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Abstract—This paper proposes a machine learning based
approach to discriminate between EEG single trials of two
experimental conditions in a face recognition experiment. The
algorithm works using a single-trial EEG database of multiple
subjects and thus does not require subject-specific training data.
This approach supports the idea that zero-training classification
and on-line detection Brain Computer Interface (BCI) systems
are areas with a significant amount of potential.

I. INTRODUCTION

EEG single trial classification has been extensively re-
searched in the recent past. Previous works mainly con-
centrate on the development of subject-specific algorithms,
based on the classification of single trials associated with a
particular cognitive state [1], [2]. These algorithms require
a training session where model parameters are optimized
according to a training data set. BCI systems have primarily
focused on problems related to motor imagery and the
P300 speller [3]. However, BCI systems for face recognition
problems have yet to be more thoroughly explored.
Recent works have proposed zero-training BCI algorithms,

which eliminate the need for a training session and allow on-
line detection of single trials [4], [5]. Due to the high inter-
subject variability of EEG signals, this problem represents a
great challenge to current methods.
In this paper we present a zero-training single-trial clas-

sifier applied to a face recognition ERP experiment. The
objective of the experiment is the recognition of known
faces embedded in a large sequence of unknown ones. The
algorithm classifies the two different stimuli conditions using
EEG single trials in a binary classification scheme.
To evaluate the performance of our method, we used a

leave-one-out subject approach, where all the subjects in
the database, except the tested one, were used to build the
classification model. This process was done for each subject.
We studied how inter-subject variability altered the algorithm
results. The algorithm presented uses statistical analysis to
select the most relevant signal features avoiding the use
of predefined parameters that could be problem-specific.
Thus, it can applied to a broad range of EEG classification
problems.
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II. METHODS

A. Experimental Data and Electrophysiological recording
To support our study we present results with real data

obtained by an oddball paradigm that consists of a face
recognition task recorded in eight healthy subjects [6]. The
experiment comprised of two experimental conditions: famil-
iar faces, labeled as positive, and unknown faces, labeled as
null conditions. Familiar faces were extracted from popular
characters of a contemporary soap opera. Each familiar face
was presented twice; comprising a total of 14 familiar faces
randomly shuffled with 280 unfamiliar ones. The subjects
were shown images in three runs, which amounted to a total
of 42 familiar (5%) and 840 unfamiliar faces (95%). Subjects
were required to discriminate familiar faces while responding
to an inter-stimulus interval on a computer keyboard. Face
stimuli were presented for 1000 ms, with an inter-stimulus
interval of 1000 ms.
Data acquisition was carried out with 19 monopolar disk

electrodes (Ag/AgCl) using a Medicid5 according to the 10-
20 system, referenced to an electrode placed on the nose.
Those epochs with generalized artifacts were eliminated,
maintaining the relative ratio of familiar and unfamiliar trials
in all subjects to 5/95%.

B. Algorithm Overview
We followed a machine learning approach based on the

following steps: pre-processing, feature extraction and clas-
sification. For each test subject the algorithm was trained
using the remaining seven subjects data.
Table I summarizes the algorithm scheme. First, the data-

base and the target subject data were pre-processed using
a low pass filter. Then, training was carried out using only
database single-trials . Each electrode was used as an
independent predictor and then the individual estimators
were boosted into a single one through a linear classifier.
This experiment contained a set of 19 electrodes. Each
electrode contributes with one feature to the feature matrix

. For each electrode , the relevant time window { } was
selected at the step called time segmentation. Furthermore,
the relevant features were extracted for each trial in the
database using the z-score statistic at the point of maximum
amplitude. The z-score statistic is a dimensionless quantity
that measures the distance between an observation and the
population mean considering the population standard devia-
tion. Thirdly, electrode weights { } for classification were
assessed by linear discriminant analysis using the training
classification vector .



During the test stage, the parameters estimated at the
training stage were used for predictions. These parameters
are: the relevant time window for each electrode { } , the
distribution mean and standard deviation for the training set
in the positive condition, and the electrode weights { }
computed via the linear classifier. Details are presented next.

Table I: Algorithm Scheme
Input
Preprocessing ( )=lowPassFilt( )
Training Stage

for each electrode = 1 : 19

time segment { } =time_segment( )
feat extraction (: )= z_score( { } )

end
Classify { 1 19} = linclass( )
Test Stage

for each electrode = 1 : 19

(: ) =z_score( { })
end

Output = linpred( { })
C. Preprocessing
The only preprocessing step included in our approach was

a temporal low-pass filtering to remove high frequency noise.
The EEG signals were filtered with a 10th order low-pass
digital Butterworth filter with a cut-off frequency at 7 Hz.
Experimentation proved this value to be the best. It is worth
mentioning that similar classification results were obtained
for cut-off frequencies in a broad range (5-20 Hz), showing
that although this is an important parameter, fine tuning is
not essential.

D. Time Segmentation
EEG signals were segmented by automatically selecting

a time window for each electrode. The window was calcu-
lated using training data. A two-sample location T-test was
performed between the means of EEG trials corresponding
to the positive and null classes. The test assumes that the
two samples come from normal distributions with unknown
and unequal variances. Samples with p-value lower than 0.01
were selected. A sliding window was used to select the
continuous data segment with the largest number of selected
samples. In the implementations presented, we used windows
of 60 samples (300 ms). The automatic time window selec-
tion is a very important feature of our approach. It avoids
fixed predetermined time window locations that may not be
optimal for particular subjects and/or sessions due to well
known variations in latency that characterize ERPs.

E. Feature Extraction
Feature extraction reduces data dimensionality focusing

in those dimensions that most contribute to accuracy in the
classification. This is a central aspect of algorithms that deal
with problems of high dimensionality. In particular, in this
experiment, each trial is formed by the time series of 19
electrodes, each one having a length of 200 time points.

As result, we deals with 3800 dimensions for each trial.
The features were selected based on the distinctive trait that
single trials corresponding to the positive condition elicit
ERP potentials of higher amplitudes within the selected time
windows.
Once the relevant time window for each electrode was

selected, we extracted features using a z-score test. The
process is ilustrated in Fig 1. We applied the z-score statistic
between the maximum of each trial and the maximum of the
mean of all positive trials in the database, within the relevant
time window. This strategy is useful for situations where the
maximum of the mean and the particular maximum for each
single trial could have differences in latencies.
Each data point is defined by three dimensions: the

trial index, the electrode index and the time index. The
maximum for a particular trial in a particular electrode
is the maximum amplitude for this trial, within the time

window: { } , selected at the time segmentation step.
max = max( { } )

The maximum computation equally holds for the mean of
the positive condition at electrode at time . The trial
dimension is absent since the algorithm uses the mean of
all positive trials in the database.

max = max( { } )

The standard deviation max is computed across all trials
at the point of occurrence of the maximum of the mean. Fig
1 describes the process for Pz ( = 19). As can be seen,
the single trial and the database means have maximums at
different latencies.
The z-score statistic calculates the difference between the

two maximums, taking into account the variations of this
maximum in the database for the positive condition (Fig 1):

= =
max max

max

Using this feature extraction method we obtained a single
scalar feature value for the electrode , at trial . Then the
feature matrix has dimension: {number of trials · number of
electrodes}. At this level individual electrodes can be used
as individual predictors. We analyze this point further in the
results section. Nevertheless, it will be shown that the best
strategy is to combine all electrodes predictors using a linear
classifier that weights them according to their classification
accuracy.

F. Classification
Classification consists on taking an input vector of features
and assign it to one of discrete classes C . The training

dataset consists on samples (f1 f ) in a dimensional
space ( = 19), and labels ( 1 ). This particular ERP
paradigm has two experimental conditions: familiar faces and
unknown faces, thus classification is a binary problem ( =
2). A classification algorithm consists mainly of two parts:
(i) a cost function, and (ii) an optimization process over the
cost function that finds a decision boundary between classes.



Fig. 1. Time segmentation and the feature extraction step for the electrode
Pz ( = 19). The dashed vertical bars define the selected window of
differences { }19 between the null and the positive conditions. The bold
line is the mean of the positive condition in the database 19 ; the vertical
bar shows the standard deviation at the point of occurrence of the maximum
19 max. The thick line is an individual trial selected at random = 12;
the black circle shows the maximum =12 =19max.

According to the cost function and the optimization process
used, classification algorithms can be categorized in different
types; e.g. linear, non-linear, generative, discriminative, etc.
[7]. Since comparison of different classifiers is not the aim of
this work, for the implementations presented here we chose
from the literature the algorithms that have shown to be
the most effective in EEG classification: Linear Discrimi-
nant Analysis (LDA), Logistic Regression (LR) and Support
Vector Machines (SVM) [8], [9], [10].

III. RESULTS
A. Classification Algorithms
We explored three linear classifiers: linear discriminant

analysis (LDA), support vector machines (SVM), and logis-
tic regression (LR). These methods were implemented and
compared using ROC areas. Table II illustrates the results
obtained.

Table II: classifiers comparison.
ROC areas

subject LDA LR SVM
1 0.739 0.751 0.747
2 0.925 0.900 0.915
3 0.685 0.661 0.734
4 0.847 0.829 0.816
5 0.933 0.916 0.918
6 0.939 0.932 0.934
7 0.924 0.928 0.924
8 0.939 0.934 0.932

As can be seen, similar results were obtained with the
three of them, none of them presenting a clear improvement
in performance respect to the other ones. Therefore, for the
rest of the results presented in this work, we use LDA due to

its simplicity and advantage in computational speed. Another
important feature of LDA is that it yields a score that has a
probabilistic interpretation, thus allowing assessment of the
uncertainty of classification.

B. Subject-independent Models using LDA
Table III shows results for subject-independent models

obtained with LDA. The first column illustrates ROC area
relative to a cut-off point at 20% False Positive Rate (FPR).
This is the region of ROC curves where the usual cut-off
points are selected. The maximum possible value for this area
is 0.2. The second column shows the total ROC area. The
third column shows True Positive Rate (TPR) at 80% of True
Negative Rate (TNR). We used TPR instead of classification
accuracy due to the severe class inbalance (5%/95%). The
expected TPR if classification is made by chance using this
class proportions is 5%. Fig 2 shows ROC curves for all
subjects. With exception of subjects 1 and 3, the algorithm
yields TPR above 78.8%.

Table III: ROC results.
subject A0.2 A TPRTNR=80%
1 0.092 0.739 56.25
2 0.162 0.925 90.48
3 0.082 0.685 52.38
4 0.131 0.847 78.79
5 0.158 0.933 88.46
6 0.167 0.939 90.48
7 0.156 0.924 86.67
8 0.163 0.939 94.87

Fig 3 illustrates classification results for subject 8. It
compares TPR versus TNR for all individual electrodes and
the result obtained by combining them using LDA. For
this plot we used the natural cut-off 0 for both: individual
electrode z-scores and LDA classification scores. As can
be seen, combining all the electrodes into one predictor
improved the results obtained with the individual electrode
models.

IV. DISCUSSION AND CONCLUSIONS
In this work we presented a zero-training algorithm for

EEG single-trial classification. This algorithm handles the
high inter-trial variations by the time segmentation that
removes noisy regions of the signal and through the use
of the maximum function at the feature extraction step. The
maximum function deals with differences in latency between
the database means and target single trials. The variations
in amplitude of single trials are included in the algorithm
by using z-score statistics. Results showed TPR above 78%.
This value is even comparable with previously presented
work in subject-specific experiments which shows the good
potentials of our method for the more difficult subject-
independent classification problem. Aditionally, we explore a
standarization approach to impose constant variance across
trials for each subject. This strategy improves the TPR in
one subject and worsens the TPR in other; the rest remains
unchanged, resulting in a not useful approach.



Fig. 2. ROC curves for the 8 subjects studied. ROC curves were computed
using the classification scores obtained by LDA. Those curves with lower
areas correspond to subjects 1 and 3.

Fig. 3. True Positive Rate and True Negative Rate for all electrodes,
when they are used as independent predictors, for subject 8. The biggest
circle shows the result of combining all electrodes using linear discriminant
analyisis (LDA).

An important attribute of this algorithm is the interpretabil-
ity of electrodes relevance. It was shown that LDA can be
used to combine individuals models, weighting electrodes
according to their classification accuracy. This property can
be used to include feedback, as short training sesions,
that updates the algorithm with the objective of improving
individual predictions.
As shown in the results section, subjects 1 and 3 exhibited

lower classification accuracy than the remaining subjects.
This is due mostly to inter-subject variability. The subjects
correlation structure can be studied via hierarchical clustering
using ERP data. Fig 4 shows a graph of the hierarchical
clustering analysis across subjects using ERP signals corre-

Fig. 4. Dendrogram of the hierarchical cluster tree of the ERP signals,
corresponding to the positive condition. The cluster algorithm uses the
correlation metric to link nodes

sponding to all electrodes and all time points of the positive
condition concatenated. Correlation was used as similarity
measure to form the clusters. This clustering structure reflects
that single trial signals of subject 1 and 3 differ from the
rest of the subjects. As a result, the single trial database is
not a good predictor for these subjects. For the rest of the
subjects, the single trial database works well to build subject-
independent models.
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