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Abstract

This paper presents a framework for integrating sensor information from an
Inertial Measuring Unit (IMU), Global Positioning System (GPS) receiver and
monocular vision camera mounted to a low-flying Unmanned Aerial Vehicle
(UAV) for producing large-scale terrain reconstructions and classifying differ-
ent species of vegetation within the environment. The reconstruction phase
integrates all of the sensor information using a statistically optimal non-linear
least squares bundle adjustment algorithm to estimate vehicle poses simulta-
neously to a highly-detailed point feature map of the terrain. The classification
phase uses feature descriptors based on the colour and texture properties of
vegetation observed in the vision data, and uses the terrain information to
build a geo-referenced map of different types of vegetation. The resulting sys-
tem can be used for a range of environmental monitoring missions such as
invasive plant detection and biomass mapping. Experimental results of the
algorithms are demonstrated in a ‘weed-finding’ mission over a large farmland
area of the Australian outback.

1 Introduction

Environmental monitoring of large areas of wilderness and farmland relies on periodic geo-
referenced mapping of the environment in order to detect invasive plants and weeds, tally
the quantity of biomass and develop effective environmental management strategies. Tradi-
tionally, data in environmental applications has been collected via high-flying surveys using
manned-aircraft or through satellite remote sensing. Although these methods have the po-
tential to cover large areas, the resolution of the resulting surveys is often limited (based
on the operating altitude of these vehicles) and the cost involved in operations is often very
high. There is much interest in the use of low-flying Unmanned Aerial Vehicles (UAVs) as a
cost-effective method for creating high-resolution terrain maps over large areas. The advan-
tage in the use of UAVs is that they typically have a longer endurance than human pilots
and being smaller can potentially fly at lower altitudes, building higher resolution 3D maps



by ‘hugging’ the terrain as they fly. Additionally, with the use of autonomous computer
vision algorithms, the resulting resolution of maps in these applications has the potential to
make them suitable for detecting and identifying a broad class of different types of flora and
fauna that would otherwise be difficult to distinguish from higher altitudes.

A distinct challenge facing cost-effective methods for airborne surveying is in the types
of sensor data required for producing geo-referenced maps of the terrain and identifying
different flora and fauna in the environment. Sensors such as multi-spectral and hyper-
spectral imagers are typically used in satellite remote sensing to classify different types of
vegetation based on their spectral characteristics. The cost associated with these sensors is
high with respect to options such as a commonly available vision camera which is constrained
to imaging within the visible spectrum. Although vision sensors are cheap, the constraint
of the resolvable spectra reduces the discriminating power this sensor has for distinguishing
between different types of vegetation. This can however be overcome in some sense by
the increase in resolution of imagery available based on the low-altitude operations of a
UAV system; the structure of vegetation can now be resolved which provides some scope in
discriminating between different types.

In the case of mapping objects in these types of 3D environments, sensors such as laser
range finders have been typically used, particularly by Unmanned Ground Vehicles (UGVs);
however a cost-effective system for an airborne platform prohibits the use of these sensors due
to the weight and power requirements. In both the tasks of mapping and classification, vision
sensors therefore provide the only real low-cost solution for sensing in the environment. The
integration of vision with information from sensors commonly available in a wide range of
UAV applications such as a low-cost Inertial Measuring Unit (IMU) and Global Positioning
System (GPS) receiver, when integrated properly, provides the ability for an accurately geo-
referenced map of the environment, which can be used to locate different types of vegetation
and develop effective strategies for environmental management such as weed-spraying.

This paper presents a framework for the integration of sensor information collected from a
small, low-flying UAV for constructing geo-referenced maps and for identifying and classifying
different types of vegetation within the operating environment. Our approach to mapping
seeks to use all of the sensor information from an IMU, GPS and monocular vision camera to
construct a joint estimate of the trajectory of the UAV and a dense point feature map of the
terrain based on a maximum-likelihood, non-linear least squares approach, building on our
previous work (Bryson et al., 2009). The advantage of joint estimation using all of the sensor
data together is that the complimentary nature of the different sensors is exploited; vision
information allows for more accurate UAV attitude estimates and IMU bias calibration where
as the integration of IMU and GPS allows the translation, rotation and scale of the estimated
terrain map to be fixed. Our approach to classification is based on generic colour and texture
descriptors which can be used to distinguish between different types of vegetation visible in
the image data owing to the low-altitude of the UAV flight. A classification algorithm is
developed based on supervised training examples of different types of vegetation that are
provided to the algorithm by a human expert. The advantage of the approach is that no
model information of different types of vegetation is required; the classification algorithm
learns the distinguishing features of each vegetation class based on the training examples
provided. The classified vegetation is then geo-referenced using the final terrain map and



presented to the user.

In Section 1.1, we discuss related work in environmental monitoring, vision-based mapping
and vision-based classification where Section 1.2 provides an overview of the system pre-
sented in this paper. Section 2 presents algorithms for the UAV trajectory and terrain map
reconstruction. Section 3 presents algorithms for the classification of different vegetation in
the map using vision information. Section 4 presents an experimental setup of a small UAV
operating over farmland in Queensland, Australia during a weed-finding mission, along with
results of both the mapping and classification components of the system. Conclusions and
future work are presented in Section 5.

1.1 Related Work

The following subsections discuss related work in the areas of agricultural and aerial mapping,
vision-based sensor fusion and classification.

1.1.1 Agricultural Mapping and Remote Sensing

Invasive weeds cause a great deal of damage to agricultural land and native ecosystems each
year. If a weed outbreak is not detected and managed quickly, the species can establish a
persistent stronghold on the landscape (Lawes and Wallace, 2008). Consequently, it is in
the interests of property owners, managers and governments to invest effort into the early
detection and ongoing monitoring of invasive weed outbreaks to form informed control strate-
gies such as targeted eradication or containment. The detection of weeds over a landscape
presents a challenge in terms of data collection. Ground-based surveys are restricted by
terrain accessibility and are poorly suited to monitoring large regions due to the labour and
transport costs involved. Consequently, remote sensing is a valuable source of data for weed
monitoring, and commonly features in precision agriculture management strategies (Zhang
et al., 2002). Remotely sensed data from high-flying aerial surveys (Klinken et al., 2007;
Bajwa and Tian, 2001; Sandmann and Lertzman, 2003) and satellite remote sensing (Medlin
et al., 2000) are typically used for map construction, however these surveys typically provide
maps of, at most, only 1-10m resolution which can be insufficient for the detection of certain
weeds.

1.1.2 Vision-Based Mapping and Reconstruction

The problem of estimating the 3D structure of a scene using vision sensors is a well studied
problem in the structure from motion community (Koch et al., 1998; Pollefeys, 2004) where
more popularly, stereo cameras are used to infer the depth in a scene and reconstruct the 3D
terrain using multiple stereo image pairs, while simultaneously estimating the pose informa-
tion of each camera pair. The baseline distance between stereo cameras used to infer scene
depth is typically not sufficient in airborne systems (where the ratio of the vehicle altitude
above the terrain to the baseline distance is too high); thus in this paper we are interested
in the use of monocular camera systems.



The use of camera information alone in this type of 3D terrain reconstruction task has
a number of issues principally related to tracking and matching of terrain feature across
camera frames and the unobservability in the absolute translation, rotation and scale of the
map. There has thus been much interest in the use of other sensors such as a low-cost Inertial
Measuring Unit (IMU) for assisting in the mapping process; (Qian et al., 2000) demonstrates
the use of vehicle rotation rate information from gyros mounted to the vehicle to assist in
the process of matching camera features from frame to frame. Aside from helping to track
features, inertial sensors also provide the ability to disambiguate map scale and to some
degree the rotation of the map (w.r.t Earth surface coordinates) and with the combination
of information from a low-cost Global Positioning System (GPS) receiver, the translation,
rotation and scale of the constructed 3D terrain map can be completely fixed.

Aerial photogrammetry is the process of measuring geometric distances and building maps
using imagery collected from an airborne vehicle, where often monocular camera systems
are used along with other navigation sensors. Historically, ground control points (artificially
measured points on the ground which are visible in the imagery) were used to geo-reference
images taken to a ground plane to produce maps. The work in (Mostafa and Schwarz, 2000;
McCarthy T. and G, 2007) demonstrate more modern approaches to aerial photogrammetry
without the need for ground control points where instead navigation data from an on-board
IMU and GPS are used to geo-reference imagery taken from an airborne vehicle. Unlike in
structure from motion approaches, these works assume that the navigation data is highly
accurate (i.e. from high-end IMU and GPS sensors) and thus the map is built by projecting
the image data onto the ground using the navigation data without simultaneously correcting
the navigation data itself. The accuracy of the final maps are thus limited to the sum of the
navigation and imagery errors and no 3D map information is recovered.

(Bryson and Sukkarieh, 2007) and (Pinies et al., 2007) both provide systems for building
up a 3D point feature map of the terrain by fusing vision and inertial sensor information
in an Extended Kalman Filter (EKF), which simultaneously estimates and corrects for the
navigation data. The disadvantage of these approaches is that they can provide only sparse
point maps and have issues with map consistency over large areas due to the use of the
EKF. In (Clark et al., 2006) the authors use information from poses computed by an on-
board IMU-GPS navigation system to assist in a bundle adjustment algorithm for computing
dense maps of the environment but don’t integrate the IMU information directly into the
estimation cycle, and thus still have some issues in the map rotation and scale.

1.1.3 Vision-Based Classification

Species identification in the remote sensing literature is primarily based on spectral re-
flectance over multiple wavelength channels. Peaks in the visible and near infrared reflectance
can be associated with cellular chemical and biological properties of vegetation and are used
to discriminate between different species (Hsieh et al., 2001; Yu et al., 2006). Consequently it
is common to have data with many spectral channels while achieving only a relatively coarse
spatial resolution so that per-pixel maximum likelihood classifiers may be applied. Imagery
from the SPOT High Resolution Visible (HRV) or Landsat Thematic Mapper (TM) satellites
has been successfully used to study large scale vegetation patterns (over thousands of square



kilometers) and long term temporal patterns across image sequences (Lawes and Wallace,
2008; Guerschman et al., 2003; Robinson and Metternicht, 2005). While low cost, the limited
number of channels in the imagery cannot always provide reliable discrimination between
similar species of vegetation (Harvey and Hill, 2001; Czaplewski and Patterson, 2004), and
the relatively coarse pixel sizes lead to poor performance at detecting low density infestations
due to spectrum mixing over the area of the pixels (Klinken et al., 2007). Even for resolutions
up to 4m/pixel, one study found that weed infestations of up to 30% coverage over a 200m2

area could not be reliably detected due to mixing (Casady et al., 2005). In addition, data
from these satellites is not always updated frequently enough for the application of targeted
detection and monitoring.

At a higher cost, commercial data is available at high spatial resolutions (1-10m) through air-
borne multispectral imaging (Lamb and Lamb, 2002; Glenn et al., 2005) or up to 1.65m/pixel
with the current highest resolution satellite imaging (Madden, 2009; Casady et al., 2005; Car-
leer and Wolff, 2004). Most remote sensing and mapping in agriculture uses coarse resolution
multispectral imagery, together with independent classifications of each pixel based on ra-
diance in the visible and near infrared spectrum. However, suitable data for this approach
can be difficult to obtain, and the resulting classifiers suffer from problems with spectral
mixing when the density of a target species is low (Nagendra and Rocchini, 2008). At higher
resolutions, where mixing is not a problem, independently classifying pixels leads to a poor
signal to noise ratio due to variations in local lighting and local plant appearance (Ehlers
et al., 2003; Bajwa and Tian, 2001; Hsieh et al., 2001). Various approaches have accounted
for spatial patterns in the data by applying filtering to the output of a classifier (Sun et al.,
2003), although more robust performance can be obtained by segmenting neighborhoods of
pixels into objects (such as tree crowns) prior to classification (Yu et al., 2006; Culvenor,
2002; Erikson and Olofsson, 2005).

1.2 Overview of the System

Figure 1 illustrates the algorithmic framework and system architecture for the mapping and
classification system presented in the paper. The system takes logged sensor data from an
IMU, GPS receiver and monocular vision camera collected by a small UAV flying over an
area of interest. The goal of the system is to produce a geo-referenced, 3D map of the area,
illustrating visual features seen by the camera to their locations in the area and to identify
and classify several different types of vegetation, based on their visual appearance. The
operation of the system is broken down into two sections.

1.2.1 UAV Trajectory Reconstruction and Map Building

The first section of the system takes IMU, GPS and vision data and produces an accurate 3D
map of the terrain, relating features seen in the camera data to their corresponding location
and orientation in the world. The system performs the following steps:

1. INS/GPS Initial Pose Estimation: IMU and GPS data is used to provide an
initial estimate for the position and orientation (pose) history of the UAV during the



Figure 1: Overview of System Architecture: IMU, GPS and vision data are collected from
a sensor payload mounted to a small UAV as it flies over an area of interest. IMU and GPS
data are used to initially estimate the position and attitude of the UAV along its trajectory.
Point features in the terrain are extracted and matched across frames using the vision data.
An initial guess of the 3D position of these point features is made via triangulation, and
by using the initial estimated trajectory data. A bundle adjustment procedure is performed
over the UAV trajectory and map feature states in order to achieve a final accurate terrain
map. For classifying vegetation, examples of different types of vegetation are identified by
a human expert in the vision data and used to train a classifier. Patches of the vision
data corresponding to each area in the terrain map is then classified into different classes of
vegetation.

flight. Data is processed in an Extended Kalman Filter (EKF) architecture. These
initial pose estimates are used to help triangulate the 3D position of terrain features
and also to provide an initial estimate for the bundle adjustment procedure described
below.

2. Terrain Feature Extraction and Mapping: Point features in the vision data
are extracted using a corner point extractor (Shi and Tomasi, 1994) and tracked
across multiple frames using a Lucas-Kanade Tracker (Lucas and Kanade, 1981).
Robust outlier rejection in the matches is performed using epipolar constraints and
a fundamental matrix calculation between the frames based on a RANSAC method
(Torr and Murray, 1997). The resulting feature observations are used to estimate the
corresponding 3D location of each feature on the terrain.

3. Initial Map Feature Triangulation: Using the matched point features in the vision
data and EKF-estimated initial UAV poses, an initial estimate of the 3D positions of



terrain features is made by triangulating feature observations across two observations
with the largest baseline. The resulting points are used as an initial estimate for the
bundle adjustment procedure described below.

4. Map and Pose State Bundle Adjustment: Using all of the sensor data from the
IMU, GPS receiver and matched vision features, and starting from the initial vehicle
poses and 3D terrain feature positions estimated above, a final estimate for the UAV’s
trajectory and position of terrain features is made through a non-linear least squares
bundle adjustment procedure which accounts for all of the joint relationships between
the sensor data. The results of the bundle adjustment procedure is an accurate and
consistent, geo-referenced 3D point feature map of the terrain.

5. Mosaicing and Map Visualisation: Using the bundle adjusted estimates of the
vehicle poses and terrain positions, a photo-mosaic of the terrain is constructed for
visualisation purposes by projecting each image taken by the camera onto a ground
plane, whose height is taken from the surrounding 3D terrain points.

This section of the system is discussed in more detail in Section 2.

1.2.2 Vegetation Classification

The second section of the system takes vision data and the constructed terrain map data
and classifies each section of the terrain into several different classes of vegetation based on
visual appearance. The system performs the following steps:

1. Classification Feature Extraction: A feature descriptor is chosen based on the
colour and texture properties (using a Laplacian pyramid decomposition (Burt and
Adelson, 1983; Simoncelli and Freeman, 1995)) of small patches of vision data. The
descriptor is applied to the vision data patch associated with each area in the con-
structed environment map.

2. Identify Training Examples: A human weed expert is employed to identify differ-
ent species of vegetation in a ground based-survey of a small portion of the operating
area using a handheld GPS receiver. These examples are then located in both the
collected imagery and the constructed environment map, where patches of the image
data are used as training features for classification.

3. Classifier Training: Based on the training examples of class labelled image patches,
the Logitboost algorithm (Friedman et al., 2000) is applied to construct a classifier
which maps from the colour and texture descriptors applied to each section of the
map to a vegetation class with an associated probability.

4. Map Classification and Verification: The classifier is used to determine the class
of vegetation associated with each area of the environment map, and the associated
class data is projected into the final map visualisation.

This section of the system is discussed in more detail in Section 3.



Figure 2: Overview of Frames of Reference, UAV Localisation and Map States during Land-
mark Observation: Shown are the frames of reference and relationship between the UAV
position, map feature position and relative camera observation vector during a camera-based
observation of the terrain.

2 UAV Trajectory Reconstruction and Map Building

This section describes our approach to processing sensor information collected from the UAV
and the estimation of the vehicle trajectory and 3D structure of the terrain given the data.

2.1 State Vector and Observations

The aim of our trajectory reconstruction and mapping task is to use information from the
inertial sensors, GPS and monocular camera to create a dense feature map of the terrain while
simultaneously estimating the position and attitude trajectory of the UAV. Our estimated
state vector is thus:
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n
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n
2 ,Ψ

n
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n
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This state vector contains three-dimensional vehicle positions pn
1 to pn

K and vehicle three-axis
Euler angles Ψn

1 to Ψn
K , sampled at discrete intervals along the trajectory, where K is the

total number of vehicle poses. The superscript n indicates that the positions are referenced
w.r.t a terrain-fixed navigation frame located at a set point on the surface of the Earth (the



vehicle’s starting location with axes aligned in the North, East and Downwards directions)
and the Euler angles represent the rotations required to represent the vehicle body axis w.r.t
this frame. mn

1 to mn
Nf

are the N terrain feature positions, referenced in the terrain-fixed
navigation frame n. Additionally, the initial velocity vector vn

1 of the UAV is also estimated
due to it’s relationship in the inertial navigation system equations (see Section 2.3.1 for more
details).

Along with the vehicle pose and terrain feature states, the trajectory and mapping algorithm
also estimates δf b and δωb

ib, constant IMU biases, three for the accelerometers and three for
the gyros respectively, and δΨc

b, the misalignment angles of the camera orientation w.r.t the
IMU. Particularly in the case of IMU biases, which change each time the IMU is powered on
(switch on-off biases), these parameters are generally difficult to calibrate for on the ground
before flight.

The sensor observations from the IMU, GPS receiver and monocular camera, used to help
estimate the state x̂, are grouped into the observation vector:

z = [̂f b
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where f̂ b
2 to f̂ b

K are the K − 1 three-axis IMU accelerometer readings, ω̂b
ib,2 to ω̂b

ib,K are the
K− 1 three-axis IMU gyro readings (both referenced w.r.t a vehicle body-fixed frame b). As
a matter of notation, only IMU measurements taken at the time of the second pose [pn

2 ,Ψ
n
2 ]

and onwards are used. pn
GPS,1 to pn

GPS,Ng
and vn

GPS,1 to vn
GPS,Ng

are the Ng GPS position and
velocity measurements respectively, referenced in the n frame, and u1, v1 to uNc , vNc are the
Nc image pixel coordinates of feature observations made by the camera. The relationship
between the different frames of reference and UAV trajectory and map states is illustrated
in Figure 2.

Observations from the IMU and GPS receiver are taken as the raw measurements that come
directly from these sensors, whereas the matched image pixel coordinate measurements of
terrain features are generated from the monocular vision data during a feature extraction
and matching phase described below.

2.2 Vision Feature Extraction and Matching

An on-board monocular camera is used to take images of the terrain below the aircraft
from which observations of point-features in the terrain are made. In this subsection we
describe the feature extraction and matching process, in which point feature observations in
the camera frame are made and related to terrain features in the environment. The feature
extraction and matching process performs the following steps:

1. Offline Camera Calibration: Before flight, the intrinsic parameters and lens dis-
tortion parameters for the camera system are computed in an off-line procedure
(Bouguet, 2009). The lens distortion parameters are applied to undistort each frame
from the camera before any other processing occurs.



2. Initial Feature Extraction: Point features in the vision data are extracted in the
first vision frame using a corner point extractor (Shi and Tomasi, 1994) which finds
pixels in the image with large eigenvalues in their associated local intensity gradient
matricies.

3. Tracking Features Across Frames: After features have been located in the first
image, the algorithm moves forward through each subsequent frame and attempts to
track the location in the new frame of good features found in the last frame. For
each point feature located in the previous frame, the corresponding position of the
feature in the next vision frame (assuming at least some overlap in the imagery)
is computed using a Lucas-Kanade (LK) Tracker (Lucas and Kanade, 1981) which
tracks the feature using local intensity gradient information.

4. Robust Outlier Rejection using Epipolar Constraints: The result of the LK
tracker is a set of potential tracks of the features from the previous frame, but con-
taining a significant number of outliers and bad matches. These outliers are detected
and rejected by using the set of matches to robustly calculate the fundamental matrix
between the frames using a RANSAC method (Torr and Murray, 1997). The funda-
mental matrix defines the epipolar geometry between the two frames; those feature
matches found to violate the epipolar constraint (within a margin of error defined in
the images) are rejected. A record of the same feature matched over multiple frames
is kept when such occurs, and thus a large number of features are tracked over more
than two frames while the feature remains in the field of view of the camera.

5. New Feature Extraction: After a list of good feature tracks has been found in
the current frame, more point features are extracted using the corner point extractor
(Shi and Tomasi, 1994), but where the search in the image is limited to areas where
no feature tracks have been found. This provides a way of extracting new features as
they come into the field of view of the camera, in the parts of the image that contains
no overlap with previous frames.

The process assumes that there is a reasonable amount of overlap in the images (i.e. that
the movement of features from one frame to the next is small w.r.t the whole image frame).
In practice, the approaches works well for our experimental setup described in Section 4.1
where apparent feature movement from one frame to the next varies from about 100 to 300
pixels in a 1024x768 pixel image. To this end features also stay within the field of view
for approximately 3-7 frames and where tracking performs correctly, each observation will
be associated with a single terrain feature. An example of the process in our motivating
application is presented in Section 4.2.1. The resulting list of feature locations in each image
frame along with a record of which features correspond to each other and thus to the same
point in the terrain is kept and used in the trajectory and mapping estimation as described
in the sections below.

2.3 Sensor Models for Bundle Adjustment

Our approach to estimation of the state vector described in Equation 1 using the observations
from the IMU, GPS and monocular vision camera encapsulated in Equation 2 is based on
maximum-likelihood; that is we want to estimate the optimal state vector x̂ which most



probably generated the sensor measurements recorded, subject to the assumed levels of error
and noise in each sensor. In order to perform this estimation task, we firstly require a set of
non-linear relationships that describe the expected sensor observations to be made given a
particular value of the states/parameters, otherwise known as sensor model equations. The
following subsections describe these relationships for the IMU, GPS receiver and monocular
camera point feature observations.

2.3.1 Inertial Sensor Model

The on-board IMU provides high-frequency measurements of the body-fixed specific force
and rotation rates of the vehicle which can be used to dead-reckon the position, velocity and
attitude of the vehicle forward in time using the following equations:

pn
k = pn

k−1 + vn
k∆t (3)

vn
k = vn

k−1 + [Cn
b (̂f b − δf b) + gn]∆t (4)

Ψn
k = Ψn

k−1 + [En
b (ω̂b

ib − δωb
ib)]∆t (5)

where vn is the terrain-fixed navigation frame vehicle velocity, ∆t is the time difference
between the k and k−1 discrete time segments and gn = [0, 0, g]T is the vector of acceleration
due to gravity in the local navigation frame (g = 9.81m/s2). En

b is the body to navigation
frame rotation rate transformation matrix and Cn

b is the Direction Cosine Matrix (DCM)
transformation from the body to the terrain-fixed navigation frame, both matricies being
a function of the Euler angles. The inertial navigation equations in the vehicle process
model states are simplified so as to treat the local navigation frame as an inertial frame of
reference by ignoring the small coriolis and centripetal accelerations and rotation rate which
are incurred by the Earth’s rotation (i.e. an inertial frame mechanisation (Titterton and
Weston, 1997)). This approach is validated by the fact that the vehicle operates over a small
geographic area of the Earth’s surface (with respect to the curvature of the earth) and for

a short amount of time (relative to the rotational period of the earth). The vectors f̂ b and
ω̂b

ib are the accelerometer specific force vector reading and gyroscope rotation rate reading
respectively, and δf b and δωb

ib are the accelerometer and gyro biases respectively.

Equations 3 to 5 can be rearranged to represent the IMU observations as a function of the
pose states:
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where Cb
n = (Cn

b )T is the DCM transformation from the n frame to the b frame. Note that
in this form we have eliminated the velocity term by substituting Equation 3 into Equation
4. In this form each measurement from the IMU can be thought of as connecting subsequent
vehicle poses together, where each measurement from the gyros applies a noisy constraint
over two subsequent sets of vehicle Euler angles and each accelerometer measurement applies
a noisy constraint over one set of Euler angles and three subsequent vehicle positions.

Since accelerometer observations are related to three subsequent poses (rather than two as
in the gyro case), the representation requires the estimation of two more positions than the



number of accelerometer measurements, and thus position state pn
k−2 in the case that k = 2

is unobservable in most cases. In order to overcome this, the first accelerometer measurement
f̂ b
2 is related to the pose state via the alternative version of the IMU sensor model equation:

f̂ b
2 = Cb

n

1

∆t2
[pn

2 − pn
1 + ∆tvn

1 + ∆t2gn] + δf b (8)

which relates the measurement to the first two position states and the initial velocity of the
UAV.

2.3.2 GPS Sensor Models

A GPS receiver on-board the vehicle makes observations of the vehicle position and velocity
which are subsequently referenced to the terrain-fixed navigation frame n. The position
observations are thus related to the estimated vehicle position states via the GPS position
observation model equation:

pn
GPS,k = pn

k + Cn
b l

b
GPS (9)

where pn
k is the position of the vehicle at time segment k (when the GPS observation is

made) and lbGPS is the lever-arm of the GPS antenna w.r.t the IMU.

Assuming the time between two estimated position states is small, the GPS velocity mea-
surement can be related to two subsequent estimated vehicle position states via the GPS
velocity observation model equation:

vn
GPS,k =

1

∆t
[pn

k − pn
k−1] (10)

where ∆t is the time difference between k and k − 1 and the velocity induced by the GPS
lever-arm due to UAV rotation rate is negligible and assumed zero.

2.3.3 Monocular Camera Sensor Models

Assuming pixel referenced observations of terrain features have been extracted and matched
to a given terrain feature (as described in Section 2.2), the jth feature observation is made
up of the uj and vj pixel coordinates in the image which are related to the estimated state
vector x̂ via the pinhole camera model observation equation:

uj = f̂u(
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j
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j

) + û0 (11)

vj = f̂v(
zc

j

xc
j

) + v̂0 (12)

where xc
j, yc

j and zc
j are the cartesian coordinates of mc

cf,j the feature position w.r.t the

camera, measured in the frame c, fixed to the monocular camera. f̂u, f̂v, û0 and v̂0 are the
pinhole camera model parameters (the horizontal and vertical focal lengths and principle
point) of the monocular camera. These parameters are calculated in an offline calibration
procedure (Bouguet, 2009).

The feature position vector w.r.t the camera, mc
cf,j, is related to the other state vector states

via:
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b])Ĉ
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where the jth observation is found to correspond to the ith feature (mn
i ). Ĉc

b is the initially
guessed DCM transformation from the body-fixed frame b to the camera-fixed frame c. This
value is guessed from the mechanical mounting of the camera to the UAV and is expected
to be accurate to approximately ±10o of rotation. [×δΨc

b] is the skew symmetric matrix of
δΨc

b, the misalignment angles of the camera w.r.t the body frame. The relationship between
the actual (Cc

b), guessed and misalignment angles of the body to camera frame rotation is
given via:

Cc
b = [I3x3 + [×δΨc

b]]Ĉ
c
b (14)

Ψc
b forms part of the estimated state vector x̂ as described in Section 2.1.

lbcam is the lever-arm of the camera w.r.t the IMU. It should be noted that we have chosen
to estimate the errors in the camera angular alignment but not the lever-arm, as the size
of the lever-arm relative to the range to features on the ground is small. Any errors in the
measured lever-arm have an insignificant effect on the mapping accuracy, whereas errors in
the camera angular alignment can cause significant mapping errors.

2.4 Initial Estimates for Bundle Adjustment

In order to produce an maximum-likelihood estimate of the state vector x̂, an iterative
bundle adjustment method is applied as described in Section 2.5 below. This procedure
requires a rough initial guess of the state vector x̂ in order to converge towards the correct
solution. The following subsections describe the methods for generating a initial estimate
of the UAV trajectory and mapping state vector presented in Section 2.1. These methods
provide a quick and rough estimate of the initial state which does not account for all of the
sensor observations and does not account for the joint estimation of UAV trajectory and
mapping states; the aim is thus simply to provide a starting point for the bundle adjustment
algorithm which will go on to provide the final result.

2.4.1 Initial Trajectory Estimates and Sensor Parameters

The initial estimates for the vehicle position (pn
1 to pn

K) and attitude (Ψn
1 to Ψn

K) states are
made by applying an EKF to sequentially estimate these states using the IMU and GPS data.
The initial position, velocity and attitude of the UAV while on the ground and stationary
before takeoff is used as an initial state for the EKF, and is computed via the GPS data,
accelerometer/tilt data and an external heading measurement (made by a hand-held compass
on the ground). An EKF prediction model, is used to predict forward the position, velocity
and attitude estimate from timestep k to k + 1 using the inertial navigation mechanisation
in Equations 3 to 5. At the time of GPS position and velocity observations, the estimates
are corrected in an EKF update stage using the sensor models in Equations 9 and 10. For
more details on how this technique is applied, the reader is referred to (Kim et al., 2003;
Sukkarieh et al., 2003) but the details are omitted here due to space constraints.

In addition to the initial UAV trajectory states, initial guesses for the IMU biases (δf b and
δωb

ib) and camera misalignment δΨc
b are all set equal to zero.



2.4.2 Initial Feature Triangulation

In order to provide an initial guess of the positions of each point feature in the map, an
initial feature triangulation routine is performed using the associated feature observations
and the initial poses estimated by the IMU-GPS EKF procedure discussed above. For each
set of tracked pixel features that correspond to a single map location, we group together all
camera pixel observations. For each of these observations we calculate the unit vector ūn

j

of the feature observation direction and the position from which the observation was made,
w.r.t the local terrain navigation frame n:

ūn
j = Cn

b Ĉ
b
cm̄

c
cf,j (15)

yn
j = pn

k + Cn
b l

b
cam (16)

where pn
k and Cn

b are taken from the IMU-GPS EKF solution in Section 2.4.1 and m̄c
cf,j is

the unit vector of the feature position w.r.t the camera measured in the camera frame, which
is calculated using the pixel coordinate of the observation:

m̄c
cf,j = [

1

r
,
uj − û0

rf̂u

,
vj − v̂0

rf̂v

]T (17)

r = 1 + (
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f̂v

)2 (18)

By calculating the dot product between the every combination of two unit vectors, we find
the two unit vectors with the greatest angular separation (i.e. largest dot product) and use
these two measurements to calculate the feature position mn

i,init as the closest point between
the two feature observation lines-of-sight:

mn
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2
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2 ) (19)
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1 |2
(21)

If the minimum distance between the two line of sights is above a given threshold, an error
is assumed to have occurred in the matching process and the feature information is rejected
before bundle adjustment. Otherwise, the resulting guess of the initial feature position mn

i,init

is then added to the initial state vector x̂ and refined during the estimation procedure.

2.5 Non-Linear Least Squares and Bundle Adjustment Procedure

The aim of our UAV trajectory and map reconstruction algorithm is, using the observation
vector z, to estimate the state vector x̂ which minimises the weighted Sum of Squared Error
(SSE) cost function:

f(x) =
1

2
(z− h(x̂))TR−1(z− h(x̂)) (22)

where R is the covariance of the expected noise on the observations contained within the
observation vector z and h(x̂) is the predicted value of our observation vector given a pa-
rameter estimate x̂. The function h(.) is composed of the set of nonlinear functions that



relate the estimated parameter values to the different sensor observations made as described
in Section 2.3.

This type of problem formulation (generally referred to as non-linear least squares) is typi-
cally solved by a numeric optimisation method which chooses an initial state estimate and
iteratively moves towards the state vector that minimises the cost function in Equation 22 by
making linear approximations of the non-linear sensor model h(.). Commonly used optimi-
sation methods include Newton’s method, the Gauss-Newton approximation (Nocedal and
Wright, 2006) and the Levenberg-Marquardt algorithm (which is commonly used in vision-
based bundle adjustment (Triggs et al., 2000)). In our approach we use a Gauss-Newton
approximation (by using the information matrix and information vector) due to its relatively
fast computation time and convergence properties.

Moving on from an initial state estimate, at each iteration, the Jacobian matrix of the
composed sensor model function h(.) is evaluated using the last state estimate x̂:

∇H =

(
∂h(x)

∂x

)

x=x̂

(23)

The jacobian matrix is then used to compute the information matrix Y and information
vector y:

Y = ∇HTR−1∇H (24)

y = ∇HTR−1(z− h(x̂)) (25)

from which the estimate is updated:

x̂ = x̂ + δx̂ (26)

where δx̂ is the solution to the linear system:

y = Yδx̂ (27)

The iteration is performed until the euclidian norm of the vector δx̂ falls below a specified
threshold, at which point the algorithm has converged on a state estimate.

The bundle adjustment procedure thus performs the following steps:

1. Initial Sensor Processing and Initial State Estimates: The total observation
vector z (Equation 2) is constructed using the collected sensor information and ex-
tracted and matched vision features. The initial estimate for the total state vector x̂
(Equation 1) is computed based on the sensor data as described in Section 2.4.

2. Construction of the Predicted Observation Vector h(x̂) and Jacobian Ma-
trix ∇H: Given the latest state vector estimate, at each iteration, the observation
Jacobian matrix ∇H is evaluated by computing the Jacobians of the non-linear func-
tions for the IMU data in Equations 6 and 7, GPS data in Equations 9 and 10 and
camera data in Equations 11 and 12 w.r.t the estimated state vector x̂. Additionally
to the calculation of ∇H, the sensor model Equations 6, 7, 9, 10, 11, 12 and 13 are
used to compute the predicted vector of observations (i.e. h(x̂)) from the current it-
eration of our estimated state vector x̂. The jacobian matrix ∇H is very large (based
on the large dimensions of the vectors x̂ and z), but has a large degree of sparsity;



sparse matrix methods are thus used to store ∇H as a sparse, column-compressed
matrix.

3. Non-linear Least Squares Solving: Once ∇H and h(x̂) have been computed for
the current iteration of the estimator, the information matrix and information vec-
tor are calculated using Equations 24 and 25. The state update vector δx̂ is then
computed through the solution to Equation 27 which is solved using sparse matrix
techniques. The rows and columns of the information matrix and vector are per-
muted using an approximate minimum degree ordering (Amestoy et al., 1996). Sparse
Cholesky decomposition (Anderson et al., 1999) is performed on the permuted matrix
term and eventually used to solve for δx̂. A new estimate for the state vector x̂ is
then computed using Equation 26. The norm of the state update vector (|δx̂|) is
then computed; if this value is smaller than a specified tolerance value, the bundle
adjustment scheme has converged to a solution and the procedure is finished, other-
wise further iterations of the algorithm are performed by returning to step 2 with the
updated state estimate.

2.6 Terrain Mosaicing and Visualisation

In order for the constructed map information to be useful for potential human-users of the
system, a visualisation of the data is created through the construction of a photo-mosaic
which is built by projecting each image of the terrain captured by the camera on to a 2D
map of the environment based on the UAV trajectory information and the terrain height
information provided by the terrain feature map.

Given the calibrated intrinsic parameters of the camera, one can compute the camera frame
unit vector directions of the pixels corresponding to the four corners of the captured image
(defined by [m̄c

1, m̄
c
2, m̄

c
3, m̄

c
4] where the subscript defines the corner number) using Equations

17 and 18. In this case, the pixel coordinates uj and vj for the four corners are given by

corner1 → uj = 0, vj = 0

corner2 → uj = W − 1, vj = 0

corner3 → uj = 0, vj = H − 1

corner4 → uj = W − 1, vj = H − 1

where W is the width of the image in pixels and H is the height of the image in pixels.
Given the position and orientation of the UAV at the time of image capture, these unit
vector directions can be transformed from camera-frame to navigation-frame coordinates
(i.e. [m̄n

1,j, m̄
n
2,j, m̄

n
3,j, m̄

n
4,j]) using Equation 15. Given the expected downwards position

coordinate of the terrain directly below the UAV, pz,ground, and the downwards component
of the position of the UAV, pz, (both available from the bundle adjusted estimate), the
distance from the ground plane to the UAV h is computed as:

h = pz,ground − pz (28)

In this case, the ground height pz,ground is computed by averaging the height of all mapped
terrain features within a given area of the terrain directly below the vehicle, in order
to arrive at a single value. Given h, the north (mn

x,1,j,m
n
x,2,j,m

n
x,3,j, m

n
x,4,j) and east
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y,4,j) components of the ground locations corresponding the pixels in

each of the four corners of the image can be calculated for each corner via:
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where the subscripts x, y, z are used to indicate the north, east and down components of
vectors in the navigation frame, the subscript k is used to indicate the corners, 1 to 4, and
yn

j is the position of the centre of the camera lens when the image was taken, computed
using Equation 16. Once the ground position of the pixels in the four corners of the image
are known, the remaining pixels in the image can also be projected on the ground plane
through 2D linear interpolation between these points, and thus the entire image is projected
onto the ground plane.

This procedure is repeated for each of the camera frames, until all frames are projected onto
a single mosaic. The method accounts for variations in the ground height over the distance
of the map, however it assumes that the ground plane is relatively flat across the distance
of the camera footprint, and thus can cause some misalignment between frames when the
ground height varies sharply (i.e. cliffs or step hills). In applications where variations in
the terrain are great, complete 3D texturing of the terrain feature map (Johnson-Roberson
et al., 2009), using the 3D point feature map built in our approach, is an alternative option
for map visualisation. It was found in our experimental application that the ground was
relatively flat, thus producing visually consistent mosaic maps in most cases.

3 Vegetation Classification

We have implemented a machine learning vision approach to classify plant species in the
UAV imagery based on colour and texture descriptors. An vision-spectrum approach is
unconventional for agricultural mapping because the level of detail needed for reliable visual
identification of plant species is not usually available from satellite and manned aircraft
remote sensing. In our case it is made feasible by the spatial resolutions of up to 4cm/pixel
acquired by the low-flying UAV, at altitudes of approximately 100m from the ground.

Visual identification of natural objects is a challenging problem due to variations in illumina-
tion, viewing angle and even in appearance between individuals of the same class. Shape and
texture properties have been used successfully for classification of weeds in closely managed
environments such as crop fields or orchards (Lamb and Lamb, 2002; Bajwa and Tian, 2001;
Ye et al., 2007; Alchanatis et al., 2005), but in this problem we are dealing with irregularly
distributed species over a natural environment.

We formulate the classification and post processing steps to generate sparse point labels of
tree crowns. This compact representation is desired for overlaying labels onto the recon-
structed imagery, and to enable further spatial modelling of this data as a future endeavor.



3.1 Quantitative Feature Descriptors

Instead of using the raw pixels of an image directly as inputs to a classification algorithm, it
is more robust to extract a set of visual features that quantify appearance properties such
as colour and texture in an image.

There have been a large number of texture descriptors proposed in the fields of computer
vision and pattern recognition, many of which have been applied to plant species classification
from digital photographs. Statistics of co-occurrence matrices (such as energy, homogeneity
and inertia) have demonstrated promising results in foliage classification (Yu et al., 2006;
Samal et al., 2006), but this type of approach has fallen out of popularity in favour of
descriptions that naturally extend to multiple scales and orientations. Gabor filters are
a class of quasi-periodic, oriented filters that can be convolved with an image to obtain
responses analogous to the processing that occurs in a human visual cortex. Banks of Gabor
filters have been coupled with machine learning algorithms such as support vector machines
to classify vegetation (Tang et al., 1999; Tang et al., 2003; Manjunath and Madden, 1996).
Alternatively, pyramid decompositions or frequency space discrete wavelet transforms may
be applied to decompose an image pattern(Chang and Kuo, 1993; Li and Shawe-Taylor,
2005).

Because the aircraft’s viewing angle and altitude remain relatively stable, we primarily re-
quire a description of appearance that is invariant to translation. We also desire it to be
insensitive to lighting angle and small changes in perspective.

From the large choice of texture measures available, we have applied a feature extraction
procedure based on a colour space transform, Laplacian pyramid decomposition (Burt and
Adelson, 1983; Simoncelli and Freeman, 1995) and block statistics. As a first stage of
processing, the red-green-blue colour imagery is transformed into a new colour-space to
better indicate shading and colour. This was originally intended to be a Hue-Saturation-
Value representation, however it was found that hue varied little over different types of
vegetation, but varied greatly in regions of low saturation, where it is highly sensitive to
the actual pixel values. Due to these problems with the behavior of the hue component we
instead use a Luminance-Chrominance Red-Chrominance Blue (YCrCb) colour-space which
describes the colour-space using luminance (Y) and red (Cr) and blue (Cb) chrominance.

Following this transformation, a Laplacian pyramid implementation was used to decompose
the image into multiple channels of increasingly coarse detail (Heeger and Bergen, 1995; Burt
and Adelson, 1983). To construct a Laplacian image pyramid efficiently, the input image is
repeatedly smoothed with a Gaussian convolution filter and differenced from the original to
obtain a layer of detail. The smoothed image is then sub-sampled (usually by a factor of 2
in each dimension) and the procedure repeated recursively. This subtraction of a Gaussian
blurred image is approximately equivalent to convolving with the Laplacian of a Gaussian
filter. Given that the image data is collected at a constant altitude, we do not need to deal
with changes of input resolution.

Because the dimensions of the laplacian pyramid decrease by a factor of two for each layer,
the resulting outputs are at different resolutions. In this implementation, the recursive



Figure 3: Extracting Texture Descriptors from a Digital Image (luminance channel depicted):
The Laplacian pyramid decomposition provides outputs at multiple resolutions, that are then
reduced through blocks statistics to a base resolution that is used with a machine learning
algorithm for classification.

pyramid decomposition was applied 5 times so that a value in the coarsest layer corresponds
to a 16× 16 block of pixels in the original image. We reduce all the higher resolution layers
of the pyramid to this base resolution by taking the mean and variance of their responses
over blocks of equivalent area. Thus in this example we have mean and variance values over
the first 4 layers, and the pyramid values of the last. This yields 9 dimensions per channel,
over three channels giving 27 features at one sixteenth the resolution. A block diagram of
this feature extraction pipeline is shown in Figure 3.

Selection of the number of pyramid layers was a trade between the number of feature dimen-
sions (beneficial to classification), and the resolution of the classifier output, which must be
enough to resolve tree crowns. For our 4cm/pixel imagery, it was found that a 5 level pyra-
mid was a good compromise, corresponding to a physical region of approximately 64× 64cm
per classification output.

3.2 Classification with Logitboost

Once a set of feature dimensions have been extracted from the imagery, it is necessary to
use a classification algorithm to map the appearance in texture space into a class member-
ship probability. In the dataset obtained in our experimental setup described in Section
4.1, consultation with weed experts confirmed that there were four primary species of veg-
etation present in the imagery: Eucalyptus Trees (Eucalyptus coolabah), Prickly Acacia
(Acacia nilotica), Parkinsonia (Parkinsonia aculeata), and Mitchell grass (various species).
Two of these (Prickly Acacia and Parkinsonia) are formally identified as weeds of national
significance in Australia, while the Eucalypt is a native species of interest. Defining the
classification problem, these three types of tree were each assigned a class, and a fourth null



Figure 4: Block Diagram of the Implemented Classifier Training and Inference using a Ma-
chine Learning Framework with Logitboost:

class was used to group shadow, bare earth and grasses. Therefore a multi-class classification
algorithm was required.

Machine learning provides an elegant approach to classification, because the patterns and
ideas that a human expert uses to make a visual classification can be too complex to ex-
press formally. In a supervised machine learning framework, rather than trying to generate
explicit rules or formula, the information necessary for classification can be transferred to
the algorithm through a set of labelled examples. The aim of the classifier design is to best
generalise this information to new unseen datasets.

Various suitable machine learning algorithms are available in the literature for classifying
imagery based on texture and colour features. Neural networks are commonly used for learn-
ing and inference in texture based classification problems (Tang et al., 2003; Yu et al., 2006).
Another common method for texture based classification is the Support Vector Machine
(SVM), which optimises a hyperplane in order to obtain the maximum margin of classifica-
tion (the maximum hyperplane distance to the nearest training datapoint). While the basic
algorithm can only classify linearly separable data, SVM approaches are often extended to
Kernel SVM by mapping the input dimensions to an artificially high dimensional space where
linear separability can be achieved (Amari and Wu, 1999; Boser et al., 1992).



We have employed the Logitboost learning algorithm (Friedman et al., 2000) because of
its natural generalisation to multiple classes, its simplicity to tune (with only two design
parameters - the type of weak learner and the the number of weak learners), and its low
computational complexity for learning and inference. Boosting algorithms are a family of
ensemble learners that use the outputs of multiple base learning algorithms to make stronger
inferences than the base algorithms could achieve individually. These weak learners do
not have to be reliable or robust, but must be guaranteed to at least out-perform random
guessing. Boosting theory then ensures that adding weak learners to the ensemble will better
model the training data (Freund and Schapire, 1999).

Adaboost is a popular boosting algorithm proposed for binary classification (Freund and
Schapire, 1999). It involves training a set of weak classifiers in rounds. A set of weights are
maintained over the training examples so that difficult (most marginally classified) training
cases are prioritised by further refinement. An individual learner can be optimised with
respect to its error on the weighted training set, and because the cases with the lowest
margin are prioritised, the learner usually generalises well in real world conditions.

While AdaBoost is relatively resilient to overfitting, it is particularly susceptible to noisy
examples because it will prioritise outliers highly. In its procedural form, it does not gener-
alise naturally to multiclass classification and instead approaches such as pair-wise classifiers
have been proposed (Freund and Schapire, 1997). Instead, we employ the LogitBoost algo-
rithm (Friedman et al., 2000) that was inspired by a statistical perspective of boosting as
the process of fitting an additive model from the weak learner outputs.

In the LogitBoost algorithm, weighted outputs of weak classifiers are added to the ensemble
in a forward stagewise manner to minimise a logistic loss function (Friedman et al., 2000).
Each additional weak learner is optimised with respect to the loss function of the ensemble
while the parameters of previous learners are held fixed. Because LogitBoost is formulated as
an additive model (a weighted sum of weak learner outputs), it can be elegantly generalised to
a multi-class problem by using the symmetric logistic transformation specified in (Friedman
et al., 2000). In our implementation, training data is provided to the boosting algorithm as
pairings (x1, y1), ..., (xn, yn) where y specifies the class label, and xi = [xi1, xi2, ..., xid] is a d
dimensional feature vector extracted from each block of the imagery. We assume that if a
suitable label does not exist (we are mapping a new species, or if the species has changed
appearance due to seasonal factors), an expert will label a small representative fraction of the
data. The weak learners we are boosting are decision stumps, one-level decision trees that
threshold one of the input dimensions, a relatively common choice for boosting (Friedman
et al., 2000).

When conducting inference, the LogitBoost algorithm provides likelihoods for each class,
which we can use to make a classification decision. In this work, we simply took the highest
likelihood class as the classification decision for every input feature set xi.



Figure 5: Example of Image Processing to Obtain a Classification Decision Bitmap: For
each class, a binary one vs all decision (left) is analysed to identify connected regions and
their areas. Regions of area A < Tl are dismissed as noise. Regions of area Tl ≤ A < Th

are labelled at their centroids. Regions of area A ≥ Th are partitioned by a square grid with
cell area Th, and each of the sub-regions labelled. This leads to a set of point labels over the
original imagery (right).

3.3 Image post-processing

Once the classifier had been tuned and validated using the manually labelled training data,
it was re-trained using all available labels (the entire training set), and applied to the rest
of the imagery collected by the UAV on a per-image basis. The imagery, recorded in three
channels of 1024× 768 pixels, was passed through the feature extraction pipeline of Figure 3
which reduces the resolution by a factor of 16 to 64×48, and produces 27 feature dimensions
(means and variances of four pyramid layers, and the values of the coarsest resolution layer,
for each of the three channels).

In each frame, each of the feature vectors were independently classified to create a bitmap
of class decisions (hereafter the decision bitmap). While this bitmap allows us to view the
classifier output on a frame by frame basis, it is not ideal for visualisation and is not a
compact representation of the data. We would rather project this data over the full terrain
reconstruction, while still being able to see the colour aerial imagery and the ground truth
labels. To achieve this, sparse decision labels were extracted from the decision bitmaps.

A simple heuristic procedure was implemented to identify tree crowns in the classified im-
agery. A binary classification (class c vs all others) was formed for each class in each image.
Connected regions of these binary images were identified, and their area counted. We did
not want to label very small regions such as single pixels as they were likely to be noise. On
the other hand, very large regions were likely to represent many individual plants forming
a connected canopy. This led to the implementation of two area thresholds Tl and Th. Any
connected region with area A such that A < Tl was rejected as noise and remained unla-
belled. Any region with area Tl ≤ A < Th was visualised by a label at the centroid of the
region. Regions with area A ≥ Th were broken up by a grid of squares with area equal to Th

pixels and each of the resulting regions labelled at their centroids. This pipeline is depicted
in Figure 5, and has been used to visualise classifications over the larger reconstructions in
4.3.2.



Figure 6: UAV and Sensor Payload System: Left, the J3 Cub, a small UAV used to carry
the sensor payload over the designated operating area; right, the sensor payload box carried
on-board the UAV consisting of a tri-axial IMU, GPS receiver, downwards-mounted colour
monocular camera and PC104 computer stack for processing.

4 Results

In this section we present results from both the terrain reconstruction algorithm and vegeta-
tion classifier applied to data collected by a fixed-wing UAV operating over a large farmland
area in Queensland, Australia.

4.1 Experimental Setup

This section provides an overview of the experimental setup including the flight vehicle,
sensor payload used and the environment the vehicle operates within.

4.1.1 Mission Overview

Data was collected over a farmland location in Queensland Australia during several 60 minute
flights of a small UAV, the J3 Cub (see Figure 6) as part of a collaborative project between
the University of Sydney and Meat and Livestock Australia, with the goal of detecting
and mapping infestations of weeds such as Prickly Acacia (Acacia nilotica) and Parkinsonia
(Parkinsonia aculeata). These weeds cost farmers millions of dollars in damages each year
due to losses of productivity and also have a significant impact on the environment by killing
native vegetation and harboring feral animals. Low-cost UAV mapping in this application
has the potential to provide farmers with up-to-date information on the spread of these
weeds over large areas.

The UAV performed several flights, each over adjacent 4000m by 600m areas with a flight
path consisting of overlapping 4km transects along the rectangular area. Logged sensor data
was taken from two of the UAV flights in adjacent areas of the environment and used to



demonstrate the results of the mapping and classification algorithms presented below.

4.1.2 J3 Cub Flight Vehicle

The UAV used to carry the sensor payload is a modified one-third scale J3 Cub, capable
of carrying a payload of 15kg with an endurance of one hour in its current configuration
(see Figure 6). The flight vehicle has an autonomous flight control system that follows an
allocated trajectory over the terrain at a fixed height of 100m above the ground.

4.1.3 Sensor Payload

Vision Camera IMU
Sampling Rate 3.75 Hz Sampling Rate 100 Hz

FOV 28o × 22o Accelerometer Noise 0.05m/s2 (1σ)
Resolution 1024 x 768 pixels Gyro Noise 0.05deg/s (1σ)

Angular Resolution 0.0285 deg Accelerometer Bias Stability ±0.05m/s2

Pointing Direction Downwards Gyro Bias Stability ±0.05deg/s

GPS Receiver
Sampling Rate 5 Hz
Position Error 1m (1σ)
Velocity Error 10cm/s (1σ)

Table 1: Sensor Payload Specifications: The sensor payload consists of an IMU, GPS receiver
and downwards-mounted colour monocular camera.

The vehicle carries a sensor payload consisting of a low-cost IMU, GPS receiver and a
downwards-mounted colour monocular vision camera. Acceleration and rotation rate data
from the IMU is sampled at 100Hz. The GPS receiver computes the earth-referenced po-
sition and velocity of the UAV at 5Hz. Colour vision frames are captured at 3.75Hz at a
resolution of 1024x768 pixels. An onboard PC104 computer is used to log the sensor data,
which is later processed after the vehicle lands. The specifications for each of the sensors in
the sensor payload are shown in Table 1.

4.1.4 Environment and Vegetation

The operating environment is a 6x2km area of land in rural Queensland, Australia. The
terrain is mostly farmland, covered by grass, shrubs and weeds. The environment contains
a large population of Prickly Acacia, an invasive weeds which grows close to the river, with
shrubs varying is size from about 1-3 meters tall, and also small populations of the shaggy,
green weed Parkinsonia (see Figure 7) along with a variety of other Australian native trees
such as Eucalyptus trees.



Figure 7: Two Examples of Invasive Weed Types found in the Mission Area: Left, a typical
Prickly Acacia bush (approx. 1m tall) with fern-like leaves and large spines; right, a typical
Parkinsonia bush (approx. 3m tall) with shaggy, light-green coloured stems.

4.1.5 Ground Truthing

Ground truthing data was obtained on foot using a handheld GPS (with an accuracy of
approximately 5m) to record locations of particular species (see results in Section 4.3.2 for
examples of collected ground truth). This data has also provided information for training
human classifiers in how to interpret the imagery. Four classes were defined for this problem:
Prickly Acacia (PA), Parkinsonia (PK), Eucalyptus (EUC) and a fourth class (NULL) to
represent any grass, mud, shadows or other background features that are not of interest.
A GUI was developed for a user to manually identify 16x16 blocks containing examples of
the above classes. Approximately 1000 blocks were identified and labelled over all of the
visual data, to form an example library for training and cross validation. Frames of imagery
were selected uniformly, and interesting features selected from the images by a human. The
number of examples of each class reflect the relative abundance of each class in the data (see
Table 2).

Class Number of Examples
PA 248
PK 67

EUC 181
NULL 544

Table 2: Number of Training Examples used in Classification for the 4 Different Classes.

4.2 Trajectory and Map Reconstruction Results

This section presents results from the UAV trajectory and map reconstruction system.



4.2.1 Vision Feature Extraction and Matching Results

Figure 8 illustrates an example of the feature tracking process described in Section 2.2 over
two frames. Figure 8 (a) shows the original, undistorted image data for the first frame
and Figure 8 (b) shows the original, undistorted image data for the second frame. The
overlap between the frames is high (each image shares about 80% of the field of view in
common). Figure 8 (c) illustrates the corner points extracted from the first image. Figure
8 (d) shows the tracked positions of the corner points in the second frame using the LK
tracker, where these correspondences are used to compute the fundamental matrix using
a RANSAC method. Figure 8 (e) illustrates the feature tracks that are validated by the
epipolar constraints derived from the fundamental matrix, where Figure 8 (f) illustrates the
feature tracks that are rejected as outliers. The tracks are illustrated by a line drawn between
the original point feature location and the tracked point feature location, but shown on the
one image (i.e. the optical flow of the feature tracks).

It can be seen from the illustration of accepted feature matches in Figure 8 (e), that the
optical flow of the features has been estimated consistently across the image; the tracks
account for the forward motion along with a small amount of rolling rotation of the UAV;
this type of optical flow is consistent with other frames throughout the flight.



Figure 8: Example of Vision Feature Extraction and Matching Process: (a) the original
image for frame 1, (b) the original image for frame 2, (c) features extracted from frame 1,
(d) extracted feature locations tracked from frame 1 to frame 2 using an LK tracker, (e)
correct feature matches illustrated as optical flow lines within frame 1, (f) outlier matches
from the LK tracker, detected and rejected using epipolar constraints.



4.2.2 UAV Trajectory and Map Bundle Adjustment Results

Figure 9: Comparison of Initial Map Feature Estimates and Bundle Adjusted Map Feature
Estimates: Shown in red are the initial map feature estimates calculated through triangu-
lation using EKF derived pose information (see Section 2.4.2). Shown in blue are the final
map feature estimates after the bundle adjustment procedure (see Section 2.5). Also shown
are the initial and final estimates of the UAV trajectory over the map and GPS position
observations.

Figure 9 shows an overhead view of both the initial estimates and final bundle adjusted UAV
trajectory and map feature points for an isolated section of the first flight trajectory and
terrain map. Also shown are the GPS position observations. In this example, the bundle
adjustment process was applied over an isolated section of the UAV trajectory and the
terrain encompassing about 3350 UAV poses and 105000 terrain point features. The bundle
adjustment procedure takes 16 iterations to converge from the initial estimate, where each
iteration for this section of the data takes approximately 8-9 seconds using a Intel Core2Duo
T7250 2GHz processor with 2Gb RAM.



Figure 10: Comparison of Vertical Map Feature Estimates in the Initial and Final Bundle
Adjusted Maps: Shown is a north vs. altitude plot of the initial map feature estimates
(shown in red) and the final map feature estimates after the bundle adjustment procedure
(shown in blue). Prior to the bundle adjustment procedure, there is a large deviation in the
height of features between different frames based mainly on errors in the alignment angles
of the camera, UAV attitude errors and triangulation errors. After bundle adjustment, the
errors in the terrain elevation are reduced and a more self-consistent terrain map produced,
from which the height of the terrain can be reliably extracted for use in mosaicing.

Figure 10 shoes a vertical perspective (north vs. altitude plot) of both the initial estimates
and final bundle adjusted map feature points for the same isolated section of the flight
trajectory and terrain map. Prior to the bundle adjustment procedure, there is a large
deviation in the height of features between different frames based mainly on errors in the
alignment angles of the camera, UAV attitude errors and triangulation errors. After bundle
adjustment, the errors in the terrain elevation are reduced and a more self-consistent terrain
map produced, from which the height of the terrain can be reliably extracted for use in
mosaicing.

4.2.3 Map Mosaicing Results

Figure 11 shows results of the mosaicing algorithms presented in Section 2.6. Shown in the
left hand side of the figure is the entire 4000 by 600 meter area mapped out by the UAV
during the first flight. The mosaic is built from approximately 14000 images. The flight path
follows along a dry river bed where an abundance of different vegetation is found including
both native trees and invasive species. The imagery collected covers most of the area where
the small gaps seen in the map occur due to gaps in the coverage of the sensor footprint
that occur when the vehicle roll side-to-side due to occasional wind disturbances. For the
most part, the mosaic is constructed from the initial UAV trajectory and map estimates as
described in Section 2.6 where as the isolated section shown in red has been built using the
refined, bundle adjusted estimates. Shown in the right hand side of the figure is a zoomed-in
view of the section of the mosaic where bundle adjusted estimates are used (corresponding
to the same area seen in Figure 9 above). The zoomed-in view clearly illustrates features of
the terrain such as parts of the dry river bed, grass and different trees.



Figure 11: Final Environment Mosaic: Left, mosaic map of the entire first flight area covering
a distance of approximately 4000 by 600 meters. Right, zoomed in section of the mosaic map
showing areas covered by grass, trees and different types of vegetation. The terrain mapping
and mosaicing systems produce a consistent, geo-referenced map of the environment which
can be used for environmental monitoring.

Figure 12 shows a section of the constructed mosaic and a comparison between the mosaic
constructed using initial UAV trajectory and map estimates (before bundle adjustment) and
the final UAV trajectory and map estimates (after bundle adjustment). The unadjusted
mosaic, although generally spatially correct, shows signs of poorly aligned imagery and
inconsistent mapping due mainly to the errors in the camera to IMU alignment angles, UAV
attitude estimates and poor terrain altitude estimation. The final bundle adjustment mosaic,
demonstrates well aligned imagery and a consistent map (even without any type of texture
blending) due to the improved accuracy of UAV trajectory and map point estimates in the
bundle adjustment process.



Figure 12: Comparison of Mosaics for Initial and Final UAV Trajectory and Terrain Map
Estimates: (a) Section of environment mosaic generated using the initial UAV trajectory and
map feature point estimates before bundle adjustment and, (b) same section of environment
mosaic generated using the final estimates after bundle adjustment. The unadjusted mosaic
shows signs of poorly aligned imagery and inconsistent mapping due to mainly to the errors
in the camera to IMU alignment angles, UAV attitude estimates and poor terrain altitude
estimation. The final bundle adjustment mosaic, demonstrates well aligned imagery and a
consistent map (even without any type of texture blending) due to the improved accuracy
of UAV trajectory and map point estimates in the bundle adjustment process.

4.3 Vegetation Classification Results

This section presents results from the classification algorithms for distinguishing between
different types of vegetation based on their appearance in the aerial imagery.

4.3.1 Cross Validation

A 20 fold cross validation, with randomly assigned folds of 52 examples, was run on the
training data. Our Logitboost/Decision Stump classifier has only one tuning parameter - the
number of weak learners. It is expected that too few learners will give poor generalisation and
inference as there is not enough flexibility in the model to capture sufficient information from
the training inputs. On the other hand, too many learners may lead to model over-fitting
and be detrimental to inference in unseen data. To evaluate this relationship, the classifier
error rate (correct vs incorrect class selection) was plotted against number of learners (Figure
13). The error rate essentially peaks at 150 stumps, and does not improve as more are added
(despite an improvement in the training set performance).

In this data, vision based classification is fundamentally difficult, and some of the imagery is
hard even for a human to classify. Therefore the resulting 20% error rate is relatively good,
especially for a 4 class problem. The confusion matrix (Figure 14) details the nature of the



Figure 13: Performance of the classifier in cross validation vs the number of weak learners
(decision stumps) used. Beyond 100 stumps, the classifier improves performance on the
training set without any improvements in generalisation to the testing set. The performance
limit of the current implementation appears to be a 20% error rate.

classification error when using 150 stumps. The precision (fraction of positive returns that
are correct) for each class and the recall (fraction of each class that is detected) are also
provided along with an F1 score, which is the harmonic mean of the precision and recall and
provides a measure of classification accuracy where 1 is the most accurate and 0 is the least.

The confusion matrix in Figure 14 shows that the classifier is effective at identifying vegeta-
tion/non vegetation (as shown by the high precision and recall of the null class). Likewise, it
is effective at distinguishing between the native Eucalypts and the two woody weed species
in the data, because of the distinctive appearance of the Eucalyptus.

The classifier is less reliable at distinguishing between the two woody weeds Prickly Acacia
(PA) and Parkinsonia (PK) due to their similar appearance in the aerial imagery. Because
of the relative abundance of PA in the training and testing data (and under the flight path),
greater overall reliability is achieved by classifying the marginal cases as PA. Consequently
the classifier has mis-labeled only 18 of the 248 PA examples as PK, while 24 of the 67 PK
were labeled PA. If we wanted to improve the recall of PK at the expense of overall classifier
precision, we could apply a different decision to the logitboost outputs (instead of taking the
highest class probability, we could make a decision that favours PK in the marginal cases
for example).

4.3.2 Classified Map

A section of imagery collected by the UAV was classified, and the extracted labels were plot-
ted over a mosaiced colour image. Figure 15 illustrates both a section of the raw constructed
map during the second flight of the UAV and an overlay of classified regions in the image



Figure 14: Left: Confusion matrix for the classifier output in 20 fold cross validation using
150 stumps. Right: Corresponding precision and recall statistics. High precision and recall
values for the PA, EUC and NULL classes indicate that the classifier can reliably identify
Parkinsonia and Eucalypt, and is also effective at seperating tree from non-tree. However,
the classifier often mis-labels the PK class as the more abundant PA class due to its similarity
in visual appearance (differentiation is even difficult for a human) leading to poor scores for
the PK class.

corresponding to different species of vegetation. Figure 16 illustrates a zoomed-in section
of the classified map and a comparison to ground survey data of the vegetation collected
in the area. Shown with the collected ground truth data is the associated 5m error ellipse
corresponding to the errors in the handheld GPS receiver used to collect the ground truth
data.

In the mosaiced classification data, tree crowns are easy for an observer to identify, and the
classifier has also reliably labelled them with one of the three tree classes. As was expected
from the confusion matrix results of Figure 14, the classifier is effective at identifying Euca-
lypts in the data, probably because its appearance is fairly distinctive in the imagery. We
also know (from ground truthing) that the vast majority of vegetation in the dataset should
be labelled as Prickly Acacia (PA). While most of the Acacia is correctly labelled, the clas-
sifier clearly has difficulty distinguishing between the two woody weeds Prickly Acacia (PA)
and Parkinsonia (PK) in the resolution of data available. Incorrectly classified plants are
often partly labelled correctly and partly incorrectly, suggesting there is scope for improve-
ment from using an object based approach to aggregate features over tree crowns (making
species identification a separate decision from segmentation). Despite the difficulties faced,
the classification algorithm has managed to separate the collected information into the cor-
rect classes in most cases, where the number of incorrect classifications is small enough to
allow a human weed expert to correct for outliers.



Figure 15: Mosaic Map of Classified Vegetation: Shown in the upper image is the raw
mosaic map constructed using the collected vision data and UAV trajectory and map feature
estimates over a selected section of the second flight area. Shown in the lower image is
the same mosaic with classified vegetation overlayed, corresponding to two different weeds
(Prickly Acacia and Parkinsonia) and one native tree (Eucalyptus).



Figure 16: Mosaic Map of Classified Vegetation (Zoomed-in with Ground Survey Overlay):
Shown is a zoomed-in section of the classified map showing examples of the three main classes
of vegetation. The large, sparse circular points indicate the positions and 5m confidence
interval of vegetation identified during a ground survey of the area.



5 Conclusions and Future Work

This paper has presented a framework for integrating low-cost sensor information from an
IMU, GPS receiver and monocular vision camera for building large-scale terrain reconstruc-
tions and classifying different types of vegetation in the environment from an aerial vehicle.
The fusion of IMU and GPS information with the vision data allows for the estimation of
a geo-referenced terrain map that is fixed in translation, rotation and scale. Using generic
monocular vision-based colour and texture descriptors, different types of vegetation visible
in the image data can be distinguished and classified owing to the low-altitude of the UAV
flight. A classification algorithm is implemented based on supervised learning of examples
of different types of vegetation that are provided by a human expert; the resulting algorithm
learns the connection between different classes of vegetation and the vision descriptors. The
classified vegetation is then geo-referenced using the final terrain map and presented to the
user.

The final classification results indicate that the classifier has performed well at distinguishing
woody weeds from native vegetation, however has difficultly in fine discrimination between
different species of weed, due to their similar appearance and relatively small number of
training examples available. These different species are known to have differing tree shape
and size properties which could be used in future work as extra features for classification.
This would require even a higher level of density in 3D terrain reconstruction, perhaps at
the pixel-level of the camera, to identify the shape and roughness of different vegetation.
One avenue for future work will examine the applicability of dense stereo-vision methods
for providing this detail over areas where the classification has located weed species. Future
work will also focus of integrating other spatial information from the map (such as the
relative position of different vegetation w.r.t one another and other landscape features such
as river-beds etc.) to help improve the distinguishable characteristics of difference species.

It is difficult to speculate on the flexibility of our current classifier to changes in lighting
conditions or the seasonal appearance of the vegetation, as time series data is not easily
obtained. If conditions are significantly different, then the same algorithm may be used, but
new training examples must be provided. Future work will examine the effectiveness of the
proposed scheme for data gathered in a variety of different lighting conditions.

Isolated sections of the results from the experimental data show areas of missed coverage
and areas where classification results could be improved by additional quantities of image
data. The application thus demonstrates the benefit for adaptive methods in data collection,
which will be explored in future work. Adaptive data collection requires methods for online
terrain reconstruction and classification where the map is incrementally built while the UAV
is in flight, rather than being performed in a post-processing step. This would then allow
the UAV to target it’s search towards areas of missed coverage and areas of weed infestation,
where the distinction between different weed species is critical.
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