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1 Introduction

Building a map while navigating in an unknown environment is a major prob-
lem in robotics. The robot has to incrementally build a map of the environ-
ment, while concurrently using this map to localise itself. As the number of
landmarks increases the problem becomes more complex and expensive to
compute - the complexity is quadratic in the number of landmarks. Various
approaches have tackled the complexity problem [11, 4, 15, 21, 3], however two
challenging issues remain in SLAM: reliable data association and operation in
dynamic environments.

Successful data association involves association of the correct measurement
with the respective underlying state, initialising new tracks and detecting
and rejecting spurious measurements. As the robot moves, the uncertainty
of its pose and landmark estimation increases until a known landmark is re-
observed. Depending on the sensor noise, the landmark representation (usually
point features) and the distance travelled, the uncertainty in position can be
large enough to cause failure in the data associations. Due to this reason, data
association algorithms based entirely on position estimates tend to fail in long-
term trips. This imposes a serious problem for loop-closing and consequently
robust SLAM applications. In addition, the real world is dynamic. Objects
and people may move which can cause static map representations to fail if
moving objects are errouneously used as landmarks.

When representing the world, not only feature maps are important for
robotics tasks. Individual representations of objects in the map could also
be interesting in problems that go beyond navigation tasks such as finding
victims of earthquakes inside buildings or bushfire fighting. With extended
representations that model appearance, it is possible to send commands such
as “find a house that looks like this” or “make a map of objects that are similar
to this”.
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In this paper, object recognition and segmentation techniques are used in
conjunction with EKF-SLAM [6, 20] to create extended representations of the
environment. The proposed algorithm provides a solution to data association
problems that combines visual with position information. As individual rep-
resentations of objects are created and updated with new observations, the
algorithm can be applied to dynamic environments while providing not only
a map but also appearance models of the objects in the map.

The combination of visual and position estimates of features to improve
data association have been previously addressed in [16]. In their work visu-
ally salient features are extracted from images and used in combination with
laser scans for loop-closing. The use of feature representations significantly
improves data association but does not provide meaningful representations of
the objects in the scene. Also, because salient features are based on partic-
ular configurations (positions) of objects, this approach has problems when
moving objects are present in the environment.

A new trend is to use stereo vision and feature extraction algorithms such
as SIFT [13] to build maps of the environment [19, 9]. Those approaches,
however, rely on the assumption that SIFT features can always be extracted
and matched, and that there is an accurate observation model for the stereo
camera range. Also, in dynamic environments, SIFT is not reliable since it
may extract invariant features not directly associated to objects known to be
static.

The algorithm presented in this paper combines 2D laser scan with cam-
era to help object segmentation and position estimation. This fusion process
is possible by calculating the extrinsic parameters of the laser with respect
to the camera. Landmarks are thus recognised by their appearance and po-
sition. Once an landmark has been identified, laser measurements are used
to estimate the robot and the object (landmark) positions. In addition, a
representation of the object is created and updated with new observations.

2 Algorithm Overview

The algorithm uses two common sensors, a 2-D laser and a camera, which are
present in a variety of robot platforms currently available. It is divided into
two parts: in the offline phase a general representation of the object to be
mapped is created. In the online phase, instances of this object are segmented
using both laser and camera. Once an object is found, a specific generative
model of its appearance is created and stored for further data association.
Also, its position is included in the state vector of SLAM. Figure 1 shows a
schematic representation of the proposed algorithm.

Before building the map, images of the objects of interest should be ob-
tained for the offline phase. In the case of general outdoor objects such as trees
or cars, these images can be obtained from a search in the Internet or previ-
ous missions. They should contain different instances of the object in multiple
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Figure 1. Diagram with offline and online phases of the proposed algorithm.

viewpoints in order to provide a reasonable generalisation of the object-class
appearance.

3 Learning Phase

Learning is performed to provide visual models of objects (landmarks). These
models are used to segment objects out of images for further data association.
Whenever an object is re-observed, its data association model is updated
to incorporate the new information, which can be the object appearance at
a different vantage point. The output of the learning phase is a generative
model for object segmentation from image patches. The steps for the creation
of the generative model are detailed as follows.

3.1 Image Processing and Dimensionality Reduction

Image processing is the first operation in the offline part of the algorithm and
is also performed in the camera segmentation of the online part. It comprises
the division of the image into patches of the same size, Gabor convolution at
multiple scales and orientations (in order to obtain texture information) and
dimensionality reduction.

More precisely, each image I is divided into a grid of square patches of
equal size I = {I1,...,I,} where I; is the i-th patch. For example, an image
with resolution 640 x 480 would result in a set of 640/9 x 480/9 = 3763
square patches of 9 x 9 pixels. Each patch is then convolved with a set of Ga-
bor wavelets (in the experiments two orientations and two scales were used).
After convolution, each patch can be seen as a point in a L x L x (3 + G)-
dimensional space, where L is the size of the patch, 3-colour pixels, and G
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Gabor convolutions. This new set, in the high-dimensional space, is then pro-
jected down to a low-dimensional space using principal component analysis
(PCA)! [7].

During the offline part, all images are used to compute the eigenvectors of
PCA. These eigenvectors are then stored and used in the online part to project
image patches into a lower d-dimensional space. Points in the d-dimensional
space constitute the feature-vector zy = {2} |, 2} ,,..., 2}, } of image L
They represent appearance observations of patches in the same image (the
subscript A is used to indicate appearance).

The last operation is the inclusion of neighbourhood information in the
feature-vector which significantly improves segmentation performance. This is
performed by adding the norm of the neighbours appearance (patches on the
left, right, above and below) in the feature-vector:

le = [Z,I4,ia |Z}4,i—up}7 |Z}4,i—down}7 }Zh,i—le,ft|7 |Z,I4,i—right|]Ta
with |.| denoting the norm of a vector. The final image representation, used
for training and further segmentation, is then the set z' = {z,23,..., 2 }.

3.2 VBEM for GMMs

The Variational Bayesian Expectation Maximisation (VBEM) is applied to
learn a generative model in the d-dimensional space. VBEM was initially
proposed in [1]. It provides an automatic manner to discover the best model
(structure) and parameters of probabilistic models. Also, it has been applied in
robotics [18] and computer vision [8] with great success. As a direct Bayesian
approximation it has two main advantages over non-Bayesian approaches for
structure and parameters learning [17]:

1. Structures are compared over the whole set of possible parameters val-
ues which produce a better scoring function than Minimum Description
Length (MDL), Bayesian Information Criterion (BIC) or Akaike Informa-
tion Criterion (AIC) [12];

2. Prior information can be used to reduce the learning process and the
number of training data points.

VBEM is used here to automatically discover the number of components in a
Gaussian mixture model (GMM). VBEM directly penalises complexity (Oc-
cam’s Razor property [14]) which results in more accurate generative models.
Assuming a particular GMM, m, with S components, where each component
has weight given by 75, mean u, and covariance I's, the set of parameters can
be written as 0 = {m, u, T'} where 7 = {71, 7m2,..., 715}, p = {p1, po, ..., s}
and T = {Fl,rg, e ,Fs}.

Given these parameters and the structure, the likelihood of an observation

I

z, in a d-dimensional space is

! The current implementation uses PCA to meet speed requirements. Further im-
plementations with Isomap will be investigated in future work.
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s
p(2h10,m) =Y p(sn=s|m)p (2L | ps;Ts), (1)
s=1
where each component is a Gaussian with p (2, | s, Ts) = N (2} ps, T's) and
where p (s, = s | w) is a multinomial distribution representing the probability
of the observation 2! being associated with component s.
The prior over the parameters is given by

(9|m Hp ,U's|]-‘) (2)

where the weight prior is a symmetric Dirichlet p (7) = D (m; AoI), the prior
over each covariance matrix is a Wishart p(I's) = W (I'; o, Bo), and the
prior over the means given the covariance matrices is a multivariate normal
p(ps | Ts) =N (us; mo, 3oT's). The joint likelihood of the data, assuming the
samples are independent and identically distributed (IID), can be computed
as

p(zI,S|97m Hp n==5|m)p (rIL|Nsars) (3)

where S = {s1, s2,..., ss} are the indexes of the components in the mixture.
VBEM works in two steps both of them maximising the objective function,
the log-marginal likelihood of the data,

lnp(zl|m)zln/Zp(zI,S|9,m)p(9|m)d0, 4)

which is computed for each mixture, each one having a different number of
components. The algorithm then selects the mixture with the highest log-
marginal likelihood. The search for the number of components is implemented
in a birth-death heuristic similar to the one used in [2] for mixtures of factor
analysers.

The predictive density for a new observation given the learnt structure
p(2' | 21) is a Student-t distribution which approximates a Gaussian as the
number of training points NV increases.

3.3 Patch Classification

Using the procedure just described, two generative models are learnt. One
for patches belonging to the object and another for the background or gen-
eral description of the environment. The learning phase is supervised in the
sense that patches corresponding to an object must be manually selected
and labelled in the training images. Assuming a Gaussian approximation of
the Student-t predictive densities computed by VBEM, the two models are
p (2 |z°%) and p (2’ | 2"°C%), where p (2 | 2°%7) = 7% N (2'; u*,T'%%7) and
p (2| 2"00%) = g N (2 pe@bi T700% ), A patch 2’ is then classified as
part of an object if oy X p (z’ | Zobj)

= o < p(z/ | Zobj) +wnoObj X p(Z/ | ZnoObj)
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is larger than a threshold, usually 0.5. wop; and wye0p; are the proportions of
the training data to each model.

This classification method is able to learn non-linear boundaries for clas-
sification which, associated with the Occam’s Razor property of VBEM, pro-
vides a powerful methodology for classification with very good generalisation
performance [12].

4 Combined SLAM and Object Recognition

4.1 Laser-Camera Calibration

The first step in combining laser-camera is calibration; computation of extrin-
sic parameters (rotation and translation) of a point in the camera coordinate
system w.r.t a point in the laser coordinate system.

Given a calibrated camera with intrinsic parameters K, the corresponding
pixel coordinates p = [u,v]T of points in the world coordinate system P =
[X,Y, Z]T can be computed as p ~ K(RP +t) where R is a 3 x 3 rotation
matrix and ¢ is a 3-vector representing translation. Assuming that P, is a
point in the laser coordinate system and P, in the camera, the equation P, =
®P, + A represents their transformation, where ¢ and A are the rotation
and translation parameters for the laser-camera calibration. To compute &
and A, the method described in [22] was used. The outputs are the optimised
parameters ¢ and A that in conjunction with the intrinsic parameters K of
the camera, allow the projection of laser points in image pixels.

4.2 Laser-Camera Object Segmentation

The segmentation algorithm works in two steps. In the first, the laser scan
is processed to find discontinuous clusters of points that can represent ob-
jects. This step significantly reduces the area of the image where the camera
segmentation algorithm must search for the object. Clusters are identified by
looking for group of points whose distances to any other points are larger than
a threshold. A more detailed description of the laser-clustering algorithm is
omitted for brevity.

Once clusters are obtained, the image patches associated with the laser
points are extracted along with all image patches in the same columns. The
final step is the classification of each of those patches which is performed using
the method described in Section 3.

Figure 2 shows an example of the segmentation algorithm. Depicted are
the laser scan, the laser points projected into the image, and the resulting
segmentation of the object - in this case, the trunk of a tree. Although the
segmentation is not perfect, there are few false positives (patches assigned to
tree that are not, in reality, part of the tree). Even in this example, where
the wall in the background has a similar colour to the trunk, and the black
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Figure 2. Laser scan and field of view of the camera (top), laser points projected
into the image (middle) and final segmentation of the trunk (bottom).

post on the left of the tree has similar shape, the segmentation of the trunk
is good. This example demonstrates the advantages of combining laser and
camera for segmentation.

4.3 Data Association

Whenever an object is segmented, the patches representing the object are
stored (feature-vectors in a low dimensional space). These feature-vectors are
then augmented with the global positions of the patches from Equation ?? and
a probability density for them learnt through VBEM2. The objects are thus
represented by probability densities that have both appearance and position
information.

To associate objects, the Kullback-Leibler divergence[5] is used. Let pr, =
{p1,p2,--.,pn} be the set of probability distributions for n objects already
mapped. A new observation z,.,, is associated with an object i if the K L(p(z |
Znew) || pi(x)) is smaller than a threshold. The KL divergence returns a
measurement of the distance between two distributions that, in this case, are
GMNMs. Efficient algorithms to compute KL divergence for GMMs can be
found in [10].

If the new observation is not associated with any of the object models, a
new object model is created and included in py.

4.4 Object Model Updating

When an observation is associated with a learnt object model, it can be used

to improve this model with new information. This operation involves updating

the object model sufficient statistics (SS) with the new observation. As the

models are GMMs, their SS for each mixture component 7,, us and I'y; can

be updated as follows

M7l + N, Mue* + N, r (_MI‘Qe“’—i—NI‘S
b S

s —_—, 5
M+N T TN M+ N (5)

Tg <

2 Priors from the general object detection model are used to improve convergence.
Also, convergence can be accelerated by using a fixed number of components.
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Figure 3. The explored area (left), map obtained with the algorithm (centre) and
tree models learnt during SLAM(right). Note that the posts were not included in
the map. The two palms on the right were not used to make data association more
difficult as they are far from posts or other similar objects.

where 77, p2¢" and I'7*" are the SS of the new observation and N and M
are the number of patches in the model and in the new observation respec-

tively.

5 Experiments

The algorithm was tested outdoors to recognise and map trees in conjuction
with EKF-SLAM. The platform was a Pioneer 2AT with Sick laser and camera
calibrated according to the method described in Section 4. The area explored
is relatively small (around 600 square metres) but with special attributes that
make data association difficult for conventional algorithms. In this area (Fig-
ure 3 top) there are posts close to trees that have similar shapes to tree trunks.
Since the task is to map trees, a laser-based data association algorithm would
probably fail. Furthermore, during the data acquisition for SLAM, there were
some people moving in the mapped area that would be erroneously included
in the map by conventional techniques.

The algorithm presented overcomes these problems as can be seen from
Figure 3. The map obtained has only trees (without the posts and the palm
trees) and was not affected by the extraneous people moving in the area
during the data acquisition. The trees were posed at the correct locations and
no wrong associations have occurred.

Figure 3 (right) shows the location of the trees with their appearance mod-
els learnt. The images of the trees were obtained from the projection of the
segmented patches back to the high dimensional space, using the eigenvec-
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tors given by PCA. Although the segmentation is not perfect, the number of
patches segmented were enough for accurate density estimation.

6 Conclusions

This paper has investigated three major problems of autonomous exploration:
SLAM in dynamic environments, data association combining both laser with
camera information, and appearance modelling of landmarks (objects). The
algorithm demonstrates its robustness to deal with difficult data association
problems while providing appearance models of the objects mapped. The com-
bined laser-camera segmentation algorithm has the advantages of each of the
sensors resulting in better object segmentation.

There are a number of improvements that can be made in future work.
In the object segmentation method, spatial statistics techniques can be used
to take into account spatial correlation, if feasible for real-time implementa-
tions. Markov random fields, conditional random fields and Gaussian process
(also called kriging) are among the techniques to be investigated. Non-linear
dimensionality reduction techniques such as Isomap or LLE can be used to
improve landmark representation. More extensive experiments have also to
be performed to test the algorithm in larger areas. Another possibility is the
mapping of different objects and their context relation.
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