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Abstract—A UAV is tasked to explore an unknown environ- I. INTRODUCTION
ment and to map the features it finds, but must do so without the
use of infrastructure based localisation systems such as GPS, or Onsider the scenario where a UAV is tasked with build-

any a-prior terrain data. The UAY navigates using a statistical ing an internal representation of the location of features
estimation technique known as Simultaneous Localisation And

Mapping (SLAM) which allows for the simultaneous estimation 1" @n environment. In this scenario however, the UAV does
of the location of the UAV as well as the location of the features it Not come equipped with its own self-localisation aid such as a
sees. SLAM offers a unique approach to vehicle localisation with Global Positioning System (GPS) receiver (or is not receiving
potential applications including planetary exploration, or when  GPpPS signals) and does not have ampriori terrain data in-
GPS is denied (for example under intentional GPS jamming, Of ¢, ma4inn from which to localise from. Such a scenario might
applications where GPS signals cannot be reached), but more . . . L . .
importantly can be used to augment already existing systems to OCCUr during certain military application in which GPS signals
improve robustness to navigation failure. may be jammed or where the UAV is used for extra-terrestrial
One key requirement for SLAM to work is that it must re-  planetary exploration [1]. The problem is compounded by the
observe features, and this has two effects: firstly, the improve- requirement for the UAV to have information regarding its

ment of the location estimate of the feature; and secondly, the \ o 40ity and attitude in order to stabilise its motion. In many
improvement of the location estimate of the platform because of

the statistical correlations that link the platform to the feature. a@PPlications the vehicle uses an Inertial Navigation System
So our UAV has two options; should it explore more unknown (INS), however the eventual growth of localisation errors due
terrain to find new features, or should it revisit known featuresto  to the dead-reckoning nature of the INS limits the time that
improve localisation quality. These options are instantiated into  the vehicle can operate. What is required is the ability to

the online path planner for the UAV. . . .
In this paper we present the SLAM algorithm and evaluate correct the INS errors by using a map that is being generated

two important properties about the algorithm which assist in online; in many respects similar to a real-time surveying task.
developing a path planning module for the UAV. The first of This is the basis for the paradigm known as Simultaneous
these is the use of the probabilistic measure of ‘Entropy’ as Localisation And Mapping (SLAM) in which the vehicle pose

an information-based measure of the certainty in the map and gnd a feature map are estimated simultaneously using only

vehicle locations, and is used as a utility function for planning : . . .
the UAVs trajectory and determining the order in which features relative observations of the locations of features with respect

in the map are observed. The second is an observability analysis €0 the vehicle. SLAM can also be used to augment existing
of SLAM which presents the unobservable states which are navigation systems such as GPS thus improving accuracy and
dependent on vehicle maneuvers. The analysis dictates the typethe robustness of the system during signal dropout. There
of manoeuvres required by the UAV \|/Vh'|$t obserwfnghfeatures In " are several existing implementations of SLAM using land [2]
order to maintain accurate statistical estimates of the map and o4 nderwater [3] vehicles where two-dimensional, horizontal
vehicle location. This has the effect of reducing the action space - .
that the path planner needs to search over. localisation and mapping is performed. SLAM has also been
Using these two properties, we demonstrate an online path demonstrated on a UAV [4], [5] where the three-dimensional

planner that intelligently plans the vehicles trajectory while position of features and the 6-DoF motion of the vehicle are
exploring unknown terrain in order to maximise the quality of  generated.

both the map and vehicle location. Results of the online path . . L )
planning algorithm are presented using a 6-DoF simulator of SLAM is generally implemented as a statistical filter, where

our UAV. The results show that the vehicle localisation errors the prediction and estimation of the location of point features
are constrained and that the number of features and the size of is concurrent with the prediction and estimation of the pose

the map steadily grows during the flight. and velocity of the vehicle. A feature can be any object in the
Index Terms— SLAM, Observability, UAVs, Online Path Plan- ~€nvironment which can be represented by a point in 3D space
ning. such as houses, buildings, trees, rocks and other landscape

features. In the scope of this paper we are only interested in
estimating the position of features and not any other defining
characteristics such as colour, texture or shape. The SLAM
prediction stage involves the propagation of the vehicle and
feature models and their corresponding uncertainties and in
our implementation mainly relies on inertial navigation. The

SLAM estimation step occurs when there is an observation of
a feature on the ground; the observation is used to improve
both the location estimate of the feature and the location



estimate of the vehicle because of the correlations in t&econdly, as the number of featurds in the map grows,
SLAM structure that link the platform to the feature. Thehe computational complexity of evaluating the information
effect that observations have towards correcting the vehicteeasures grows in the order @(N?). This growth in
location estimates is dependent on the order in which featumsnputational complexity can be mitigated to some degree
are observed and the trajectory of the vehicle. As the vehidlg computing the information utility of proposed paths using
explores unknown terrain, initialising new features into thepproximations such as sparse extended information filters
map, it becomes necessary to return to the well known regidd8]. When also considering the requirement for high-rate
of the map in order to reduce the growth in localisationontrol of the UAV, the complexity involved in computing the
errors. This process is referred to as ‘closing the loop’, information utility must be reduced before a real-time planner
which the uncertainty in both the vehicle localisation andill be practically feasible.
map position estimates is reduced via the correlations madén this work we do not evaluate the information gain for
between the vehicle and map states in the SLAM filtegvery feasible trajectory; instead, the path planner evaluates the
Additionally it is known that the maneuvers the vehicle takdaformation gain involved with simple straight and level flight
during feature observations affects the accuracy in localisatitajectories that involve travelling to and making observations
estimates. Thus it becomes important to understand what effetteach feature in the map. Further control of the vehicle
a vehicle’s control strategy has on the accuracy of the filtéhen reduces to what trajectories should be flown when the
estimates. observation of the feature is taking place. We tackle this
In this paper, an online path planning strategy is devatomponent of the problem by undertaking an observability
oped that seeks to maximise the accuracy of localisation aadhalysis of inertial SLAM and evaluating several behavior-
mapping estimates in SLAM. For SLAM to be justified adased decision rules based on this analysis. The decision-rule
a localisation technique it must be demonstrated that th@jectories are designed to perform vehicle motions that excite
vehicle state errors can be constrained using SLAM alortae direction of locally unobservable modes in the system, thus
without the need for external data such as from GPS. Feraximising the observability of the states over multiple time
this reason we consider the vehicle control problem whesegments.
SLAM is performed without any external information from Observability analysis has had a long history in studying
GPS or from a known terrain map. We consider how mudclided-INS: in [14] and [15], the authors present a new method
information is contained in the probability distributions obf observability analysis for piece-wise constant linear systems
the SLAM estimates when differing control actions are takeamd apply the method to the analysis of an aided-INS during
by the vehicle. By information we refer to degree to whicin-flight alignment. More recently observability has been used
the probability mass in a distribution is concentrated to t® study GPS-aided INS [16], [17] during sensor platform ma-
small volume of the distribution’s state space, a properteuvers. In [18], the authors study the number of unobservable
measured by the ‘Entropy’ of the distribution (the compactnesgates in the inertial SLAM algorithm by casting the equations
of the probability distribution). Information measures havinto the indirect or error form. It is shown that inertial SLAM
been popular as a utility function for determining vehiclés partially observable, however it is not shown which are the
control actions that improve localisation system performanagnobservable states and how the unobservability is related to
in [6], the authors present a method using entropy as a utilitye vehicle motions. In this paper we extend the observability
function for generating optimah-priori trajectories over a analysis to study what are the unobservable modes and how
known terrain map for an airborne vehicle using terrain-aideghecifically observability is affected by vehicle maneuvers.
INS; and in [7], the authors construct a map of the information The result of this paper is a practically feasible path planner
available for localisation by an indoor robot, based on th@at attempts to maximise SLAM estimate accuracy in both
entropy of the probability distribution of the vehicle’s positionhe vehicle and map states while exploring over previously
when moving to each location in the map. This informatioonmapped terrain.
map is then used to plan the vehicle’s path that will maximise In Section Il we present the inertial SLAM algorithms.
vehicle location information. More recently the problem ofection Ill examines both the information metrics and ob-
trajectory planning for maximising information in localisationservability properties of the SLAM algorithms which are used
and mapping tasks when na-priori map information is to evaluate control actions taken by the vehicle. Section IV
available has been considered. In [8] the author presentgiescribes the control architecture onboard the vehicle based on
purely information-theoretic approach to trajectory planningie examination in Section Ill. A 6-DoF simulation of a UAV
for a UAV performing SLAM where the initial location of in a localisation and mapping scenario is described in Section
features in the map is unknown. The strategies presentedvinResults of the online path planning algorithm running in

[9],[10],[11] and [12] use several utilities relating to maphe simulation are presented in Section VI. Conclusions and
information, area coverage and ability of localisation as thgture work are covered in Section VII.

basis for the control of indoor robots where accurafgriori
map information is unavailable.

There are several practical limitations to using information
measures for planning in SLAM. Firstly, in the case of an In this section we describe the inertial sensor-based SLAM
airborne vehicle, the available vehicle actions to optimise ovalgorithms. The inertial SLAM algorithm is formulated using
is large as the vehicle is capable of maneuvering in 6-Doéi Extended Kalman Filter (EKF) [19] in which map feature

Il. INERTIAL SLAM ALGORITHM



locations and the vehicle’s position, velocity and attitude ale made using either radar or by using a combination of a
estimated using relative observations between the vehicle afiglon camera and laser range finder. The SLAM algorithm
each feature. The equations for inertial sensor-based SLARHuires that point feature can be extracted and associated
were first presented in [4] and are shown again here for clarifyom the observation sensor data. Example feature extraction
algorithms for vision include SIFT features [21] or model-

A. Process Model based feature matching [22]. Features in this sense are points

The estimated state vectok(k) contains the three- in the sensor data that are distinct and easily recognisable
dimensional vehicle positioip™), velocity (v*) and Euler or else points in the sensor data that appear to correlate
angles(¥" = [¢,6,]) and the N three-dimensional featurevell with a given feature model or template that is specified
locations(m?') in the environment: offline. The sensor processing algorithms on-board the vehicle
_ i, may be provided with a visual model and/or a model of

pz(z) the shape of a feature of interest that is likely to be in the
:I’I"( ) environment, such as a tree, and the feature extraction will

n(k) attempt to find areas in the sensor data that correlate with the
(k)= | mi(k) (1) properties of the model. Data association of extracted features
m3 (k) from subsequent frames (i.e. associating several observations
: relating to a given feature) can be performed using a simple
m?%, (k) matching of the properties of the sensor data corresponding to
) ) feature (i.e. radar profile or colour/texture information from a
vision sensor) or for more generic features by using innovation
%tgting [23]. These methods are beyond the scope of this paper,
as we focus more on how the vehicle control actions affect the
. . estimation process. An example of how feature extraction and
(k) = F(x(k — 1), u(k), k) + w(k) @ data assocri)ation can be perfrz)rmed together for SLAM on a
where F(., ., k) is the non-linear state transition function atdAV is shown in [24].
time k, u(k) is the system input at timé&, and w(k) is
uncorrelated, zero-mean vehicle process noise errors of co
varianceQ. The process model is the standard 6-DoF inertial’
navigation equations which predict the position, velocity and The observatiom; (k) is related to the estimated states using
attitude of the vehicle. An inertial-frame mechanization [20Equation 7:

's Implementc: 2a(k) = FL(p™ (k). @7 (), m2 (k). k) +v(k)  (7)

(2

wherei = 1, ..., N and the superscript indicates the vector is
referenced in a local-level navigation frame. The state estim
%x(k) is predicted forward in time from(k—1) via the process
model:

" Observation Model

p" (k) p"(k—1)+v"(k)At . . . .
vi(k) | = | v(k - 1)+ [CP(k — D)E (k) + g"]At whereH, (., ., ., k) is a function of the feature location, vehicle
T (k) T (k- 1) +bEgL(k — 1w (k)At position and Euler angles andk) is uncorrelated, zero-mean

observation noise errors of covariange The observation
where ¥ and w’ are the body-frame referenced vehiclénodel is given by:

accelerations and rotation rates which are provided by the V) 52 512
acce . . . V(@) + (y°)? + (=)
inertial sensors on the vehicle agd is the acceleration due Di 1 (e
to gravity. The direction cosine matri; and rotation rate z;(k)=| @i tan (?) (8)
transformation matrixE;’ between the body and navigation 9, tan—1 ( z° )
frames are given as: V(@) +(y*)?
CHCo  CySeSp — SyCh  CypSeCe + 5154 where p;, ¢; and ¥; are the observed range, azimuth and
B= | syCo Sp50S + CpCh  SpSaCH — CypSe (4) elevation angles to the feature and, y; and z, are the
—Sp oS4 cocs cartesian co-ordinates gb:,., the relative position of the
feature w.r.t the sensor, measured in the sensor frafe.
L spte  coto is given by:
b=10 ¢ —8 Q)
0 sgsecy cesecy Prns = CECZ [m}" —p" — CZpr] )

where sy, ¢, and ¢, represent sin(.), cos(.) and tan(.whereC; is the transformation matrix from the body frame to
respectively. Feature locations are assumed to be stationég sensor frame anpP, is the sensor offset from the vehicle
and thus the process model for the position of ithefeature centre of mass, measured in the body frame, otherwise known
is given as: as the ‘lever-arm’.

m; (k) = m(k — 1) (6)

3

B. Feature Extraction and Association D. Estimation Process

We assume that an on-board sensor makes range and bearifighe estimation process is recursive and is broken into three
observationsz; (k) to the i*" feature. Such observations carsteps:



1) Prediction: The vehicle position, velocity and attitude Ill. | NFORMATION MEASURES ANDOBSERVABILITY
are predicted forward in time in between feature observations ANALYSIS

using (2) and (3) with data provided by the inertial sensors. | thjs section we analyse both the concept of information
The state covariancP is propagated forward: as a localisation performance metric and study the observ-
P(k|k — 1) =VF, (k)P(k — 1|k — 1)VFT (k) ability properties of the inertial SLAM algorithms and their
+ VF, (k)QVFT (k) (10)  relationship to vehicle maneuvers.

whereVF, andVF,, are the jacobians of the state transitio\  Entropy and Information Gain

function w.r.t the state vectak(k) and the noise inputv (k) The entropyh(x) of a multivariate gaussian probability

r tively. o . .
espectively e . . distribution over the variablex can be calculated from its
2) Feature Initialization: When we obtain our first . . )
.covariance matriX? as follows:

range/bearing observation of a particular feature, its
position is calculated using the initialization function h(x)zllog[(Qﬂe)ﬂP” (20)
G1[%(k), G2 (z;(k))] which is given as: 2
. . . b s Entropy is a scalar-value measure of the compactness of
G1 — my =p" + Cypy, + CyC (11) a distribution. When we use a probability distribution to

picos(p;)cos(9;) represent the knowledge we have about the variabl¢he
Gy — S, = | pisin(p;)cos(9;) (12) smaller the entropy of the distribution, the more the probability
‘ pisin(V;) mass is assigned to a smaller area of the state space and thus

. . the more informative the distribution is about the state.
The state vector and covariance are then augmented to mclud?he evolution of the probability distributions in the EKF

the new feature position: is a function of the state, due to the linearisation of the

. x(k) process and observation models. When the value of the state
Raug (k) = [ m! (k) } (13) can be controlled to some degree, we can therefore control
the evolution of the EKF probability distributions in order to
Poug(k) = [ Vé V(é' ] { P(k) 0 } X minimise entropy.
z z 0 R(k) Firstly we will define an actiomm as a set of controlled
T (14) : .

[ I 0 ] states and observations to be madsteps into the future:

VG, VG a e {x(k),z(k), x(k + 1), 2(k + 1), .., x(k +n), z(k +n)}

whereVG, and VG, are the jacobians of the initialization (21)

w.r.t the state estimat@(k) and the observation; (k) respec- In the case of the UAV in a localistion and mapping task, an
tively. The position of this feature becomes correlated to bo#ttion consists of a set of observations of different features
the pose and velocity of the vehicle and the position of othes be made as well as the position, velocity and attitude
features in the map. trajectories of the vehicle over a finite time horizon. The utility
3) Update: Once a feature has been initialised into the stafer each possible action that can be made is specified by
vector, subsequent observations of this feature are usedthe entropic information gaid[x, a], which is defined as the
update the entire state vector consisting of the vehicle pose alifference between the entropies of the distributions about the
velocity and the position of this feature and other features @stimated states before and after taking the action:
the environment. The state estimate is updated using Equation

15: Ix,a] = h(x)— h(x|a)
R(k|k) = &(k|k — 1) + W(k)v(k (15) _ L [P (xfa)
k) = (k| (k) g g[ T } 22)

where the gain matrisW (k) and innovationv(k) are calcu- i i
whereh(x) andP (x) are the the prior entropy and covariance

lated as:
andh(x|a) andP (x|a) are the entropy and covariance of the
v(k) z;(k) — Hi(x(k|k — 1)) (16) statex subsequent to taking actian (i.e. taking a particular
W(k) = P(klk— I)VHlT.(k)Sfl(k) (17) vehicle trajectory and making observations of features along
S(k) VH, (k)P(k|k — )VHY (k) + R (18) the way). The entropic information gain is a number which is

negative for a loss and positive for a gain in information.
where VH,, (k) is the jacobian of the observation function The advantage of entropy and entropic information gain as
w.r.t the predicted state vect&(k|k—1). The state covariance utility measures in a control problem is that they represent
P(k|k) is updated after the observation using the covariantiee whole informativeness of a multi-variate distribution in a
update: scalar value, hence simplifying the control problem to:

P(klk) = P(k|k — 1) - W(k)S(k)WT (k) (19) a* = arg max(I[x, a)) (23)

Once a feature leaves the field of view of the sensor, itgherea* is the best control action. This scalar measure how-
position remains in the state vector and continues to be update@r can pose a disadvantage in the sense that the distribution
via it's correlations to other visible features in the state vect@f the information across states may be uneven. For our



purposes however, the scalar measure is sufficient determining

0
overall information gain. [x£"]
0
0

oo o o
cooy
oo o o

(31)
B. Observability

A system is defined as observable [25] if the initial state 0 O 0 0 0'
at any initial timet, can be determined given the state tran- - -
sition and observation models of the system and observationsn the update stage, the observation for a single feature is
z[to, t] from time ¢, to a finite timet. When a system is fully 5ps . the difference between the observation of range and
observable, the lower bound of the error in the estimate of §garing to the feature, transformed into cartesian co-ordinates

state will only depend on the noise parameters of the systeifid the estimated valug,;,) as computed from the existing
and will not be reliant on initial information about the statesnap:

1) The Inertial SLAM Algorithm in it's indirect formin 0p:,s = Ga(zi) — D5 (32)
the case of inertial SLAM, the state transition and observation ) ) i . e
models are the non-linear Equations 2 and 7. In [18] tHB the following equations the time index 'k’ is implied and
authors demonstrate how inertial SLAM can be cast into S Peen removed to make the analysis easier to read. The
form where the state-space of the system is composed of fhservation is related to the vehicle error states using the linear

errors in vehicle pose and the errors in the feature map. CrgHation:

[==JN el e e e i )

main advantage with this indirect form is that the equations can 0Ppis = Hidx +v (33)
be represented as a piece-wise linear system, thus simplifying . .
the observability analysis. 0pyis = CiChlom} —op” + [xCppllowm] +

In the indirect form the estimated state vectéx)is com- [xC;Clm? — p" — Crpb)jo®™  (34)

osed of the vehicle position erraif™), vehicle velocity error .
P P on(") Y The body to sensor transformatidy and the sensor offset

(6v™), vehicle misalignment anglesy¥") and the feature :
position errors qm): p2, are usually known to a high-degree of accuracy on
e most UAV platforms through sensor alignment and calibration

(k) procedures performed before take-off. In the case where align-
(k) ment and calibration cannot be performed accurately or when
(k) the sensor pose w.r.t the body is uncertain (for example due
ox(k) = om7 (k) (24) to significant aeroelasticity in the airframe), the varialdip,
(k) andéC; (i.e the error in sensor pose) may need to be added
: to the estimated state vector of the system. This is however
" (k) beyond the scope of this paper and thus we will assume that
- these values are known with negligible error.
In this form the inertial navigation equations and the addition We can further simplify the observation model in Equation

of new features to the map are run separately to the estimatipn yihout effecting the observability analysis of the equa-
process. The error states are defined as the difference betv\ﬁac%g We will assume that the sensor framéies along the

the unknown ‘true’ system state and the estimated state.bédy axisb (i.e. C? = I4,5), and that the sensor offset from

Kalman filter estimates the error states which are then useqﬁg body axis p?,) is zero. The SLAM observation model in
correct the INS and the feature map. sb '

X ) . Equation 34 can now be simplified to:
The error states are predicted forward in the Kalman filter

prediction stage using the piece-wise linear process model: 0P = om" — 6p” + [xEy,, |0€" (35)
ox(k) =Fox(k — 1) + w(k) (25) thus,
where, H=] I3 0 [xf%,] ... Ises ... ]  (36)
op"(k) = op"(k—1)+ovT(k)At (26) whereli?, x] is the skew symmetric matrix of the estimate
Svi(k) = ov'(k— 1)+ [xE7]00" (k) At + CLoE27) of the relative position between the feature and vehicle posi-
, n b ’ tions, in the navigation frame. The inertial SLAM equations
0oP™(k) = 0P"(k—1)+ Cjdw (28)

have now been defined as a piece-wise linear system, thus
ém{ (k) = omj(k—1) (29)  simplifying the observability analysis of the system.

where 6f* and éw” are the errors in the accelerometer and 2) Linear System Observability=or a system specified by
gyro readings respectively (modelled as Gaussian white notke time invariant linear equations:
processes) an@ixf”] is the skew-symmetric matrix of the .
oS _ S x(t) = Fx(t)
specific force vector in the navigation frame.
Equation 25 can also be represented in continuous form as z(t) = Hx() (37)

shown in Equation 30: . . . -
where F and H are time invariant matricies, a necessary

0x(t) = Fox(t) + w(t) (30) property for the system to be completely observable is that



the Local Observability Matrix [25] (LOM): 3) Observability Rank AnalysisThe LOM for any single
_ time segment of the system described in Equations 31 and 36,
_ T T 2\T n—I\T1T
O=[H", (HF)", (HF")",.... (HF"" )] (38) where the map consists of a single feature is:

have rankn wheren is the dimension of the state vecter

) ) P : —Iges 0 [xP01,] Isas
If the system in Equation 37 is time-variant: Orom = 0 B P 0 0 (42)
F(t)=F,Ht)=H, to<t<t 0 0 —[xf"] 0
Ft)=F,H(t)=H, # <t<t 39 In all of the following observability matricies we only
: present the non-zero rows, and have removed those rows that
F(t)=F,,Ht)=H), tp_ 1 <t<ty contain only zeros as they do not contribute to the observability
nalysis. Given that’ ,,,f" # 0, the LOM in Equation 42

then we can define two types of system observability. Firs} as a rank of eight where the total number of estimated states

we define the system in Equation 39 to be instantaneou%ytwelve. When the map consists of two features, the LOM
observable at time if the Local Observability Matrix at time becomes:

k:
T T T n—1\TT Lo 0 [XEpso] L2z O
Ok = [Hk ) (Hka) 9 (Hka) R (Hka ) ] (40) —1313 0 [Xf‘?nm)] 0 ngg
. 0 —I3,: 0 0 0
has rankn. F;, and H; are thekth time segment state Orom = 0 _1‘5 ‘3 0 0 0 (43)
transition matrix and observation models of the system. Instan- 0 5’”3 C[xE] 0 0
taneous observability means that the system stateer the 0 0 _[xf"] 0 0

time interval[t;_1, tx] can be estimated using the information
in the observationss[t,_i,?;] without the need for extra The LOM now has a rank of eleven where the total number
observations or prior state information. of estimated states is fifteen. For the addition of each extra

Secondly we define the system in Equation 39 to Heature into the map, the rank of the LOM increases by three
completely observable over the time interigl ¢] if the Total and thus the total number of unobservable states for a single
Observability Matrix (TOM) [14]: time segment is always four.

To study the observability of the system over multiple time

0 giml segments, the TOM in Equation 41 is used. By using only the
Orou (k) = 2 (41) first-order term in the matrix exponential, we can approximate
: eF1ot ~ T, 2 + F; At; and thus the TOM over two time
OpeFr-18tk—1.. F1A0 segments, with two map features is:
has rankn. Aty is the difference of;, andt;_;. Complete —Isz3 0 [x#h101] Ises O
observability means that the system statean be estimated —Iz3 0 [XFhou1] 0 Igus
over the time intervalty, tx] using the observationslty, t]. 0 —I3,3 0 0 0
A system that is locally observable over every time segment 0 —Ise3 0 0 0
[tr_1,tx] in the interval[to, t] will also be completely ob- 0 0 —[xff] 0 0
servable over the intervat, ¢;], however a system may be o), _ 0 0 —[xf7] 0 0
completely observable ovét,, t;] but not locally observable —I3u3 —Otlsez [XBhq00] Ises O
over each time segmefty, 1, t;]. —Iau3 —Otlzes [XF00] 0 Isus
In [18] the authors perform a rank analysis of the observabil- 0 —Ises O] 0 0
ity matricies of the indirect inertial SLAM equations, deter- 0 —I3.3 —AtxfP] 0 0
mining the number of observable and unobservable modes in 0 0 —[x£3] 0 0
inertial SLAM. It was shown that for a total of 9 vehicle states | O 0 —[x£3] 0 o

plus 3N map states, there were 4 instantaneously unobservable (44)
states (that is given a single time segment), regardless of th&rovided thatff’ x f3' 7 0 (i.e. the cross product of these
number of map features considered. If the observability w¥gctors is not zero and thus they are not parallel in direction)
considered over two time segments in which some paramet@p§/0r £,,,1 X rv2 # 0, the extra time segment adds one
of the linear system changed between segments, then #Rgarly independent row to the matrix. This increases the
more state could become observable (considering the complé@k of the system from eleven to twelve, bringing the number
observability over the two time segments) resulting in a total 8f unobservable states to three. Regardless of the number of
3 unobservable states. It was shown that any additional tifgatures added to the map or any extra time segments, the
segments do not further increase the number of observaBmber of unobservable states will never be less than three.
modes. 4) Direction of the Unobservable Modes in Inertial SLAM:

In this paper we wish to extend the observability analysla order to determine the direction in the state space of
performed in [18]: we are interested in discovering what athe unobservable modes we can evaluate the Observability
the unobservable states in the system and how these statesGaaenmian:
effected by the manouvres/control actions taken by the vehicle. N =0T0 (45)



where O can be either the LOM or the TOM of the systemyWe maintain the errors in the vehicle velocityv(*) and
depending on the number of time segments we are consideriatitude 6 ¥™) in the state vector as before. The time dynamics
The eigenvectors corresponding to the zero eigenvalues of #ma observation model of the new state is:
Grammian\ are the unobservable modes of the system [14]. n N n

Considering the grammian for the TOM in Equation 44, the (omy —dp") = —ov (47)
eigenvectors of the three zero eigenvalues\oare: OPmip = (6mg' —0p") + [xiy,,]0¥" (48)

The state vector now becomes:

x"mOPs = [I3,3,0,0,15,3, 5,3, .. ]

op" +dmf +dmy + ... (46) x = [(0m] — 6p™), (Jm} — 5p™),...,ov", ¥ (49)

Thus for the system with at least two time segments wheTée TOM of the new system over two time segments with
7' x £ # 0 and/ori,,,, x £,,.2 # 0, the three unobservabletwo map features is:
modes are the components of the vector sum of the vehicle

and feature position errors. The observable and unobservable ~lazs 0 0 [xfm”l]
.. . . 0 7131.3 0 [xr"2 1]
vectors form an orthogonal basis in the state space in Equation mv
. 0 0 —1Is.3 0
24. Thus any vectors in the state space that are orthogonal to
the unobservable vectors will be observable. Some important 0 0 0 £
results can be derived from this analysis: 0 0 0 K fln}
. . o) i Anl
1) The unobservable modes do not intersect with the vehi- YTom —I5.5 0 —Atlzez  [XF]142]

cle velocity and attitude error states (i.e. the unobserv-
able modes contain no components of the velocity and
attitude states). These states are therefore observable as
they lie completely in the observable subspace of the
system.

2) The vehicle and feature position errors are only partially (50)
observable as they form part of the unobservable suphe first 6 rows are linearly independent, rows 7 to 9 provide
space. three extra linearly independent rows and provided ffiak

3) Some directions in the state space that are orthogonago7g 0 and/ort,,,1 X #mu2 # 0, rows 13 to 18 and rows 31 to
the unobservable modes and thus completely observaRi provide an extra three linearly independent rows. Thus the
are: (1) the error in the relative position of each featureOM has rank twelve (the dimension of the state vector with
to the vehicle §m? —dp™, dom3 —dp”, .. .), (2) the error two features) and thus is completely observable. Adding extra
in the relative position between each feature in the magatures (thus adding the relative feature to vehicle position
(0m} —0mj, dm3 — omy ...). error (dfm? — §p™) to the state vector) increases the rank of

The observability analysis of SLAM demonstrates that we atee TOM by three thus resulting in full state observability for
only able to build a relative map of point features and localiggy number of landmarks greater than or equal to one.

the position of the vehicle w.r.t the features themselves; neitherConsider the LOM using the new state vector over a single
the global position of the vehicle or the global positioime segment with two map features:

of the features can be estimated. The observability analysis

|
el
w

z3 7At1313 [Xf‘ZI,Q'UQ]
—ngg —At[Xan]
—Igmg —At[XfQ”]

0 [x£3]

0 [xf3]

ScococooC
S oo Oo

. e . . —Isz3 O 0 [XE710]

formalises the intuitive concept that only a relative mapping 0 Tas 0 (X7, ]
and localisation is possible without global information about 0 Om 1 6"2”
the position of the vehicle or features such as GPS or prior Orom = 0 0 —13%3 0 (51)
terrain information. 0 0 5’13 [x£7]

5) Locally Unobservable ModeWe have shown the ob- 0 0 0 [Xfln]
servability of the system over two time segments where the !
values of the matricie¥ and H change between segmentsThere is one unobservable mode:
We are also interested in determining the locally unobservable xUunobs — [pn s gn o gnosogn o g7 (52)

modes in the system, that is the unobservable states in the
LOM, where only one time segment is considered. The locallhis locally unobservable mode is also common to the original
unobservable mode indicates the direction in the state spatate vector from the system in Equations 31 and 36 (i.e. it
to which no information is being added over the local time sé the fourth locally unobservable mode in the original state
of observations. vector, where the other three modes are those in Equation 46.
In order to simplify the analysis, we begin by separatinghe three modes in Equation 46 cannot be made observable
out the modes of the inertial SLAM state vector which arthrough any amount of vehicle maneuvering).
always unobservable. Consider the modification to the statePractically, consider an example in which a UAV is in
vector such that instead of estimating the global vehigte'} straight and steady level (SSL) flight observing features on the
and map featuredfn}') position error states, we estimate thground below while the vehicle passes by. In this scenario the
position error of each feature minus the vehicle position errcglative position vectors to each featufé ( ) will rotate in the
(i.e. the relative feature to vehicle position ertém]' —dp™)). navigation frame as the vehicle moves past the feature however
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Fig. 1. Presents the structure of the vehicle control scheme on the UAVv: [l Explored Area, Desintation
The control hierarchy is composed of low-level and high-level control. The Potential ] Unexplored
trajectory planner designates trajectory segments based on an evaluation c¢ Desintation

the information and observability along each path.

Fig. 2. Evaluating potential destinations by the guidance system: destinations
are composed of the explored region and surrounding unexplored regions
broken down into a grid of size 100x100 meters.

the specific force vector direction will remain constant. In this

case, the components of the locally unobservable mode in the
attitude states points along the z-axis direction and thus there . . - .
is a continuing loss of information about the attitude stafsomrOI hierarchy, illustrated in Figure 1, can be broken into

corresponding to this axis (i.e. the platform yaw or headifg'€€ Sections: low-level control, high-level control and the
trajectory path planner. The low-level control system maintains

angle). . i X )

6) Observability and Vehicle Maneuvres/Control Actions:the stability of the aircraft, using the awgraft throttle and
In this section we analyse how change€irand#”. . through cpntrql surfaces_to control thg altitude, velocity, bank anglg and
aircraft maneuvers affect inertial SLAM observability. Table §|Qesl|p of the.alrcraft. The high-level control system provides
describes some typical aircraft maneuvers, the resulting Io@gftUde’ veI00|t)_/ and bank angle commar_1ds to the low-level
observability of the localisation estimates, and the speculat‘fé\%’.ﬁ'trOI system in order to control the V?h'de. along aIIocateq
result in localisation estimate information. We can see from tlt.rgjectory segments cgmposed of straight lines and arcs in
observability analysis that when the vehicle is in motionleS&ace: The low and h!gh-level_control systems are cur_rently
hover, that the direction of the locally unobservable mode @p!emented on.the ﬂ'ght. yeh|cle (s_ee .[26]) and prov@e a
constant. For straight and steady level (SSL) flight or a stea 25|c path following capability. Complnatlong of straight lines
climb/descent in which the specific force vectdf') does and arcs that fo”‘? a complete frajectory in 3'.3 space are
not change direction between time segments, the compone‘hr vu_jed by the_ trajectory path planner. The vehicle p(_)smon,
of the unobservable mode in the vehicle attitude error stat;é ocity and atfitude are provided by the SLAM solution as
remain constant, thus restricting full motion of the IocallyeedbaCk to all levels of the control system.
unobservable mode. These maneuvers result in low heading
error information (i.e. the direction in the state space of locBl. Information-Based Path Planning and Trajectory Alloca-
unobservability given the only specific force acting on théon
vehicle is from lift). When performing maneuvers such as |n this section we describe the method for generating
steady-turns or S-shape maneuvers, the acceleration vectgsdential trajectories from the trajectory path planner and the
excited in the lateral direction thus rotating the unobservabigethods used to evaluate the information gain of performing
mode between time segments and distributing the informatieach trajectory. The information based path planner is a single-
across all of the vehicle attitude error state estimates. step lookahead control based on maximising the entropic

information gain of the joint probability distribution, including

IV. AERIAL VEHICLE PaTH PLANNING ARCHITECTURE  Vehicle and map states, of the SLAM estimated state. The

In this section we describe the control architecture f&ction space for the path planner is made up of a discrete grid

improving localisation and mapping estimate accuracy Wh?g waypoints, all at constant altitude above the terrain, that

using SLAM based on a combination of information measur e vehicle could move _to. At the time of decision-making
and insight gained from the observability analysis. I.e. the last allocated trajectory has been completed) the path

planner takes the following steps:

) ) 1) The path planner generates a discrete rectangular grid

A. Vehicle Control Hierarchy of potential destination waypoints that the UAV can fly
This section describes the control hierarchy of a small sized to from it's current location. Each waypoint is placed

(40kg, 2m wing span) UAV, the Brumby MKIIl, a research at an altitude of 100 m with a grid size of 100x100

platform at the Australian Centre for Field Robotics. The meters. Each grid is labelled. Explored grids are those



Maneuver Af? AR Expected Estimate Accuracy
Motionless/Hover none none continuing loss in heading accuracy
Climb or Descent none steady change in vector direction | continuing loss in heading accuracy

Steady Level Flight none steady change in vector direction | continuing loss in heading accuracy
Steady Turn/Orbit vector traces | range to feature constant for features| ahigh accuracy on all attitude states
a cone shape center of turn, direction changing
S-Shape Maneuver vector oscillates vector to features traces S-shape | high accuracy on all attitude states
back and forward

TABLE |
CLASSES OFUAV M ANEUVERS AND EXPECTED EFFECT ONNAVIGATION ESTIMATE ACCURACY

that have known SLAM map features lying within theirare substituted into Equation 22 to calculate the information
bounds, whereas unexplored grids are the remainiggin and therefore utility for the current proposed waypoint.
grids in which no features have been observed. Potential) Evaluating Utility over Unexplored Grid PointsSince
waypoints are placed in both the explored grids and tlee are unaware if any observations of features will be made
unexplored grids which touch upon the explored gridshen we move into an unexplored area, evaluating the infor-
(see Figure 2). Any proposed destination waypoints thatation gain for visiting these waypoints is more complicated.
are inside the turning radius of the vehicle are removétfe will assume that within each unexplored area there is
from the list. a number of randomly distributed unseen features based on

2) For each potential waypoint, a trajectory from the cua feature density;. As the vehicle integrates features into
rent location to the waypoint is formed by a steady turthe SLAM map, the number of features observed and the
until the heading angle of the vehicle is aligned witlyround coverage area that the UAV has observed are used to
the destination point followed by straight and level flightomputep;. The expected initial positions of the features are
until the vehicle reaches the destination waypoint. In adicattered randomly within the unexplored grid square. When
segments of the trajectory the vehicle remains at a fixélging towards or over an unexplored area we create expected
altitude in flight. observations of unseen features which are added to the list

3) The utility based on information gain for the trajectoriesf observations as explained in the previous subsection. The
to each waypoint is evaluated and the trajectory thabpy of the covariance matrix is augmented to include the
results in the highest entropic information gain is chosenitial covarianceU,,, of these features:

with the corresponding trajectory segments being sent P p 0
to the high-level and low-level control systems for the (%) _ PW P’“m 0 (53)
vehicle to perform. Once the trajectory segment has been aug 6”” Tgm U

completed the vehicle replans to the next waypoint.
The covariance of the expected feature positions before any

Tlh € e&/glu?rt]lor; ICIJf t.he mftc))rmasuon gain based utility Dbservationsl,,,, is given an appropriately large initial value
explained in the foflowing subsections. _ _ (diagonal matrix with values df0®m? along the diagonal). We
1) Evaluating the Information gain for a Potential TrajeC-ngw have an approximation of the information to be gained

tory: For a given potential trajectory, we predict the positiogy visiting an unexplored area and integrating new features
and attitude of the vehicle at one second increments alopgo the map.

the trajectory (assuming the vehicle bank angle is a maximum

of 60 degrees during turns and zero when flying straight). _ o .

At each point in the trajectory we also evaluate the obsen/: Behavior-Based Decision Rules from Observability Analy-
tions the vehicle would be expected to make based on ol

current estimate of the feature locations and our knowledgeln this section we describe decision rules that are applied
of the vehicle pose and the orientation and constraints tof the path planning process based upon the mathematical
the observations sensors on the vehicle. At the points aloingight gained from the observability analysis. The following
the trajectory where observations are expected to be preséetision rules analyse the uncertainty in heading angle of the
the jacobian of the observation function in Equation 7 igehicle, briefly interrupting the information-gain path planning
evaluated. A copy of the SLAM covariance matrix is mad® perform different vehicle maneuvers when the decision rules
and this covariance matrix is propagated forward in tima&re activated.

using Equations 10 to 19 with the evaluated jacobians at eacll) S-Shape Maneuver BehavioThis decision rule anal-
trajectory sample until the destination is reached. What reswses the growth in heading uncertainty along the straight
is a simulated approximation of the SLAM covariance matriand level segments of the vehicle’s trajectory. The difference
if we were to take the potential trajectory considered, i.between the current heading uncertainty along the straight and
P(x|a). The expected covariance and the current actual SLAtWle heading uncertainty at the beginning of the current straight
covarianceP (x) (i.e. before any trajectories are decided uporilight segment is examined. When the heading uncertainty
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growth reaches above a given threshold, the guidance syst:
allocates a single s-shape maneuver along the direction t
vehicle is heading such that the sideways looking camer:
are used to make observations of the features below whi
the vehicle is banking. At the end of the maneuver thi
vehicle continues along the straight flight segment previous!
allocated. The aim of this decision rule is to limit the growth
in heading angle errors accumulated during long straight @)
and level sections of the flight. The value of the headins
uncertainty growth threshold is arbitrary. Setting the threshol
to a low value will result in better heading accuracy throughot
the flight but at the cost of a longer time taken to perform thi
mapping. The results shown in this paper use a threshold
1° (10).

2) Orbit Maneuver Behavior:This decision rule analyses
the absolute heading angle uncertainty when the vehicle _
approaching the destination set in the information-gain path (b)
planning. When the vehicle is at a distance of it's minimunr *
orbiting radius from the destination, the value of heading angl" N T
uncertainty is examined. If the absolute heading angle unce Sl
tainty is above a given threshold, then the guidance syste
replans a single steadp0° orbit around the destination point
specified in the information-based path planner. If the absolu
heading uncertainty is below the threshold then the trajectos :
continues as planned, flying straight and level until directly ©
over the specified destination. When either the single orb”..: 4
or straight and level flight over the destination is achievec:::uis5
the information-based path planner then replans the vehic . -
trajectory as explained in Section IV-B. The value of the ™ "
absolute heading uncertainty threshold is arbitrary. Setting tt
threshold to a low value will result in better heading accurac
throughout the flight but at the cost of a longer time taken ti
perform the mapping. The results shown in this paper use a (d)
threshold of2° (10).

Fig. 3. Different flight paths for simulation analysis: (a) Straight and Steady

Level, (b) A Single Orbit, (c) A Single S-shape maneuver, (d) A Combination
V. UAV SIMULATION SCENARIO of Orbits and S-shape maneuvers. The dots in the figure represent the positions

of features on the ground. The quadrilaterals represent the downwards and

A 6-DoF simulation of a UAV in a localisation and mappingpidewards sensor footprints on the ground.
task while flying over unknown terrain, without GPS, is used to
examine both the effect different aircraft maneuvers have and
the effectiveness of the path planning algorithms proposed in
the previous sections. From the simulation model of the UA§cOPe of this paper and is the topic of future work in the
dynamics, readings from an on-board low-cost, automotivikertial SLAM algorithm. The only simulated errors from the
grade strapdown Inertial Measuring Unit (IMU) and thretMU are therefore from noise The vision/laser sensors run
simulated vision/laser sensors are made. One of the vis@hlO frames/sec and have a field of view4oF across the
sensors is mounted in a downwards direction with the oth@prizontal axis of the image and a field of view 2f° across
two facing in each sideways direction on the aircraft bodyjle vertical axis of the image for the downwards facing camera
These sensors are used to measure the range, azimuth af¢ha horizontal field of view df0° and a vertical field of view
elevation angles to each feature on the ground. The M@j 20° for the si(_jeways facing cameras. The bearing to fegtures
readings are sampled at 100 Hz with average noise vald@gneasured with an average errorto$” and the range with
of 0.05m/s? for the accelerometers arids® /s for the gyros. an average error dim. In the simulation we assume known
We assume that the major component of the biases in the \digta association of the map features and that there are no errors
readings remain at a constant value throughout the flight (ii@'the feature extraction process in order to isolate the effects
switch on biases) and can be calibrated for on the groumjestimation accuracy for different planned paths and vehicle
before the flight. The IMU is temperature controlled anfl@n€uvers.
thus any other time-variant biases are negligibly small. If our Two different simulations are performed. In the first simula-
IMU contained large time-variant, in-run biases, then onlinton, four different runs are performed of the vehicle travelling
calibration would be required. This is however beyond thaver a 1km segment at an altitude of 100m. In each different
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Heading Uncertainty for Different Maneuvre Types
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the way to the destination. Four different flight trajectories
are analysed. The first is a simple straight and level fligr
segment over the 1km distance (Figure 3 (a)). The secol rme o
trajectory is a straight and level flight segment until the
midpoint of the trajectory is reached followed by a complete (0)
360 degree orbit of radius 50m, followed by straight and levelg. 5. 15 SLAM Estimate Uncertainty for (a) heading anglé)@nd (b) East
flight to the destination (Figure 3 (b)). During the secon@¥-axis) vehicle position™) for SSL flight, orbit and s-shape maneuvers.
rajectory the vehicle banks at 60 degrees thus pointing onelgf "exdr rceriany & ecuced when e it and s shape manevers e
the sideways looking cameras towards the ground. The third
trajectory contains an S-shape maneuver (Figure 3 (c)). In the
S-shape maneuver, the vehicle banks right then left then right
following a single S-shape. The vehicle banks at 60 degrees;:igure 5 shows the uncertainty«) of the SLAM estimates
during the turns, where the sideways looking camera poi§g the vehicle's east position and heading (yaw) angle for
towards the ground. The fourth trajectory is a combination @he three single maneuver cases demonstrated. For the SSL
the orbit and S-shape maneuvers (Figure 3 (d)). The vehigignt case the uncertainty in the heading angle continues to
performs one S-shape trajectory followed by and orbit and thg8e throughout the flight due to the constant direction of
a second S-shape trajectory. For all trajectories the features @ge instantaneously unobservable mode in the space of the
dispersed across the terrain with an average density 6f 1 yehicle attitude error states. It can be seen that around the 30
features/100:”. second mark (the time at which each of the slalom and orbit
In the second simulation, the UAV is given the task ohaneuvers begin) that the vehicle’s heading uncertainty for
building up a feature map of an unexplored region on thfie orbit and s-shape maneuvers begins to drop corresponding
ground of given size. The vehicle uses the online path plannifigthe change in direction of the specific force vector. For the
algorithms developed in Section IV in order to plan thgrpit and s-shape cases it can be seen that the growth in the
mapping sequence while maintaining an acceptable level \g{certainty in position estimates is reduced when compared to
localisation estimate accuracy. In this scenario, the featufge SsL flight case due to the increase in heading accuracy and
are dispersed across the terrain with an average density ofthys the reduction in transformation errors of the specific force
= 0.0025 featuresin?. in the inertial navigation equations (see Equations 3 and 4).
For the s-shape maneuver case, the small spikes corresponding
to sharp growth then drop in uncertainty relate to the on-board
cameras not seeing any features when the UAV banks sharply
A. Observability/Maneuvre Comparison Results for small periods of time. When the vehicle re-observes the

In this section we present the results of the SLAM estimaf@atures however, the uncertainty drops back close to it's level
performance for the different maneuvers shown in Figure Before observations were lost.
Figure 4 illustrates the profiles of the components of the Figure 6 compares théos uncertainty of the SLAM esti-
specific force vectorf(*) acting on the vehicle for each of themates for the SSL flight case and for a situation in which a
three classes of maneuvers considered. We can see for the 8&hbination of the orbit and s-shape maneuvers is applied.
flight case that the vector direction remains almost constatitcan be seen that growth in both the heading and position
pointing in the vertical direction. For both the orbit and suncertainties are reduced by the maneuvers. It should be noted
shape maneuver cases the components of the vector rotateawever that by performing the maneuvers the vehicle has
the navigation frame directions during the maneuver. taken a longer period of time to reach the final destination,
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Fig. 6. 10 SLAM Estimate Uncertainty for (a) heading anglg)@nd (b) East
(y-axis) vehicle positiongg™) for SSL flight and combined maneuvers. The
lateral position uncertainty is reduced during the orbit and s-shape maneuw
due to reduction in the heading angle uncertainty.
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Fig. 8. Path Planning Results: Vehicle trajectory sequence after 340 seconds
B. Online Path Planning Algorithm Results of flight.

In this section we present results of the online path planning
algorithm during a localisation and mapping task. Figures 7
to 10 illustrate the path taken by the vehicle over a 11Giter. It can be seen that the actual error in the estimates
second flight and Figure 11 shows the final feature mab the vehicle attitude are maintained withinla bound of
generated by the SLAM algorithm. The vehicle begins bgpproximately 3-4 degrees, whereas the position estimates are
exploring the area in the direction of flight before returning tbounded within approximately 50 meters in the horizontal and
known features in order to close the loop, thus reducing thdout 7 meters vertically, the largest errors corresponding to
uncertainty in the vehicle pose estimates and the explored ntagp small sections at about 270 and 730 seconds into the
features. The continuing pattern of the trajectory planning flsght in which there were no available features in the vehicle’s
to explore the nearest unexplored frontier until vehicle errovicinity while exploring.
become large enough that the information gain for returning The uncertainty in the vehicle states during the flight (mea-
to previously seen features is greater than the information gaured by the square root of the trace of vehicle state sub-block
associated with further exploration. The choice of map locatiarf the SLAM covariance matrix) and the final uncertainty in
in which to fly depends mainly on reducing the uncertaintihe position of each feature within the map is shown in Figure
in the position of features in the map, while maintaining th&4. Besides the two small time segments in which the vehicle
uncertainty in the vehicle states to an acceptable level. Aad no features to localise with, the vehicle uncertainty is
several times during the flight the decision rules in Sectionaintained at a steady level and does not continue to increase
IV-C are applied and the vehicle either orbits around thaver the span of flight. The final uncertainty in the position
destination feature or else performs s-shape maneuvers alohg@ach map feature is below 30 meters with an average of
long periods of straight and level flight in order to maintaiapproximately 15 meters.
the heading angle uncertainty within acceptable limits. Due to the single-step lookahead in the path planner,

Figures 12-13 show the errors in the estimated position atiee planned path is sub-optimal and will often follow local
attitude of the vehicle (compared to simulation truth) and thminima. The aim however of the planner is not optimality
correspondinglo confidence bounds within the navigatiorbut a feasible solution; the vehicle state uncertainty has been
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Fig. 9. Path Planning Results: Vehicle trajectory sequence after 630 secohigs 11. Path Planning Results: Final feature map generated at the end of

of flight. the simulation. The solid points represent the estimated location of features
in the SLAM system and the circles indicate the simulated 'true’ location of
the features.
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Fig. 10. Path Planning Results: Vehicle trajectory sequence after 10¢
seconds of flight.

| i | i i | i i i i
] 100 200 300 400 500 600 700 800 200 1000
time (secs)

. . Fig. 12. Path Planning Results: Inertial SLAM Position Estimate Errors and
constrained. Multi-step lookahead could be used to plan;& uncertainty Bounds. Through the maneuvers and features observations

path such that a more accurate map could be built in lesgde, the path planner helps to ensure that the error growth in the system is
time, however the computational complexity involved in th&°nstrained during the flight

planning and utility evaluation stages becomes infeasible due

to the exponential increase in the action space.

VII. CONCLUSIONS ANDFUTURE WORK the importance of dynamic vehicle motion in the SLAM es-
This paper has demonstrated a framework for OleVelotir_nation process an.d p_oints towards vehicle motion behaviors
L : ) X >I%at maximise localisation accuracy.
ing intelligent guidance schemes for a UAV for improving
localisation and mapping performance when operating overin future work, we will look at additional methods for
unknown terrain and without the use of GPS. The proposeding the insight gained through the observability analysis
scheme plans vehicle paths based on a combination of cdminertial SLAM for online path planning. Different metrics
puted approximations to the expected mutual information gdior navigation performance such as consistency of the filter
for certain trajectories, as well as decision rules based oralad the ability for data association will also be considered.
gualitative knowledge of the effect maneuvers have on tAdese metrics will assist in composing additional decision
observability of the system. The approach does not necessarilies for the vehicle actions. We will also consider how system
find the optimal path (in terms of localisation performanceonfiguration on the UAV such as the placement and pointing
however offers a practical alternative with mathematical imirections of sensors can be optimised for a particular task
sight to the unreasonable computational load involved @iven the maneuver envelope available to the vehicle and the
performing the full optimisation. The observability analysis oknowledge from the observability analysis presented in this
the inertial SLAM algorithm presented in this paper revealsaper.
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Fig. 13. Path Planning Results: Inertial SLAM Euler Angle Estimate Errors

and 1o Uncertainty Bounds. The maneuver decision rules in the path plan
help to ensure that the heading estimate uncertainty is maintained at a
level and does not grow during the flight.
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Fig. 14. Path Planning Results: Square root of Trace of covariance mat[rl
(a) vehicle states vs. time (b) of each map state sub-matrix at the final time.

The final uncertainty in the position of each map feature is below 30 met
with an average of about 15 meters.
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