing the network

Commercial digital road maps usually consist of an at-
tributed undirected graph. Junctions or intersections are rep-
resented as vertices with degree1 greater than two, whereas
roads are depicted as a sequence of edges. Since the graph is
undirected, a path possesses no orientation and hence two-way
roads are considered as a single path. The present approach
will depart from this convention, adopting the view of [5], [6]
instead. Specifically, roads will be regarded as a sequence of
directed edges, essentially splitting each bidirectional road into
a pair of unidirectional road paths. Doing so will yield much
better discrimination of the dominant directions in cluttered
areas, as will be shown later on.

Additional attributes can be defined to complement the
graph. Geometric features such as width and curvature can
be present as part of the map description. These features are
essential for road safety applications because they provide
detailed information about the local geometry. Likewise, label
attributes such as “junction” and “bidirectional” can also prove
useful since they give a qualitative high-level characterization
of the network. There is a wide variety of attributes that
can be defined. Many of these encode important information
regarding the way vehicles move, or are supposed to move, as
they traverse the network. They impose restrictions on vehicle
behavior, and hence can be extremely valuable for assessing
risk. The end result is a structure that comprises not only the
skeleton of the roads and their interconnections, but also a rich
combination of edge- and vertex-level attributes containing a
wealth of fine-grained information.

The core of the map structure lies in its directed graph. The
graph constitutes the skeleton of the network. It also induces a
representation of the road paths. Specifically, a finite sequence
of connected nodes on the graph can be seen as a sequence
of samples of a particular road path. The underlying road
path would then be a curve that interpolates the nodes on
the sequence. Conversely, from a generative point of view, the
principal road path may be regarded as a hidden generating
curve that maps distances along the road to positions in three-
dimensional space.

It is important to distinguish between the graph itself and its
corresponding node set. A node as such is a real-valued point
that marks a physical location on the map, whereas a graph is
the mathematical object that links all the nodes together. As
already mentioned, direction information becomes extremely

1The degree of a vertex is the number of edges incident on it.
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valuable when dealing with cluttered regions. For this reason,
it is already incorporated as part of the map representation by
directly working in joint position-velocity space. That is, each
node is considered as being composed of six real numbers; the
(x, y, z) position triple and the (u, v, w) velocity triple. As a
consequence of this construction, all of the nodes, and hence
all road traces, not only lie on the principal road path but are
also tangent to it.

B. Principal curve

The concept of a principal road path can be defined con-
cisely in mathematical terms. Specifically, it can be seen as
the principal curve of a set of position data traces. Thus the
motivation behind the term PRP becomes clear. The remainder
of this section is set apart for the purpose of defining the
principal curve. The intuition behind this concept and its
relationship to the principal road path will be explained in
detail in the next section.

Definition 1. Let [a, b] ⊂ R be a compact connected subset
of the real line. A real, d-dimensional parametric curve c is a
continuous mapping c : [a, b]→ Rd.

Definition 2. Let Cd be the set of all real, d-dimensional
curves. A reparameterization of a curve c ∈ Cd is a surjection
r : D(c) → I . Notice that, in general, the domain D(c) of c
and the image I of r need not be equal.

The following is a definition of a principal curve. It gen-
eralizes the one in [20] to the case where the data contains
temporal information. In this case, instead of a set of points in
Euclidean space, the data is taken to be a set of curves. It can
be easily verified that this definition reduces to the original
definition in the limit where all curves have zero length.

Definition 3. Let p be a probability measure on Cd. The curve
γ ∈ Cd is a principal curve of p if it is self-consistent in all
of its domain, that is if ∀ t ∈ D(γ),

γ (t) = E [c (u)|rc (u) = t] , (1)

where rc : D(c) 7→ D(γ) is a reparameterization of c ∼ p.

The mapping rc projects any given curve drawn from p
onto the principal curve. It yields a matching of c to γ by
associating every point c(u) with another point γ(t), where
t = rc(u). Notice that rc must be a surjective function and
therefore every point on the principal curve must originate
from a corresponding point on c.

The reparameterization plays a key role in Definition 3. The
self-consistency property in Equation 1 states that every point
on γ must equal the statistical mean of all points on any given
curve that project to it. Projection is achieved by application of
the mapping rc and can be chosen according to an optimality
criterion. Namely, it can be chosen to minimize

rc = arg min
r
δ (c ◦ r, γ) ,

where δ : Cd × Cd 7→ R+ ∪ {0} is a distance metric,
such as the Fréchet distance [21] or the longest common
subsequence [22] distance, that measures the dissimilarity
between two given curves.

In practice, the distribution p is seldom known. Instead,
only a finite data set is available. Each element of the data
set usually comprises a sequence of data points of the same
dimension. For example, when reconstructing road maps from
vector data, the data set usually consists of a set of position
traces. After linear interpolation, these traces become polygo-
nal line curves. Evaluating the Fréchet distance for polygonal
line curves can be done efficiently, as shown in [21], and yields
the matching function rc as a byproduct. Therefore, estimating
the principal curve of the data set could be accomplished
efficiently via a straightforward extension of the polygonal
line algorithm of [23] or the k-segment version of [24] to
curvilinear data. However, as will be shown in Section III,
this method is only adequate for the case of a single isolated
road. When multiple roads coexist, the method is no longer
applicable due to the data association problem that arises.

III. SAMPLING

This section and the following one develop the map-building
algorithm step by step in two separate parts. Each part focuses
on a particular processing stage. The diagram in Figure 1
shows an elementary description of the algorithm. First, the
road network is sampled at a number of nodes along the prin-
cipal road paths. Afterwards, these nodes are linked together
to produce the final graph. The present section describes the
first stage of the algorithm, called the sampling stage.

Fig. 1. Steps in the map building process. The algorithm takes raw position
data as input and proceeds in two consecutive steps. During the first step, a
set of nodes is constructed by sampling the road network at a series of points
along the principal road paths. During the second step, the nodes are linked
together to yield a directed graph.

A. Sampling the principal road path

The first step consists of drawing a finite number of samples
from the set of principal road paths that constitute the network.
In order to accomplish this, an appropriate sampling scheme
must be devised based on Definition 3. This definition states
that the principal road path is composed by the set of all points
that run through the middle of the road path. Any given point
on this set must be self-consistent in the sense that it must be



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 6, NO. 1, JANUARY 2010 4

Fig. 2. Self-consistency property of the PRP. Light grey arrow-tipped lines
denote position traces along a given road, whereas the black line represents
the principal road path. Light grey dots are the points along the traces that
project onto the black dot, which is a sample from the principal path. By
definition, the black dot is equal to the statistical mean of the grey dots.

equal to the mean of all points on the road projecting onto it.
Figure 2 illustrates this idea.

A road network is composed of many roads. If it was
somehow known which vehicle follows which road, then
sampling the principal road paths would be straightforward.
In this case a simple method, based on the same principle as
the polygonal line algorithm for principal curves [23], would
suffice. Such method would proceed by taking one road at
a time and iteratively estimate the underlying principal curve
via a series of smoothed projections. However, this knowledge
is rarely available. In general, the correspondences between
vehicle paths and road paths are not given. As a matter of
fact, deriving them turns out to be one of the most critical
aspects of map building. A robust mapping algorithm must be
able to account for the ambiguity that arises when attempting
to associate position traces to roads.

Fig. 3. Ambiguity when assigning position traces to road paths. Symbol
convention is the same as in the previous figure. Here, points A and B must
be assigned to either path 1 or 2. Because at this point it is uncertain which
association is the correct one, soft assignments are computed instead and the
final decision is deferred until enough information is gathered.

Ambiguity can be handled by making soft assignments
of traces to roads. To exemplify this, imagine the situation
depicted in Figure 3 is presented. This figure shows a single

position trace that must be attributed to one of two different
road paths. At this stage it is still not clear which assignment
is true one. So, instead of making a hard decision, soft prob-
abilistic assignments are computed and the final judgement is
delayed until more evidence is collected. Elaborating a model
capable of propagating this uncertainty is one of the main
contributions in this article.

B. Initial estimate

Suppose for a moment that an estimate is provided. Namely,
let xm, ym be a node that approximates the principal road path
at a given point. Recall that each individual node comprises
both a position and a direction vector, as discussed previously.
Hence the pair (xm,ym) uniquely defines an oriented plane
πm that passes through xm and is normal to ym. Direction
vector ym defines the positive orientation for this plane.

A set of position data traces is also given. Each trace is
composed of a finite sequence of position samples ordered
according to time. Time stamps need not be given explicitly
but must agree with sample indices. That is, they must be
monotonically increasing in such a way that m < n implies
that sample m was taken before sample n. Note that the
associated time stamps need not be uniformly spaced and
may contain gaps due to missing data. In order to ensure a
minimum degree of spatial continuity, data traces containing
gaps larger than a few seconds must be split.

The sequence of points on each data trace is interpolated by
a curve. There are many possible criteria for interpolating a
sequence of points in Euclidean space, being nearest neighbor
the simplest one. However, by Definition 1 curves are required
to be continuous. This is why linear interpolation is chosen
instead, since it is the simplest method that yields a continuous
mapping. Instant velocity can be estimated via numerical
differentiation or Kalman filtering. Section V will demonstrate
that even a very crude approximation such as finite differences
yields surprisingly good results.

Curves and road samples relate in the following way. Let zn
be the curve that interpolates the n-th position data trace. Let
T

(m)
n be the set of all parameter values whose corresponding

image under zn intersect πm with strictly positive orientation,

T (m)
n =

{
t : (zn(t)− xm)Tym = 0,

dzn
dt

(t)Tym > 0
}

(2)

Since each trace contains a finite number of points, and from
construction of zn, T (m)

n must be a finite set. Therefore, the
union of all the images under zn and dzn/dt

X(m) =
⋃
n

zn
(
T (m)
n

)
= {x(m)

k },

Y (m) =
⋃
n

dzn
dt

(Tn) = {y(m)
k }.

each contain at most finitely many points. An illustration of
Notice that both of them comprise column vectors of the same
dimension and hence can be regarded as matrices. Therefore,
X(m) and Y(m) are defined as the rectangular matrices formed
by vertically concatenating the transposes of the elements in
X(m) and Y (m) respectively.
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Fig. 4. Cross-section of the PRP. Curves intersect the normal plane at a series
of points, depicted as grey dots. Pairwise similarities are drawn between them
to derive a weighted graph, represented as grey dashed edges. This graph is
then used to cluster the points on the plane and construct a partition.

The set X(m) resembles the cross-section profile of the road
at xm. As already stated earlier, it is not known beforehand
which elements in these sets correspond to which road. How-
ever, it is certain that points in the same road will tend to lie
close to each other, or in other words, they will tend to form
clusters in the normal plane. This idea leads the way to the
next step, which consists of performing clustering on πm. The
clustering procedure will yield a partition of X(m) and Y (m)

into points that belong to (xm,ym) and points that do not.
Conveniently, pairwise clustering via dominant sets turns out
to be ideal for this matter.

C. Clustering on the normal hyperplane

Clustering by searching for dominant sets on a weighted
graph is described in Appendix B in [25]. The dominant
set framework is particularly effective at finding compact
groups of points, and hence it is especially well suited for
the purpose of finding principal paths. In order to apply
this method, a suitable similarity measure must be derived.
Thorough experimentation led to the conclusion that distance
and angle are the only two critical factors for clustering on
the normal hyperplane. Specifically, let

dij = ‖x(m)
i − x(m)

j ‖, aij = cos−1
y(m)
i · y(m)

j

‖y(m)
i ‖‖y(m)

j ‖

denote the Euclidean distance between points x(m)
i and x(m)

j

in X(m), and the angle between their corresponding derivative
vectors in Y (m), respectively. After thorough experimentation,
it was found by trial and error that the expression

w(i, j) ∝ e−d
2
ij/ε

2 + κ (1− cos aij) (3)

yields very good results. This similarity function arises from
the product of a Gaussian and a Von Mises-Fisher density.
Both ε and κ are positive scalars that control the concentration
of the distribution around its mean.

The reader should take a moment to examine Equation 3.
Constants ε and κ are two parameters that account for uncer-
tainty in the model. The first one corresponds to the standard

deviation of a Gaussian distribution and has units of distance,
while the second corresponds to the angular concentration
parameter of a spherical density function and is dimensionless.
Both parameters quantify the scattering in position and the
dispersion in direction. Increasing the value of ε, or decreasing
the value of κ, equates to admitting a higher noise level in
the data. However, their choice also involves a compromise
between accuracy and noise immunity. Too large a value can
result in significant errors, whereas a low value can lead to
over-segmentation.

In practice, an equivalent and more intuitive parameter is
used instead of angular concentration. Namely, the standard
deviation δ is a more natural way of quantifying the degree
of spread. For the Von Mises-Fisher distribution there exists a
bijection between concentration and standard deviation, both
relating via the following equation(

δ

2π

)2

= 1−
(

Id/2 (κ)
Id/2−1 (κ)

)2

,

where Ij denotes the modified Bessel function of order j and
d is the dimensionality of the data. Therefore, given a value
for δ, the corresponding concentration can be determined by
numerically solving the equation above. Standard deviation is
given in radians and varies from 0 to 2π.

The graph, represented as a similarity matrix, is constructed
by evaluating Equation 3. Then, a cluster is found by applying
the procedure outlined in Appendix B in [25]. This yields a
a weight vector w(m) having as many elements as X(m) and
Y (m) and dwelling on the closed standard simplex. Its support
σ(w(m)) is dominant with respect to the index set of X(m)

and Y (m). As explained in the appendix, the k-th element of
w(m) reflects the extent to which the k-th point belongs to
the dominant set and hence can be interpreted as the degree
or membership of x(m)

k and y(m)
k to the current road. Thus

w(m) provides a measure of uncertainty in association.

D. Iterating

The pair (xm,ym) is an initial estimate of the principal road
path at a given position. This estimate is only an approximation
to the true path. It constitutes an initial guess that serves as a
starting point for iteratively improving it. It is approximate
because it does not necessarily satisfy the self-consistency
property mentioned in Section II. Ideally, for an infinitely large
number of data traces, xm and ym should be self-consistent
with respect to the sets X(m) and Y (m) respectively. Given a
finite data set, the best possible strategy is to set

xm ← w(m)TX(m), ym ← w(m)TY(m), (4)

that is to assign xm and ym their corresponding average.
Notice how each element in the sum is weighted by its
corresponding belief, meaning that the estimate should match
the weighted average of all points that project to it.

Each iteration proceeds in a coordinate-wise fashion. It
starts with a position xm and a direction ym and yields
two arrays X(m) and Y(m) and a vector w(m). For the next
iteration, the estimate is updated according to Equation 4. A
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summary of the sampling routine can be seen in the pseudo-
code in Algorithm 1. This routine takes as input an initial
estimate of the principal road path at a given point and
iteratively improves it until reaching a tolerance threshold τ .
Function SIMILARITY() evaluates the similarity in Equation 3,
and the routine CLUSTER() is described in Appendix B in [25].
The final estimate is approximately self-consistent.

Algorithm 1 Sampling routine.
1: function SAMPLE({zn},x,y, τ )
2: repeat
3: x̂← x, ŷ← y

4: Tn ←
{
t : (zn(t)− x̂)T ŷ = 0,

dzn
dt

(t)T ŷ > 0
}

5: X ←
⋃
n

zn (Tn), Y ←
⋃
n

dzn
dt

(Tn)

6: Wij ← SIMILARITY(xi,yi,xj ,yj), i 6= j
7: w← CLUSTER(W)
8: x← wTX, y← wTY
9: until SIMILARITY(x̂, ŷ,x,y) <

τ

2
10: end function

Deriving a convergence bound for this algorithm is nontriv-
ial, the greatest difficulty being the fact that the data set is
not finite2. Moreover, in some cases it may not converge. This
happens for certain geometric configurations of the data traces
that generate empty X(m) and Y (m) sets. Even so, in practice
it has been observed that convergence is achieved over 99%
of the time, with a tolerance of 10−3 rarely requiring more
than four iterations.

E. Placing the initial seeds

So far, this section has focused on a single node of the
principal road path. It has shown how an initial estimate can be
refined to yield a self-consistent node. However, the problem
of how to efficiently place these initial estimates, or seeds, still
remains. In order to capture the full extent of the road network,
a number of seeds must be deployed along the traces. Ideally,
they should be evenly spaced in such a way that they cover
the entire area of interest. However, too large a node set could
pose a serious computational burden. This is why care must
be taken in order to limit their number.

A simple yet effective seeding method is as follows. It
proceeds by taking each data trace in turn and placing seeds
along its corresponding trajectory. At the same time, a nearest-
neighbor tree of the node set is built incrementally. The tree
calculates and stores similarities between nodes the same way
as in Equation 3. Construction of the tree proceeds in an
incremental fashion. At each step, a new candidate seed is
drawn and, depending on its similarity to the rest of the seeds,
it is either discarded or incorporated into the tree. Let m index
the set of seeds already present in the tree. A new candidate
seed xn, yn is added as a leaf node if and only if

max
m

w(m,n) < α, (5)

2While the position data traces are finite, the trajectories that interpolate
them contain uncountably many points.

where 0 < α < 1. This decision rule ensures that the tree
is grown only if the new node lies far enough from all the
other nodes that are already present. It effectively imposes a
minimum distance between them, thus limiting their number
and making the algorithm scalable to large data sets.

A method for selecting nodes would be to simply place
them at regular intervals along each trajectory. However, this
would create a compromise between resolution and computa-
tional load. If the interval is too large then consecutive seeds
would contain large gaps in between, resulting in an under-
sampled road network. On the other hand, a very small interval
would create a large amount of candidate nodes and hence a
large number of nearest neighbor queries. Both extremes are
undesirable and should be avoided.

To bypass this compromise, a very simple strategy can be
employed. It involves little overhead and minimizes the gaps
between candidates, yielding a dense group of seeds. Given
a trajectory, the first step consists of drawing evenly spaced
nodes at a fixed distance αε from each other. This yields a set
of candidate seeds, indexed by n. Let k be the index of the first
candidate that exceeds the decision threshold in Equation 5,

k = min
{
n : max

m
w(m,n) < α

}
.

If k equals either the first or last index, then the corresponding
seed is immediately added to the tree. In contrast, for other
values of k a one-dimensional search is conducted to find a
candidate that lies exactly at a similarity value of α from the
tree. Because the trajectory is a curve and the similarity metric
is a continuous function, such candidate must lie between seed
k and its predecessor. Therefore, it can be found approximately
using binary search or a standard line search routine.

Once all the seeds are in place, they are used as initial
estimates of the principal road path. The sampling routine
in Algorithm 1 is called for each individual seed in turn.
Upon completion, a set of self-consistent road samples and
a corresponding set of weight vectors is obtained. The set of
weight vectors, holding values that quantify the uncertainty in
the association of roads to traces, are of central importance in
the second stage of the algorithm. This stage deals with how
to link nodes together to generate the network topology and
is thoroughly described in the following section.

IV. LINKING

The last section described the first stage of the mapping
algorithm. During this stage, the road network was sampled
by covering it with a number of seeds lying on the principal
road paths. The seeds will now serve as anchor points upon
which the rest of the map will be built. The next step consists
of linking nodes together so as to capture the topology of the
network. The way connections are drawn is explained in this
section. Basically, linking is formulated as a constrained opti-
mization problem. Because connections are often ambiguous,
not all links are actually needed and some must be discarded.
In order to decide which ones to discard, the links are first
ranked using a scoring criterion and then pruned incrementally
according to their score. Details are given next.
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A. Transition count matrix

Linking is performed by connecting nodes to one another
via directed edges. The nodes and edges form a directed graph
that comprises the skeleton of the road map. The decision of
whether two given nodes should be connected or not is based
on a measure that quantifies the strength of the connection.
This measure, called the transition likelihood, reflects how
certain it is for that edge to form part of the graph. A high
likelihood means the edge is bound to belong to the graph,
whereas a low likelihood indicates that the corresponding
nodes are weakly coupled and should not be connected. Each
pair of nodes has an edge and hence a corresponding likelihood
value associated to it. Therefore, the set of all these values can
be grouped together to form the transition matrix.

Recall the intersection set defined in Equation 2. This set
is composed of all parameter values in the n-th trajectory that
map to points on the m-th hyperplane with strictly positive
orientation. Consequently, the set

⋃
m T

(m)
n comprises all

the intersections of trajectory n with every hyperplane. All
elements in this set also possess a corresponding entry in
one of the weight vectors w(m) associated to the road nodes.
Therefore, each element implicitly maps to the index of the
node that was intersected, the parameter value for which the
intersection occurred and the weight. Let

µ = {µ(k)
n }, τ = {τ (k)

n }, ω = {ω(k)
n },

be the set of node indices, parameter values and weights re-
spectively for all of the elements in the union. For convenience,
all three sets can be represented in a compact form by grouping
them together in vectors. Specifically, define the set {w(k)

n }
using an m-ary coding scheme, where the m-th element of
vector w(k)

n is equal to 1 if ω(k)
n > 0 and m = µ

(k)
n , and 0

otherwise. Assume the sets are sorted according to time, that
is i ≤ j ⇒ τ

(i)
n ≤ τ

(j)
n , and define the weight matrix as the

sum of outer products of pairs of consecutive vectors

W =
∑
n,k

w(k−1)
n w(k)T

n . (6)

With these definitions, the transition matrix A can be ex-
pressed as the row-normalized version of the weight matrix,

A = diag (We)−1 W, (7)

where e is the column vector with unit elements. In this
equation it is assumed that every row of W contains at least
one nonzero element, so that the inverse is well defined.

The transition matrix in Equation 7 is a normalized version
of the matrix of weighted transition counts between road
nodes. Its expression is very similar to the maximum like-
lihood estimate of the transition matrix in a hidden Markov
model (HMM). In this case, Aij is proportional to the sum of
the posterior joint probabilities of any two consecutive hidden
states being i and j. An analogy can be drawn between the
HMM and the model presented here, since the identity of
the road samples act as latent variables. The difference is
that for the road model there is no ambiguity about hidden
states because a trajectory almost never intersects two or more
planes simultaneously. Or in other words, it is extremely rare

to find two elements in the set τn that are identical. Therefore,
the joint posterior probability is always equal to one. This is
reflected in Equation 6, where the weight matrix is formed by
accumulating products of binary vectors.

B. Linkage criterion
The transition matrix provides a measure of the strength of

each connection. Its support σ(A) = {(i, j) : Aij 6= 0} is a
set of edges connecting nodes together, each edge weighted
by its corresponding transition likelihood. Due to noise and
ambiguity present in the association of traces to nodes, σ(A)
may contain edges that are superfluous. Therefore, instead of
incorporating all of them, only a subset E ⊆ σ(A) of non-
superfluous edges is selected. This set constitutes the edge set
of the final graph.

An edge is said to be redundant if its removal does not
affect the local edge connectivity of the graph. That is, an
edge is redundant if, after removing it from the graph, every
pair of vertices remains connected. A simple illustration of
edge redundancy that arises frequently in practice is given in
Figure 5. This example shows a typical situation involving a
set of edges, one of which is spurious and should be removed.
In this case it is clear which of the edges is to be pruned
because the choice is intuitive. However, it is not clear how this
intuition can be extended to more complex scenarios. Arriving
at a general criterion that applies to every possible setting is
the focus of the following paragraphs.

Fig. 5. Edge redundancy arising from the transition matrix. Numbered black
dots represent road samples in the vicinity of a junction, where a road splits
into two. Arrows denote edges present in σ(A). Solid edges have likelihood
Aij equal to unity and hence are bound to belong to the graph. Dotted edges,
on the other hand, have likelihood strictly smaller than one. In this case, edges
(2, 4) and (3, 4) are both candidates for removal because removing either one
of them does not destroy the local edge connectivity. However, edge (2, 4)
has the smallest likelihood of the two and hence is the redundant one.

Let {GE} be a family of graphs parameterized by their
edge set E. Each member is a directed weighted graph
GE = (V,E,w). All members share a common vertex set
V = {1, . . . , v}, where v is the size of the transition matrix A
in Equation 7, and a weight function w : E → [0, 1], defined
as w : (i, j) 7→ Aij . Also, every edge set is constrained to
range over the support of A, that is

E ⊆ σ (A) = {(i, j) ∈ V × V : Aij > 0} ,
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meaning that members of {GE} cannot have more connections
than the original graph Gσ(A).

The search for the most suitable graph can be cast a
maximization problem. Specifically, the problem is formulated
as that of finding the graph with the largest overall weight,

max
E⊆σ(A)

∏
(i,j)∈E

Aij , (8)

amongst all possible subgraphs of Gσ(A). As it is, this mini-
mization is ill-posed. Because all elements of A lie on the unit
interval, the objective function is monotonically decreasing
in |E|, the cardinality of the edge set. Therefore, the total
weight can be trivially maximized by setting E = ∅. To
avoid this vacuous solution, a set of constraints is added.
These constraints will ensure that the optimum graph does
not become disconnected as edges are pruned.

The idea is to restrict the set of possible graphs so that
connectivity is preserved. That is, if two vertices of Gσ(A)

are connected, then the corresponding vertices of GE must
also be connected. Formally, this constraint can be expressed
in terms of the transitive closure of GE ,

λE(i, j) ≥ λσ(A)(i, j) ∀ i, j ∈ V, (9)

where λE is the local edge connectivity defined in Appendix
A in [25]. The constraint set ensures that the optimum graph
GE contains no redundant edges. This can be verified via
the following reasoning. Every edge e = (i, j) ∈ E in the
optimum graph is also an edge-independent path between
vertices i and j. In fact, Equation 9 implies that it must be
the path with largest weight connecting them. Should there
exist more than one edge-independent path, they must all have
weight lower than Aij . Otherwise, the objective function in
Equation 8 could be increased by removing e from E. For
this reason, e cannot be redundant.

The complete minimization problem consists of solving
Equation 8 with respect to E, subject to Equation 9. This
problem is combinatorially hard and there is no general
algorithm for solving it efficiently. However, it is possible
to find a feasible suboptimal solution by means of a simple
greedy strategy. By performing a locally optimal search over
possible subgraphs, the complexity becomes linear in the
number of vertices and quadratic in the number of edges.
Although complexity is still quadratic in the worst case, the
routine scales well in practice since graphs tend to be very
sparse. Furthermore, computation time can be minimized by
taking into account certain properties of the edge set. A full
description of the routine can be found next.

C. Suboptimal linkage

Now that the linking problem is well defined, an efficient
method for solving it can be derived. Recall that each edge
e = (i, j) must be the path with the largest weight between
vertices i and j. This suggests a simple iterative method for
monotonically increasing the overall weight. Namely, starting
from the edge e with the largest transition likelihood, the
shortest path between its endpoints is computed. If this path
is not equal to e, then the edge still satisfies the constraints in

Equation 9 and hence yields a feasible graph. Therefore, re-
moving it increases the overall weight in Equation 8, bringing
the graph closer to the optimum.

Pseudo-code for the linking routine can be found in Algo-
rithm 2. The routine SORT() arranges the edges in descending
order according to their likelihood. Once sorted, each edge
is then tested by removing it from the graph and checking
how its connectivity is modified. If it decreases, the edge is
incorporated back again into the graph. Testing whether the
weight of the shortest path between two vertices is larger than
a given threshold can be achieved via breadth-first search. The
time complexity of the search is bounded by |E|+ |V | log |V |,
since in the worst case all vertices and edges must be traversed.
However, the complexity is always much smaller in practice
since the threshold is often exceeded very early during the
search. This makes identification of redundant edges fairly
inexpensive, allowing the test to be performed intensively
without incurring a large computational cost. Also, notice that
all edges corresponding to vertices with out-degree3 equal to
one are never redundant and hence need not be tested.

Algorithm 2 Linking routine.
1: function LINK(A)
2: E ← σ(A)
3: E ← SORT(E) . Sort in descending order.
4: for (i, j) ∈ E do
5: E ← E − {(i, j)}
6: if λE(i, j) < λσ(A) then . Test connectivity.
7: E ← E ∪ {(i, j)}
8: end if
9: end for

10: end function

Last of all, observe from Equation 8 that the objective
function may have multiple global maxima. In practice this
may occur due to a large number of edges having unit weight.
In these cases, the edge set with the highest cardinality
is selected. Doing so substantially reduces the size of the
problem, since only those edges with Aij < 1 are considered
for removal. Hence a considerable amount of computation is
saved if all edges with unit weight are fixed from the start. An
edge (i, j) has unit weight if and only if Aij = 1, meaning that
every trace starting at node i transitions to node j. Therefore,
unit-weight edges cannot be redundant.

A skeleton of the map is obtained once the linking routine
has converged. This skeleton consists of a set of road sam-
ple nodes linked together by the directed edge set. Already
this representation holds valuable information about network
topology and geodesic distance between nodes. It also contains
transition counts between nodes and measures of uncertainty
that quantify the association of traces to roads. There is still a
large number of additional attributes that can be computed to
augment the map. Due to lack of space, it is not possible to
engage in a thorough discussion here. A few of these features
will be briefly mentioned in the next section, leaving an in-
depth discussion for future work.

3The out-degree of a vertex is the number of edges stemming from it.
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V. RESULTS

This section shows experimental results. A large and rich
data set is used to test the performance of the algorithm in
several different settings.

A. Experimental data

Over 10 Mb of raw double-precision data was used to
benchmark the algorithm. Position information was collected
at an opencast mine in Western Australia with standard
GPS equipment built around a SiRF III chipset. The data
corresponds to 5 days of operation of more than 15 mobile
resources. Since all vehicles are retrofitted with low-cost GPS
sensors, the algorithm presented in this work becomes very ap-
pealing for dynamic road mapping. Around 400 position traces
were constructed with almost no preliminary processing. The
only two considerations that were taken are as follows. First,
a simple outlier rejection method was implemented based on a
distance threshold. Specifically, consecutive position samples
that lay more than 100 mts apart were considered as outliers
and removed from the data set. And second, the size of time
gaps between samples was examined. Sequences containing
gaps more than 3 sec long were split into several segments so
as to ensure a minimum degree of spatial coherence.

Figure 6 shows the final road map overlaid on an aerial
photograph of the mine. The map spans a total of 3.5 by 10.5
km. Only two critical parameters, ε and δ, are factors that
strongly affect the outcome of the algorithm. The standard
deviation for position was set equal to 15 mts, roughly
comparable to the width of the haul trucks driving on these
roads. The circular dispersion parameter was selected as 1/8
(corresponding to a standard deviation of π/4 rad) after a small
number of tuning instances. The algorithm remained fairly
robust to variations in δ, yielding almost identical road maps
when doubling its original value. The seeding threshold α in
Equation 5 was fixed at 1/2.

The algorithm was implemented in MatLab R©, release 2008
beta, using class definitions. It was tested on an Intel R©

Core
TM

Duo CPU with a 2.33 GHz processor and 2 Gb of
RAM. Execution took 83 min, with the sampling routine
accounting for more than 99% of the total running time. Over
4100 seeds were placed during the sampling stage, giving an
average of roughly 1.2 sec per sample. This amount is not
excessively large given the dimensions of the map and taking
into account that no specialized storage structure was used for
implementing the sampling algorithm (see Algorithm 1).

B. Inferred road map

Figure 7 shows a typical road junction extracted from the
data set. Data in this area is relatively noise-free due to satellite
availability and because trucks tend to travel at high speeds4.
However, position traces exhibit a considerable amount of
dispersion along the cross section. Notice how drivers traveling
from west to south tend to take either very sharp or very
wide turns. Also, vehicles driving westbound on the left side

4Speed estimation in a GPS unit is more accurate at higher speeds, when
the ratio of positional error to positional change is lower.

often cross to the opposite lane. A similar scenario is depicted
in Figure 8, which shows what is possibly the most difficult
intersection area found in the data set. Here, the high density of
traces cluttering the center of the region makes mapping a very
challenging task. Even so, the algorithm is able to reconstruct
the road network. In both cases, the underlying topology is
captured and the principal road paths are correctly inferred.

Fig. 7. Typical road junction inferred from the data set. The road map is
represented as a directed graph. It is depicted in the figure as a set of black
arrows, each one connecting two road sample nodes together. Notice that,
even though trucks take sharp or wide turns and drive on the wrong lane, the
algorithm still manages to faithfully recover the structure of the junction.

Fig. 8. Complex intersection area from the data set. This part of the network
is particularly difficult to infer because of the large amount of clutter in the
middle. In spite of this, the algorithm performs well and is able to extract an
accurate road map.

A rather different situation is presented in Figure 9. Here, a
heavily traveled road forks into two at a junction. Examination
of the data reveals that the road was blocked for a period
of time. A temporary obstruction, possibly another vehicle,
caused truck drivers to turn aside from a straight course. Ve-
hicles traveling northwest often needed to swerve to the right
lane in order to avoid a collision. Once again, the road map was
still correctly inferred from this data. The road found by the
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Fig. 6. Final road map superimposed on an aerial photograph of the mine. The map is drawn in black. Although details are not appreciable at this scale, it
still serves to contemplate the magnitude of the problem. The photograph spans an area of 10.5 by 3.5 kilometers.

algorithm follows the most intuitive path and does not appear
to be biased towards the middle of the road. This robustness
stems from the update equation in the road sampling scheme.
It is due to the fact that Equation 4 weights positions and
directions according to their corresponding responsibilities.

Fig. 9. Heavily traveled junction with an obstruction. A two-way road splits
into two at a junction, one of the two emerging roads being much more
transited than the other. Data traces show that an obstruction was present at
the intersection, temporarily blocking the heavily transited road. This forced
truck drivers to swerve in order to avoid the obstacle.

The approach remains robust to noise and outliers even
when data does not abound. The crossing shown in Figure 10
is not visited as frequently as the junctions in the previous
figures. Hence only a small amount of data is available for
extracting roads. Also, some of this data contains a relatively
high level of noise. When trucks approach the crossing from
the north-east, they reduce their speed almost to a complete
halt. Because standard GPS tracking filters are less accurate at
low speeds, this data is often noisier than normal. However, in
spite of the sparsity and the noise, results are still correct. The
algorithm still manages to robustly trace the principal road
paths and capture the underlying structure of the network.

Due to lack of space, a comparison with other approaches

Fig. 10. Road crossing with sparse data. Two double-lane roads intersect
each other, creating a narrow crossing. Because this area of the mine is not
visited as frequently as the previous two, the amount of data is much smaller.
Vehicles approaching from the north-eastern corner tend to slow down, almost
to a full stop. Hence, due to the low speeds, these data traces are often noisier
than usual.

is not presented here. Please refer to the extended technical
report [25] for detailed comparisons with the work of [7]
and [5] and a quantitative numerical analysis of the results.

VI. CONCLUSION AND FUTURE WORK

This article described an approach for automatically infer-
ring high-precision road paths from position data. The ap-
proach draws on machine learning concepts and graph theory
to define a consistent model of the road network. It proceeds in
two stages, first by sampling the PRPs at a series of nodes and
then by linking these nodes together to form a directed graph.
Sampling is performed in an iterative fashion by repeatedly
improving an initial estimate. Node linkage is expressed as a
constrained optimization problem and is approximately solved
via a greedy search.
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The algorithm was tested with data from an operating
mine. Experimental results clearly show that the algorithm
achieves the desired performance and in all cases determines
the center of the path followed by the resources. These are
remarkable results considering the complexity of the task. The
inferred roads agree with the data, showing that the PRP are
indeed the standard path of the vehicles. The algorithm is also
successful at capturing the shape and topology of the network.
In addition, it compares favorably to other existing methods
in the literature. The algorithm exhibits superior robustness
when tracing the principal road paths and produces a much
more accurate graph representation of the network especially
at the intersections, where it matters most for automation and
safety applications.

The mapping algorithm is scalable to large data sets. Exper-
iments have shown that the algorithm can obtain high-quality
maps for a medium-sized mine in an hour and a half without
any computer optimization. Furthermore, it is not limited by
the size of the data. So far, no experiments were conducted
with data spanning more than five days. However, this is not
due to memory constraints. The reason is that roads tend to
change relatively frequently, and these changes are sometimes
visible within the time scale of one week. Also, notice that
the dimensionality of the data is not present in any of the
equations. The algorithm can also be applied using height data
to construct three-dimensional maps.

Current research is looking into ways of improving the
efficiency of the algorithm and its linking performance, as
well as studying the topic of place recognition. With respect
to place recognition, previous approaches have used comple-
mentary information from a separate routine that is able to
recognize these areas. It will be very useful to tailor the
algorithm so as to account for these kinds of areas. Some
work has already been undertaken towards place recognition
from position information [26], [27], [28]. These are valuable
tools that could be used to complement the mapping approach.
For example, the output from the place-detection routine could
be used to selectively prune the road map. And also, image
processing tools could prove useful when aerial photographs
or satellite imagery is available. All these possibilities pose
promising directions for future research.
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