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Abstract— One of the most important problems in robot
localisation is the detection of previously visited places
(loops). When a robot closes a loop, the association between
observed features and present ones can be used to update
its position. The computational cost involved in the associa-
tion process makes exhaustive loop search intractable. Most
of the current techniques use observations of the environ-
ment as their main features to produce loop hypotheses.
In this paper, we investigate the feasibility of producing
loop candidates from features of the robot trajectory. We
propose a new method for selecting loop-closure candidates
based on an alignment likelihood function, which measures
similarity between trajectory sequences. The algorithm is
validated with data gathered in the city with our experi-
mental platform. Positive results show that the trajectory
has, indeed, features that can be extracted and applied to
robot localisation. The resulting loop hypotheses may be
regarded, for example, as a initialisation step to aid current
methods.

I. INTRODUCTION

To navigate autonomously, a mobile robot needs to
know where it is within an environment. One of the
main problems in robot localisation is the detection of
previously visited places, commonly known as the loop-
closure detection problem. Traditional approaches to find
loop-closure candidates were based only on innovation
gate distance metrics between individual poses [1]. More
recent approaches using range information also incor-
porate landmark shape descriptors [2], [3], [4], [5]. The
main disadvantage of range-based methods is the poor
environment information obtained with 2D sensors. This
problem can be eliminated by using 3D range sensors,
which render a better characterisation of the robot’s
surrounding. The main two limitations of 3D lasers are
(a) the cost, they are still relatively expensive, and (b)
the extra complexity added to the algorithm in order to
devise how to handle the greatly increased amount of
data [5].

Cameras have also been used to generate loop-closure
hypotheses [6]. Adding visual descriptors facilitates the

detection of previously visited places by capturing more
information of the environment [7], [8], [9]. This comes
at the price of an increasing computational complexity
when different observations need to be matched. An
exhaustive search to compare the current view with the
stored ones is not feasible due to the high computa-
tional load involved. Consequently, regardless of the
sensor and strategy used, generating a reduced number
of loop-closure candidates is critical for any real-time
implementation. One of the latest common alternatives
to exhaustive search is building a dictionary of the
environment in the form of a vocabulary tree [10]. Then,
every time a new observation is acquired, the algorithm
searches the stored sensed data for the most feasible
candidates by comparing their words.

This paper presents a new method for producing
best candidates for loop-closure by making use of the
structure in vehicle trajectory. We exploit the fact that
in most of outdoor environments vehicles are limited
to drive on constrained paths, and hence, the trajectory
possesses geometric features that can be used to generate
loop-hypotheses. Note that the method is not meant to
be used as a stand-alone data association technique due
to the reduced amount of information being used. The
approach presented here should be used to complement
methods using environment features for loop detection.
For example, our framework can generate hypotheses in
a SLAM implementation, and images from the hypothe-
ses can be inspected to confirm the loops.

Fig. 1 shows an example to illustrate the main idea.
The figure shows data extracted from our experiments
where the vehicle revisits an area after accumulating a
large uncertainty. Four positions in the second loop are
shown with their respective candidates selected. Note
that, for positions 3 and 4, the algorithm does not simply
select the nearest neighbours, but rather it chooses the
ones that are the nearest in terms of distance and shape
(uncertainty ellipses are not included to maintain clarity
in the example).
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Fig. 1. Example of loop candidate selection. The blue line represents
the vehicle trajectory. The vehicle’s estimated position for the second
time the area is visited is the larger loop. The method presented in this
paper selects loop candidates for positions 1,2,3,4. Only the candidate
with the highest likelihood is shown for each position (solid line).

II. RELATED WORK

As already mentioned, most of the current approaches
for generating loop-closure hypotheses, make exclusive
use of observations from the environment, ignoring
information associated with the robots trajectory history.
For example, the work presented in [11] builds a vocabu-
lary tree of visual descriptors to suggest candidate views.
A similar approach is proposed in [7] where the authors
use a bag-of-words model to build the vocabulary tree.
An approach that incorporates information from vehicle
position is presented in [12]. The authors evaluate the
likelihood that images acquired at each pose overlap by
using the joint distribution between the current and can-
didate views. The main difference between this work and
ours, is that we use the history of vehicle poses instead
of the current one only. The authors in [13] present a
system that uses both appearance and relative position
of local visual features to calculate the probability of a
loop-closure.

The aforementioned works are based on images. The
latest approaches using range data are based on map
matching techniques to generate loop candidates. The
work presented in [2] extracts geometric features from
sensor scans, which are fed to train a binary classifier.
The classifier learns a mapping from features to loop-
closure events, which is then used to decide whether
there is a loop or not. The main disadvantage of learning
approaches is that, in general, a mapping function must
be previously learnt and may not generalise well for dif-
ferent environments. A cost function similar to the one
proposed is used in [4] to compare shape between laser
scans; however, unlike the similarity function presented

here, the work in [4] does not account for uncertainty.
The key difference between our work and previously

presented ones, is that, instead of using information
about the environment to generate loop candidates, we
explore here the practicability of generating loop-closure
candidates by exploiting the shape of the vehicle’s
trajectory. Our work can be complementary to the ones
mentioned above. It is important to note that the algo-
rithm will be useful in environments where the vehicle
motion is constrained to certain paths (e.g. roads). Nev-
ertheless, we argue that most of the environments where
vehicles navigate are of these kind. We believe that the
main advantages of our approach are its simplicity and
complementary use with previously presented solutions.

III. PROBABILISTIC MATCHING OF SEQUENTIAL
DATA

A. Likelihood function

The foundations of probabilistic sequence matching
is data association. We need to determine which of all
the past poses is most similar to the current one. The
measure of similarity is defined in terms of the poses,
which we assume are available in the form of probability
distributions. Specifically, we define the log-similarity of
poses xi and xj as

λ (i, j) = lnP (xi = xj) . (1)

The poses will typically be estimated by an extended
Kalman or unscented filter; hence they will be jointly
Gaussian-distributed. In this case, the log-similarity
takes the following mathematical form

λ (i, j) = −1
2

ln |Γij |−(µi − µj)T Γ−1
ij (µi − µj) , (2)

where µi and µj are the estimated means of poses i and
j, respectively. The matrix Γij is equal to

Γij = Σii + Σjj −Σij −Σji, (3)

where Σii, Σjj are the estimated covariances of i, j and
Σij , Σji are their cross-correlation matrices.

The value λ(i, j) is a measure of how similar pose i
is to pose j. This stems from the formal definition of
λ in (1). If the ith pose is close to the jth pose, then
λ(i, j) will be large; conversely, if poses i and j are far
apart, then λ(i, j) will be small. Note that Γij = Γji

and thus λ(i, j) = λ(j, i), i.e. the likelihood function is
symmetric.
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B. Sequential data

Applying the likelihood function to individual poses
does not exploit temporal correlations. In structured en-
vironments, the trajectory travelled by a mobile platform
tends to exhibit regular patterns. These patters in the
trajectory can be used to disambiguate between multiple
similar poses when there are several loop-closure can-
didates to choose from. In order to consider sequences
of poses, the sequential ordering must be encoded, for
example, by means of a composite likelihood function.

Suppose we are given an undirected graph G =
(V,E) of n poses. The vertex set V = {1, . . . , n}
indexes all poses stored so far in the sub-sampled metric
map; the edge set contains links between consecutive
poses and loop-closure links. Let p and q be paths of
length k on the graph G; i.e. suppose p = {p1, . . . , pk}
such that (pi, pi+1) ∈ E for all i = 1, . . . , k − 1, and
similarly for q. We define the alignment likelihood of
paths p and q as follows,

λ (p, q) =
k∑

i=1

λ (pi, qi) . (4)

The value λ(p, q) is a measure of how well the two paths
align with each other.

Now we can impose sequential coherence as follows.
First, we set p to be last k most recent poses, i.e. p =
{n − k + 1, . . . , n}. Then, q is restricted to the rest of
the graph, i.e. q is a path in Ḡ = (V̄ , Ē), where

V̄ = V − {n− k + 1, . . . n} = {1, . . . , n− k} ,

Ē = E
⋂{

V̄ × V̄
}

= {(i, j) ∈ E : 1 ≤ i, j ≤ n− k} .
(5)

The path p is aligned to the graph by searching for the
path q in Ḡ that maximizes λ(p, q), that is

q? = arg max
q∈Ḡ

λ ({n− k + 1, . . . , n} , q) . (6)

Figure 2 illustrates the sequence alignment process. At
sample n the robot revisits the same curve that was
traversed previously between i and j. This causes λ to
be maximum for the path q = {i, . . . , j}, causing poses
n and j to be matched to one another.

C. Sequence alignment

While the task of searching for the optimal sequence
alignment can be simple in principle, a naı̈ve imple-
mentation of Eq. (6) can be prohibitively expensive
when the current pose uncertainty is large and the graph
is highly populated. Fortunately, the search in (6) has
optimal substructure, and hence can be implemented
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Fig. 2. Illustration of the sequence alignment process. The current
trajectory is represented with dashed while the history is depicted with
solid line. Using sequence alignment the current position is associated
to position j.

efficiently via dynamic programming. We present an
efficient implementation based on the Viterbi algorithm,
which has linear computational cost.

1) Viterbi decoding: To illustrate the algorithm, think
of a first-order hidden Markov model with k hidden
states and transition matrix A with elements

aij > 0, (i, j) ∈ E,
aij = 0, (i, j) 6∈ E.

(We will typically set aij so that non-zero elements
are identical along each row). Define the conditional
probability of emitting symbol j given state i as

bij ∝ exp (λ (i, j)) ,

Then solving (6) is equivalent to performing Viterbi
decoding on this hidden Markov model. Therefore,
an efficient implementation will have a complexity of
O(k|Ē|) in the worst case (recall Ē from (5)).

The Viterbi decoder keeps track of the optimal path
by means of a trellis. It starts by assigning an equal
probability to all nodes in the trellis. At every step of
the algorithm, each node is expanded according to all
possible transitions to the corresponding state. The tran-
sition with the highest likelihood is stored and the node
probability is updated according to this likelihood. By
keeping track of the nodes that produced the transitions
with the highest likelihood values, upon reaching the end
of the sequence we can backtrack to find the alignment
with the overall maximum likelihood.

Algorithm 1 shows pseudo-code for finding the opti-
mal alignment via Viterbi decoding. The trellis structure
is stored in the matrices node and parent; the former
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contains the node probabilities and the latter keeps track
of the optimal transitions. The maximization function in
line 5 returns the maximum value of the expression as
well as the corresponding index; these two arguments are
assigned to element i, j of node and element i, j−1 of
parent, respectively. Scalar accumulator is an auxiliary
accumulator variable. The alignment indices for the
sequence are returned in vector index; i.e. element
n−k+1 of index is the index of the pose corresponding
to pose n− k + 1, and so on.

Algorithm 1 Sequence alignment using Viterbi.
1: for j = n− k + 1, . . . , n do . Main loop
2: accumulator← 0
3: for i = 1, . . . , n− k do
4: if j > n− k + 1 then
5: node (i, j) ,parent (i, j − 1) ←

maxh:(h,i)∈Ē node (h, j − 1) ahi exp (λ (h, i))
. Search for most likely transitions

6: else
7: node (i, j) (i)← exp (λ (i, j))
8: end if
9: accumulator← accumulator + node (i, j)

10: end for
11: for i = 1, . . . , n− k do
12: node (i, j)← node (i, j) /accumulator
13: end for
14: end for
15: i← arg max node (i, n)
16: for j = n, . . . , n− k + 1 do . Backtrack
17: index (j)← i
18: if j > n− k + 1 then
19: i← parent (i, j − 1)
20: end if
21: end for
22: return index

D. Simulation

The main idea is illustrated with a simple simulated
vehicle trajectory (navigation code available in [14]).
To make the order of the sequence independent of the
vehicle speed, in all the implementations presented we
first subsample the vehicle trajectory at evenly-spaced
distances. Therefore the sequence length is specified as
a distance. For this example, the length was defined
as 30 metres. Note that for simple graphs like this,
a naı̈ve implementation is enough, even for real-time
performance.

Fig. 3 shows the simulated trajectory and loop can-
didates selected by our approach. The vehicle moves

Fig. 3. Loop candidates selection for a simulated trajectory. The
figure shows the vehicle trajectory estimated by the motion model.
The vehicle travels counter-clockwise. To reduce clutter in the figure,
uncertainty is shown only in some of the points where loops were
detected. Stars denote these positions, and straight lines connect them
to their corresponding loop candidates from the trajectory history.

counter-clockwise. Only the candidate with the highest
likelihood is shown for each pose. The loop detection al-
gorithm was run automatically every 5 metres. There are
two important points to note from the results. First, note
how the loop candidates are consistent with the shape
of the uncertainty ellipses. This is more clearly observed
at either the top or bottom parts of the trajectory, where
the uncertainty ellipses change their orientation as the
vehicle travels from one corner to the next one. Second,
the results also illustrate the importance of the shape
of the vehicle trajectory in order to reduce ambiguity
in the matches. The association just before the vehicle
traverses the upper-left corner is not as accurate due to
lack of shape in the past sequence. Once the vehicle
incorporates the corner into its trajectory, the algorithm
selects a better candidate.

IV. EXPERIMENTS

A. Sydney CBD dataset

This section presents experimental results with data
gathered with our sensor platform. The platform is
equipped with GPS, inertial measurement unit (IMU),
lasers and cameras. For our experiments, the position
estimated from a Synchronised Position Attitude Navi-
gation (SPAN) system is used. The system outputs the
raw data and fusion of a NovAtel GPS and a Honeywell
IMU at an average rate of 1 Hz. A Ladybug3 spherical
camera mounted on top of the platform collects images
for validating the loop candidates.
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Fig. 4. Vehicle trajectory estimated by our GPS-IMU system,
superimposed on an aerial image (rotated 90 deg. clockwise to reduce
space). The total trajectory is 9.95 km long. The largest accumulated
uncertainty occurs on the top-right part, where the vehicle vehicle
estimated position possesses almost 200 metres of error. GPS visibility
is extremely low in this area of the city.
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Fig. 5. Number of satellites observed during the experiments. The
low satellite visibility is due to the large number of buildings in the
city.

Fig. 4 illustrates the trajectory superimposed on an
aerial image. The total distance travelled is 9.95 km. Fig.
5 shows the satellite visibility during the experiments.
As seen in the figure, the reception is very poor due to
the surrounding buildings. This highlights the need for
complementary methods for robust localisation.

1) Loop-closure candidates: The loop-closure detec-
tion algorithm was set to check for loops every 50
metres. The sequence length was defined as 150 metres.
A total of 54 positions were checked. The candidate with
the highest likelihood is tested for consistency against a
χ2 gate validation test. The threshold value for the gate
was set to 9.49. This is 95% quantile of a χ2 distribution
with 4 degrees of freedom (3D position plus heading).

Figs. 6 and 7 illustrate the results obtained for the
northern and a zoom-in of the centre part of the trajec-
tory respectively. The central part is the most interesting
in terms of loops. In this part, the navigation system
accumulates an uncertainty of over 200 metres due to
the poor GPS visibility. Points where the approach found
candidates are denoted with starts, whereas points where

no candidates were found are represented with circles.
The lines depict the best candidate position for each
point.

Out of the 54 points, 46 are actual loops. The algo-
rithm detected a total of 30 loops. The main reason for
the false negatives (undetected loops), can be attributed
to an overconfident estimate of the covariance generated
by the navigation filter.

2) Candidates validation: The 30 points where can-
didates were found were verified by applying SIFT
matching combined with RANSAC between images cor-
responding to current and candidate positions 1. Notice
that only the candidate with the highest likelihood was
selected, and thus only one image per position needs to
be matched. This is the main advantage of applying our
method prior to image matching. Particularly, in areas
with large uncertainty in position, trajectory matching
as a means for pre-selecting candidates can drastically
reduce the computational cost of a vision-only loop-
closure detection.

Visual-matching verified 24 out of the 30 loops de-
tected. Figs. 6 and 7 depict correct candidates with
straight lines and wrong candidates with dashed lines.
To avoid clutter in the figure, we set the algorithm to
start searching for loops after the whole trajectory has
been visited once.

Fig. 8 shows examples of images from the LadyBug3
camera corresponding to the current and the most likely
candidate positions. The first 4 were accepted by visual-
matching whereas the last 4 were rejected (dashed lines
in Fig. 6). Note that the visual matching rejected the 6
wrong candidates.

V. DISCUSSION

Many methods for loop-closure candidates selection
have been presented in the literature (see Section II).
Some of them have been shown to give very good
results. The main drawbacks we found in previously
presented approaches is that they either require a previ-
ous training process or they are expensive to compute.
Another disadvantage is the general complexity involved
in the implementation, sometimes requiring a bigger
effort than the one needed to implement the navigation
filter itself.

This paper studied the practicability of using a simple
probabilistic cost function to detect loops based on the
shape of the trajectory. The results show that this very
simple idea can be a powerful tool to complement

1Since visual matching is not the aim of this paper, we compare all
the images from the spherical camera. A better implementation would
compare, for example, only the ones with overlap in the field of view.
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Fig. 8. The figure shows the current (top images) and candidate (bottom images) for positions 4,36,50,54,39,48,49 and 52. The first 4 are
images with correct associations while the last 4 correspond to candidates selected by the sequence matching approach but rejected by visual
matching.

Fig. 6. Loop candidates selected from the experimental data. Positions
where loop candidates were found are denoted with ‘*’. Associations
are represented with lines. Dashed lines denote incorrect ones. Verifi-
cation was done by visual matching. Arrows indicate vehicle direction.

current navigation approaches. Among the 30 best loop
candidates selected, only 6 of them were wrong. The
wrong associations in points 39, 45 and 52 were due to
the lack of features. Since the vehicle travels in a straight
line, the approach associates the nearest point according
to the shape of the covariance. Although points 48 and
49 were matched to the wrong candidates due to the
symmetry of the trajectory (two corners near the current
position), this serves to illustrate the robustness of the
approach in the sense of finding similar shapes in the
trajectory. As soon as the vehicle travels further, ambigu-
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Fig. 7. Loop candidates selected in the north-central part of the
trajectory.

ity is reduced and the algorithm managed to select good
candidates (50,51). Points 53 and 54 were assigned good
candidates thanks to the good alignment of the sequence
and the relatively low heading uncertainty.

The algorithm missed some loops. Positions after
point 7 should have been associated with the nearest
ones. Due to the very low heading uncertainty in this
sector, the associations failed the probabilistic test. The
two positions before point 19 were not matched due
to the curve present when that street is revisited. After
this curve is removed from the reference sequence, the
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algorithm correctly associates the parallel lines (point
19).

The method presented has only one parameter that
must be specified by the user, namely, the sequence
length k. After processing our experimental data with
different values, we found that, although loop candidates
vary, the algorithm still detects good candidates as long
as k has “sensitive” values. For example, if the length
ranges between 100 and 400 metres, the algorithm
extracts good loop candidates from the city data set.
The range of values will have to change, if for instance,
the vehicle travels along country roads. In that case, the
sequence length will be in the order of kms.

VI. CONCLUSIONS

This paper presented an evaluation of an approach
that uses the vehicle trajectory sequence to generate
loop-closure candidates. A probabilistic cost function for
obtaining maximum likelihood estimates was presented.
The cost function is straightforward to implement and
has linear computational cost. Every time a loop-closure
is evaluated, the algorithm selects a sequence of vehicle
poses leading up to the current pose, and compares this
against the trajectory history. Experimental results with
real data taken in the city showed that the algorithm
can be a very powerful tool to complement current
techniques.

ACKNOWLEDGEMENTS

This work has been supported by the Australian
Centre for Field Robotics and the Rio Tinto Centre
for Mine Automation. The authors would like to thank
James Underwood and Laura Merry for their help with
the dataset.

APPENDIX: DERIVATION OF THE LIKELIHOOD
FUNCTION

Let xi, xj be jointly-distributed Gaussian random
variables[

xi

xj

]
∼ N

([
µi

µj

]
,

[
Σii Σij

Σji Σjj

]
,

)
.

Define the random variable

yij = xi − xj =
[

I
−I

]T [ xi

xj

]
.

Then, yij is Gaussian-distributed with mean[
I
−I

]T [
µi

µj

]
= µi − µj

and covariance matrix[
I
−I

]T [ Σii Σij

Σji Σjj

] [
I
−I

]
= Σii+Σjj−Σij−Σji,

which is equal to Γij in (3). Then, the probability of the
event xi = xj is given by

P (xi = xj) = P (yij = 0) = p (0) ,

where p is the probability density function of yij . Taking
the logarithm in the equation above yields the formal
definition of the likelihood function in (2).
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