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Abstract9

This work presents real time implementation algorithms of simultaneous localization and map building (SLAM) with
emphasis to outdoor land vehicle applications in large environments. It presents the problematic of outdoors navigation in
areas with combination of feature and featureless regions. The aspect of feature detection and validation is investigated to
reliably detect the predominant features in the environment. Aided SLAM algorithms are presented that incorporate absolute
information in a consistent manner. The SLAM implementation uses the compressed filter algorithm to maintain the map with
a cost proportional to number of landmarks in the local area. The information gathered in the local area requires a full SLAM
update when the vehicle leaves the local area. Algorithms to reduce the full update computational cost are also presented.
Finally, experimental results obtained with a standard vehicle running in unstructured outdoor environment are presented.
© 2002 Published by Elsevier Science B.V.
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1. Introduction21

The problem of localization given a map of the en-22

vironment or estimating the map knowing the vehicle23

position is known to be a solved problem and in fact24

applied in many research and industrial applications25

[1–3]. A much more fundamental problem is when26

both the map and the vehicle position are not known.27

This problem is usually referred as simultaneous lo-28

calization and map building (SLAM)[4] /concurrent29

map building and localization (CML)[7]. It has been30

addressed using different techniques such as in[8]31

where approximation of the probability density func-32

tions with samples is used to represent uncertainty.33

∗ Corresponding author.
E-mail addresses: jguivant@acfr.usyd.edu.au (J. Guivant),
f.masson@acfr.usyd.edu.au (F. Masson), nebot@acfr.usyd.edu.au
(E. Nebot).

The algorithm is suitable to handle multi-modal dis-34

tribution. Although it has proven to be robust in many35

indoor localization applications, due to the high com-36

putation requirements this method has not been used37

for real time SLAM yet, although work is in progress38

to overcome this limitation. 39

Kalman filters can also be extended to solve the40

SLAM problem[6,9–11], once appropriate models for41

the vehicle and sensors are obtained. This method re-42

quires the robot to be localized all the time with a cer-43

tain accuracy. This is not an issue for many industrial44

applications[2,3,12,13], where the navigation system45

has to be designed with enough integrity in order to46

avoid/detect degradation of localization accuracy. For47

these applications, the Kalman filter with Gaussian as-48

sumptions is the preferred approach to achieve the de-49

gree of integrity required in such environments. 50

One of the main problems with the SLAM algo-51

rithm has been the computational requirements that52
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is of the order∼ O((2N)2) [14], whereN being the53

number of landmarks in the map. In large environ-54

ments, the number of landmarks detected will make55

the computational requirement to be beyond the power56

capabilities of the computer resources. The computa-57

tional issues of SLAM have been addressed with a58

number of sub-optimal simplification, such as[4,7].59

In [5], a compressed algorithm was presented that al-60

lows the incorporation of the information gathered in61

a local area with a cost proportional to the number62

of landmarks in this area. The information can be63

stored and then transferred to the rest of the map in64

a single iteration at full SLAM computational cost.65

This paper presents a sub-optimal simplification to66

update the covariance matrix of the states with re-67

duced computational cost when full SLAM is required.68

In several applications, the mobile vehicle needs to69

navigate in open areas where no features can be de-70

tected. In such cases, absolute position information71

such as GPS can be made available to reduce the72

navigation error. This paper address the problem of73

incorporating absolute information under the SLAM74

framework. The convergence and accuracy of the al-75

gorithms are tested in a large outdoor environment76

with regions where different types of information is77

available.78

This paper is organized as follows.Section 279

presents an introduction to the SLAM problem and80

the vehicle and sensor models used in this applica-81

tion. Section 3presents the navigation environment82

and the algorithms used to detect and validate the83

most relevant features in the environment.Section 484

presents important implementation issues such as a85

sub-optimal method to complement the compressed86

algorithm and a formulation to use the SLAM aided87

by external absolute information.Section 5presents88

experimental results in unstructured outdoor environ-89

ments. Finally,Section 6presents conclusions.90

2. Simultaneous localization and map building91

When absolute position information is not available92

it is still possible to navigate with small errors for long93

periods of time. The SLAM algorithm addresses the94

problem of a vehicle with known kinematics, starting95

at an unknown position and moving through an un-96

known environment populated with some type of fea-97

tures. The algorithm uses dead reckoning and relative98

observation to features in order to estimate the posi-99

tion of the vehicle and to build and maintain a navi-100

gation map as shown inFig. 1. With appropriate plan- 101

ning, the vehicle will be able to simultaneously nav-102

igate and build a relative map of the environment. If103

the initial position is known with respect to a global104

reference frame or if absolute position information is105

obtained during the navigation task then the map can106

be registered to the global frame. If not the vehicle can107

still navigate in the local while exploring and incor-108

porating new areas to the map. A typical kinematics109

model of a land vehicle can be obtained fromFig. 2. 110

The steering controlα and the speedvc are used with 111

the kinematics model to predict the position of the ve-112

hicle. The external sensor information is processed to113

extract features of the environment, in this case called114

Bi (i=1,... ,n), and to obtain relative range and bearing,115

z(k) = (r, β), with respect to the vehicle pose. Consid-116

ering that the vehicle is controlled through a demanded117

velocityvc and steering angleα the process model that118

predicts the trajectory of the centre of the back axle is119

given by 120



ẋc

ẏc

φ̇c


 =



vc cos(φ)

vc sin(φ)
vc

L
tan(α)


 + γ, (1)

121

whereL is the distance between wheel axles andγ 122

the zero mean Gaussian white noise. The observation123

equation relating the vehicle states to the observations124

is 125126

z = h(X, xi, yi) =

 zir

ziβ




127

=




√
(xi − xL)2 + (yi − yL)2

φL − a tan

(
−yi − yL

xi − xL

)
+ π

2


 + γh, (2)

128

where z is the observation vector,(xi, yi) the co- 129

ordinates of the landmarks,xL, yL and φL are the 130

vehicle states defined at the external sensor location131

and γh the zero mean Gaussian white noise. In the132

case where multiple observations are obtained the133
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Fig. 1. Navigation using SLAM. The vehicle builds a relative local map and localizes within this map using dead reckoning information
and relative observations of features in the environment. The accuracy of the map is a function of the accuracy of the local map origin and
the quality of the kinematics model and relative observations. The local map can be registered to the global map if absolute information
becomes available, such as the observation of a beacon at a known position or GPS position information.

observation vector will have the form134

Z =



z1

...

zm


 . (3)

135

Under the SLAM framework the vehicle starts at an136

unknown position with given uncertainty and obtains137

measurements of the environment relative to its loca-138

tion. This information is used to incrementally build139

and maintain a navigation map and to localize with140

respect to this map. The system will detect new fea-141

tures at the beginning of the mission and when the ve-142

hicle explores new areas. Once these features become143

reliable and stable they are incorporated into the map144

becoming part of the state vector. The state vector is145

now given by 146147

X =

XL

XI


 , XL = (xL, yL, φL)

T ∈ R3,

148

XI = (x1, y1, . . . , xN , yN)
T ∈ R2N, (4) 149

where(x, y, φ)L and(x, y)i are the states correspond-150

ing to the vehicle andN features incorporated into the151

map, respectively. Since this environment is consider152

to be static the dynamic model that includes the fea-153

tures is 154155

XL(k + 1) = f (XL(k))+ γ, XI (k + 1) = XI (k). 156

(5) 157

It is important to remark that the landmarks are as-158

sumed to be static. Then the Jacobian matrix for the159
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Fig. 2. Vehicle coordinate system.

extended system is160161

∂F

∂X
=




∂f

∂x̃L
∅

∅T I


 =


 J1 ∅

∅T I


 ,

162

J1 ∈ R3×3, ∅ ∈ R3×N, I ∈ R2N×2N. (6)163

These models can then be used with a standard EKF164

algorithm to build and maintain a navigation map of165

the environment and to track the position of the vehi-166

cle. The prediction stage is required to obtain the pre-167

dicted value of the statesX and its error covariance168

P at timek based on the information available up to169

time k − 1,170171

X(k + 1, k) = F(X(k, k), u(k)),172

P(k + 1, k) = J (k) · P(k, k) · J T(k)+Q(k). (7)173

The update stage is a function of the observation174

model and the error covariance:175176

S(k + 1) = H(k + 1) · P(k + 1, k) ·HT(k + 1)177

+R(k + 1),178

W(k + 1) = P(k + 1, k) ·HT(k + 1) · S−1(k + 1),179

ϑ(k + 1) = Z(k + 1)− h(X(k + 1, k)),180

X(k + 1, k + 1)=X(k + 1, k)+W(k + 1) · ϑ(k + 1),181

P(k + 1, k + 1) = P(k + 1, k)−W(k + 1)182

·S(k + 1) ·W(k + 1)T, (8)183

where 184185

J (k) = ∂F

∂X

∣∣∣∣
(X,u)=(X(k),u(k))

, H(k) = ∂h

∂X

∣∣∣∣
X=X(k) 186

(9) 187

are the Jacobian matrices derived from vectorial func-188

tionsF(x, u) andh(x) with respect to the stateX. R 189

andQ are the error covariance matrices characterizing190

the noise in the observations and model, respectively.191

3. Environment description and feature detection 192

The navigation map is built with features present in193

the environment that are detected by external sensors194

that provide information relative to the position of the195

vehicle. Recognizable features are essential for SLAM196

algorithms since they are responsible for bounding the197

navigation errors. One of the first tasks in the naviga-198

tion system design is to determine the type of sensor199

required to obtain a desired localization accuracy in200

a particular outdoor environment. The most important201

factor that determines the quality of the map is obvi-202

ously the accuracy of the relative external sensor. For203

example, in the case of radar or laser sensors, this is204

determined by the range and bearing errors obtained205

when seeing a feature/landmark. These errors are func-206

tion of the specification of the sensors and the type of207

feature used. If the shape of the feature is well known208

a priori, such as the case of artificial landmarks, then209

the errors can be evaluated and the accuracy of the210

navigation system can be estimated. A different prob-211

lem is when the navigation system has to work with212

natural features. The inspection of the environment213

can give an idea of the most relevant features that can214

be detected with a given sensor. The most appropri-215

ate sensor for the application will depend on the size216

of the operating area and environmental conditions.217

Fig. 1 presents an outdoor environment where trees218

can be consider one of the most relevant features that219

a laser range sensor can identify. With larger areas or220

in environment with fog or dust a different sensor such221

as radar will be a better choice. Once the sensor is se-222

lected then a model to obtain accurate and consistent223

feature position estimation is required. For example,224

if the raw return from the laser is used as a measure of225

a distance to a tree then a significant error can be in-226
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Fig. 3. Trees with different shape, size and inclination. The feature detection algorithm needs to consider these type of different trees to
accurately determine the position of the feature.

troduced due to the size, shape and inclination of the227

trunk. This problem is shown inFig. 3for various type228

of trees commonly found in these environments. Any229

algorithm designed to extract the location of these fea-230

tures needs to consider these problems to increase the231

accuracy of the feature location process. In this work,232

a Kalman filter was implemented to track the centre233

of the trunk by clustering a number of laser observa-234

tions as representative of the circular surface of the235

trunk.236

3.1. Feature position determination237

The landmark’s position estimation can be im-238

proved by evaluating the diameter of the tree trunk.239

This will also make the observation information more240

independent of the sensor viewpoint location. The241

first stage of the process consists of determining the242

number of consecutive laser returns that belong to243

the cluster associated to an object, in this case a tree244

trunk. In the case of working with range and bearing245

sensors the information returned from a cylindrical246

objects is shown inFig. 4. Depending on the angu-247

lar and range resolution and beam angle, the sensor248

will return a number of ranges distributed in a semi-249

circle. In Fig. 4, the cylindrical object is detected at250

four different bearing angles. An observation of the251

Fig. 4. Laser range finder return information from a cylinder type object.

diameter of the feature can be generated using the252

average range and bearing angle enclosing the cluster253

of points representing the object: 254

zD = (β · r, (10) 255

where(β and r are the angular width and average256

distance to the object obtained from the laser location,257

respectively. For the case of a laser returning 361 range258

and bearing observations distributed in 180◦: 259260

(β = (in − ii) · π

NR
, NR = 360,

261

r = 1

in − ii + 1
·
in∑
i=ii

r(i). (11)

262

The indexesin to ii correspond to the first and last263

beam, respectively, reflected by the object. The mea-264

surementzD is obtained from range and bearing in-265

formation corrupted by noise. The variance of the ob-266

servationzD can then be evaluated 267268

σ 2
zD

= G ·

 σ 2

r 0

0 σ 2
(β


 ·GT,

269

G = ∂zD

∂(r,(β)
= [ (β r ],

270

σ 2
zD

= ((β)2 · σ 2
r + r2 · σ 2

(β. (12)
271
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In outdoor applications the ranges are in the order of272

3–40 m. In this case we have that273

((β)2 · σ 2
r 
 r2 · σ 2

(β (13)274

then275

σ 2
zD

∼= r2 · σ 2
(β. (14)276

This fact indicates that the correlation betweenzD and277

the range measurement error is weak and can be ne-278

glected. Additional noiseωs is also included to con-279

sider the fact that this type of natural features will be280

in practice not perfectly circular and will have differ-281

ent diameters at different heights. Depending on the282

vehicle inclination two scans from the same location283

could generate a slightly different shape for the same284

object. The complete model with additional noiseωs285

is286

σ 2
zD

∼= r2 · σ 2
(β + σ 2

ωs. (15)
287

Finally, a Kalman filter to track each object is imple-288

mented assuming a process model with constant di-289

ameter and initial condition generated with the first290

observation:291292

Ḋ = 0, D(t0) = D0, σ 2
D0

= E{D0 ·D0} �= 0.
293

(16)294

Fig. 5. Tree profile and system approximation. The asterisks indi-
cate the laser range and bearing returns. The filter estimates the
radius of the circumference that approximates the trunk of the tree
and centre position.

The diameter of each feature is updated after each scan295

and then used to evaluate the range and bearing to the296

centre of the trunk.Fig. 5presents a set of experimen-297

tal data points, the circumference corresponds to the298

estimated diameter and the centre of the object esti-299

mated by the Kalman filter after a few laser frames.300

4. Implementation of SLAM in large environments 301

In most SLAM applications, the number of vehicle302

states will be insignificant with respect to the number303

of landmarks. Under the SLAM framework, the size304

of the state vector is equal to the number of the vehi-305

cle states plus twice the number of landmarks, that is306

2N + 3 = M. In [5], a compressed filter and a map307

management approach were presented to reduce the308

real time computation requirement to∼ O((2Na)2), 309

Na = M −Nb being the number of landmarks in the310

local area,Na 
 M andNb the number of landmarks311

in the rest of the map. With this approach, the SLAM312

algorithm becomes extremely efficient while the vehi-313

cle remains navigating in this area since the computa-314

tion complexity is independent of the size of the global315

map. Still a full update is required when the vehicle316

leaves the local area. The next section presents new317

algorithms to reduce the computational requirements318

of the full update. 319

4.1. Full SLAM update 320

The most computational expensive stage of the321

compressed filter is the global update that needs to322

be performed after a transition to a new region[5]. 323

This update has a cost of∼ O(N2
b ). A sub-optimal 324

approach can be used to reduce the computation325

required for this step. 326

The nominal global update is 327328

Pab,(k) = φ(k−1) · Pab,(0), 329

Pbb,(k) = Pbb,(0) − Pba,(0) · ψ(k−1) · Pab,(0). (17) 330

The evaluation ofPbb is computationally very ex- 331

pensive. The change in error covariance for this term332

is given as 333334

(Pbb = Pba,(0) · ψ(k−1) · Pab,(0) = W · Pab,(0), 335

Pba,(0) · ψ(k−1) = W ∈ RNb×Na , Pab,(0) ∈ RNa×Nb . 336

(18) 337
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In order to address this problem the sub-stateXb can338

be divided into two sub-groups339340

Xb =

Xb1

Xb2


 , Xb1 ∈ RNb1, Xb2 ∈ RNb2,

341

Xb ∈ RNb, Nb = Nb1 +Nb2. (19)342

The associated covariance and the covariance global343

update matrices are:344345

Pbb =

 P11 P12

P T
21 P22


 ,

346

(Pbb =

(P11 (P12

(P T
21 (P22


 = W · Pab,(0). (20)

347

A conservative global update can be done replacing348

the matrix(Pbb by the sub-optimal(P ∗
bb. Now349350

(P ∗
bb =


(P11 (P12

(P21 ∅


 = (Pbb −


 ∅ ∅

∅ (P22


 ,

351

P ∗
bb = Pbb −(P ∗

bb = Pbb −(Pbb +

 ∅ ∅

∅ (P22


 .

352

(21)353

It can be proved that this update is consistent and354

does not generate over-confident results[4]. Finally,355

the sub-matrices that need to be evaluated areP11, P12356

andP21. The significance of this result is thatP22 is357

not evaluated. In general, this matrix will be of high358

order since it includes the states corresponding to most359

of the landmarks.360

The fundamental problem becomes the selection of361

the subsetXb2. The diagonal of matrixP can be evalu-362

ated on-line with low computational cost. By inspect-363

ing the diagonal elements of(P , we have that many364

terms are very small compared to the corresponding365

previous covariance value in the matrixP . This indi-366

cates that the new observation does not have a signif-367

icant information contribution to this particular state.368

This is used as an indication to select a particular state369

as belonging to the subsetb2.370

A selection criteria to obtain the partition of the371

state vector is given by the following setI :372

I = {i\(Pbb(i, i) < c1 · Pbb(i, i)}. (22)373

The evaluation of(Pbb(i, i) has a computational cost374

∼ O(Nb) (instead of∼ O(N2
b ) for the evaluation of 375

the complete(Pbb matrix). Then(P ∗ is evaluated as376

follows: 377378

(P ∗
bb(i, j)=0 ∀i, j\i ∈ I and j ∈ I, 379

(P ∗
bb(i, j)=(Pbb(i, j) ∀i, j\i /∈I or j /∈ I. (23) 380

The meaning of the setI is that the gain of informa- 381

tion for this group of states is very small. For example,382

in the case ofc1=1/10,000, it is required about 100383

global updates of this ‘quality’ to be able to obtain a384

1% reduction in covariance value. It has to be noted385

that a global update occurs approximately every hun-386

dred or thousands of local updates. With appropriate387

selection of the constantc1 the difference between the388

nominal global full update and the sub-optimal global389

update will be negligible for practical purposes. Then390

the update of the sub-matrix(P22 can be ignored. 391

The total covariance matrix is still consistent since the392

cross-covariance matrices are updated. The magnitude393

of the computation saving factor depends on the size394

of the setI . With appropriate exploration policies, real395

time mission planning, the computation requirements396

can be maintained within the bounds of the on-board397

resources. 398

4.2. Aided SLAM 399

One of the fundamental issues in navigation is to400

be able to use all available information in an optimal401

manner. Although the SLAM algorithms presented can402

work in large areas it can also benefit from absolute403

position information such as GPS. In many applica-404

tions, it is not possible to obtain GPS information for405

long periods of time. Nevertheless, at some locations406

this sensor will be able to report navigation data with407

an estimated error. This information is usually avail-408

able in standard GPS receivers. Another source of ab-409

solute information can be sporadic detection of land-410

marks whose position and uncertainty are known. It411

is important to be able to incorporate this information412

to improve the localization estimates and at the same413

time enable the SLAM algorithm to explore and incor-414

porate new features while bounding the absolute pose415

error with the absolute information. 416

In order to add this information in a consistent man-417

ner some important issues need to be considered: 418
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• The quality of the models and the relativity nav-419

igation information used in the SLAM algorithms420

could lead to very large innovations errors when the421

absolute information is fussed. This will occur after422

long periods of navigation with relative information423

only, that is performing pure SLAM. A strong cor-424

rection will make the linearization of the models not425

valid generating incorrect update of covariances.426

• The innovations may not be large but can generate427

strong updates in the covariance matrices. This can428

potentially introduce serious numerical errors.429

In order to prevent these problems, it is possible to treat430

a new absolute information asL observations such that431

the total information introduced become equivalent to432

a single update. In this case, the filter will perform433

L updates with the observation value and modified434

noise covariance. For example, if the quality of the435

observation is modelled with a noise covarianceR,436

thenL sequential observations of qualityKi ×R will437

be used with
∑L

i=1 1/Ki = 1. The constantKi is438

selected such that the updated position does not violate439

the linearization assumptions. This will obviously be440

a function of the particular application. The sequential441

updates not only generate the same results as the single442

update but alleviate numerical problems arising from443

large covariance updates.444

Under the full SLAM formulation, the application445

of sequential updates results in a notable computa-446

tional demand increase since each update has cost447

Fig. 6. Deviation reported by the GPS in an open field. The precision is degraded by the presence of trees.

M ×M, M being the number of states. However, this448

problem does not exist with the compressed filter since449

these updates are implemented as another group of450

observations in the local area making the cost propor-451

tional to the square of the states in the local area. 452

The sequential updates can also be applied to pre-453

vent a large update when about to close a loop, that454

is, when returning or revisiting a known location. In455

general terms, when working with nonlinear systems a456

gradual equivalent update will work better than a sin-457

gle large update. The reason for that is that the Jaco-458

bians used to linearize the system are recalculated in459

each update and used closer to the linearization point.460

5. Experimental results 461

The navigation algorithms presented were tested in462

the outdoor environment of the type shown inFig. 1. 463

The vehicle was retrofitted with a laser range sen-464

sor and dead reckoning capabilities. A differential real465

time kinematic (RTK) GPS system capable of deliv-466

ering position with up to 2 cm accuracy was used. In467

this experiment, the vehicle traversed different types468

or terrains and large areas covered by dense foliage469

where the GPS reported position with different levels470

of accuracy. This can be seen inFig. 6where the GPS 471

were able to report position with 10 cm accuracy for472

short periods of time. 473
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Fig. 7. The approximated travel path and the landmarks or trees present in the field. Thick line shows the moment where the GPS reported
an RTK measure.

The regions where GPS reports good quality infor-474

mation are also shown inFig. 7. This figure presents475

the estimated trajectory of the vehicle obtained us-476

ing aided SLAM and the natural features incorporated477

into the map. It can be seen that GPS information is478

not available in areas highly populated with features479

and become more reliable in open areas where fea-480

tures are scare. This is expected since GPS will be af-481

fected by dense foliage. At the same time these areas482

are usually rich in natural features and can be used in483

the SLAM framework to reduce the navigation errors.484

Fig. 8presents the estimated error of the vehicle states485
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Fig. 8. Deviations of the states of the car and selected landmarks. The vehicle navigates with dead reckoning and relative observations
most of the time. When GPS position is incorporated a significant reduction in the covariance of vehicle and landmark is obtained as
shown at sample 410.

and selected landmarks. As expected, the vehicle state486

covariance grows when the vehicle is exploring new487

regions and decrease when revisiting a known place488

or when GPS information become available.Fig. 9489

Fig. 9. Closing a loop after 200 s navigating with pure SLAM.

shows the behaviour of the algorithm while closing a490

loop, that is revisiting a known place. It can be seen491

that at coordinate (37.5, 22), the vehicle start receiv-492

ing good quality GPS information. At this point, there493
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is a significant difference between the SLAM naviga-494

tion estimation and the absolute GPS information. The495

GPS information is then incorporated as sequence of496

updates as shown in the figure. These results demon-497

strated that the navigation algorithm has enough in-498

tegrity to work in large areas incorporating relative499

landmark information and absolute position informa-500

tion.501

6. Conclusion502

This work presents real time algorithms and imple-503

mentation issues of SLAM with emphasis to outdoor504

land vehicle applications. The aspect of feature detec-505

tion is investigated to reliably detect the predominant506

features in the environment. Algorithms to simplify the507

full SLAM update and to incorporate absolute infor-508

mation are also presented. Finally, the algorithms are509

validated with experimental results obtained in large510

unstructured outdoor environment.511
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