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Abstract

This paper presents the on-going design and implementation of a robust iner-
tial sensor based Simultaneous Localisation And Mapping (SLAM) algorithm
for an Unmanned Aerial Vehicle (UAV) using bearing-only observations. A
single colour vision camera is used to observe the terrain from which image
points corresponding to features in the environment are extracted. The SLAM
algorithm estimates the complete 6-DoF motion of the UAV along with the
three-dimensional position of the features in the environment. An Extended
Kalman Filter (EKF) approach is used where a technique of delayed initiali-
sation is performed to initialise the 3D position of features from bearing-only
observations. Data association is achieved using a multi-hypothesis innovation
gate based on the spatial uncertainty of each feature. Results are presented by
running the algorithm off-line using inertial sensor and vision data collected
during a flight test of a UAV.

1 Introduction

In applications such as search and rescue, surveillance/picture compilation and planetary
exploration (Braun et al., 2004), where a high degree of maneuverability/vehicle speed and
large area coverage ability is required, the use of autonomous airborne vehicles has gained a
great amount of interest. In some of these applications, particularly during exploration and
surveillance tasks, the vehicle is often required to operate over unknown terrain or where
navigation grade terrain maps are unavailable. Additionally, in applications such as shown in
(Braun et al., 2004), navigation infrastructure such as the Global Positioning System (GPS)
is unavailable as a localisation aid for an airborne vehicle. Un-aided Inertial Navigation
Systems (INS) could be used, however the high-cost, weight and power requirements of the
necessary unit plus the limited operational time due to the eventual growth in system errors
is prohibitive to many projects. Instead, a low-cost INS can be used where the INS errors are
corrected using a terrain sensor that performs online generation of a map of the previously



unknown environment; in many respects similar to a real-time surveying task. This is the
basis for the paradigm known as Simultaneous Localisation And Mapping (SLAM). Since
the seminal work by Smith et. al. (Smith et al., 1990), there have been several demonstrated
implementations of SLAM using land (Dissanayake et al., 2001) and underwater (Williams
et al., 2001) vehicles where two-dimensional, horizontal localisation and mapping is per-
formed. SLAM has also been demonstrated on a UAV (Kim and Sukkarieh, 2004; Kim and
Sukkarieh, 2003; Jung and Lacroix, 2003) where the three-dimensional position of features
and the 6-DoF motion of the vehicle are generated.

Most implementations of SLAM require observations of range and bearing to features from
the platform requiring the use of sensors such as a laser or radar. The use of these sensors,
particularly in airborne applications can be disadvantageous for several reasons; the weight,
power and cost requirements of these sensors restrict their deployment to larger sized vehi-
cles. Additionally these sensors emit signals into the environment which can be detected thus
reducing their usefulness in applications such as stealth and surveillance. Removing the re-
quirement for sensing the range to features in the environment and only sensing the bearings
to a feature (hence bearing-only observations), greatly expands the domain of applications
in which SLAM can be deployed. Passive sensors such vision and Infra-Red (IR) can be used
providing more suitable implementations for missions involving small-sized or micro-aerial
vehicles or in low-cost airborne systems such as in civilian, non-military applications.

Performing SLAM with bearing-only observations poses two main additional challenges to
the range and bearing case. Firstly, a single bearing-only observation provides insufficient in-
formation alone to localise a feature in 3D. Instead observations from two sufficiently different
poses are required. Secondly, data association is complicated by bearing-only observations.
Since the 3D position of the feature is not known from a single observation, the χ2 test
(Neira and Tardos, 2001), commonly used for validation gating in tracking tasks, cannot be
performed in the standard way. The bearing-only SLAM problem has been tackled before,
most commonly using ground-based vehicles and there is a wide variety of solutions that
have been proposed to overcome parts of the problem faced. In this paper we provide a
review of these previous approaches (Section 2).

The contribution of this paper is the analysis of the implementation of a bearing-only SLAM
algorithm applied to a high-speed aerial vehicle. The end goal of the work is to implement
a real-time algorithm which provides sufficient localisation accuracy to be used as feedback
for the vehicle’s on-board control system while at the same time building an accurate point
feature map. The focus of this paper is therefore on developing a robust bearing-only SLAM
algorithm and then moving towards solving the issues that face real-time implementation.

In our implementation an Extended Kalman Filter (EKF) is used in which the position,
velocity and attitude of the vehicle along with the 3D positions of point features in the
environment are estimated. A delayed initialisation technique is used to store information
from bearing-only observations until there exists two observations with a sufficient baseline
from which to initialise the 3D position of the feature. Data association is tackled by creating
multi-hypothesis distributions of the possible feature locations in 3D (i.e. along the line of
sight of an observation). Subsequent observations of the same feature can be associated
by matching the most likely hypotheses and culling the hypotheses that don’t match. The



result is a localisation and mapping system which can be deployed into a wider variety
of environments, without the need for range observations to features or any prior terrain
information.

In this paper we attempt to highlight some of the specific issues faced in our aerial implemen-
tation. Inertial sensors used are low-cost and contain significant noise and some time-varying
biases. The aerial vehicle for which the SLAM algorithm is implemented can perform rapid
manoeuvres and high-speed flight. The dynamic motion poses several challenges to the im-
plementation; the sensor field of view moves rapidly from looking at the ground and the
sky where the feature extraction algorithms must often deal with large deviations in image
brightness. Additionally features are often in view of the sensor for only a small number of
frames at a time. High-speed manoeuvres result in highly non-linear process and observation
models, corrupting the linearising assumptions in the EKF and requiring prediction rates
to run at high speed. Additionally some modes of the vehicle’s flight mean that the sensor
is not pointing towards the ground for a large amount of time where features observations
can be generated. This can result in extended periods of time where the localisation of the
vehicle relies on the inertial navigation system alone. SLAM on an aerial vehicle means that
the vehicle motion must be estimated in 6-DoF and the position of features in 3D. This
adds to the size of the state vector from most ground vehicle applications where the vehicle
motion and feature map is estimated in 2D.

An implementation of SLAM on a high-speed aerial vehicle involving many of the same
challenges but using both range and bearing observations was demonstrated in (Kim and
Sukkarieh, 2003). The implementation uses a vision camera to compute the bearing to
features along with an estimate of the range based on the known size of artificial targets that
have been placed in the environment. Range information in this case is only available through
the use of an artificial feature. Having range information available helps with the stability
of the estimates in the EKF. The range and bearing SLAM algorithm is also simplified
significantly; no vehicle pose or observation data needs to be stored, data association can
be performed using the χ2 test for validation gating using the 3D map information in a
standard fashion. In this paper we highlight and propose solutions to the challenges faced
with implementing the bearing-only case of inertial SLAM.

Figure 1 illustrates the elements of the bearing-only inertial SLAM algorithm with a guide
to the relevant sections of the paper. Section 2 provides an overview of existing methods for
solving the problems faced in bearing-only observations in regards to feature initialisation
and data association and provides the reasoning for the approach taken for the aerial vehicle
case in this paper. Section 3 examines a basic algorithm for feature extraction from the
vision data. Section 4 details the estimation cycle of the SLAM algorithm with prediction
stage based on inertial sensing and update stage using feature observations. The bearing-
only feature initialisation process using stored observation and vehicle pose data is covered
in Section 5. Section 6 overviews the data association process. Section 7 looks at how the
components in Sections 4, 5 and 6 are integrated together and the computational complexity
of the algorithms as a whole. Section 8 describes the physical system and sensors used to
drive the SLAM algorithm. Results of the algorithm are shown in Section 9. Conclusions
and future work are covered in Section 10.



Figure 1: Overview of the bearing-only inertial SLAM algorithm and guide to relevant
sections in the paper describing the feature extraction, Inertial Measuring Unit (IMU) and
Inertial Navigation System (INS), Extended Kalman Filter (EKF), bearing-only feature
initialisation and data association.

2 Literature Review

This section offers a background into existing solutions to aspects of the problems faced in
implementing bearing-only SLAM and presents an overview to our approach for an aerial
vehicle.

2.1 Overview of Previous Approaches

Once a well conditioned estimate of the feature position is available in SLAM, bearing-only
tracking of the feature from subsequent observations can be tackled in the standard EKF
framework. The issue however with implementing SLAM using a bearing-only sensor is that
the initial 3D position of a feature cannot be determined from a single observation and
thus the estimate of the feature location is ill-conditioned when represented as a Gaussian.
Instead several measurements are required with sufficiently different baseline to determine



the initial position accurately.

In the target tracking community, initialisation of 3D position from bearing observations
has been tackled for example by representing the initial feature position as a non-Gaussian
distribution using sums of Gaussians (Alspach and Sorenson, 1972) or with the use of particles
(Gordon et al., 1993). These approaches are less popular for SLAM in which the initial
feature position is correlated to the vehicle and the rest of the map, which results in high
computational burden when correctly applying these representations to a high-dimensional
state.

In (Davison, 2003) and (Fitzgibbons and Nebot, 2002) the authors tackle the initialisation
problem by representing the position of the feature initially using particles. In both of
these cases the authors maintain the particle distribution independently from the Gaussian
probability distributions of estimates of the vehicle and the rest of the map. Observations
made of the feature during the particle stage will however be correlated to one another
through the vehicle errors and thus ignoring this coupling will result in a loss of information
to the vehicle states and can lead to an inconsistent initialisation of the feature.

In (Kwok and Dissanayake, 2004) the authors use a multi-hypothesis filtering approach in
which several hypotheses of the position of a landmark are created based along the line of
sight of the first observation of a feature. Each of the hypotheses is then integrated into
the filter and treated as a separate feature. Subsequent observations as the vehicle moves
around the feature will eventually allow all but one of the hypotheses to be pruned out of the
filter. Although computationally efficient, this approach losses information from observations
made before initialisation. In (Sola et al., 2005) the authors similarly use a multi-hypothesis
approach where the information from further observations of a feature before initialisation is
transferred to each hypothesis using federated information sharing. In using this approach
however there is no guarantee that estimates will be consistent due to the Kalman filter
update of the incorrect hypotheses.

In (Montiel et al., 2006) the authors present an approach to the bearing-only SLAM problem
that parameterises each features position into 6 states: the vehicle pose from which the
feature was first observed, the angles to the line of sight of the observation and the inverse
range to the feature. The authors claim that the use of the inverse range parameterisation
(rather than range) results in better linearisation of the measurement equations and a better
probabilistic representation of the feature position for when there are only a small number of
observations made with very small baseline. There are two issues with this approach; firstly
that inverse range is a good parameterisation for when the the baseline between observations
is small but is not as good as the range representation when the baseline eventually becomes
large. The second issue is that one must still define a mean value to the initial distribution
of inverse range to the feature from a single observation. Setting this initial mean arbitrarily
will result in filter inconsistency when the landmark’s true initial inverse range differs.

Another approach to the bearing-only initialisation problem has been to store observations
of a feature until sufficient observations from different angles are available to initialise the
3D position of the feature. Methods that store the data before initialisation are referred to
as delayed approaches. In (Bailey, 2003) the author stores the vehicle pose and observation



data in the state vector for a single observation and later uses constrained initialisation
to compute the feature position when a second observation is available from a sufficiently
different vehicle pose. Stored observations between the first and last observations can then
be used in a batch update. By correctly maintaining correlations between the stored pose
and the current vehicle pose, information from the first observation is transferred to the
current vehicle pose estimate at initialisation in a consistent manner.

One question that arises in performing a delayed initialisation is in deciding when to initialise
the feature, i.e. when are the stored observations sufficient. In (Bailey, 2003), the author
uses the Kullback-Leibler distance to determine whether to initialise a feature by performing
the initialisation and comparing the outcome with an approximation of a non-Gaussian
initialisation. If the difference between the regular initialisation (using a Gaussian) and the
non-Gaussian approximation (as measured by the Kullback-Leibler distance) is small then
the feature is initialised into the map. This method is very computationally intensive due
to the requirement for a numerical evaluation of the Kullback-Leibler distance.

2.2 Structure from Motion Approaches

There is a large body of work in the computer vision community on the structure from
motion problem which is to reconstruct the motion or trajectory of a moving camera and
also the structure of a stationary environment in which the camera moves. The structure
from motion problem is closely related to the bearing-only SLAM problem where the methods
used to solve each problem differ in the fact that bearing-only SLAM is mainly implemented
as an online recursive estimation task and structure from motion is more commonly a batch
reconstruction task (i.e. the map and trajectory are built when all of the data is collected
and not online).

In (Triggs et al., 2000) the authors provide an excellent overview of techniques for bundle
adjustment for solving the structure from motion problem with accurate and robust results.
The idea of the bundle adjustment approach is to estimate the entire history of vehicle poses
and the positions of features in the environment by running a batch update with all of the
stored observations. The advantage of this approach is that estimates are well conditioned,
the disadvantage being that the computational complexity of performing the batch update
scales with the number of stored observations. This means that this approach becomes
impractical for real-time localisation due to the growing computational cost.

(Deans, 2000) demonstrates a delayed approach to localisation and mapping with bearing-
only observations by applying an adaptation of bundle adjustment. In their paper the authors
propose a fusion between bundle adjustment and the application of recursive Kalman filters
is required in order to provide a solution to SLAM which is both robust and consistent but
also real-time applicable.



2.3 Overview of the Current Approach

In this paper we take a delayed approach to feature initialisation by storing observations
and vehicle poses and recovering this information in a batch update step when sufficient
base-line exists between two observations. In our approach the correlations between stored
vehicle poses and the current vehicle pose along with the rest of the map is maintained in
a consistent manner. It is our belief that initialising the feature in a consistent manner
and recovering all of the information from observations made before initialisation is of most
importance in SLAM, particularly in the aerial vehicle case where reliability of the navigation
system is paramount.

The aim of our approach is to benefit from well conditioned SLAM estimates by storing
observations and delaying our update until we can generate a well conditioned estimate of
the 3D position of the feature. Once the 3D position of a feature is initialised, updating
our localisation and mapping estimates from future observations can be performed in a
incremental fashion using the EKF. This removes the growing computational burden of
storing observations once a feature is initialised.

Our approach to data association is based on matching observations made by the feature
extraction algorithm to known features in the map by the spatial knowledge of the feature’s
position in the environment using innovation gating. The aim of the data association method
is to be applicable to situations in which features in the environment have little or no visual
properties to distinguish from one another (an example is given by the features shown in
Section 3). It should be noted that visual distinction could be used to suppliment our
approach in the case where the features used could be discriminated from one another based
on visual properties (such as colour or texture).

3 Extracting Features from Image Data

The SLAM algorithms described in the following sections of the paper rely on observations
of point features in the environment. In order to facilitate the estimation algorithm devel-
opment, 1x1m white plastic squares (see Figure 2) have been placed into the environment
to act as artificial features. These artificial features have a higher visual intensity compared
to the background terrain and are thus relatively easy to distinguish in the vision data.
In most environments there exist natural features that when viewed from the air can have
their positions classified by a point (such as the centroid of bushes and rocks). The visual
appearance of these features can be encoded into the feature extraction process and model-
based matching techniques (Nixon and Aguado, 2001) can be used to extract them from the
image data. Alternatively, when localisation is the main priority, features may be points in
the sensor data that are distinct and easily recognisable and techniques like SIFT features
(Lowe, 2004) can be used. The algorithms to extract natural features from vision data are
however beyond the scope of this paper.

Figure 3 shows a sample image from the on-board camera taken while in flight. The white
plastic square feature extraction process finds the normalised intensity of each pixel in the
image, applies an intensity threshold and finds which pixels lie above the threshold (white



Figure 2: SLAM features: 1x1m white plastic squares have been placed in the environment
to act as features for the SLAM algorithm.

areas in image on right-hand side of Figure 3). Areas of interconnected pixels are then
placed into groups where each group is a potential feature. The suitability of each pixel
group is assessed by considering the pixel count, size and shape of each group. Pixel groups
are firstly checked to see if they are roughly square or circular in shape (determined by
maximum pixel distance from the group’s centroid divided by the number of pixels) and
have a pixel count below a threshold (computed for a 1x1 meter feature, looking straight
down at 100m altitude). The intensity of the pixels surrounding the group is then averaged
and the average is checked to see that it is below a given threshold so as to ensure that the
pixel group stands out from the background intensity. Each pixel group that passes all of
the manually tuned thresholds is declared a feature, and an observation is generated as the
centroid of the group in the image (yellow circles in right-hand side of Figure 3).

4 The Inertial SLAM Algorithm

The inertial SLAM algorithm, as shown in (Kim and Sukkarieh, 2003), is formulated using
an EKF in which map feature locations and the vehicle’s position, velocity and attitude
are estimated using relative observations between the vehicle and each feature. Figure 4
illustrates the relevant relationships between the frames of reference in the SLAM algorithm.

4.1 Process Model

The estimated state vector x̂(k) contains the three-dimensional vehicle position (pn), velocity
(vn) and Euler angles (Ψn = [φ, θ, ψ]) and the three-dimensional locations of each feature
(mn

i ) in the environment where i = 1, ..., Nfeats, Nfeats is the number of features and the
superscript n indicates the vector is referenced in a local-level navigation frame. The vehicle
operates over a small area (relative to the curvature of the Earth) and thus it is assumed
that the local-level frame does not rotate as the vehicle moves. The starting point for the



Figure 3: Feature extraction: Left, a sample vision frame from the vehicle’s on-board camera
with extracted features (white targets) highlighted by dark circles. Right, pixels that are
above the intensity threshold of the colour image are shown in white. Features are extracted
(light circles) as appropriately sized groups of connected pixels that are likely to correspond
to white targets.

local-level frame is at the initial horizontal position of the vehicle and is vertically referenced
to mean sea level. The state estimate x̂(k) is predicted forward in time from x̂(k − 1) via
the process model:

x̂(k) = F(x̂(k − 1),u(k), k) +w(k) (1)

where F(., ., k) is the non-linear state transition function at time k, u(k) is the system input
at time k, and w(k) is uncorrelated, zero-mean vehicle process noise errors of covariance Q.
The process model is the standard 6-DoF inertial navigation equations which predict the
position, velocity and attitude of the vehicle. An inertial-frame mechanization (Titterton
and Weston, 1997) is implemented:





pn(k)
vn(k)
Ψn(k)



 =





pn(k − 1) + vn(k)∆t
vn(k − 1) + [Cn

b (k − 1)f b(k) + gn]∆t
Ψn(k − 1) +En

b (k − 1)ωb(k)∆t



 (2)

where f b and ωb are the body-frame referenced vehicle accelerations and rotation rates which
are provided by the Inertial Measuring Unit (IMU) on the vehicle and gn is the acceleration
due to gravity. The inertial-frame mechanisation simplifies the INS equations by ignoring
small effects such as the Earth’s rotation which have negligible effects when operating over
a small area relative to the Earth’s surface and for a small amount of time. Other mecha-
nisations of the equations can be used when the vehicle operates over a very large area or
for long periods of time. Euler angles are used to represent the attitude of the platform
rather than quaternions in order to reduce the number of parameters in the estimator. In
our case, the vehicle’s pitch angle is constrained so as to avoid the Euler angle singularity at
90o pitch, however our algorithm could be easily changed to implement quaternions in the
event that the platform motion is not constrained in such a way. The vehicle body-frame
(b) lies at the center of and has its axes aligned with the IMU, where the x-axis points out
the aircraft’s nose, y-axis out the right wing and z-axis down. The direction cosine matrix
Cn
b and rotation rate transformation matrix E

n
b between the body and navigation frames are



Figure 4: Vectors and frames of reference in the inertial SLAM algorithm: The local-level
navigation frame (n), body-fixed frame (b) and sensor-fixed frame (s) and the relationship
between the vehicle position (pn), feature position (mn) and sensor observation are shown.

given as:

Cn
b =





cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ



 (3)

En
b =





1 sφtθ cφtθ
0 cφ −sφ
0 sφsecθ cφsecθ



 (4)

where s(.), c(.) and t(.) represent sin(.), cos(.) and tan(.) respectively. Feature locations are
assumed to be stationary and thus the process model for the position of the ith feature is
given as:

mn
i (k) =mn

i (k − 1) (5)

4.2 Observation Model

An on-board vision camera makes relative bearing observations zi(k) to features within the
sensor frame. The observations are related to the estimated states via:

zi(k) = Hi(p
n(k),Ψn(k),mn

i (k), k) + v(k) (6)

where Hi(., ., ., k) is a function of the feature location, vehicle position and Euler angles and
v(k) is uncorrelated, zero-mean observation noise errors of covariance R. There are two



forms that can be used to represent a bearing-only observation. The observation zi(k) can
be represented by azimuth (ϕi) and elevation angles (ϑi):

zi,ang(k) =

[

ϕi
ϑi

]

=





tan−1
(

ys

xs

)

tan−1

(

zs√
(xs)2+(ys)2

)



 (7)

where xs, ys and zs are the cartesian co-ordinates of p
s
ms, the relative position of the feature

w.r.t the sensor, measured in the sensor frame and Rang is the angular noise covariance. For
vision camera, the observation is better represented as pixels in the image of the camera,
using a pinhole camera model:

zi,pix(k) =

[

u
v

]

=

[

fu(
ys

xs
) + u0

fv(
zs

xs
) + v0

]

(8)

where u0, v0, fu and fv are calibration parameters for the camera and the pixel noise covari-
ance is Rpix. The relationship between the pixel co-ordinates and the azimuth and elevation
angles is given by Equation 9:

[

ϕ
ϑ

]

=

[

tan−1 (u−u0)
fu

tan−1( (v−v0)
fv

cosϕ)

]

(9)

The pixel noise is assumed to be additive and Gaussian and the angular noise covariance
can be approximated as Gaussian:

Rang = Rpix

[

1
f2

u

0

0 1
f2

v

]

(10)

Each of the different representations have their advantages in the algorithm. Observation in
pixel form are used in the EKF update stage as explained in section 4.3 and observations in
azimuth and elevation form are used in the data association process in section 6.

The position of the feature in the sensor frame in cartesian form psms is related to the vehicle
and feature positions in the local-level navigation frame and the attitude of the vehicle using
Equation 11:

psms = Cs
bC

b
n[m

n
i − pn −Cn

bp
b
sb] (11)

where Cs
b is the transformation matrix from the body frame to sensor frame and p

b
sb is the

sensor offset from the body frame (offset of the vision sensor w.r.t the IMU), measured in
the body frame.

4.2.1 Camera Calibration and Offset

The camera calibration parameters u0, v0, fu and fv, the offset of the camera from the
IMU (i.e. the relative position of the sensor frame w.r.t the body frame) and the relative



direction cosine matrix between the body and sensor frames are computed before the flight
in an offline calibration procedure. The camera calibration procedure is first performed using
the MATLAB camera calibration toolbox (Bouguet, 2006) in which a sequence of camera
frames are taken from different poses showing images of a calibration checkerboard of known
dimensions. From these images, the corners of each square in the checker board are extracted
manually (by clicking on them in the images) and a batch linear-least squares estimator is
applied to estimate each pose of the camera relative to the board and the camera calibration
parameters u0, v0, fu and fv.

Once the camera calibration parameters have been computed, the camera is connected to
the aircraft body along with the IMU and a second procedure is performed to compute the
relative transformation between camera and IMU. The relative position between the two
(pbsb) is measured by hand along the axes of the IMU. The direction cosine matrix between
the body frame and sensor frame (Cs

b ) is firstly computed by measuring it’s Euler angle
components by hand and then refined by manually tuning the Euler angles of the direction
cosine matrix using an image taken by the camera of the calibration board place in a known
position and orientation w.r.t the aircraft body.

4.3 Estimation Process

The estimation process is recursive and is broken into two steps:

4.3.1 Prediction

The vehicle position, velocity and attitude are predicted forward in time using (1) and (2)
with data supplied by the inertial sensors. The state covariance P is propagated forward
via:

P(k|k − 1) = ∇Fx(k)P(k − 1|k − 1)∇FTx (k) +∇Fw(k)Q∇FTw(k) (12)

where ∇Fx and ∇Fw are the jacobians of the state transition function w.r.t the state vector
x̂(k) and the noise input w(k) respectively.

4.3.2 Update

Assuming that we have already initialised the three-dimensional position of a feature, the
state estimate is updated from further observations via:

x̂(k|k) = x̂(k|k − 1) +W(k)ν(k) (13)

where the gain matrixW(k) and innovation ν(k) are calculated as:

ν(k) = zi(k)−Hi(x̂(k|k − 1)) (14)

W(k) = P(k|k − 1)∇HT
x (k)S

−1(k) (15)

S(k) = ∇Hx(k)P(k|k − 1)∇HT
x (k) +R (16)



Figure 5: Initialising the 3D position of a feature: The two observations of the feature
with the largest angular baseline between them is used to initialise the feature. The feature
position is the closest point between the the two lines of sight of each observation and stored
vehicle pose.

where ∇Hx(k) is the jacobian of the observation function w.r.t the predicted state vector
x̂(k|k − 1). The state covariance P(k|k) after the observation is updated via:

P(k|k) = P(k|k − 1)−W(k)S(k)WT (k) (17)

5 Initialisation of Feature Positions from Bearing-only
Observations

As mentioned in Section 4, a single bearing-only observation is insufficient to initialise the
3D position of a feature into the SLAM filter with Gaussian uncertainty. In the following
subsection, we outline a method for delayed initialisation of a feature into the filter by using
stored observations and vehicle pose information. Figure 5 illustrates the relevant frames
and vectors for the 3D initialisation of a feature.

5.1 Storing Feature Observations and Vehicle Pose Information

When an observation of an un-initialised feature is made, the current bearing-only observa-
tion is stored and the SLAM state vector and covariance matrix are augmented to include



the current vehicle pose (3 position states and 3 Euler angle states):

x̂v =





pn(k)
vn(k)
Ψn(k)



 , x̂p =

[

pn(k)
Ψn(k)

]

(18)

x̂aug =





x̂v(k)
mn(k)
x̂p(k)



 (19)

Paug(k) =





Pvv Pvm Pvp

Pmv Pmm Pmp

Ppv Ppm Ppp



 (20)

x̂v is concatenation of the vehicle position, velocity and attitude states where x̂p is the
concatenation of the vehicle position and attitude (i.e. the vehicle pose states) at the time
of the observation. x̂aug is the augmented state vector which comprises of the vehicle states
(x̂v), the 3D positions of all of the map features (m

n) and the added vehicle pose states (x̂p).

The covariance term Ppp (covariance of the pose states) is derived by taking the position
and attitude covariance matrix subblocks from within Pvv (since these states have the same
value and the same covariance as the current vehicle position and attitude). Similarly the
covariance subblock Ppm is taken from the existing cross correlations between the current
vehicle states and map states (i.e. subblocks of Pvm corresponding just to position and
attitude). Ppv is the cross correlation between the all of the current vehicle states (i.e.
position, attitude and velocity) and the current pose states. This is thus taken from subblocks
of Pvv itself since there are states in common (position and attitude) and thus parts of the
added vehicle pose states (x̂p) are completely correlated to the current vehicle state (x̂v).
As the process model of the vehicle comes into play and the filter moves forward in time,
the correlations between the stored pose and the new time vehicle states (i.e. x̂v(k+1)) will
become less correlated (due to the process noise on x̂v(k + 1)).

The observation (co-ordinates of the feature in the image plane) is stored separately from
the EKF state vector.

5.2 Initialising a 3D Feature Position Estimate

When it is decided to initialise the 3D position of a feature into the map, the two stored
observations of the feature which are separated by the largest angle are used to create an
initial estimate of the feature position. Each bearing-only observation can be represented by
a 3D point in space yn from where the observation was made (at the origin of the sensor)
along with a unit vector ūn pointing along the line of sight of the observation, thus:

yn = pn + Cn
b p

b
sb (21)

ūn = Cn
b C

b
sp̄

s
ms (22)

where x̄ indicates the unit vector of a vector x. pn and Cn
b are determined from the stored

pose data associated to each observation and p̄sms is determined from the observation data



itself using Equation 9 to convert the pixel observation to azimuth and elevation angles and
Equation 23 to convert to a unit vector:

p̄sms =





cos(ϕi) cos(ϑi)
sin(ϕi) cos(ϑi)
sin(ϑi)



 (23)

The lines of sight generated by each observation should intersect at one point in 3D space
corresponding to the feature location. Since the observations and stored vehicle pose infor-
mation is noisy, the lines of sight will generally not intersect perfectly. Instead, the initial
feature position is computed as the closest point between the two lines for each observation:
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p1 =
((yn2 − yn1 )× ūn2 ) · (ūn1 × ūn2 )

|ūn1 × ūn2 |2
(25)

p2 =
((yn1 − yn2 )× ūn1 ) · (ūn2 × ūn1 )

|ūn2 × ūn1 |2
(26)

In the event that there is a large discrepancy between the two lines (i.e. the minimum
distance between the closest two points, one on each line, is larger than a threshold), the
observations may be incorrect possibly due to a miss-association in the data association or
if the feature is moving for some reason, and thus the observations are discarded and the
feature is not initialised yet. Provided there is no large discrepancy between the lines, the
state vector and covariance matrix in the SLAM filter are then augmented to include the
estimate of the new feature:

x̂aug(k) =

[

x̂(k)
mn

i (k)

]

(27)

Paug(k) =

[

I 0
∇Gp ∇Gz

] [

P(k) 0
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] [

I 0
∇Gp ∇Gz

]T

(28)

where ∇Gp and ∇Gz are the jacobians of the initialization function G(.) w.r.t the pose
states (pn1 ,p

n
2 ,Ψ

n
1 ,Ψ

n
2 ) and the observations (z1, z2) respectively and R2x2 is:

R2x2 =

[

R 0
0 R

]

(29)

5.3 Recovering the Information from Remaining Stored Observations

Once two observations have been used to initialise the 3D position of the feature into the
filter, the remaining stored observations (z1, z2, ..., zj) are run through a batch EKF update.
The update corrects not only the current feature being initialised but also the other features
in the map and the current vehicle state estimates. The updated state vector is calculated:

x̂(k|k) = x̂(k|k − 1) +W(k)ν(k) (30)



Where the innovation ν(k) is composed by all of the stored observations for the feature:
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The gain matrixW(k) and innovation covariance S(k) are calculated as:

W(k) = P(k|k − 1)∇HT
x (k)S

−1(k) (32)

S(k) = ∇Hx(k)P(k|k − 1)∇HT
x (k) +R (33)

where ∇Hx(k) is the composition of jacobians of the observation function for each stored
observation w.r.t the predicted state vector x̂(k|k − 1). The state covariance P(k|k) after
the observation is updated via:

P(k|k) = P(k|k − 1)−W(k)S(k)WT (k) (34)

Once the update has been completed, pose states that no longer have any associated stored
observations are removed from the state vector and their corresponding rows and columns
removed from the covariance matrix.

5.4 Deciding when to Initialise a Feature

A remaining issue with the delayed initialisation method is the question of when the initiali-
sation should be made. Initialising a feature too early (i.e. by not using enough observations
or observations with insufficient separating angle) can result in inconsistency as the true
probability distribution of the feature location is not well represented by a Gaussian. The
disadvantage with over-delaying the initialisation is that the uncertainty in the vehicle states
continues to grow before the initialisation. As the uncertainty in the current vehicle state
grows, linearisation errors can effect the consistency of the filter. We wish to initialise and
recover the information as quickly as possible to limit the effect the inconsistency can have.
Additionally it may be desired to quickly recover the stored information which contributes
towards the accuracy of the vehicle localisation estimates which may be used as feedback for
the control of the vehicle. Another upper limit on deciding how long to delay the initiali-
sation is driven by reducing the increased computational burden imposed by adding stored
observations to the state vector.

It was found that initialising a feature too early had a greater potential to cause inconsistency
in the filter due to incorrect triangulation of the features position. For this reason, rather than
performing the initialisation as soon as possible by testing the conditioning of the estimate
such as shown in (Bailey, 2003), it was found that a heuristic such as setting the minimum
angle between observations necessary to initialise a feature to a conservative threshold (in
our case 40 degrees) provides a practical way of deciding when to initialise.



6 Data Association

Data association is the process of matching observations of features from the camera (which
are generally provided as 2D points in the image which are not necessarily distinct from
any other point) with the estimated 3D position of the feature within the map. The aim
of this section is to develop a method of data association that does not rely on any visual
information about a feature from the image data.

6.1 Data Association Matching Test

The validity of potential associations between observations and features is assessed using
the Mahalanobis distance (γ) (Neira and Tardos, 2001) in the sensor space (azimuth and
elevation):

γ = νTS−1ν (35)

where ν and S are the innovation and innovation covariance for the observation and a given
feature in the map. In the data association, we compare the Mahalanobis distance in the
space of azimuth and elevation angles rather than with pixels. The reason for this is that
when a feature’s 3D position is projected into the sensor space using pixel co-ordinates, the
projection becomes more ill-conditioned the closer the features lies at an angle of 90o to the
pointing direction of the camera. Thus the projected uncertainty of features near the edge
of the camera’s field of view can result in the feature being incorrectly associated if pixels
are used.

When checking the association of a given observation with the initialised features in the
map, γ is calculated for each initialised feature using Equations 14 and 16. Matchings that
fall within a defined threshold of γ corresponding to a 95% level of confidence are considered
acceptable.

6.2 Associating Observations of Un-Initialised Features

Issues arise when attempting to find a data association test that can be performed for un-
initialised features. Since the exact 3D position of the feature is not-known, we cannot
consistently calculate the innovation or innovation covariance of the feature. Instead, from
only one or a small number of observations with a small baseline, the observation could lie
anywhere in 3D space along the line of sight of the observation.

In order to associate observations of features that have not yet been initialised into the 3D
map we will define a multi-hypothesis of Gaussian distributions of the possible 3D locations
of the feature along the line of sight vector for our first observation of the feature.

6.2.1 Starting a New Feature

When an observation is made in the image that cannot be associated to any other previ-
ously seen feature, initialised or un-initialised, it is assumed that this observation has come



Figure 6: Data association of observations to un-initialised features: When a feature is seen
for the first time, a set of hypotheses for the 3D position of the feature is generated at equal
range increments along the line of sight (left). Future observations are checked for matches
to any of the hypotheses. When a match is made to one of the hypotheses, the remaining
hypotheses that don’t match are culled (right).

from a new feature that we have not seen before. We start by storing the observation and
augmenting the EKF state vector with the current vehicle pose (see Section 5.1).

From our single observation we create a set of equally weighted hypotheses for where the
feature could lie in 3D space along the line of sight. The mean (x̂j) and covariance (Pj) for
each hypothesis is calculated for several different values of range (rj) in equal increments
from an expected minimum and maximum sensor range as shown in the left of Figure 6 using
Equations 36 and 37:

x̂j = G(pn(k),Ψn(k), zi(k), rj)

= pn + Cn
b p

b
sb + rj.(C

n
b C

b
sp

s
ms) (36)

Pj = ∇GvPvv∇GT
v +∇GzRang∇GT

z (37)

where psms is calculated from the observation data using Equation 23 and ∇Gv,∇Gz are
the jacobians of the function G(.) w.r.t vehicle states and the observation and range data
respectively. The number of hypotheses used and the maximum and minimum range and
thus the spacing between the hypotheses depends on the application. For the UAV, 20
hypotheses equally spaced in increments of 20 meters from a minimum range of 50 meters
to a maximum range of 450 meters is used. The noise in range for each hypothesis is set 3σ
= 20 meters so as to provide a large level of overlap between each hypothesis. These values
were chosen based on the vehicle altitude and the maximum range of the feature extraction
process. In the case where features that are further away can be extracted, different schemes
from hypothesis placing can be used (i.e. rather than linearly spaced hypotheses, we could
space the hypotheses based on a geometric series (Sola et al., 2005) and extend the range
uncertainty in each hypothesis).

A record of the multi-hypothesis distribution is maintained separately from the state vector
and is used only to assist in associating future observations of the feature.



6.2.2 Associating Future Observations and Maintaining Feature Hypotheses

Since each hypothesis is Gaussian with a mean defined in 3D space, the innovation and
innovation covariance can be calculated for each hypotheses for each un-initialised feature
using:

ν(k) = z, angi(k)−H(pn(k),Ψn(k), x̂j) (38)

S(k) = ∇Hx(k)Phyp(k)∇HT
x (k) +Rang (39)

Phyp(k) =

[

Ppp 0
0 Pj

]

(40)

where Ppp is the covariance sub blocks of the current vehicle position and attitude states. We
make the approximation that the current vehicle state and the hypothesis are uncorrelated
in order to simplify the data association process. For a given observation and for each
hypothesis in a given un-initialised feature, γ is calculated using Equations 35, 38 and 39.
If the value of gamma is below the threshold corresponding to a 95% confidence for at least
one of the hypotheses, then the observation is matched to this uninitialised feature.

In order to simplify the association of un-initialised features, when an association is made
between an observation and one of the hypotheses for a given feature, all other hypotheses of
this feature for which the observation does not match are culled from the set of hypotheses
from which to associate future observations. As the vehicle moves around an un-initialised
feature, the number of hypotheses gradually drops until only one hypothesis matches, the
one that is closest to the true 3D feature location. The right side of Figure 6 illustrates this
process.

6.3 Data Association Procedure

The data association process as a whole is illustrated in Figure 7. Each time observations
from the feature extraction process are received, we begin by using Equation 35 to evaluate
the potential matching between each observation and each of the 3D initialised features.
Observations that match 3D initialised features are associated and sent on to the SLAM
filter to be updated. In the event of multiple features matching a single observation, the
matching with the lowest value of γ will be accepted.

The remaining observations are tested for matches with each of the hypotheses for each un-
initialised feature. Observations that match with at least one hypothesis of an un-initialised
feature are associated to this feature. The observation itself is stored and the vehicle pose at
the current time is then added to the state vector (see Section 5.1). In the event of multiple
un-initialised features matching a single observation, all matchings to this observation are
rejected.

For each remaining observation not matched to an initialised or un-initialsed feature, a new
set of hypotheses is created (see Section 6.2.1).



Figure 7: Data association procedure for initialised and un-initialised Features: For each
feature extracted from the vision data, we first test for matches to initialised features. If no
matches exist then matches are tested for each hypothesis for each un-initialised feature. If
no matches are present then a new, un-initialised feature is created with a multi-hypothesis
distribution along the line of sight of the observation.

7 Bearing-Only SLAM Algorithm Integration

This section analyses the integration of the algorithmic components of bearing-only SLAM
described in the above sections, concentrating on the algorithmic flow, timing and compu-
tational complexity and storage required by the equations.

7.1 Algorithm Flow

Figure 8 illustrates the algorithmic progression of the bearing-only SLAM algorithm as a
whole. Acceleration and rotation rates of the vehicle are read from the IMU at 400 Hz and
used to drive the inertial navigation equations in a 400 Hz INS loop. In the INS we have
opted to use a computationally efficient first order integration step (which is sufficient to
capture the dynamics of the platform when running at 400 Hz). Higher-order integration
techniques could be used if a faster, more highly dynamic platform was used or if the inertial
output was at a lower rate, provided that the computational power was available. Due to the



Figure 8: Bearing-only SLAM algorithm timing and progression: The Inertial Navigation
System (INS) and EKF prediction step is run at 400 Hz. Features are extracted from the
camera data in a separate process at 20 Hz. Data association, EKF update, storing pose
data and initialising new features into the map is all performed at 20 Hz when observations
are available from the camera.

linearisation of system matricies in Equation 12, the prediction step in the EKF needs to be
run at a rate sufficiently high to capture the non-linearities in the motion of the vehicle. The
results presented show the prediction rate running at 400 Hz alongside the INS. Frames from
the vision camera are captured and feature observations extracted at 20 Hz. The feature
extraction algorithm is external to the SLAM algorithm and can be run in a separate process,
where observations are communicated to the SLAM algorithm when available.

When a set of observations, corresponding to a single frame from the camera are received,
we begin by running the data association process on the observations. For observations of
initialised features the EKF update stage is run. Any remaining observations (relating to
un-initialised features) are stored and the current vehicle pose is augmented into the state
vector. We then initialise any features into the map which are ready. All of the above tasks
are being performed at 20 Hz while observations of features are being made.

The feature extraction processing is decoupled from the SLAM algorithm but can have a
significant effect when there are large delays in the image processing. When more sophis-
ticated feature extraction algorithms are used, these delays can become substantial. One
way to tackle this delay could be to add a vehicle pose to the state vector at the time of
vision capture using the same method as in Section 5.1. When the feature extraction has
finished and the observation has been processed into the data association, we can use the



observation to update the stored pose rather than the current vehicle state. This method
would use many of the concepts developed in this paper for delayed initialisation, but the
actual implementation is beyond the current scope and is the interest of future work.

7.2 Algorithm Computational Complexity and Storage

In this section we analyse the computational requirements of the system and examine some
of the methods used to reduce the computational complexity in order to make the system
more suitable for real-time implementation.

There are three main storage requirements of the algorithm:

1. EKF State Vector and Covariance Matrix - The EKF state vector x is com-
prised of 9 vehicle states, 3Nfeats initialised feature states and 6Nposes stored pose
states where Nfeats is the number of initialised features in the map and Nposes

is the number of stored vehicle poses. The total size of the state vector is thus
Nstate = 9 + 3Nfeats + 6Nposes. The covariance matrix P of the EKF has N

2
state ele-

ments however is a symmetric matrix meaning only the upper or lower triangle need
be stored.

2. Stored Observations - Stored observations are stored separately to the EKF state
vector and take up 2Nstoreobs elements where Nstoreobs is the number of stored obser-
vations.

3. Multi-Hypotheses Distributions - The multi-hypotheses distributions stored
separately from the EKF and used to assist in data association initially take up
12Nhyp elements per un-initialised feature where Nhyp is the number of hypotheses
generated when a feature is seen for the very first time. This storage could be
reduced to 9Nhyp by only storing the upper triangle of the covariance. The number
of hypotheses Nhyp begins at 20 hypotheses and quickly drops as more observations
of the feature are made and hypotheses are culled.

The following points indicate the main areas of computation required by the algorithm:

1. EKF Prediction - The computational load induced by the prediction stage is due to
the matrix multiplications in Equation 12. Standard prediction algorithm optimisa-
tion techniques (see (Guivant and Nebot, 2001) for details) can be used such that the
complexity of a prediction step is ∼ O(Nstate), that is in the order of or proportional
to the number of states in the state vector.

2. EKF Update - Standard EKF update algorithm optimisation techniques (see (Guiv-
ant and Nebot, 2001) for details) can be used such that the complexity of an update
step is ∼ O(N 2

state) for each observations.

3. Data Association - Data association involves computing the innovation and in-
novation covariance for each initialised feature in the map and each hypotheses for
each un-initialised feature. This must be performed every time a set of observa-
tions is received. The upper limit on the computational complexity is therefore



Figure 9: Left, the Brumby MkIII UAV, weighing 40kg with a wing span of 2.8 meters,
capable of carrying a payload of 13.5 kg and flying at 100kts. Right, sideways mounted
colour camera and PC104 computer stack used for vision processing.

∼ O(Nfeats +NhypNuninit) where Nuninit is the number of uninitialised features. The
computation required is reduced as the number of hypotheses for different features is
reduced from subsequent observations.

4. Feature Initialisation - Feature initialisation basically involves a EKF update stage
but using several stored observations at one time. The computational complexity
is thus ∼ O(NstoreobsN

2
state) where Nstoreobs corresponds to the number of stored

observations of the feature being initialised. This step in the algorithm usually
creates the largest computational burden. This burden can be mitigated to some
degree by trading off the information in the update by discarding some of the stored
observations.

Obviously the computation required by the algorithm increases as the number of features in
the map and the number of stored vehicle poses increases. Reduction of the computational
burden of the algorithm can be achieved through several means. Firstly, map management
techniques can be applied to limit the number of feature in the map (Dissanayake et al.,
2002). Secondly similar techniques could be used to reduce the number of stored poses used
to initialise the 3D position of a feature. Simple schemes could be used (i.e. only store
every second observation and pose of an un-initialised feature) or alternatively only store
observation which contribute the most information towards the feature initialisation (see
(Stevens et al., 1995) for a technique that selects the observations that will maximise the
mutual information gain in the estimated states).

A real-time implementation of the whole algorithm has not yet been developed however this
is the topic of future work and is discussed in the conclusions in Section 10.



Figure 10: Left, inside the fuselage of the Brumby MkIII UAV, low-cost IMU, GPS receiver
and PC-104 computer stack used for autonomous navigation and control of the vehicle.
Right, farmland environment that the vehicle operates over.

8 Experimental Setup

This section provides an overview of the flight vehicle, inertial and vision sensors used and
the environment the vehicle operates within.

8.1 Brumby MkIII Flight Vehicle

The Brumby MkIII is a small sized, delta-wing UAV weighing approximately 40kg with a
wing span of 2.8 meters (see left side of Figure 9). The vehicle can carry a payload of 13.5kg
and is capable at flying at speeds of 100kts. The vehicle is mainly used as a research testbed
to demonstrate real-time algorithms for Decentralised Data Fusion (DDF) (Nettleton, 2003)
and co-operative control strategies (Cole et al., 2005) involving multiple vehicles.

The flight vehicle has an autonomous flight control system (Kim et al., 2003) that follows
a fixed path of orbits around features of interest on the ground. The on-board navigation
system uses differentially corrected GPS to aid an on-board IMU which provides about
1-2 meter positioning accuracy and about 1-2 degrees orientation accuracy when GPS is
available. Errors occur in the current navigation system when the number of GPS satellites
visible to the GPS antenna on the aircraft drops below four and a GPS fix from the on-board
receiver cannot be achieved. When GPS outages are infrequent, the results of the on-board
INS-GPS navigation system can be used as a reasonable approximation of the true position,
velocity and attitude of the vehicle and are thus used in the results to compare the accuracy
of the SLAM solution.

8.2 Sensors and Hardware

The vehicle carries a colour vision camera mounted sideways w.r.t the vehicle body which is
used to observe the terrain below when the vehicle banks to turn (see right side of Figure



Vision Camera IMU

Sampling Rate 20 Hz Sampling Rate 400 Hz
FOV 30o × 22o Accelerometer Noise 0.05m/s2 (1σ)

Resolution 1024 x 768 pixels Gyro Noise 0.05deg/s (1σ)
Angular Resolution 0.0285 deg Accelerometer Bias Stability ±0.05m/s2

Pointing Direction Sideways (left) Gyro Bias Stability ±0.05deg/s

Table 1: Sensor Specifications: Digital colour vision camera and IMU.

9). A visual fix on an object on the ground can be achieved when the vehicle maintains
a steady turn or orbit around the object. Data from the colour vision camera is used to
extract artificial features that have been placed in the environment. On-board the vehicle is
a low-cost IMU which contains three accelerometers and three gyros mounted in a tri-axial
configuration (see left side of Figure 10).

The flight vehicle has one on-board PC-104 computer which is currently used for logging the
vision camera frames and a second PC-104 used to run navigation and control algorithms
using data from the IMU and on-board GPS receiver. Frames from the vision camera are
logged at 20Hz and data from the IMU is logged at 400Hz.

8.3 Environment

The operating environment is a 2x2km area of land in rural New South Wales, Australia.
The terrain is mostly farmland, covered by grass and shrubs (see right side of Figure 10).
Features visible in the vision sensor data include natural features such as trees, rocks and
a river and man-made features such as roads, fences, dams and a four-wheel drive. Several
1x1m white plastic squares are placed in the environment to act as artificial features for
the SLAM algorithm. The position of each of these features is surveyed using differentially
corrected GPS to an accuracy of 50cm. The surveyed positions are then used to examine
the SLAM mapping accuracy (not actually used in the SLAM algorithm itself). The vehicle
flies at an altitude of about 100-200m above the terrain.

8.4 SLAM Algorithm Initialisation

In our experimental results we assume that the initial attitude and velocity of the vehicle
is known or given to a certain accuracy. This assumption is consistent with two different
scenarios. In the first scenario the aircraft operates a navigation system such as GPS-aided
INS and the SLAM algorithm begins to run at a point in time where all GPS signals are
lost. In this case the initial velocity and attitude of the vehicle are provided by the last
navigation output. The second scenario involves the vehicle stationary on the ground ready
for takeoff, but with no previous navigation system to provide the initial vehicle velocity
and attitude. In this scenario the roll and pitch (tilt) angles of the platform can be deduced
from the IMU accelerometer readings and the vehicle velocity is assumed to be zero by the
navigation system. The heading angle of the vehicle is more difficult to initialise and will often
require the use of magnetometers. The following experimental results are all derived under



the assumption of the first scenario, due to the difficulty of finding and tracking features
during the aircraft’s takeoff. In this case the initial covariance of the vehicle position state
is derived from the covariance of the last GPS-aided INS reading with a 0.5m/s velocity
standard deviation and a 1deg attitude standard deviation.

Before the flight, an alignment procedure is used to compute the values of the IMU biases
while on the ground. This procedure uses a set of fluidic tilt-sensors and the assumption that
the vehicle is stationary during alignment in order to calibrate the biases in the accelerometers
and gyros. These values are then used to correct the IMU for the duration of the flight while
the SLAM algorithm is running. This alignment procedure has proved to be consistent over
many flight trials.

9 Results

This section analyses the results of the SLAM algorithm when applied to the system described
in Section 8 using logged flight data where the algorithm is run in an off-line mode. There
are three sets of results presented. The first section presents results of the algorithm for a
small single orbit trajectory (25 second flight time) and focuses on the feature initialisation
process. The second section of the results examines the SLAM algorithms running on a small
sized vehicle trajectory (90 second flight time). The small sized trajectory is such that the
features are close to one another and feature observations are continuously being made as
the vehicle spends most of the trajectory banking to turn such that the camera is pointed
at the terrain below and to the side of the vehicle. The third section of the results examines
the SLAM algorithm results where the trajectory of the vehicle covers a larger area (200
second flight time). In this case the vehicle spends large segments of time flying straight and
level where the sideways mounted camera on the vehicle points to the horizon and feature
observation are not made. As can be seen in the results this causes large periods of time
where the errors in the vehicle localisation states grows (due to the unconstrained INS) and
can result in degraded SLAM algorithm performance.

9.1 Feature Initialisation

In this section we highlight the results of the feature initialisation method in the SLAM
algorithm by presenting results of the SLAM algorithm running over a single orbit in which
several features are initialised into the map.

Figure 11 shows six captured vision frames with observations, the projected positions of
3D initialised features and multiple hypotheses of un-initialised features overlaid on the
image. As features are seen for the first time, an array of hypotheses represented by the
green ellipses is projected into the image. Further observations of the feature begin to cull
unmatched hypotheses before finally the angular threshold for different observations of a
feature is reached and the 3D position of the feature is initialised into the SLAM map.

Figure 12 shows both the SLAM estimated and GPS-aided INS trajectory of the vehicle
plus the estimated locations of the initialised features and their 10σ confidence bounds. The



Figure 11: Six captured vision frames with the projected positions of 3D initialised features
(squares) and multiple hypotheses of un-initialised features (ellipses) overlaid on the image.

vehicle makes sufficient observations from varying vehicle poses to initialise the 3D positions
of five features into the map from the single orbit trajectory. From the figure there appears
to be a bias in the estimated position of the map features when compared to the surveyed
positions. This highlights a general issue of the SLAM algorithm; only a relative map of the
environment can be constructed due to the lack of any global information from which to place
the generated map within (such as knowing the global position of one of the features or the
global position of the vehicle using GPS). Thus any errors in the initial position of the vehicle
found using GPS carry through to form a bias in the generated map. The relative position
of each feature w.r.t each other feature however can be consistently estimated without any
biases.

Figure 13 shows the number of states stored in the EKF state vector (comprising of the nine
vehicle states, three states for each map feature and six states for each stored pose) as a
function of time. The state vector dimension initially increases as vehicle pose data is stored
for each observation made of a feature. At about 954 seconds, sufficient observations with
sufficient baseline are made of the first feature, which is initialsed into the 3D map. Once this
occurs, stored pose data that is no longer required is discarded from the state vector resulting
in the drop in the number of states. The state vector continues to rise as observations are
stored for more features, until which time as sufficient observations are stored and the 3D
position of these features is initialised into the map. Occasionally observations are made of
features on the horizon that are too far away for the vehicle to gain a sufficient baseline to
initialise the 3D position of the feature. If no further observations of these features are made



Figure 12: SLAM results over a small, single orbit trajectory: The dark line indicates the
2D trajectory of the vehicle estimated by the SLAM navigation system, the dotted line
indicates the trajectory estimated by the GPS-aided INS for reference. The dark points and
light ellipses represent the estimated locations of features plus associated 10σ as estimated
by the SLAM filter. The circles represent the surveyed position of the artificial features used
for comparison with the SLAM map.

within a certain time limit, then these features are considered to be either too far away or to
be noise in the feature extraction process and thus their corresponding stored pose data is
dropped from the filter, in order to reduce the computational load of an excessive number of
filter states. This can be seen by the drop in filter states at the 961 and 962 second marks.

Figure 14 shows the standard deviation of the absolute position error of the vehicle taken
from the covariance matrix of the SLAM filter. The small drops in the standard deviation
of error at the 954, 957 and 960 second marks correspond to the times of the initialisation
of the first three features. This is due to the feature initialisation process recovering the
information towards the vehicle localisation states that is contained in the stored vehicle
poses and observations of a feature before initialisation. This information is recoverable
at the time of intialisation as the correlations between stored pose states and the current
position, velocity and attitude of the vehicle are maintained in the filter covariance matrix.



Figure 13: State dimension of the SLAM filter for a single orbit: The dimension of the state
vector changes as vehicle pose information is added for stored observations and removed
when the observations are used to initialise the 3D position of the feature.

The drops in the covariance at the 967 and 969 seconds marks are due to features leaving
the field of view of the camera where no EKF updates are made for a small section of time
(due to disturbances in the vehicle bank angle). The jumps correspond to when the feature
is reacquired.

9.2 Localisation and Mapping Results: Small Trajectory

In this section we analyse the results for a small sized trajectory run using the logged sensor
data.

The trajectory of the vehicle and the position of point features in the map is shown in
Figure 15 with results from both the GPS-aided INS solution and the un-aided INS shown
for comparison. It should be noted that the trajectory shown is the estimated position of the
vehicle at the time in which the vehicle was at that position and not the estimated position
from any stored pose at that point. For this reason, jumps in the trajectory can be seen for
example when the vehicle closes the loop. The trajectory consists of three orbits all closely
spaced such that the time the vehicle spends flying straight and level, where the camera
points off at the horizon and does not receive feature observations is minimised. During the
orbit segments of the trajectory (any non-straight line segments) the vehicle banks to turn
at a roll angle of about 50 degrees during which time the camera points towards the ground
below and to the side of the vehicle. During this time feature extractions are made from
the camera data and these observations are used to constrain the drift in the errors in the
inertial navigation solution. It can be seen that the position trajectory computed using the
un-aided INS quickly drifts from the INS-GPS solution, even over the reasonably short time
span of the trajectory.

Figure 16 shows the size of the SLAM EKF state vector as a function of time. The number of



Figure 14: Absolute position filter covariance for a single orbit: The sharp drops in the
covariance correspond to feature initialisations, at which time information about the position
of the vehicle is recovered from the stored observations.

states fluctuates due to the storing of pose data and the removing of pose data with feature
initialisations. As the vehicle explores it expands the number of features in the map and the
size of the state dimension on average slowly grows.

Figure 17 illustrates the difference between the SLAM and INS-GPS computed positions.
Under the assumption that the INS-GPS solution gives a good approximation to the true
position of the vehicle, we can think of this difference as just containing the errors in the
SLAM solution. Figure 17 also shows the expected 3σ uncertainty bounds on the position
solution as reported by the SLAM EKF. It can be seen that the error lies in between the
uncertainty bounds for the large majority of the trajectory.

Figure 18 shows the errors in the SLAM filter velocity measurements and filter reported 3σ
uncertainty bounds, where the errors are the difference between the SLAM and INS-GPS
velocities. It can be seen that the velocity errors lie mostly within the 3σ bounds.

Figure 19 shows the errors in the SLAM computed attitude as being the difference between
the SLAM and INS-GPS computed Euler angles. Since the errors in the Euler angles com-
puted by the INS-GPS are of a magnitude comparable to that of the SLAM Euler angle
errors, the uncertainty bounds shown are the sum of the 3σ uncertainties in the SLAM filter
and the 3σ uncertainties in the INS-GPS filter. Thus we have no real comparison to the true
platform Euler angles. We can however see that the errors in the roll, pitch and yaw angles
of the vehicle are consistent with the error bounds reported by the SLAM and INS-GPS
filters.

9.3 Localisation and Mapping Results: Larger Trajectory

In this section we analyse the results for a larger trajectory run using the logged sensor data.

The trajectory of the vehicle and the position of point features in the map is shown in



Figure 15: Small trajectory results: Vehicle trajectory from SLAM results (solid) and INS-
GPS system (dotted) and un-aided INS (fine dotted), SLAM mapped features (solid points)
with associated 10σ uncertainty ellipses (light ellipses).

Figure 20 with results from both the GPS-aided INS solution and the un-aided INS shown
for comparison. As noted in the previous subsection, the trajectory shown is the estimated
position of the vehicle at the time in which the vehicle was at that position and not the
estimated position from any stored pose at that point. The vehicle performs several orbits
around different locations, observing and building up a map of features below as the vehicle
banks and the camera is pointing down towards the ground. The vehicle integrates 30
features into the map during the flight. In this trajectory, the vehicle spends a larger amount
of time in straight and level flight where observations of features are not being made and
the errors in the localisation estimates grow. It can be seen that the position trajectory
computed using the un-aided INS quickly drifts from the INS-GPS solution.

Figure 21 shows the size of the SLAM EKF state vector as a function of time. Equivalently
to the small sized trajectory the number of states fluctuates but with a small steady growth
as the number of features in the map grows.



Figure 16: State dimension of the SLAM filter for small trajectory and the times for feature
initialisations (circles).

Figure 22 illustrates the difference between the SLAM and INS-GPS computed positions
and the expected 3σ uncertainty bounds on the position solution as reported by the SLAM
EKF. The actual errors (difference to INS-GPS solution) are often slightly outside of the
bounds computed by the filter and thus the solution is becoming inconsistent. The cause of
this inconsistency is due to the buildup in errors in the localisation states due to some of the
large gaps between feature observations (i.e. during straight and level flight). When large,
these errors can violate the linearising assumptions in the EKF which leads to inconsistency.

Figure 23 shows the errors in the SLAM filter and filter reported 3σ uncertainty bounds,
where the errors are the difference between the SLAM and INS-GPS velocities. It can be
seen that the velocity errors lie mostly within the 3σ bounds.

Figure 24 shows the errors in the SLAM computed attitude as being the difference between
the SLAM and INS-GPS computed Euler angles. We can see that the errors in the roll and
pitch angles of the vehicle are consistent with the error bounds reported by the SLAM and
INS-GPS filters. In the yaw angle case we can see that the error grows outside of the filter
error bounds. As in the case of the position estimates this is attributed to the violation
of linear assumptions affecting the consistency of the EKF during large periods of time in
straight and level flight. Solving the consistency issue in the algorithm is a major part of
the current and future work as discussed in the next section.

10 Conclusions and Future Work

This paper has demonstrated an implementation of inertial SLAM using bearing-only obser-
vations on an aerial vehicle using data logged during a flight test. Bearing-only initialisation
of features in the map has been tackled using a delayed, batch EKF update using stored
observation and vehicle pose data. A method for data association that does not rely on
visual properties of features from the image data has been shown. It has been shown that



Figure 17: Small trajectory results: SLAM position error (difference between SLAM and
INS-GPS system positions) (solid) and sum of 3σ uncertainty bounds for both the SLAM
filter and INS-GPS filter (dotted).

the SLAM algorithm can constrain the errors in the inertial navigation system while build-
ing a 3D point feature map, without the need for GPS, known feature locations or range
observations. An analysis of the computational complexity of the algorithm is presented,
highlighting the steps towards achieving a real-time implementation. Results of the algo-
rithm are shown in non-real-time using logged sensor data from a flight test of a UAV.

The performance of the SLAM algorithm has been analysed over two different trajectories.
In the first case where the trajectory is small and there are no large segments of time
where feature observations are not available, the SLAM algorithm is able to consistently
constrain the errors in the vehicle localisation states while building a point feature map. In
the second case where the trajectory of the vehicle is larger and there exists large segments
of time where feature observations are not being received, the algorithm begins to become
inconsistent. This is explained by buildup in localisation uncertainty and errors which violate
the linearising assumptions of the EKF. The inconsistency is mainly apparent in the position
and heading of the vehicle, whereas the vehicle’s velocity, roll and pitch angles seem to be
consistently estimated. The velocity estimates remain more consistent than the position
estimate due to the fact that position must be double-integrated from the accelerometer
measurements and thus drifts faster (where as velocity is a single-integration). Roll and
pitch angles seem to remain more consistent than the heading (yaw) angle due to the part
that the vertical gravity reference plays in the observability of aided-INS. Similar properties
are sometime seen in GPS-aided INS systems.



Figure 18: Small trajectory results: SLAM velocity error (difference between SLAM and
INS-GPS system velocity) (solid) and sum of 3σ uncertainty bounds for both the SLAM
filter and INS-GPS filter (dotted).

There are three main focal points for future work. The first point involves tackling the
consistency issue in the SLAM algorithm. Filter inconsistency becomes an important issue
when the vehicle is building a map over a larger environment and can lead to filter instability
if left unchecked. One option that is being examined to overcome the consistency issue is
the use of sub-maps (Estrada et al., 2005), which improve the consistency of the estimates
by breaking the map up into small relative sub-maps. Different estimators such as using the
UKF (Martinez-Cantin and Castellanos, 2005) which seems to deal well with inconsistencies
brought about by non-linearities, are also being considered. Future work will also look
at online IMU error calibration to combat biases and misalignments in the IMU, which
should aid in the consistency by reducing the drift in localisation estimates between feature
observations.

As has been demonstrated in the results, estimate inconsistency can be mitigated when
operating over an appropriate vehicle trajectory that couples well with the placement of the
feature sensor on the vehicle such that feature observations are frequent. The second main
focal point of future work will look at more suitable pointing direction for the onboard camera
and coupling in the control of the vehicle with the SLAM algorithm such that the vehicle
makes online control decisions which will maximise the accuracy and consistency of the
algorithm. It could be suggested that perhaps the camera could be pointed in a downwards
direction in order to overcome the lack of features during straight and level flight. However,
in this case features may not be observed during turns and the maneuver profiles required to
attain a sufficient baseline to initialise a feature’s 3D position may be impractical or difficult



Figure 19: Small trajectory results: SLAM euler angle errors (difference between SLAM and
INS-GPS system euler angles) (solid) and sum of 3σ uncertainty bounds for both the SLAM
filter and INS-GPS filter (dotted).

for a fixed wing air vehicle. An observability analysis of the inertial SLAM algorithm in
(Bryson and Sukkarieh, 2006) has also shown that vehicle maneuvers that excite a lateral
acceleration (i.e. turns) are necessary to ensure observability and thus constrain the errors
in the algorithm.

It is our belief that the question of camera pointing direction should be coupled to the
maneuver profiles of the vehicle which in turn should be actively controlled in order to
maximise the accuracy and consistency of the algorithm. These choices would be dependent
on a information-theoretic framework for understanding the relationships between sensor
pointing, vehicle maneuvers and algorithm accuracy and consistency. Such a framework is
thus the topic of future work.

The third main focal point of the future work involves implementing the demonstrated algo-
rithms into a software framework capable of running in real-time. The analysis performed in
this paper and the methods discussed to manage the computational complexity will form the
basis for a real-time implementation that can handle environments of the same size as demon-
strated in the results. Further work will examine methods for mitigating the computational
complexity allowing for real-time operation in much larger environments.



Figure 20: Vehicle trajectory from SLAM results (solid) and INS-GPS system (dotted)
and un-aided INS (fine dotted), SLAM mapped features (dark points) with associated 10σ
uncertainty ellipses (light ellipses).
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