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A High Integrity IMU/GPS Navigation Loop
for Autonomous Land Vehicle Applications

Salah Sukkarieh, Eduardo M. Nebot, and Hugh F. Durrant-Whyte

Abstract—This paper describes the development and implementation
of a high integrity navigation system, based on the combined use of
the Global Positioning System (GPS) and an inertial measurement unit
(IMU), for autonomous land vehicle applications. The paper focuses on
the issue of achieving the integrity required of the navigation loop for use
in autonomous systems. The paper highlights the detection of possible
faults both before and during the fusion process in order to enhance the
integrity of the navigation loop. The implementation of this fault detection
methodology considers both low frequency faults in the IMU caused by
bias in the sensor readings and the misalignment of the unit, and high
frequency faults from the GPS receiver caused by multipath errors. The
implementation, based on a low-cost, strapdown IMU, aided by either
standard or carrier phase GPS technologies, is described. Results of the
fusion process are presented.

Index Terms—Autonomous systems, global positioning system, inertial
measurement unit, Kalman filter, navigation.

I. INTRODUCTION

The commercial development of large autonomous land vehicles in
applications such as open-cast mining, agriculture and cargo handling
requires the corresponding development of high integrity navigation
(localization) systems. Such systems are necessary to provide knowl-
edge of vehicle position and trajectory and subsequently to control the
vehicle along a desired path. The need for integrity in such systems
is paramount: undetected, erroneous, position or trajectory data can
lead to catastrophic failure of the autonomous vehicle.

A growing number of research groups around the world are
developing autonomous land vehicle systems for various applications
(see [2], [4]–[6], and [13] for example). However, few of these works
make explicit the essential need for system integrity that will be
necessary in any future commercial development of this technology.
Further, while many systems use Global Positioning System (GPS)
and inertial technology, there has been no real application to under-
stand, quantify and overcome the issue of failure and integrity in
navigation systems based on these sensor technologies. This paper
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specifically addresses this issue in the context of autonomous land
vehicle applications.

The focus of this paper is on the implementation of fault detection
techniques that increase the integrity of the inertial measurement
unit (IMU)/GPS navigation loop for land vehicle applications. The
implementation processes adopted follows a decentralized data fusion
philosophy and have been developed to ensure modularity. This
ensures that the ability of the loop to detect the occurrence of
faults is not prejudiced by the specific accuracy of the IMU or GPS
sensors employed. This paper begins in Section II by providing the
essential background on IMU and GPS sensor technologies in the
context of sensor faults and the sensors specifically used in this paper.
Section III presents the IMU error model implemented which forms
the basis of the Kalman filter state model. Section IV focuses on
faults, their nature and the means of detection in IMU and GPS
systems. The nature of these faults and the means for detecting them
are described. Section V details the implementation of this system
with respect to the tuning of the filter and the resulting error growth.
Section VI presents the vehicles used to test the loop along with
the effect of the environment on the sensors. Finally, Section VII
provides a series of experimental results that demonstrate the accuracy
and integrity of the resulting system. Conclusions are then provided.

II. SENSORS

The accuracy of the navigation loop is dependent on the accuracy
of the IMU and GPS sensors implemented. The greater the accuracy
of these sensors, the greater the accuracy of the overall navigation
loop. Brief descriptions of IMU and GPS sensors follow. For further
detail on IMU’s refer to [3] and [11]. For GPS refer to [9].

A. IMU

The primary advantage of using an IMU on outdoor land vehicles is
that the acceleration, angular rotation and attitude data is provided at
high update rates. Thus the velocity and position of the vehicle can
also be evaluated. Unlike wheel encoders, an IMU is not affected
by wheel slip, which is encountered by the majority of land vehicle
applications. There are however disadvantages to using an IMU. The
errors caused by bias in the sensor readings accumulate with time
and inaccurate readings are caused by the misalignment of the unit’s
axes with respect to the local navigation frame. These errors will be
discussed in Section IV-A.

The IMU implemented in this work comprises of three accelerom-
eters, three gyros and two pendulum gyros. These sets of sensors
provide the acceleration, rotation rate and tilt of the vehicle respec-
tively, in the body frame, at a frequency of 84 Hz.

B. GPS

The GPS receiver is an external or absolute sensor, thus the
errors in the data it provides are bounded. However, the GPS unit
is a low frequency sensor, thus providing the state information at
low update rates. There are two forms of accurate GPS receiver
technologies implemented in this work: standard differential and
carrier phase differential. High frequency faults arise when the GPS
signals undergo multipath errors. These errors occur when the GPS
signal is reflected off one or more surfaces before it reaches the
receiver antenna. This results in a longer time delay of the signal
and hence affects the fix of the standard differential receiver and
also alters the phase of the signal thus affecting the carrier phase
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differential fix. Another high frequency fault, although it occurs less
often and with less effect, is when the receiver utilizes a different
set of satellites in order to determine the position fix. The accuracy
of the fix is dependent on the geometry of the observed satellites.
Changes in satellite configuration due to blockages of the satellite
view will in turn alter the resulting fix. Both forms of high frequency
faults cause abrupt jumps in the position and velocity fixes obtained
by the GPS receiver.

High frequency faults are therefore environment dependent. An
open area such as a quarry will less likely produce multipath errors
as will a container terminal. Consequently, the tuning of the filter
which fuses the IMU and GPS data is dependent on the environment.

Even with the constant improvement of hardware and software
in GPS technology [8], [12], multipath errors will remain. Only
improvements in rejecting the worst cases have been accomplished.
Slight multipath errors still occur, and a small error of half a meter
is significant when using 0.02 m accuracy.

This work utilizes both the standard and carrier phase differential
systems. The Ashtech G12 is used as the standard differential system,
delivering a position accuracy of 1.5 m and 0.02 m/s in velocity at
10 Hz. The carrier phase differential system is obtained by using the
Novatel RT receivers. An accuracy of 0.2 m and 0.02 m for position
is obtained using the RT20 and RT2, respectively. Both provide 0.02
m/s accuracy in velocity. The data is transmitted at 4 Hz.

III. FUSION

The core of the navigation loop is a Kalman filter which estimates
the position, velocity and attitude errors of the IMU. It accomplishes
this by utilizing the GPS observations in order to determine these
errors which are then used to correct the IMU.

A. Error Model

Due to the small velocities encountered by many land vehicles,
Coriolis and transport rate terms are ignored along with any gravity
anomalies. The velocity, position and attitude error propagation
equations can then be written as [7], [11]

� _vn = An �  n + C
n

b �Ab (1)

� _pn = �vn (2)

� _ n = �Cn

b �!b (3)

where�Ab and �!b are the uncertainties in the accelerometers and
gyros in the body frame (subscriptb) which are then transformed over
to the navigation frame (subscriptn) using a direction cosine matrix
(Cn

b ) [10]. These errors are a summation of the individual errors
which include bias, scale factors, misalignments, and nonlinearities.
Each of these errors can be placed in the state model to be estimated.
For example the bias in the accelerometers can be modeled as constant
errors and the bias in the gyros as Markov processes such that

_bA = bA

_b! = ��b! :

However many land vehicles undergo constant stop and start maneu-
vers. During this stationary period, calibration can be employed and
hence evaluation of the biases can be obtained with great accuracy.
Thus the state model remains as represented in (1) to (3)

� _pn
� _vn
� _ n

=
0 I 0
0 0 An

0 0 0

�pn
�vn
 n

(4)

where I is a 3� 3 identity matrix andAn is the acceleration in
the navigation frame represented in a skew-symmetric form. The

error model is then incorporated in a standard linear Kalman filter
implementing the prediction and estimation stages.

IV. FAULT DETECTION

The correctable faults associated with the IMU/GPS navigation
loop are classified into two groups: the low frequency faults caused by
bias on the sensor readings within the IMU and the errors associated
with the unit’s misalignment, and the high frequency faults due to
multipath errors in the GPS observations.

A. IMU Faults

The acceleration and rotation rate measured by the accelerometers
and gyros respectively is represented as

Ai = Ai + bA + � (5)

and !i = !i + b! + � (6)

whereAi is the measured acceleration of theith accelerometer,Ai

is the true acceleration that should be measured by the accelerometer
and bA is the bias found on this accelerometer. The same notation
is used for the gyros.� represents white noise.

The incremental velocity, position and rotation is then obtained by
integrating (5) and (6)

Vi = Vi + bA t+ � dt (7)

Pi = Pi +
bA t2

2
+ � dt (8)

�i = �i + b! t+ � dt: (9)

As presented in (7)–(9), the bias in the sensors play a major role
in causing drift in the velocity, position and attitude information
provided by the unit. Namely, the bias terms affect the velocity and
attitude linearly with time, and the position quadratically.

As presented in [10] the gyro data is used to update the direction
cosine matrixCn

b . As a result, any drift in angle data caused by
the integration of the gyro outputs will perturb the direction cosine
matrix, causing erroneous acceleration values. By assuming that there
is no bias or noise in the accelerometers, no noise in the gyros and
that there is no angular rotation measured, then if thez-gyro has a
constant bias, the acceleration error of the accelerometer along the
X-axis will be

Ax = Ax sin(b! t):

For small angle increments

Ax = Ax b! t

thus Vx =
1

2
Ax b! t

2

and Px =
1

6
Ax b! t

3
:

(10)

Hence a bias in the gyro will cause an error in the position determina-
tion which will grow with the cube of time. Consequently, the biases
on the gyros play an important role in causing drift in the position and
velocity evaluations. The biases are obtained each time the vehicle
is stationary in order to counteract the changing bias values due to
temperature fluctuations. Alternatively the bias can be estimated and
applied on-line. However, in the current applications the vehicles
undergo frequent stopping. During this time the unit is calibrated,
providing excellent results due to the quality of the pendulum gyros.

The removal of bias in the sensors does not however provide
perfect solutions. This is due to the integration of white noise( � dt)
which places a growing error term on the sensors known as Random
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Walk as presented in (7) and (9). Thus it is not evident what error
value is present at any particular moment. However the standard
deviation of the error due to unity Gaussian white noise at any
particular moment in time is ([10])

�� =
p

t: (11)

B. GPS Faults

The innovation covariance matrix in the Kalman filter, repre-
sents the uncertainty with the innovation, which in turn reflects
the uncertainty in the observed error of the IMU.R(k) is the
observation covariance matrix and represents the noise added to the
innovation covarianceS(k) during each observation. This matrix is
the uncertainty in the GPS fix and hence in the accuracy of the GPS
receiver. However, high frequency faults pose a problem. When an
abrupt jump in the GPS fix occurs, the magnitude of the observation
error will differ largely from the true error. This is reflected in the
estimated error that is evaluated. The correction which results will
cause the IMU to incorrectly follow these jumps in the GPS solution.
Thus before an estimate can be obtained the observation needs to
be validated. The chi-squared distribution test provides a validation
process which utilizes the theoretical properties of the unbiasedness
and whiteness of the innovation sequence

z
T(k)S�1(k)z(k) � &: (12)

Equation (12) is a gating function that describes the probability
concentration under Gaussian assumptions. The value& is determined
prior to the fusion process and represents the percentage probability
that a particular observation lies within an ellipsoid [1]. Once the
innovation and its associated covariance are obtained, the gating
function is implemented, and if the result is less than or equal to
&, then the observation is accepted and the estimate proceeds. Due to
satellite geometry, the GPS fix in the vertical plane is significantly
less accurate than that in the horizontal plane. Thus the fix in North
and East may lie well within the validation region, whilst that of
Down may exceed it and force the result of the gating function
beyond the gamma threshold. Thus a& is chosen to best suit the
environment and the probability region allowed, but by also taking
into consideration that although a larger& will include the vertical fix,
it will also accept erroneous horizontal fixes. To apply more stringent
rules to the fault detection routine each observation element should
be validated individually. Thus if a fault is detected in any state the
whole observation is discarded.

The value of& is usually set to reject innovations exceeding the
95% threshold. Apart from rejecting the erroneous fixes caused by
multipath, the gating function allows the filter to remain optimal.

During the rejection of multipath errors, the fusion process remains
at the prediction stage, and subsequently, the IMU is not corrected.
Thus the risk of the IMU wandering off and missing all GPS
fixes is apparent. As a result, the tuning process of the filter is a
crucial step in the fusion implementation. The process noise matrix,
which represents the inherent inaccuracy of the unit along with the
confidence in its calibration and alignment, needs to be tuned so that
the covariance grows at a rate quick enough to grasp the first available
GPS fix. This is described in the following section.

V. TUNING IMPLEMENTATION

There are two stages in the filter flow, namely the prediction stage
where the predicted IMU errors are always zero and the uncertainty
in such a solution grows with time, and the estimation stage where
the estimates of the IMU errors are obtained by placing a weighting
on the observation. This poses a problem if no observation is obtained
for an extended period of time or if the GPS fixes are rejected due

to errors. During these cases the filter will remain in the prediction
stage and no errors will be evaluated to correct the IMU. Due to the
error characteristics of the IMU this will cause a drift in the states
evaluated by the IMU. The longer the duration of no correction, the
greater the correction on the IMU once a GPS fix is used, which will
then cause large jumps in the IMU indicated states.

As with any Kalman filter process, tuning lies with what values
to place in the state covariance matrix(Q) and the observation
covariance matrix(R). A large Q will imply an inaccurate IMU
error model. During the prediction stage the uncertainty in the IMU
data will grow according to the amount of noise injected. Hence when
a GPS fix does occur there is a greater possibility the IMU will be
corrected using the first available GPS fix irrespective of the accuracy
of this fix. Likewise smallR values will imply accurate GPS fixes
and result in a similar situation. Furthermore, a largeQ value will
cause the IMU to closely follow the GPS fixes. If the GPS fixes have
high uncertainty and hence are noisy, then the corrected IMU will
also be noisy. This is particularly important when implementing low
accuracy GPS units.

Tuning is a delicate adjustment of both theQ andR matrices
along with the employment of the gating function (12), in order to
reject the high frequency faults of the GPS.

Section IV-B discusses how to determine the variances in the
observation matrixR. Determining the values for the state covariance
matrixQ depends on the source of the noise being considered. The
major cause of the errors in the IMU is bias. If these errors are
modeled as white noise then the accuracy of such an implementation
depends on the length of time between two calibrations which in turn
depends on the application. It is necessary to ensure that the window
of time between two calibrations is small enough to account for all
rates of change. Otherwise the biases need to be modeled.

The principle tuning parameters which need to be addressed are the
velocity and attitude values. Placing large uncertainty in the velocity
terms will imply greater reliance on the GPS velocity fixes which
should be implemented if one can guarantee excellent velocity fixes.
This is due to the fact that the velocity terms are reflected in both
the position and attitude evaluations. Furthermore, the more accurate
the velocity terms the greater the dampening on the attitude errors.
Large uncertainties in the attitude values however cause oscillatory
corrections in attitude thus causing the attitude to oscillate as well .
The tuning procedure required for the velocity and attitude values in
order to obtain reliable results is delicate.

VI. EXPERIMENTAL SETUP

A. Vehicles

The navigation loop was implemented on a number of land
vehicles. These include a utility (Fig. 1) and a straddle carrier (Fig. 2).
The distinct advantage of implementing this navigation loop is the
ease with which the sensors are mounted onto the vehicles.

B. Environment

The utility was driven in an open area with occasional building
and tree foliage whereas the straddle carrier is located in a container
terminal at a port. The containers which the straddle carrier has to
pick up are lower than the vehicle. Thus by mounting the GPS aerial
on top of the straddle carrier no multipath errors will occur from these
containers. However, as the straddle carrier passes alongside a quay
crane, multipath errors will occur. Furthermore, if the straddle carrier
passes under the crane then total satellite blockage will occur. Hence
fault detection techniques in a port environment are particularly
important.
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Fig. 1. The utility is one of the test vehicles implemented and is primarily
used as a test bed for the sensors.

Fig. 2. Position and orientation of a 65 ton straddle carrier in a port is
determined using the IMU/GPS navigation loop.

VII. RESULTS

A. Alignment

Fig. 3 presents the fused data using the 0.02 m position and 0.02
m/s velocity GPS technology onboard the utility. The GPS delivers
fixes at 4 Hz while the IMU sampling rate is at 84 Hz. Hence between
any two GPS fixes there are a minimum of twenty IMU samples.
This infers that the prediction cycle of the Kalman filter runs twenty
times faster than the estimation cycle. Fig. 4 is an enhanced view
of the vehicle on two occasions when the vehicle’s initial heading
was incorrect by five degrees. The bottom path portrays the vehicle
slightly after it has begun its journey while the top path presents the
vehicle on the return. The on-line alignment of the IMU has corrected
this error by the time the vehicle returns to the final position.

Fig. 5 is an enhanced view of the velocity of the vehicle at the
final stage of the test. Without any on-line alignment of the IMU the
resulting velocity of the vehicle at the end of the run is presented in
Fig. 6. The velocity in Fig. 6 has a prominent saw-tooth characteristic
as compared to Fig. 5. This is due to the offset in the acceleration.
Between GPS fixes this offset in acceleration causes the velocity of
the vehicle to deviate before being corrected by the next GPS fix.

Fig. 3. Fusion result using the 0.02 m position and 0.02 m/s velocity
technology.

Fig. 4. Enhanced view of the area showing the heading of the vehicle after
an initial error is placed on the heading. The heading is corrected by the time
the vehicle returns.

The offset in the acceleration is due to the inaccurate computed Pitch
angle of the vehicle. Thus, Figs. 4 and 5 demonstrate how important
the on-line alignment is.

B. GPS Fault Detection

Fig. 7 presents the fused result of the navigation loop onboard a
straddle carrier at a port. This result implements the 1.5 m position,
0.02 m/s velocity GPS sensor. The GPS provides fixes at 10 Hz hence
there are approximately eight prediction cycles per estimation cycle.
The vehicle starts in position 0 mNorth, 0 m East and moves in a
counter clockwise direction. The vehicle firstly passes around some
containers before approaching a crane indicated in the lower right
portion of the figure. As the vehicle approaches the crane multipath
errors occur until the vehicle reaches a stage where the GPS receiver
cannot locate any more satellites because the vehicle is under the
crane. At this stage no GPS fixes occur. As the vehicle departs from
beneath the crane, slight multipath errors still occur. The multipath



576 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 15, NO. 3, JUNE 1999

Fig. 5. Enhanced view of the velocity of the vehicle at the end of the run
with attitude correction.

Fig. 6. Enhanced view of the velocity of the vehicle at the end of the run
without attitude correction.

errors stop once the vehicle has reached the position�68 m North,
18 mEast. Fig. 8 is an enhanced view of this faulty region. The filter
rejects the incorrect GPS fixes until the end of the faulty region where
there is a slight adjustment since the uncertainty in the IMU solution
is, at this stage, greater than that of the GPS fix. During the faulty
portion of the trajectory the filter remains in the prediction stage and
the IMU runs alone. Furthermore the on-line alignment algorithm
has aligned the IMU such that the unit is accurate to complete the
path whilst there are no GPS fixes. During tuning greater accuracy
was placed on the velocity observations as compared to the position
observations. The values used are the position and velocity accuracies
as determined by the specifications of the GPS unit.

Fig. 9 presents the fused result with the same tuning parameters
however with no multipath rejection. Without fault rejection the
innovations not only exceed the two sigma bound but the fused result
closely follows the GPS fixes, creating a noisy fusion result. The
filter can be tuned so as to place less weighting on the observations.
This is accomplished by increasing the accuracy of the model by

Fig. 7. Position of the straddle carrier as it maneuvers around containers
before driving under a quay crane.

Fig. 8. Before the vehicle approaches the crane multipath errors occur. These
GPS fixes, however, have been detected as faults and hence are not used as
observations and the IMU is not inaccurately corrected.

placing smaller covariances in theQ matrix. Fig. 10 presents the
fused result with such an implementation and Figs. 11 and 12 are the
corresponding position and velocity innovations. Although Fig. 10
would closely resemble the true fusion result, the innovations judge
it to be unacceptable. By not implementing any GPS fault detection
techniques not only is the filter sub-optimal since the innovations lie
beyond the two sigma bound, but incorrect error estimates will be
obtained. Thus if for some reason the GPS was shut off during the
multipath region the IMU would have been inaccurately corrected and
proceeded with incorrect states which is detrimental to the integrity
of the system.

VIII. C ONCLUSION

With the realization of the potential for many land service vehicles
to become either semi or fully autonomous the need for highly
accurate, reliable and robust navigation systems need to be developed.
This is where the IMU/GPS navigation loop discussed in this paper
fits into all three categories.
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Fig. 9. With the same tuning parameters, however, with no fault detection
routines the IMU closely follows the GPS multipath errors.

Fig. 10. With no GPS fault detection, the path of the vehicle can be made
to resemble the true path by placing greater accuracy in the state model and
hence in the IMU. Thus less weighting is placed on the GPS fixes.

The observable and correctable faults associated with this naviga-
tion loop were classified into two groups: the low frequency faults
of the IMU; and the high frequency faults of the GPS sensor.

The low frequency faults were associated with the biases found
in the accelerometers and gyros within the unit. However, due to
the constant start and stop maneuvers which these land vehicles
undertake, calibration of the unit during this period is all that is
required to determine these biases. It was demonstrated that if the
biases were not removed from the gyros, the position error would
increase with the cube of time. However, even when the biases are
removed, the integration of the noise on the sensors would cause
drift in the evaluation of the states. Thus the GPS sensor is used to
constantly correct the IMU and remove these errors.

The high frequency faults of the GPS are predominantly caused
by the reflection of the signals from surrounding objects known as
“multipath.” Hence the GPS fixes have to be constantly monitored
in order to determine if they are at fault. The validation procedure
implemented uses the innovations and their associated covariances

Fig. 11. The position innovations show that the filter is behaving
sub-optimally even when it is tuned to place little emphasis on the GPS
fixes.

Fig. 12. The velocity innovations further magnify the suboptimality of the
filter when it is tuned to seemingly reject multipath errors.

evaluated by the filter to determine the whiteness and unbiasedness
of the innovations. It was stated that the GPS fixes do not have
the same accuracy in the horizontal plane as they do in the vertical
because of satellite geometry. Hence the validation was applied to
each state separately in order to apply more stringent tests.

With fault detection applied to remove any inaccurate GPS fixes,
the fusion of the two sensors not only corrects any errors in the IMU
but also aligns the unit as the vehicle moves even if, as presented in
the results, the initial heading of the vehicle is inaccurate.

Thus it has been shown that the IMU/GPS navigation loop is
an ideal candidate for land vehicle applications if fault detection
techniques and on-line alignment are implemented.

REFERENCES

[1] Y. Bar-Shalom and X. Li,Estimation and Tracking—Principles, Tech-
niques and Software. Norwood, MA: Artech House, 1993.

[2] J. Borenstein, H. R. Everett, L. Feng, and D. Wehe, “Mobile robot
positioning sensors and techniques,” inJ. Robot. Syst., vol. 14, no. 4,
pp. 231–249, 1997.



578 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 15, NO. 3, JUNE 1999

[3] K. R. Britting, Inertial Navigation System Analysis. New York: Wiley,
1971.

[4] R. Chatila, S. Lacroix, S. Betge-Brezetz, M. Devy, and T. Simeon,
“Autonomous mobile robot navigation for planet exploration—The
EDEN project,” inProc. IEEE Int. Conf. Robot. Automat., 1996.

[5] G. Giralt, L. Boissier, and L. Marechal, “The Iares project: Rovers for
the human conquest of the moon and Mars,” inProc. IEEE Int. Conf.
Robot. Automat., 1996.

[6] E. Krotkov, R. Simmons, F. Cozman, and S. Koenig, “Safeguarded
teleoperation for lunar rovers: From human factors to field trials,” in
Proc. IEEE Int. Conf. Robot. Automat., 1996.

[7] P. Maybeck,Stochastic Models, Estimation and Control. New York:
Academic, 1982, vol. 1.

[8] NOVATEL Inc., GPSCard, Software Version 4.437, Hardware Version
3.05, Nov. 1996.

[9] B. W. Parkinson and J. J. Spiker, Jr.,Global Positioning System: Theory
and Applications. Washington, DC: American Institute of Aeronautics
and Astronautics, Inc., 1996.

[10] S. Sukkarieh, E. M. Nebot, and H. Durrant-Whyte, “Achieving in-
tegrity in an INS/GPS navigation loop for autonomous land vehicle
applications,” inProc. IEEE Int. Conf. Robot. Automat., May 1998.

[11] D. H. Titterton and J. L. Weston,Strapdown Inertial Navigation Tech-
nology. Stevenage, U.K.: Peregrinus, 1997.

[12] F. Van Diggelen,GPS and GPS+GLONASS RTK, in ION-GPS, Sept.
1997.

[13] R. Volpe, J. Balaram, T. Ohm, and R. Ivlev, “The rocky 7 mars rover
prototype,” inProc. IEEE Int. Conf. Robot. Automat., 1996.

Sliding Mode Control for Trajectory Tracking
of Nonholonomic Wheeled Mobile Robots

Jung-Min Yang and Jong-Hwan Kim

Abstract—Nonholonomic mobile robots have constraints imposed on
the motion that are not integrable, i.e., the constraints cannot be written
as time derivatives of some function of the generalized coordinates. The
position control of nonholonomic mobile robots has been an important
class of control problems. In this paper, we propose a robust tracking
control of nonholonomic wheeled mobile robots using sliding mode.
The posture of a mobile robot is represented by polar coordinates
and the dynamic equation of the robot is feedback-linearized by the
computed-torque method. A novel sliding mode control law is proposed
for asymptotically stabilizing the mobile robot to a desired trajectory. It
is shown that the proposed scheme is robust to bounded external distur-
bances. Experimental results demonstrate the effectiveness of accurate
tracking capability and the robust performance of the proposed scheme.

Index Terms—Nonholonomic wheeled mobile robots, sliding mode co-
ntrol, trajectory tracking.

I. INTRODUCTION

It is known that stabilization of nonholonomic wheeled mobile
robots with restricted mobility to an equilibrium state is in general
quite difficult. A well-known work of Brockett [1] identifies non-
holonomic systems as a class of systems that cannot be stabilized
via smooth state feedback. It implies that problems of controlling
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nonholonomic systems cannot be applied to methods of linear control
theory, and they are not transformable into linear control problems.
Due to both their richness and hardness, such nonlinear control
problems have motivated a large number of researches involving
various techniques of automatic control. Another difficulty in con-
trolling nonholonomic mobile robots is that in the real world there
are uncertainties in their modeling. Taking into account intrinsic
characteristics of mobile robots such as actual vehicle dynamics,
inertia and power limits of actuators and localization errors, their dy-
namic equations could not be described as a simplified mathematical
model. A survey of recent developments in control of nonholonomic
systems is described in [2]. To the authors’ knowledge, the problem
of dealing with model uncertainties is one of research problems
for nonholonomic systems that require much attention but have yet
to be extensively studied. Among previous researches, Jiang and
Pomet [3], [4] applied backstepping technique to the adaptive control
of nonholonomic systems with unknown parameters. A controller
robust against localization errors of nonholonomic mobile robots was
proposed by Hamel et al. [5], which considered the parking problem
of mobile robots. In [6], a robust path-following controller for mobile
robots was proposed guaranteeing exponential stability.

As an approach for robust control, sliding mode control has been
applied to the trajectory control of robot manipulators [7], [8],
and is recently receiving increasing attention from researches on
control of nonholonomic systems with uncertainties. The advantages
of using sliding mode control include fast response, good transient
performance and robustness with regard to parameter variations.
Bloch and Drakunov [9] proposed a sliding mode control law for
stabilizing a nonholonomic system expressed in chained form, and
extended their work to tracking problems [10]. Guldner and Utkin
[11], [12] proposed a Lyapunov navigation function to prescribe a set
of desired trajectories for navigation of mobile robots to a specified
configuration. They used sliding mode control to guarantee exact
tracking of trajectories made by navigation functions. Chacal and
Sira-Ramirez [13] developed a sliding mode control which exploits a
property named differential flatness of kinematics of mobile robots.
Aguilar et al. [14] presented a path-following feedback controller with
sliding mode which is robust to localization and curvature estimation
errors for a car-like robot.

While the above works are mainly based on kinematic models
of nonholonomic systems, models that include dynamic effects are
required for other purposes, for instance, using torques as control
inputs. The approaches based on dynamic models of nonholonomic
systems include the work of Su and Stepanenko [15], who developed
a reduced dynamic model for simultaneous independent motion and
force control of nonholonomic systems. They proposed a robust
control law which is a smooth realization of sliding mode control. In
Shim and Kim [16], a variable structure control law was proposed
with which mobile robots converge to reference trajectories with
bounded errors of position and velocity.

In this paper, we propose a novel sliding mode control law
for solving trajectory tracking problems of nonholonomic mobile
robots. Mobile robots with the proposed control law converge to a
given reference trajectory with asymptotic stability. We use dynamic
models of mobile robots to describe their behaviors with bounded
disturbances in system dynamics. Specifically, posture variables of
mobile robots represented inpolar coordinatesare used for designing
appropriate sliding surfaces which stabilize all the posture variables.
By means of the computed-torque method, error dynamics of mobile
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