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Abstract—Despite significant developments in the Simultane-
ous Localisation and Mapping (SLAM) problem, loop closure
detection continues to be a challenge in large scale unstructured
environments. Current solutions rely on heuristics that lack
generalisation properties, in particular when range sensors are
the only source of information about the robot’s surrounding
environment. This paper presents a machine learning approach
for the loop closure detection problem using range sensors.
A binary classifier based on boosting is used to detect loop
closures. The algorithm performs robustly, even under potential
occlusions and significant changes in rotation and translation.
We developed a number of features, extracted from range data,
that are invariant to rotation. Additionally, we present a general
framework for scan-matching SLAM in outdoor environments.
Experimental results in large scale urban environments show
the robustness of the approach, with a detection rate of 85%
and a false alarm rate of only 1%. The algorithm proposed can
be computed in real-time and achieves competitive performance
without manual specification of thresholds or heuristics.

I. INTRODUCTION

For the last fifteen years, the robotics community has experi-
enced a tremendous effort to find robust and general solutions
for the Simultaneous Localisation and Mapping (SLAM) prob-
lem. The main motivation is the primary importance of this
task for reliable autonomy in unknown environments. Despite
significant developments in reducing the computational cost
and increasing the robustness of SLAM algorithms, operation
in large scale environments is still difficult mainly due to
data association issues. In particular, the loop closing problem,
where the robot needs to identify previously visited locations,
is of crucial importance. An incorrect loop closure detection
can significantly jeopardise the consistency of the map. In a
robot configuration where only range sensors are available,
identifying loop closures can be very challenging especially
due to changes in the robot’s viewpoint or dynamic objects in
the environment.

To illustrate the difficulty of this problem, consider the
example shown in Figure 1. A quick look at the laser scans
depicted in the figure would indicate that they were obtained
at different locations. In reality, the scans were obtained
from very close positions, but at different times and with
different orientation. The right scan is rotated 180 degrees
with respect to the left scan, and in the right scan two cars
have been parked along the side of the road (the L-shaped
point clusters slightly right of the origin are two vehicles).
This example demonstrates that identifying loops can be very
difficult, especially when the environment is observed from
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Fig. 1. Illustrative example of the loop closure detection problem. Despite the
significantly different appearance of two laser scans depicted in the picture,
both scans were obtained in the same location but rotated 180 degrees with
respect to each other. Further changes include two cars observed in the right
scan that are not present in the left scan.

different orientations. In addition to the vantage point problem,
it is very common in practical applications to close a loop
after several hundreds of metres or even kilometres. As a
consequence, the robot’s pose uncertainty can be significantly
large, further complicating data association.

In this paper, we cast the problem of loop closure detection
as a classification task. By introducing a number of features,
especially designed to have small variance against different
viewpoints, we are able to learn a classifier for real-time
loop closure detection. The classification technique employed
is based on AdaBoost [1] which builds a strong classifier
by concatenating very simple decision rules. The result is a
powerful non-linear classifier with very good generalisation
properties [2], [3].

The main contribution of this paper is an automatic proce-
dure for loop closure detection using elements of statistical
learning. This is achieved by using a combination of rotation
invariant features extracted from laser scans. The approach is
extensively evaluated using 800 laser scan pairs from three
different urban datasets. As a secondary contribution, the
loop closure detection algorithm is integrated into a scan-
matching SLAM framework using the Exactly Sparse Delayed-
State Filter (ESDF), and combined CRF-matching [4] and ICP
[5] for scan alignment. This is demonstrated in a dataset about
2 kilometres long.

The paper outline is as follows. The subsequent section
presents related work. The loop closure detection algorithm
is presented in Section III. Section IV presents the SLAM
framework adopted which efficiently handles long trajectories.



The features are evaluated in Section V-A. Experiments on
loop closure detection are presented in Section V-B and results
from a full SLAM experiment are provided in Section V-C.
Finally, Section VI concludes the paper.

II. RELATED WORK

In this section we summarise relevant work on loop closure
detection and large-scale SLAM.

SLAM algorithms based on raw laser scans have been shown
to present a more general solution than classic feature-based
[6]. For example, in [7]–[9], raw laser scans were used for
relative pose estimation. The mapping approach presented in
[6] joins sequences of laser scans to form local maps. The local
maps were then correlated with a global laser map to detect
loop closures. Laser range scans were used in conjunction with
EKF-SLAM in [10]. The authors introduced an algorithm where
landmarks are defined by templates composed of raw sensed
data. The main advantage claimed is that the algorithm does
not need to rely on geometric landmarks as traditional EKF-
SLAM. When a landmark is reobserved, the raw points could be
augmented with the new sensor measurements, thus improving
the representation of the raw-data landmarks. The authors also
introduced a shape validation measure as a mechanism to
enhance data association when landmarks are reobserved. In
summary, the main advantage in all these works is the ability
of the algorithms to work in different environments, thanks to
the general environment representation obtained by using raw
sensor data.

Mapping algorithms based on laser scans and vision have
shown to be robust. The work presented in [11] performs
loop closure detection using visual cues and laser data. Shape
descriptors such as angle histograms and entropy were used to
describe and match the laser scans. A loop closure was only
accepted if both visual and spatial appearance comparisons
credited the match. In [12], laser range scans were fused with
images to form descriptors of the objects used as landmarks.
The laser scans were used to detect regions of interest in the
images through polynomial fitting of laser scan segments while
the landmarks were represented using visual features.

The approach presented in this paper uses only laser in-
formation. Perhaps the most relevant work is the algorithm
presented in [8], [13] where consecutive laser scans comprise
submaps. Feature descriptors of the maps are composed using
a histogram representation. The feature representation allows
the authors to match local maps without prior knowledge of
their relative position. The histogram method utilises entropy
metrics, weighed histograms and quality metrics. The results
presented in [13] show 48% detection rate for a 1% false
alarm rate. These results are improved slightly in [8] to a 51%
detection rate for the same false alarm rate.

In this paper we present a solution to the loop closure
problem based on a machine learning approach. A similar
classification approach based on AdaBoost was used by Arras
et al [14] for detecting people from laser scanners in a
cluttered office environment. The approach was based on the
classification of laser segments as whether or not belonging
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Fig. 2. Diagram depicting the learning and SLAM phases of algorithm.

to a pair of legs. Detection rates of over 90% were achieved.
Using the same ideas, place recognition was performed in
indoor environments in [15].

III. LOOP CLOSURE DETECTION

This section describes the main algorithm of the paper; the
loop closure detection procedure. In the following section, loop
closure is integrated with a SLAM framework for large scale
mapping.

A. Algorithm Overview

We perform loop closure detection from a pair of 2D
laser scans composed of range and bearing data. Our loop
detection algorithm uses the same principle as standard scan
matching algorithms; loops are detected by comparison of
laser scans. The main difference between our algorithm and
traditional scan matching approaches is the introduction of
rotation invariant features describing the laser scans. These
features are combined in a non-linear manner using a boosting
classifier which outputs the likelihood of the two scans being
matched.

Figure 2 presents a diagram with the stages of the algorithm.
In the learning phase, pairs of laser scans and the correspond-
ing assignments (match or non-match) are input to AdaBoost.
From the laser points, rotation invariant features are initially
extracted. Examples of the features employed are length, area,
curvature of the scan, etc. (a detailed description of the features
is presented in the next subsection). AdaBoost greedily builds
a strong classifier by a linear combination of simpler, weak,
classifiers. In our implementation these classifiers are decision
stumps which provide very nonlinear decision boundaries. The
same strategy has been employed for face detection in [16].
This procedure notoriously enhances the capabilities of the
resulting classifier. As more decision stumps are added, the
classification error on the training data goes to zero. Although
this might be interpreted as overfitting, [1] shows that it also
generalises well on testing data.



Once the classifier has been built, loop closure detection
can be performed in a SLAM framework as Figure 2 (right)
indicates. If a loop closure is detected, a laser scan alignment
procedure is performed with a corresponding update in the
map. We describe the particular SLAM framework employed
in Section IV.

B. Laser Features

The laser range sensors used in experiments have a 180
degree field of view. The sensors deliver scans L = {ri, αi}Ni=1

where ri is range, αi is bearing, and N the number of laser
returns in the scan. Together, a forward scan and a backward
scan create L, which gives a full 360 degree view of the
surroundings.

A laser scan can be described in cartesian coordinates
L = {xi}Ni=1 = {xi, yi}Ni=1, where xi = ri cos(αi) and
yi = ri sin(αi). A feature is defined as a function that takes
a laser scan L and returns a real value. In this paper we
are interested in features that describe different geometric
properties of the laser scan, such as the area covered by the
scan, the average range, the circularity of the scan and the
sum of the distances between consecutive points. The features
described below are invariant to rotation. Some of them were
also employed in [14]:

1) Area: Measures the area covered by a laser scan. Points
whose range is greater than rmax have their range set to rmax.

farea =
N−1∑
i:1

riri+1 sin
(
αi+1 − αi

2

)
(1)

2) Average Range: Measures the average range of a scan.
Ranges greater than or equal to rmax are set equal to rmax.

faverage range =
1
N

N∑
i=1

min (ri, rmax) (2)

3) Centroid: Measures the distance from the origin to the
mean position. The mean position is calculated as[

xmean
ymean

]
=
[

1
N

∑
i: ri<rmax

xi
1
N

∑
i: ri<rmax

yi

]
. (3)

The distance to the origin is then calculated as

fmean centroid =
√
x2

mean + y2
mean (4)

4) Close Area: Measures the area covered by the laser scan,
excluding the area covered by range measurements whose
range is greater than or equal to rmax.

fclose area =
∑

i: ri<rmax

r2i sin
(
δα
2

)
, (5)

where δα is the angle interval at which range measurements
are taken. If 361 range measurements are acquired in a 180
degree field of view, then δα = 180

361−1 degrees.

5) Close Distance: Measures the sum of the distances
between consecutive points whose range is smaller than rmax,
excluding distances that are larger than a maximum distance
gate, gmax dist.

di = ‖xi − xi+1‖ i : ri, ri+1 < rmax (6a)

fclose dist =
∑

j: dj<gmax dist

(
dj

)
(6b)

where ‖.‖ is defined as the Euclidean distance.
6) Circularity Radius: The circularity feature fits a circle

to the points in the laser scan in a least squares sense. This
returns a centre point xc, yc and a range rc for the fitted circle.
The value of the feature is the radius of the circle rc.

7) Circularity Residual: This feature is defined as the
residual sum of squares, after fitting a circle to the points
as with the previous feature:

fcircularity =
N∑
i=1

(
rc −

√
(xc − xi)2 + (yc − yi)2

)2

(7)

8) Curvature Mean: The curvature features are based on
the curvature along the points in the laser scan. Let xa =
[xa, ya]T , xb = [xb, yb]T and xc = [xc, yc]T be three con-
secutive points, let A be the area covered by the triangle with
corners in xa, xb and xc, and let da, db and dc be the distances
between the points. The curvature of the boundary at xb is
calculated as

k =
4A

dadbdc
(8)

The curvatures over all points, excluding points whose range
is greater than or equal to rmax, are calculated. This feature
returns the mean value of the curvatures.

9) Curvature Standard Deviation: This feature is defined
as the standard deviation of the curvatures computed above.

10) Distance: Measures the sum of the distances between
consecutive points, excluding points whose range is greater
than or equal to rmax.

fdist =
∑

i: r{i,i+1}<rmax

√
(xi − xi+1)2 + (yi − yi+1)2 (9)

11) Far Distance: Measures the sum of the distances
between all consecutive points, i.e. including points whose
range is greater than or equal to rmax.

ffar dist =
N−1∑
i=1

√
(xi − xi+1)2 + (yi − yi+1)2 (10)

12) Number of Groups: This feature measures the number
of groups (clusters) in the scan. A group is defined as a cluster
of laser points in which the distance between consecutive
points is less than a maximum distance gate gmax dist. To be
considered a group, the cluster has to contain more than a
certain number of points specified by the minimum group size
gate gmin size.

13) Mean Group Size: This feature is defined as the mean
group size after detecting and clustering the laser points into
groups as in the previous feature.



14) Maximum Range: Measures the number of points in
the laser scan whose range is greater than or equal to the
maximum range gate.

fmax range =
∑
i

1 {ri ≥ rmax}, (11)

where

1 {ri ≥ rmax} =

{
1 if ri ≥ rmax

0 otherwise
(12)

15) Mean Angular Difference: Measures the sum of the
angles between consecutive point to point vectors. Given two
consecutive laser points Li and Li+1, a vector that connects
the points is given as x̄i,i+1 = [xi+1 − xi , yi+1 − yi]T . The
feature is calculated as

fMAD =
∑

i:r{i,i+1,i+2}<rmax

arccos

(
x̄Ti,i+1x̄i+1,i+2

||x̄i,i+1|| ||x̄i+1,i+2||

)
.

(13)
16) Mean Deviation: Measures the mean deviation from

the mean of the laser scan. The feature is calculated as

fmean deviation =
1
N

∑
i:ri<rmax

√
(xi − xmean)2 + (yi − ymean)2,

(14)
where xmean and ymean is calculated as in (3).

17) Regularity: Measures the regularity of the laser scan,
which is defined as the standard deviation of the distances
between consecutive points in the laser scan. Laser points
whose range is greater than or equal to rmax are excluded.

Let di,i+1 be the distance between the laser points with
indices i and i + 1, and let d̄ be the mean value of di, ∀ i :
ri < rmax. The regularity feature is then calculated as

fregularity =

√√√√ 1
N − 1

∑
i: r{i,i+1}<rmax

(
di,i+1 − d̄

)2
(15)

18) Size: Measures the number of points which has a range
shorter than rmax.

fSize =
∑
i

1 {ri < rmax}, (16)

where

1 {ri < rmax} =

{
1 if ri < rmax

0 otherwise
(17)

19) Standard Deviation of Distance to Mean: Measures the
standard deviation of the point-wise distances to the mean
position. The mean position is calculated as in (3), and the
distance from point i to the mean is

di,mean =
√

(xi − xmean)2 + (yi − ymean)2. (18)

The feature is given as the standard deviation of di,mean for
i : ri < rmax.

20) Standard Deviation of Range: Measures the standard
deviation of all the ranges that are less than or equal to rmax.
The feature is calculated as

fstd range =
1

N − 1

∑
i:ri<rmax

√
(ri − rmean), (19)

where rmean is the mean of all the ranges that are less than or
equal to rmax.

These 20 features are computed for both scans in the
pair and the absolute difference between them is passed
to the classifier in the next step. Given two scans k and
k + 1, the set of extracted features is f(Lk,Lk+1) =[
f1(Lk,Lk+1), . . . , f20(Lk,Lk+1)

]
, where fi(Lk,Lk+1) =

‖fi(Lk)− fi(Lk+1)‖.

C. Classification and Boosting

We briefly review boosting in this section. As training data,
n pre-labeled laser pairs are provided,(

f(L1
1,L

2
1), y1

)
, . . . ,

(
f(L1

n,L
2
n), yn

)
, (20)

where yi is a binary variable, yi = {0, 1} for negative (non-
matching) and positive (matching) laser pairs, respectively. Let
Nn and Np denote the number of negative pairs and positive
pairs respectively. Adaboost is an iterative procedure that
consecutively adds weak classifiers to a set of previously added
weak classifiers to find a good combination that constitutes
a strong classifier. The weak classifiers adopted are decision
stumps defined as:

c(f(Lmi ,L
n
i ), θ) =

{
1 if pf < pλ
0 otherwise (21)

with parameters θ = {f, p, λ}, where p is the polarity (p =
±1), f is the particular feature selected and λ is a threshold.

To add a new weak classifier to the set, the training data is
classified using the set of previously added weak classifiers.
The weak classifier that improves the classification the most
is added to the set of weak classifiers. The training data is
weighted to ensure that the newly added classifier was the
one that minimized the misclassified data the most. After
the classifier has been added, the weights are updated. The
procedure is repeated until T weak classifiers have been
added. Each weak classifier can be added several times, each
time with a new threshold. The set of T weak classifiers
together create the strong classifier. AdaBoost is described in
Algorithm 1.

IV. SIMULTANEOUS LOCALISATION AND MAPPING

The section before presented the procedure used to associate
scans. In order to build a global map of the environment
we need to build a framework that stores the information
acquired during the data collection process. We use a SLAM
algorithm based on a Exactly Sparse Delayed-state Filter
(ESDF) [17]. Each pose in the trajectory based state vector
is associated to a laser scan acquired at that location. The
classifier presented before is used to detect loop closures
between poses. Odometry and relative pose estimation after



Algorithm 1 AdaBoost

Input:
(
f(L1

1,L
2
1), y1

)
, . . . ,

(
f(L1

n,L
2
n), yn

)
Initialize weights: W i

1 = 1
2Nn

if yi = 0, W i
1 = 1

2Np
if yi = 1

1: for t = 1, . . . , T do
2: Normalise the weights,

W̃ i
t =

W i
t∑Nn+Np

j=1 W j
t

, i = 1, . . . , Nn +Np (22)

3: Selects the best weak classifier that minimizes the
weighted error below:

εt =
n∑
i=1

W̃ i
t

∣∣c(f(L1
i ,L

2
i ), θ)− yi

∣∣ (23)

4: Define ct(f(L1,L2)) = c(f(L1,L2), θt) where θt is the
minimizer of εt.

5: Update the weights:

W i
t+1 = W̃ i

t β
1−ei
t (24)

where ei = 0 if f(L1
i ,L

2
i ) is classified correctly and 1

otherwise, and βt = εt
1−εt .

6: end for
The strong classifier is:

c
(
f(L1

i ,L
2
i )
)

=
{

1
∑T
t=1 αtct

(
f(L1

i ,L
2
i )
)
≤ K

∑T
t=1 αt

0 otherwise
(25)

where K ∈ [0, 1] and αt = log 1
βt

.
Output: c

(
f(L1

i ,L
2
i )
)

loop closure detection (difference in position and heading) are
calculated using laser scan alignment.

Once we have detected an association between scans, an
alignment process estimates the sensor displacement. A Con-
ditional Random Field-match (CRF-match) [4] followed by
Iterative Closest Point (ICP) is used for the scans’ alignment.
The ICP algorithm [5] is used to refine the scan alignment
result obtained by the CRF-match.

A. Exactly Sparse Delayed-state Filters

The ESDF consecutively increments a delayed state vector
containing the poses of the vehicle’s trajectory. In information
form, this results in an estimation comparable to the full
covariance matrix solution and prediction and update can be
performed in constant time regardless of the matrix size.

B. Laser Scan Alignment

CRF-match [4] is a feature based probabilistic method that
finds the most likely of all point to point associations between
two laser scans. The method can align scans without the need
for an initial guess of the alignment. On the other hand, the
square cost function minimized by ICP, contains many local
minima. Therefore the algorithm requires good initialisation to
ensure correct convergence. CRF-match followed by ICP gives
a very robust alignment process.

C. Vehicle Motion Model

The vehicle motion model is

xv(tk+1) = f(xv(tk),u(tk+1)) = xv(tk)⊕ u(tk+1), (26)

where ⊕ is the compounding operator [18]. In our implemen-
tation, the input signal u(tk) = [u1(tk) u2(tk) u3(tk)]T corre-
sponds to translation and rotation, calculated from alignment
of consecutive laser scans using ICP.

V. EXPERIMENTAL RESULTS

We performed experiments using data from four data sets.
The first two data sets were collected along residential and
business streets in the vicinity of the University of Sydney,
Australia. Both data sets were acquired during day time and
contain moving objects such as cars and people. The data sets
are approximately 0.65 and 2 kilometers long.

The third data set was obtained from the Robotics Data
Set Repository (Radish) [19]1. This data set was collected
in Kenmore, QLD, Australia. It is about 18 kilometers long.
From these three data sets we identified a set of 400 matching
and 400 non-matching laser pairs. The fourth data set, also
collected around the University of Sydney, is approximately 2
kilometers long. It was used in a SLAM experiment, where we
also used GPS to collect ground truth data.

10-fold cross validation was used to estimate the false alarm
and missed detection error rates. The results from each of the
ten folds are pooled together. As the shuffling of the laser pairs
have a slight impact on the results, 10-fold cross validation can
be performed several times, each time with a new order. The
results from all 10-fold cross validations are then averaged.
Unless otherwise stated, all error rates are estimated from 100
10-fold cross validations.

To determine a good number of training rounds, we trained
strong classifiers for T between 1 and 1000 rounds. The error
rates for each Ti are shown in Figure 3. Since the error rates
remains approximately constant after T = 50, we choose
to train the strong classifier for 50 rounds in all our tests.
A lower number of training rounds is preferred, since the
computation time for classification of laser pairs increases
when more features are added to the strong classifier. Figure 3
also suggests that overfitting is not a concern for the task.

A. Loop Closure Feature Analysis

During training, AdaBoost selects the best feature in each
training iteration. By examining which features are chosen
earlier during training, it can be determined which are the most
significant features for classification. Table I shows results
for two tests using the 800 pre-labeled laser pairs. The table
presents total error rates, i.e. the sum of false alarm and missed
detection. The error rates can be compared to blind guessing
which would yield a 50% error rate.

1Thanks to Michael Bosse for providing the dataset.
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Fig. 4. The blue solid graph shows the ROC curve for the strong classifier,
and the green dashed graph shows the ROC curve for the strong classifier
combined with scan alignment and shape validation.

1) Test 1: A strong classifier was trained and Table I shows
which features were chosen in the first rounds, and how the
error rate decreases as more features are added. The first two
added features, #1 and #4, correspond to Area and Close area
features. They represent the most informative features and are
closely related since both are area measures of the scan. The
third feature, #15, is Mean Angular Difference, and the fourth
and fifth, #12 and #10, are Mean Group Size and Distance.
As can be seen in Table I, the reduction in error rate decreases
as more features are added.

2) Test 2: For this test, we started by training a strong
classifier, the False Alarm and Missed Detection rates were
estimated to 4.26% of the 400 non-matching pairs and 3.75%
of the 400 matching pairs, giving a total error rate of 4.0%
of the 800 pairs. We then proceeded to remove each feature,

TABLE I
BEST FEATURES FOR LOOP CLOSING

TEST 1
Training Round 1 2 3 4 5 50
Added Feature 1 4 15 12 10 . . .
Total Error [%] 12.0 12.0 9.5 8.6 8.0 4.0

TEST 2
Feature Removed 12 4 15 1 3 17
Total Error [%] 4.44 4.39 4.39 4.38 4.30 4.16
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Fig. 5. Missed Detection and False Alarm error rates after feature have been
removed one at a time.

one at a time, and train new classifiers on the remaining 19
features. Results from this are presented in Figure 5, where
the indices on top of the bars denote the eliminated features.

Figure 5 shows that removing feature #1 increases Missed
Detection rate the most, and removing feature #15 increases
the False Alarm rate the most. If total error is considered,
removing feature #12 has the largest negative impact. Results
for the 6 features whose removal have the most negative
impact on total error are presented under Test 2 in Table I.

The four features chosen first in Test 1, #1, #4, #15 and #12,
also have the most negative impact on the Missed Detection
rate, and together with feature #3 have the most negative
impact on the False Alarm rate.

B. Loop Closure Results

The two most important characteristics for a classifier are
false alarm and detection rates. We examined the two rates
for different match thresholds by changing K in Eq. (25).
The detection and false alarm rates for each threshold were
estimated using 400 10-fold cross validations on the set of
800 pre-labeled data pairs.

1) Classification Accuracy: We measure the accuracy of the
resulting classifier using the area under the Receiver Operating
Characteristic (ROC) curve. The ROC curve is shown as the
solid blue curve in Figure 4. A threshold K = 0.59 gives a
false alarm rate of 1% and a detection rate of 85%. The area
under the curve is approximately 0.99.
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Fig. 6. (a) Estimated vehicle trajectory, GPS and dead reckoning. The ring marks the starting point, the stars mark the end points. (b) Lasermap overlaid on
an aerial photograph. Each laser scan was transformed to its respective pose and plotted on top of the photograph.

The classifier’s invariance to rotation was tested on a large
set of laser scan pairs. Each pair was initially classified, then
one of the laser scans was rotated arbitrarily between 90 and
180 degrees and the pair was classified again. Out of 50451
laser scan pairs, 98.4% received the same classification as in
the previous case.

2) Shape Validation Supported Classifier: The false alarm
rate is further reduced when the classifier is combined with
laser scan alignment using CRF-match, ICP and shape vali-
dation. Shape validation evaluates the laser scan alignment by
finding the percentage of nearest neighbour point pairs that fall
within a certain distance d. If the number is above a threshold
N%, the validation test is passed.

In this setting, a loop closure is accepted if a pair of scans
is classified as a match and the computed alignment passes
the shape validation test. This, however, will also decrease
the detection rate so the shape validation thresholds must be
a compromise between false alarm rate and detection rate.
Empirically, we have found that N = 90% and d = 1m works
well in the present application. A shape validation supported
classifier with a threshold K = 0.57 gives a false alarm rate
of 1% with a detection rate of 89%. In Figure 4, the dashed
green curve is a ROC curve for the same 400 cross validations
as were used to draw the solid blue curve. The area under the
green ROC is just over 0.99.

3) Time Complexity: Our implementation classifies 800
pairs of laser scans in just under 32 seconds, on average 0.04
seconds per pair. About 95% of the computation time is spent
calculating the feature values, which in a SLAM setting only
has to be performed once per laser scan. The time spent by the
classifier (without feature extraction) averages at only 0.002
seconds per pair.

C. SLAM Experiment

For the laser based SLAM experiment, a strong classifier
was trained on the second data set which contains forward
and backward facing laser scans. However, the fourth data set
used for localisation and mapping only contains forward laser
scans.

The resulting state vector contains 1800 augmented poses,
each one associated to a laser scan. In the information matrix,
98.5% of the (1800 ∗ 3)2 elements are exactly zero. In total,
24 positively matched laser scan pairs were found. Vehicle
movement was estimated by the alignment of consecutive laser
scans using ICP. The estimated trajectory is compared to GPS
(estimated ground truth) and SLAM with only dead reckoning
(without loop closure detection) in Figure 6a. The performance
with our loop closure detection; ESDF in Figure 6a, is clearly
better than the performance without it; D.R. in Figure 6a.

A laser map from the data set is overlaid on an aerial
photograph in Figure 6b. The map shows a good fit to the
image.

Another interesting observation is that the laser matching
method, designed and trained for a full 360 degree view,
performs well in the 180 degree view.

VI. CONCLUSIONS

This paper presented a machine learning procedure for loop
closure detection. Features invariant to viewpoint were de-
signed and combined into a boosting classifier. Using the pro-
posed method, laser scans can be correctly matched regardless
of the alignment, enabling loop closure detection from arbi-
trary direction. The classifier performance is encouraging, with
good detection rates for low false alarm rates. Additionally, a
SLAM experiment demonstrates that reliable localisation and
mapping can be achieved in a complex outdoor environment
using our framework. The classifier, designed and trained for



360 degree laser scans, performs well even if only 180 degree
laser scans are available.

The work by Bosse et al [8] is the current benchmark
for laser scan-based SLAM. While our maps are smaller in
size than their maps, the performance of our loop closure
detection algorithm is better and does not require the manual
specification of thresholds or heuristics.
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