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Abstract— The ability to simultaneously localise a robot
and accurately map its surroundings is considered by many
to be a key prerequisite of truly autonomous robots. This
paper presents a real-world implementation of FastSLAM,
an algorithm that recursively estimates the full posterior
distribution of both robot pose and landmark locations.
In particular, we present an extension to FastSLAM that
addresses the data association problem using a nearest
neighbour technique. Building on this, we also present a
novel multiple hypothesis tracking implementation (MHT) to
handle uncertainty in the data association. Finally an exten-
sion to the multi-robot case is introduced. Our algorithm has
been run successfully using a number of data sets obtained
in outdoor environments. Experimental results are presented
that demonstrate the performance of the algorithms when
compared with standard Kalman Filter-based approaches.

I. INTRODUCTION

Simultaneous localisation and mapping (SLAM) is the
process that enables a mobile robot to localise and build a
map of an unknown environment using only observations
relative to the most relevant features detected by its
sensors. The solution to the SLAM problem is considered
by many as a key prerequisite for making a robot fully
autonomous [11], [17]. This problem has been the object
of significant research in the last decade.

The classical SLAM solution was introduced in a semi-
nal paper by Smith, Self and Cheeseman [16]. The authors
proposed the use of an Extended Kalman Filter (EKF) to
consider uncertainties in vehicle pose and the map, as both
are acquired from potentially noisy sensor measurements.
This approach has been widely adopted and initiated an
important line of research in SLAM. There have been
several implementations of the EKF SLAM in different
environments, such as indoors [10], underwater [22] and
outdoors [6].

One of the main problems of the SLAM has been the
computational requirement. The complexity of SLAM can
be reduced to ��� ��, where � is the number of state
variables needed to represent the landmark positions and
the robot pose. Further optimisations and simplifications
have been proposed to solve the computational problem
using EKF approaches in very large environments [7],
[14], [21], [8]. The EKF filter assumes Gaussian noise and

requires a linearization of the robot and sensor models.
These assumptions can be problematic when the distri-
butions are not unimodal, or when working with large
uncertainties and strong non-linearities.

Optimal SLAM techniques based on Bayesian filter-
ing with non-Gaussian assumptions can be extremely
expensive due to the high dimensionality of the map
representation. This makes the full Bayesian solution
difficult to apply in real time. In a recent publication, a
novel algorithm named FastSLAM was presented which
addressed the real time implementation of the SLAM
problem from a Bayesian point of view [12]. The authors
used a particle filter [4], [5] to estimate the vehicle pose
and EKF filters to estimate the location of features in the
map. This algorithm partitions SLAM into a localisation
and a mapping problem. FastSLAM uses a modified
particle filter to estimate the robot pose. Each particle
has an independent EKF running for each landmark in
the map to estimate its position. However, the original
paper presents results assuming the data association is
known, and no sound solution has been provided when
data association is unknown.

This paper attempts to fill this gap. The data associ-
ation is arguably one of the most challenging problems
in SLAM: As the robot navigates, it has to determine
whether different sensor measurements correspond to the
same feature in the world. False data associations induce
catastrophic failures on EKF-style SLAM solutions [3]. To
overcome this problem, we extend the original algorithm
addressing the data association problem with different
levels of complexity by using standard chi-square test and
Nearest Neighbour approaches. Experimental results and
comparison of EKF SLAM and FastSLAM are presented.
Also initial results in a centralised multi-robot SLAM are
presented.

II. BAYESIAN ESTIMATION AND FASTSLAM

To introduce FastSLAM, it is worthwhile to present
the SLAM problem from a a probabilistic point of view.
SLAM algorithms commonly compute the probability
distribution
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where �� is the robot pose vector at time 	, � is the
map state vector, �� is the set of observations received
until time 	, �� are the control inputs and �� the initial
position [18]. This equation describes the joint posterior
density of the robot pose and map at time 	, given the
initial robot pose, and all the observations and control
inputs up to time 	.

In probabilistic terms, the SLAM problem is a Markov
process. This means that the state at time 	� � embodies
all the necessary information to propagate the system
states to time 	. This Markov property is at the core
of all probabilistic approaches to the SLAM problem. In
particular, robot motion is usually considered a Markov
process. Its probability distribution is described as

� ��������� 
�� (2)

Moreover, the observation model, which relates obser-
vations to the state of the world, is described by a
probabilistic model that adheres to the Markov property:

� ��������� (3)

SLAM is then achieved by applying Bayes filtering to
solve (1) for all 	, using (2) and (3). The resulting filter
involves a convolution (for the prediction step) and a
multiplication (for the measurement update):
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Here �� denotes the measurement at time 	, and 
� the
controls asserted between ���� and ��.

The standard Bayesian solution (4) and (5) can be
extremely expensive for high-dimensional maps �. The
EKF approach presents a tractable solution to this problem
assuming that the noise is Gaussian and independent over
time. Furthermore, the EKF solution is approximate in that
it linearises the motion and observation models, although
this is not an issue in many practical applications. One
fundamental problem is the fragility of these EKF methods
under incorrect data associations. These methods tends to
fail catastrophically in such situations since they can only
handle unimodal distributions [3].

FastSLAM is an efficient algorithm for the SLAM
problem that is based on a straightforward factorisation.
The factorisation is illustrated in Figure 1 (image reprinted
with permission from [12]). It is based on the observation
that if one knew the true path of the robot, the individual
landmark localisation problems are mutually independent.
In practice, the path is of course unknown. However,
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Fig. 1. The SLAM problem: The robot moves from pose �� through
a sequence of controls, ��� ��� � � �. As it moves, it measures nearby
landmarks. At time � � �, it observes landmark �� out of two
landmarks, ��� ��	 ���. The measurement is denoted 
� (range and
bearing). At time � � �, it observes the other landmark, �� , and at
time � � �, it observes �� again. The resulting landmark estimation
problems are conditionally independent given the robot’s path. The gray
shading illustrates a conditional independence relation.

the conditional independence enables us to estimate the
posterior (1) in the following factored form:

� ��� ������ ��� ���
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����� ��� ���
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����� ��� ��� (6)

This factorisation is the fundamental idea behind Fast-
SLAM: FastSLAM decomposes the SLAM problem into
a localisation and � landmark positions estimation prob-
lem. Furthermore, FastSLAM relies on a particle filter to
estimate the robot posterior

� ������� ��� ��� (7)

This particle filter can be updated in constant time for each
particle in the filter. It furthermore relies on � independent
Kalman filters for the � landmark estimates

� �����
� � ��� ��� ��� (8)

As shown in [12], the entire filter can be updated in time
logarithmic in the number of landmarks � . While other
solutions of similar efficiency exist [7], [14], [9], Fast-
SLAM can also handle non-linear robot motion models.

III. DATA ASSOCIATION

The original FastSLAM paper does not address the
important issue of data association. In every SLAM
problem, the measurements need to be associated with
the underlying states that are being observed. This is
usually referred as the data association problem and is
probably one of the most difficult problems in SLAM
or localisation applications. Successful data association
involves association of the correct measurement with
the correct state, initialising new tracks and detecting
and rejecting spurious measurements. There are different
ways to implement the data association process [1]. Most
existing techniques are based on the innovation sequence
and its predicted covariance. The innovation sequence 
 �
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relates observations �� to the underlying state estimates.
In particular, it is defined as the sequence of differences
between the observation �� and the predicted observation
based on the observation model and the predicted states
���


� � �� � ��� (9)

The normalised innovation (or normalised distance) is
defined as

��
�
� 
�

�
���
�

� (10)

Here �� is the innovation covariance matrix. It is well
known that if the innovations 
� have a Gaussian distribu-
tion, then 
�
�� will have a �� distribution. The innovation
sequence is the basis of the “gate validation” technique,
which accepts the observations that are inside a fixed
region of a �� distribution, and rejects the observations
that make the innovation fall outside these bounds. This
determination is achieved by comparing the scalar ob-
tained in (10) with a threshold value that is determined
by fixing the region of acceptance of the �� distribution
(e.g.95%).

One of the most common data association techniques
used in the SLAM literature is based on just this insight,
in that it relies on the so-called nearest neighbour filter
(NNF). The NNF uses the gate validation test to initially
determine which landmark states are valid candidates
to update with the observation received. Among all
the possible landmarks, the one that is nearest to the
observation is selected. All the other possible hypotheses
are ignored. The NNF can fail to recover the true
data association when validation gates overlap, and the
observations fall within this overlapped region. In such
cases, the NNF can associate the observation with an
incorrect state. Such false data associations are known to
induce catastrophic failures to the SLAM problem. When
multiple observations are jointly processed a more robust
data association is obtained. It is in fact a gate validation
technique applied to a multi-dimensional observation.
This joint data association intrinsically considers the
geometric relation between a set of landmarks [19], [21].
A wider technique is presented in [20]. This technique
creates a local map after a short time local SLAM, and
matches this with a global map based on that vector data
association.

In FastSLAM, the association can be determined on a
per-particle basis, and hence different particles can be as-
sociated with different landmarks. Each particle may even
have a different number of landmarks in their respective
maps. This characteristic gives the filter the possibility
of dealing with a multi-hypothesis association problem.
Multiple Hypothesis Tracking algorithms (MHT) [15]
maintain different tracks for each possible hypothesis of
each observation. FastSLAM, when association decisions

Fig. 2. Simulation environment: ‘*’ actual landmark positions, ‘.’ robot
trajectory
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Fig. 3. Sequence of beacon positions estimation. ‘.’ Gaussian means,
‘*’ actual landmark positions. (a) Result obtained in the first lap (b)
After three laps.

are made on a per-particle basis, are efficient instantiations
of the MHT idea.

Our approach is based on this insight. As in the NNF,
a gate validation test is used initially to determine the
possible landmarks to be associated with the observation.
The multiple hypothesis filter maintains a separate track
for each hypothesis. Our MHT implementation using
FastSLAM is put into effect by creating a new particle for
each hypothesis. Each particle is split into ��� particles,
one for each of the � hypotheses, plus one particle for the
non-association hypothesis (for spurious measurements)
and one for the new landmark hypothesis. Eventually the
resampling stage (a step in the particle filter) will eliminate
the wrong hypothesis when subsequent observations are
incorporated. Thus, our approach implements FastSLAM
using particle-specific data association. This approach is,
thus, fundamentally different from EKF approaches, where
the implementation of MHT filters requires spawning par-
allel filters for the different hypotheses and using pruning
techniques to discard the wrong ones. In FastSLAM,
particles with wrong data association are (in expectation)
more likely to disappear in the resampling stage than those
that “guess” the right data association. In many ways, our
approach is the natural extension of FastSLAM to deal
with a SLAM problem with unknown data association.

Figure 2 illustrates the basic principle of FastSLAM
using MHT data association in a simulation result. In this
case we have two beacons at coordinates (4,6.8) separated
less than 20 cm. The error in the sensor range was set
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to 15 cm. These parameters are very similar to the noise
present in the outdoor experiment discussed further below.
Figure 3 shows the landmarks’ position estimation. The
plot presents the landmarks’ Gaussian means for all the
particles, in (a) for the first lap and in (b) after the third lap.
It can clearly be seen how the MHT implementation solves
the problem of the ambiguity association: The surviving
particles not only approximate the robot path well, but
also the sequence of data associations along the way.

IV. MULTI-ROBOT FASTSLAM

The implementation was also extended to handle Multi-
Robot SLAM problems. Multi-Robot SLAM involves a
team of robots, which cooperatively acquire a single map
of a shared environment. The multi-robot SLAM problem
has been addressed using EKF approaches [13], [20].
Multi-robot SLAM with FastSLAM makes it possible
to build a joint map even if the vehicles do not know
their initial relative pose, although the number of particles
needed will be dependent on this uncertainty.

There are two relevant strategies: Centralised and De-
centralised Multi-Robot SLAM. From a particle filter
perspective, localising one vehicle in the map of another
is basically a localisation problem, which can be solved
using the Monte Carlo localisation (MCL) algorithm [2].
This algorithm has been successfully applied to perform
global mobile robot localisation, which addresses the
problem of estimating a robot location from scratch in a
known map. FastSLAM, thanks to its use of particle filters
for robot pose estimation, can be viewed as a version
of this approach applied to the more complex SLAM
problem. It inherits from MCL the ability to globally
localise a robot within a known map. In the context of
multi-vehicle SLAM, the localisation takes place in the
map acquired by a different robot.

V. EXPERIMENTAL RESULTS

The algorithm presented was tested in two different
outdoor environments. The first test environment was the
top level of the car park building of the university campus.
The full data set and the documentation is available at [23].
This testing site was chosen to maximise the number of
satellites in view to obtain high quality GPS information.
A kinematic GPS system of 2 cm CEP accuracy was used
to evaluate the ground truth. A standard utility vehicle
was fitted with dead reckoning sensors and a laser range
sensor as shown in Figure 4. In this experiment, artificial
landmarks were used that consisted of 60 mm steel poles
covered with reflective tape. With this approach the feature
extraction becomes trivial and the landmark observation
model very accurate. Since the true position of the land-
marks was also obtained with GPS, a true navigation
map was available for comparison purposes. The second
experimental run was done in a larger area with mild

Fig. 4. Victoria Park. The utility car used for this experiment is equipped
with a Sick laser range and bearing sensor, linear variable differential
transformer sensor for the steering and back wheel velocity encoder.

uneven terrain and different types of surfaces. The nature
of the terrain created additional errors in the vehicle
prediction, since wheel sleep and attitude errors are not
taken into account in the prediction models of our current
implementation. In our experiments, the most common
relevant features in the environment were trees. The profile
of trees was extracted from the laser raw data, and the most
likely centre of the trunk was estimated using a geometric
analysis of the range measurements. A set of individual
KFs were implemented to reduce the errors due to the
different profiles obtained when observing the trunks
of the trees from different locations [6]. Nevertheless,
feature detection and feature location were significantly
less accurate than in our experiment involving artificial
landmarks. Although the vehicle was also equipped with
a kinematic GPS, this sensor was not accurate enough due
to poor satellite availability, as expected in this type of
environment. Nevertheless the information gathered was
good enough to verify that actual errors were consistent
with those estimated by the filter.

The next sections present experimental results with
known and unknown data associations. The objective
of the experiments with known data association is to
compare FastSLAM with the standard EKF SLAM, and
then separate the problem of filter consistency with the
data association problem.

A. SLAM with Known Data Association

In our first series of experiments, the correspondences
between the observation and the landmarks were assumed
to be known. Instead of providing this information manu-
ally, we used a well tuned EKF to provide the correct data
association for each measurement. The EKF algorithm was
run with the same data set, dropping all measurements
that were not associated with any landmark. As a result,
FastSLAM only received measurements corresponding to
actual landmarks in the environment. Figure 5 shows
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Fig. 5. Estimated path and landmarks with FastSLAM. The ‘-’ is the
path estimated, the ‘*’ are the estimated beacon positions, the ‘.’ is the
GPS path reference and the ‘o’ are the beacon positions given by the
GPS.
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Fig. 6. Estimated path and landmarks with Kalman Filter. The ‘-’ is
the path estimated, the ‘*’ are the estimated beacon positions , the ‘.’
is the GPS path reference and the ‘o’ are the beacon positions given by
the GPS.

the path and beacons’ position estimation for the car
park experimental run using the FastSLAM algorithm.
This figure shows the particle average for the vehicle
trajectory and the average of all the Gaussian means for
the landmark locations. Figure 6 shows similar results
obtained with the EKF based algorithm. Figure 7 presents
the vehicle position error for the EKF and FastSLAM
filter respectively. It should be noted that the error is very
small and similar in magnitude and shape when compared
with the GPS ground truth. This is important to verify the
consistency of the FastSLAM algorithm.

The trajectories and map for the second experimental
run for the FastSLAM and EKF are presented in Figure 8
and Figure 9 respectively. It was not possible to obtain full
error plots for the trajectory since GPS is not available for
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Fig. 7. SLAM error (a) FastSLAM position error in respect to the GPS
position. ‘-’ indicates the error in the East and ‘-.’in the North coordinates
(b) EKF position error in respect to the GPS position. ‘-’ indicates the
error in East and ‘-.’ in the North.
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Fig. 8. Estimated path and landmarks in Victoria park. The ‘*’ are
the tree positions and the darker line is the GPS where position was
reported.

most of the path. Nevertheless, the results compare very
well with the full EKF SLAM results. It is important to
remark that the filter operates for more than 4000 metres
in this 20 minutes run. Figure 10 shows the superposition
of the trajectory obtained with an outdated satellite image
of the same environment. This satellite image was several
years old at the time of the data collection; the vegetation
is actually denser. The GPS was available only in a few
areas, as shown in Figure 8 and Figure 9.

B. SLAM with Unknown Data Association

The next sections present the results of FastSLAM with
unknown data association. Two different data association
techniques are presented, one based on the nearest neigh-
bour algorithm and the other on the multi hypothesis
approach.

1) Nearest Neighbour Filter: This section presents the
results of FastSLAM with unknown data association for
the NNF technique. Figure 11 shows the map and the
trajectory for the car park data set. In this case, the
data association is an integral part of the algorithm, and
FastSLAM is able to use all the available information.
This feature is of fundamental importance when working
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Fig. 9. Estimated path and landmarks using CEKF.

Fig. 10. Satellite picture of the park, with the estimated trajectory.
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Fig. 11. Estimated Path and Landmarks with unknown data association.
The ‘-’ is the estimated path, the ‘*’ are the estimated beacon positions,
the ‘.’ is the GPS path reference and the ‘o’ are the beacon positions
given by the GPS.
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Fig. 12. Estimated Path and landmarks in Victoria park with unknown
data association. The ‘*’ are the tree positions and the darker line is the
GPS where position was reported.

with low frequency sensors, where features remain within
a field of view of the sensor only for short periods of time.

Figure 12 presents the results obtained for the more
challenging Victoria Park data set. In this case, 800 sec of
the trajectory and map are presented, using 200 particles.
The results are very similar to the ones presented before
with known data association. This illustrates that the
approach is highly effective in handling data association
problems.

2) Multi Hypothesis Implementation: Figure 13
presents the experimental results obtained using the
MHT algorithm for data association. In this experiment,
four beacons were located between 1 and 1.5 metres
apart. The final landmarks’ position estimation error
was approximately 15 cm. The filter was run with 200
particles. As described before, an additional particle
is added for each hypothesis in case of uncertainty in
the association process. When the gate validation test
indicates that more than one landmark can be associated
with the actual observation, the algorithm creates new
particles with each possible hypothesis. The set of
hypotheses considers all possible landmark/observation
combinations, plus the hypothesis for a new landmark.
Finally, after a fixed number of observations, a resampling
with a uniform distribution is implemented, reducing the
number of particles to the original number.

C. Multi-Robot Experiment

A centralised implementation of Multi-Robot Fast-
SLAM is presented in this section. With this approach the
robots are required to send the information acquired, in
this case the observation vector, to a central robot that runs
the centralised filter. The simulation environment was
basically the same as in Figure 2 except for the inclusion
of two robots and a larger operating area. Figure 14
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Fig. 13. Estimated Path and Landmarks, now with MHT data asso-
ciation. The ‘-’ is the estimated path, the ‘*’ are the estimated beacon
positions, the ‘.’ is the GPS path reference and the ‘o’ are the beacon
positions given by the GPS.
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Fig. 14. Robots absolute position error. (a) Robot 1 (‘-’) and Robot 2
(‘-.’) working independently. (b) Multi-robot SLAM.

shows the position error in both robots, in (a) working
independently and in (b) using the Multi-Robot FastSLAM
algorithm. It can be seen that the overall error is smaller
in the centralised algorithm. The filter was run with 500
particles when the robots were working independently and
with 800 particles for the multi-robot case.

VI. CONCLUSION

This paper presented extensions to the FastSlam algo-
rithm to implement data association. The experimental
results performed in a variety of outdoor environments
demonstrated the robustness of the algorithms and the
ability to handle multiple hypotheses in a very efficient
and elegant manner. Initial results with a centralised multi-
robot FastSLAM implementation were also presented.
Among the areas of current and future research are:

� use of the algorithm in the bearing-only problem

using non-gaussian representations for the map
� implementation of a hybrid SLAM architecture, EKF

SLAM-FastSLAM
� extension of the current algorithm to implement a

decentralised multi-robot SLAM
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