10
11
12
13
14
15
16
17
18

19
20

21

22
23
24
25
26
27
28
29
30
31
32
33

ARTICLE IN PRESS

Int. Journal of Robotics and Autonomous Robotics and
%‘l Svstems Vol 40 31 Auaust 2002 nn 79-90 Autonomous
Lol Systems
ELSEVIER Robotics and Autonomous Systems 984 (2002) 1-12

www.elsevier.com/locate/robot

Simultaneous localization and map building using natural
features and absolute information

Jose Guivant, Favio Masson, Eduardo Nébot

Department of Mechanical and Mechatronic Engineering, Australian Centre for Field Robotics,
The University of Sydney, 2006 Sydney, NSW, Australia

Abstract

This work presents real time implementation algorithms of simultaneous localization and map building (SLAM) with

emphasis to outdoor land vehicle applications in large environments. It presents the problematic of outdoors navigation in
areas with combination of feature and featureless regions. The aspect of feature detection and validation is investigated to
reliably detect the predominant features in the environment. Aided SLAM algorithms are presented that incorporate absolute

information in a consistent manner. The SLAM implementation uses the compressed filter algorithm to maintain the map with
a cost proportional to number of landmarks in the local area. The information gathered in the local area requires a full SLAM

update when the vehicle leaves the local area. Algorithms to reduce the full update computational cost are also presented.
Finally, experimental results obtained with a standard vehicle running in unstructured outdoor environment are presented.

© 2002 Published by Elsevier Science B.V.
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1. Introduction The algorithm is suitable to handle multi-modal diss4
tribution. Although it has proven to be robust in manys

The problem of localization given a map of the en- indoor localization applications, due to the high comss
vironment or estimating the map knowing the vehicle putation requirements this method has not been used
position is known to be a solved problem and in fact for real time SLAM yet, although work is in progressss
applied in many research and industrial applications to overcome this limitation. 39
[1-3]. A much more fundamental problem is when Kalman filters can also be extended to solve the
both the map and the vehicle position are not known. SLAM problem[6,9-11] once appropriate models fors1
This problem is usually referred as simultaneous lo- the vehicle and sensors are obtained. This method re-
calization and map building (SLAM}4]/concurrent quires the robot to be localized all the time with a cerss
map building and localization (CML]7]. It has been  tain accuracy. This is not an issue for many industriah
addressed using different techniques such af8jn applicationg2,3,12,13] where the navigation systemas
where approximation of the probability density func- has to be designed with enough integrity in order tas
tions with samples is used to represent uncertainty. avoid/detect degradation of localization accuracy. Far
these applications, the Kalman filter with Gaussian ass

. sumptions is the preferred approach to achieve the de-
* Corresponding author.

E-mail addresses: jguivant@acfr.usyd.edu.au (J. Guivant), gree of integrity rgquired in such_ environments. 50
f.masson@acfr.usyd.edu.au (F. Masson), nebot@acfr.usyd.edu.au One of the main problems with the SLAM algo-s1
(E. Nebot). rithm has been the computational requirements thgt
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is of the order~ O((2N)?) [14], whereN being the tures. The algorithm uses dead reckoning and relative
number of landmarks in the map. In large environ- observation to features in order to estimate the posis
ments, the number of landmarks detected will make tion of the vehicle and to build and maintain a navieo
the computational requirement to be beyond the power gation map as shown iaig. 1L With appropriate plan- 101
capabilities of the computer resources. The computa- ning, the vehicle will be able to simultaneously nawe2
tional issues of SLAM have been addressed with a igate and build a relative map of the environment. 163
number of sub-optimal simplification, such E&7]. the initial position is known with respect to a globabs
In [5], a compressed algorithm was presented that al- reference frame or if absolute position information iss
lows the incorporation of the information gathered in obtained during the navigation task then the map cas
a local area with a cost proportional to the number be registered to the global frame. If not the vehicle cas
of landmarks in this area. The information can be still navigate in the local while exploring and incorzos
stored and then transferred to the rest of the map in porating new areas to the map. A typical kinematics
a single iteration at full SLAM computational cost. model of a land vehicle can be obtained fréig. 2 110
This paper presents a sub-optimal simplification to The steering contrak and the speed; are used with 111
update the covariance matrix of the states with re- the kinematics model to predict the position of the ver
duced computational cost when full SLAM is required. hicle. The external sensor information is processeciie
In several applications, the mobile vehicle needs to extract features of the environment, in this case callad
navigate in open areas where no features can be de-B; ;=1,... »), and to obtain relative range and bearing.s
tected. In such cases, absolute position information z(k) = (r, 8), with respect to the vehicle pose. Considie
such as GPS can be made available to reduce theeringthatthe vehicle is controlled through a demanded
navigation error. This paper address the problem of velocity vc and steering angke the process model that1s
incorporating absolute information under the SLAM predicts the trajectory of the centre of the back axleis

framework. The convergence and accuracy of the al- given by 120
gorithms are tested in a large outdoor environment
with regions where different types of information is Yo v COS(¢)
available. . .

This paper is organized as followSection 2 Ye | = :})csm(¢) Ty (1)
presents an introduction to the SLAM problem and | ¢ ftan(a) 121

the vehicle and sensor models used in this applica-

tion. Section 3presents the navigation environment \where is the distance between wheel axles andiz2
and the algorithms used to detect and validate the the zero mean Gaussian white noise. The observatisn

most relevant features in the environmeBection 4 equation relating the vehicle states to the observatians
presents important implementation issues such as ajg 126

sub-optimal method to complement the compressed
algorithm and a formulation to use the SLAM aided /i
by external absolute informatioisection 5presents 2 =h(X,xj,yi) = ’
experimental results in unstructured outdoor environ- Z% 127
ments. FinallySection 6presents conclusions.

Vi —x0)2+ (i — yr)?
2

: N~ f. + Vs
2. Simultaneous localization and map building 61 — atan iy, T
L 2 128

Xi — XL

When absolute position information is not available
it is still possible to navigate with small errors for long Where z is the observation vectoiGx;, y;) the co- 129
periods of time. The SLAM algorithm addresses the ordinates of the landmarks,., y, and ¢, are the 130
problem of a vehicle with known kinematics, starting Vehicle states defined at the external sensor locatien
at an unknown position and moving through an un- andy;, the zero mean Gaussian white noise. In the
known environment populated with some type of fea- case where multiple observations are obtained the
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Features

Feature
Feature

. Local Map Qrigen

Fig. 1. Navigation using SLAM. The vehicle builds a relative local map and localizes within this map using dead reckoning information
and relative observations of features in the environment. The accuracy of the map is a function of the accuracy of the local map origin and
the quality of the kinematics model and relative observations. The local map can be registered to the global map if absolute information
becomes available, such as the observation of a beacon at a known position or GPS position information.

observation vector will have the form now given by 146
1
Z XL
) X = . X =(xp,y.00)" € RS,
Z=: . ) X 148
M X; = (1 y1, ..., xn, yn) " € R?Y, (4) 149

where(x, y, ¢); and(x, y); are the states correspond:so
ing to the vehicle andv features incorporated into thesz
map, respectively. Since this environment is consides
to be static the dynamic model that includes the feas
tures is 158

Under the SLAM framework the vehicle starts at an
unknown position with given uncertainty and obtains
measurements of the environment relative to its loca-
tion. This information is used to incrementally build
and maintain a navigation map and to localize with
respect to this map. The system will detect new fea- x; (k + 1) = f(X (k) +y, Xi(k+1) =X (k). 156
tures at the beginning of the mission and when the ve-

. (5) 157
hicle explores new areas. Once these features become
reliable and stable they are incorporated into the map It is important to remark that the landmarks are ass
becoming part of the state vector. The state vector is sumed to be static. Then the Jacobian matrix for thse
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A where 188
y Bi
“k ~ oF oh
2 Jk) = — . Hk) = —
i OX | (o) =(X (). (k) X |x=xu 186

=

® 53

o\ )

Fig. 2. Vehicle coordinate system.

Bl

v

extended system is

d
oF ff 0 J. 0
_ = 8XL =
0X g7 I g 1

Jl c R3><3, @ c R3XN, 1 c RZNXZN.

(6)

(9) 187

are the Jacobian matrices derived from vectorial funes
tions F (x, u) andh(x) with respect to the stat¥. R 189
andQ are the error covariance matrices characterizing
the noise in the observations and model, respectiveby.

3. Environment description and feature detection 192
The navigation map is built with features present ins
the environment that are detected by external sensoss
that provide information relative to the position of thess
vehicle. Recognizable features are essential for SLAMS
algorithms since they are responsible for bounding the
navigation errors. One of the first tasks in the navigas
tion system design is to determine the type of sensar
required to obtain a desired localization accuracy 4o
a particular outdoor environment. The most important
factor that determines the quality of the map is obwi2
ously the accuracy of the relative external sensor. Fos
example, in the case of radar or laser sensors, thigois

These models can then be used with a standard EKFdetermined by the range and bearing errors obtained

algorithm to build and maintain a navigation map of
the environment and to track the position of the vehi-

cle. The prediction stage is required to obtain the pre-

dicted value of the state¥ and its error covariance

P at timek based on the information available up to

timek — 1,

X(k+1,k) = F(X(k, k), uk)),

Pk+1k)=Jk) -Pk,k)-JT(k)+0Qk). (7)
The update stage is a function of the observation

model and the error covariance:

Sk+1) =Hk+1) - Plk+1k-H (k+1)

+R(k+ 1),

Wk+1)=Phk+1k -H (k+1)- S k+1),

Vk+1)=Zk+1) —h(X(k+1 k),

Xtk+Lk+D)=Xk+1L+Wk+D -vk*k+1),

Pk+1Lk+1)=Pk+1k —Wk+1

Stk+1)-Whk+1T, 8)

when seeing a feature/landmark. These errors are fune-
tion of the specification of the sensors and the type-of
feature used. If the shape of the feature is well knowuss
a priori, such as the case of artificial landmarks, themn
the errors can be evaluated and the accuracy of tlme
navigation system can be estimated. A different prahs
lem is when the navigation system has to work with2
natural features. The inspection of the environment
can give an idea of the most relevant features that can
be detected with a given sensor. The most approptis
ate sensor for the application will depend on the size
of the operating area and environmental conditions:
Fig. 1 presents an outdoor environment where treas
can be consider one of the most relevant features that
a laser range sensor can identify. With larger areasar
in environment with fog or dust a different sensor suebu
as radar will be a better choice. Once the sensor is se-
lected then a model to obtain accurate and consistent
feature position estimation is required. For examples
if the raw return from the laser is used as a measurenf
a distance to a tree then a significant error can be ivs
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Fig. 3. Trees with different shape, size and inclination. The feature detection algorithm needs to consider these type of different trees to
accurately determine the position of the feature.

troduced due to the size, shape and inclination of the diameter of the feature can be generated using the
trunk. This problem is shown iRig. 3for various type average range and bearing angle enclosing the cluster
of trees commonly found in these environments. Any of points representing the object: 254
algorithm designed to extract the location of these fea- _

X . zp=AB-r, (10) 2ss
tures needs to consider these problems to increase the
accuracy of the feature location process. In this work, where AB andr are the angular width and averagss
a Kalman filter was implemented to track the centre distance to the object obtained from the laser locatiasy,
of the trunk by clustering a number of laser observa- respectively. For the case of a laser returning 361 range

tions as representative of the circular surface of the and bearing observations distributed in 180 368
trunk. -
AB = (in — i) ==, NR=360
. N NR 261
3.1. Feature position determination 1 i
r=———x->"r. (11)
The landmark’s position estimation can be im- in—ii+1

i=i;
proved by evaluating the diameter of the tree trunk. ) ) ) . 202
This will also make the observation information more 1he indexes), to i; correspond to the first and lasfes
independent of the sensor viewpoint location. The P&am, respectively, reflected by the object. The meg,

first stage of the process consists of determining the SUrémentp is obtained from range and bearing ings
number of consecutive laser returns that belong to formation corrupted by noise. The variance of the ohg

the cluster associated to an object, in this case a treeSeTvationzp can then be evaluated 268
trunk. In the case of working with range and bearing s

sensors the information returned from a cylindrical ;2 _ G- of 0 GT

objects is shown irFig. 4. Depending on the angu- { 0 aiﬂ ’

lar and range resolution and beam angle, the sensor - 269
will return a number of ranges distributed in a semi- G = _Db __ [AB rl.

circle. In Fig. 4, the cylindrical object is detected at a(r, AB) 270
four different bearing angles. An observation of the GZZD = (AB)? -0 412 aiﬁ. 12) .,

Fig. 4. Laser range finder return information from a cylinder type object.
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In outdoor applications the ranges are in the order of The diameter of each feature is updated after each sggn
3-40m. In this case we have that and then used to evaluate the range and bearing tozthe
2 2 2 2 centre of the trunki-ig. 5presents a set of experimerzoz
(AB)7- 07 Lr®- o (13) tal data points, the circumference corresponds to the
then estimated diameter and the centre of the object esii-
mated by the Kalman filter after a few laser framessoo

GZZD 42, aiﬁ. (14)

This fact indicates that the correlation betwegnand 4. Implementation of SLAM in largeenvironments 3ot
the range measurement error is weak and can be ne-
glected. Additional noisey; is also included to con- In most SLAM applications, the number of vehiclesz
sider the fact that this type of natural features will be gtates will be insignificant with respect to the numbess
in practice not perfectly circular and will have differ- ¢ |andmarks. Under the SLAM framework, the sizes
ent diameters at different heights. Depending on the of the state vector is equal to the number of the vehis
vehicle inclination two scans from the same location ¢je states plus twice the number of landmarks, thatis
could generate a slightly different shape for the same o 1 3 — 7. In [5], a compressed filter and a mag7
object. The complete model with additional noise  management approach were presented to reducesthe
1S real time computation requirement to O((2N,)?), 309
‘7720 >~ 2. Uiﬁ + 02, (15) N, = M — N, being the number of landmarks in theiwo
N local areaN, < M andN; the number of landmarkssi1
Finally, a Kalman filter to track each object is imple- in the rest of the map. With this approach, the SLAM2
mented assuming a process model with constant di- algorithm becomes extremely efficient while the vehizs
ameter and initial condition generated with the first cle remains navigating in this area since the computas
observation: tion complexity is independent of the size of the globails
. map. Still a full update is required when the vehictas
D=0, D(i) = Do, 050 = E{Do - Do} # 0. leaves the local area. The next section presents new
(16) algorithms to reduce the computational requirements
of the full update. 319

Tree profile and system approximation 4.1. Full S AM update 320

361

approximated cifcumference The most computational expensive stage of the
compressed filter is the global update that needssio
be performed after a transition to a new regidh. 323
This update has a cost of O(sz). A sub-optimal 324
approach can be used to reduce the computatien
required for this step. 326

The nominal global update is 328

351

34r esti m*ated radius

33r

Latitude in meters

Pap, (k) = Pc—1) * Pab,(0)s 329
Pob, (k) = Pob,0) — Pba,(0) - Vk—1) - Pab,0)- (17) s30

The evaluation ofPy, is computationally very ex-3s31
47 46 45 a4 43 22 an pensive. The change in error covariance for this tesm
Longitude in meters is given as 333

3.2r

31r

Fig. 5. Tree profile and system approximation. The asterisks indi- A Ppp = Ppa,0) - Yk-1) - Pab,0) = W - Pap,(0) 335
cate the laser range and bearing returns. The filter estimates theP —-w Npx N, Ny x Np

. 1) = €R , P, €R . 336
radius of the circumference that approximates the trunk of the tree ba, (0) I/f(k b ab,(0)
and centre position. (18) =37
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In order to address this problem the sub-stétecan
be divided into two sub-groups

X
Xo=| """, XpeRM, Xy e RV2,
Xp2
Xy € RM,  Njp = Np1+ Npa. (19)

The evaluation ofA Py (i, i) has a computational cost74
~ O(Np) (instead of~ O(Nf) for the evaluation of 375
the completeA Py matrix). ThenA P* is evaluated asa7e
follows: 378

AP, j)=0 Vi, j\iel and j €I,
AP, j)=APop(i, j) Vi, j\i¢l or j ¢ 1. (23) 380

379

The associated covariance and the covariance globalThe meaning of the satis that the gain of informa-ss1

update matrices are:

P11 P12
Ppp = T
Py, P22
AP11 APr2
APph = T =W-. Pab’(o). (20)
APy, APy

A conservative global update can be done replacing
the matrixA Pyp by the sub-optimal Pj. Now

AP AP /|
AP = 11 12| _ Apy -
APy1 0 W AP
* % Q)
Popy = Pob — APy = Pop — APpp +
B APy

(21)

It can be proved that this update is consistent and
does not generate over-confident res{dfs Finally,

the sub-matrices that need to be evaluatedPare P2

and P»;. The significance of this result is th&: is

not evaluated. In general, this matrix will be of high

order since itincludes the states corresponding to most

of the landmarks.

tion for this group of states is very small. For examples2
in the case ot1=1/10,000, it is required about 10Qs3
global updates of this ‘quality’ to be able to obtain @4
1% reduction in covariance value. It has to be noted
that a global update occurs approximately every husas
dred or thousands of local updates. With appropriate
selection of the constani the difference between thesss
nominal global full update and the sub-optimal globade
update will be negligible for practical purposes. Theawo
the update of the sub-matria P, can be ignored. 391
The total covariance matrix is still consistent since the
cross-covariance matrices are updated. The magniterde
of the computation saving factor depends on the size
of the set/. With appropriate exploration policies, readss
time mission planning, the computation requiremenits
can be maintained within the bounds of the on-boaxd
resources. 398
4.2. Aided SLAM 399
One of the fundamental issues in navigation is 4@
be able to use all available information in an optimad:
manner. Although the SLAM algorithms presented case
work in large areas it can also benefit from absolute
position information such as GPS. In many applicas4
tions, it is not possible to obtain GPS information fans

The fundamental problem becomes the selection of |54 periods of time. Nevertheless, at some locations

the subsek;». The diagonal of matri¥P can be evalu-
ated on-line with low computational cost. By inspect-
ing the diagonal elements @ P, we have that many

this sensor will be able to report navigation data with?
an estimated error. This information is usually avades
able in standard GPS receivers. Another source of a-

terms are very small compared to the corresponding gq|yte information can be sporadic detection of lands

previous covariance value in the matx This indi-

cates that the new observation does not have a signif-

icant information contribution to this particular state.

marks whose position and uncertainty are known.sit
is important to be able to incorporate this information2
to improve the localization estimates and at the same

This is used as an indication to select a particular state ¢ e enable the SLAM algorithm to explore and incora

as belonging to the subsk?.
A selection criteria to obtain the partition of the
state vector is given by the following sét

I = {i\APpp(i,i) <c1- Ppp(i,i)}. (22)

porate new features while bounding the absolute pese
error with the absolute information. 416

In order to add this information in a consistent mant7
ner some important issues need to be considered: 418
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e The quality of the models and the relativity nav- M x M, M being the number of states. However, thigs
igation information used in the SLAM algorithms  problem does not exist with the compressed filter sinee
could lead to very large innovations errors when the these updates are implemented as another groupsof
absolute information is fussed. This will occur after observations in the local area making the cost propai:
long periods of navigation with relative information  tional to the square of the states in the local area. 452
only, that is performing pure SLAM. A strong cor- The sequential updates can also be applied to pg-
rection will make the linearization of the models not vent a large update when about to close a loop, that
valid generating incorrect update of covariances. is, when returning or revisiting a known location. Ipss

e The innovations may not be large but can generate general terms, when working with nonlinear systems
strong updates in the covariance matrices. This can gradual equivalent update will work better than a sigs,
potentially introduce serious numerical errors. gle large update. The reason for that is that the Jag@-

bians used to linearize the system are recalculatedgn

In order to prevent these problems, it is possible to treat each update and used closer to the linearization poiat.

a new absolute information dsobservations such that
the total information introduced become equivalent to
a single update. In this case, the filter will perform
L updates with the observation value and modified 5. Experimental results 461
noise covariance. For example, if the quality of the
observation is modelled with a noise covariamlte The navigation algorithms presented were tested,jp
then L sequential observations of qualik; x R will the outdoor environment of the type shownFig. 1 443
be used wichiL:1 1/K; = 1. The constan; is The vehicle was retrofitted with a laser range sepa
selected such that the updated position does not violatesor and dead reckoning capabilities. A differential regl
the linearization assumptions. This will obviously be time kinematic (RTK) GPS system capable of deliygg
a function of the particular application. The sequential ering position with up to 2cm accuracy was used. Jg,
updates not only generate the same results as the singléhis experiment, the vehicle traversed different typggs
update but alleviate numerical problems arising from or terrains and large areas covered by dense foliage
large covariance updates. where the GPS reported position with different levels,
Under the full SLAM formulation, the application  of accuracy. This can be seenfig. 6 where the GPS ,;,
of sequential updates results in a notable computa- were able to report position with 10 cm accuracy faf,
tional demand increase since each update has costhort periods of time. 473

Deviations of the Latitude reported by the GPS
1 I I T \ T T
— Deviation
O Time when the GPS is in RTK mode -

0.9

0.8

0.7 -
06 -1

0.5 -1

041 -

Deviation in meters

0.3 -

ot doh

0 o — ! commmmmms | o oEs——
0 100 200 300 400 500 600 700 800
Time in Seconds

Fig. 6. Deviation reported by the GPS in an open field. The precision is degraded by the presence of trees.
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Approximated travel path (thin) and the GPS measures in RTK mode (thick)
200 T T T
O GPSisin RTK mode
— Approximated Travel Path
* Landmarks or trees

1650 —

100 —

Latitud in meters

-50

-100}-

* x k¥

~150 \ I | |
-100 -50 0 50 100 150

Longitud in meters

Fig. 7. The approximated travel path and the landmarks or trees present in the field. Thick line shows the moment where the GPS reported
an RTK measure.

The regions where GPS reports good quality infor- and become more reliable in open areas where fea-
mation are also shown iRig. 7. This figure presents tures are scare. This is expected since GPS will be af-
the estimated trajectory of the vehicle obtained us- fected by dense foliage. At the same time these aress
ing aided SLAM and the natural features incorporated are usually rich in natural features and can be useddn
into the map. It can be seen that GPS information is the SLAM framework to reduce the navigation errorasa
not available in areas highly populated with features Fig. 8 presents the estimated error of the vehicle states
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deviation of Xv,Yv and (x,y) of some landmarks:
I T I -

18-
— —  Vehicle States
16 ———  Landmarks _
14— —
12+ —
12
s 0 N
[} N
Eogl Update with GPS |

300 350 400 450 500 550
subsamples

Fig. 8. Deviations of the states of the car and selected landmarks. The vehicle navigates with dead reckoning and relative observations
most of the time. When GPS position is incorporated a significant reduction in the covariance of vehicle and landmark is obtained as
shown at sample 410.

and selected landmarks. As expected, the vehicle stateshows the behaviour of the algorithm while closing g,
covariance grows when the vehicle is exploring new loop, that is revisiting a known place. It can be seegf
regions and decrease when revisiting a known place that at coordinate (37.5, 22), the vehicle start recejy»
or when GPS information become availablgg. 9 ing good quality GPS information. At this point, thergy;

Closing a loop after 200 seconds of navigation with pure SLAM
T T T T T T T T
O GPSisin RTK mode *
— Navigated Path
% Landmarks or trees

40

w
(=)

Latitud in meters

25

20

| | I | | | | ] I
37 38 39 40 41 42 43 44 45
Longitud in meters

Fig. 9. Closing a loop after 200 s navigating with pure SLAM.



494
495
496
497
498
499
500

502

503
504
505
506
507
508
509
510
511

512

513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

532
533
534
535
536
537
538
539
540

ARTICLE IN PRESS

J. Guivant et al./Robotics and Autonomous Systems 984 (2002) 1-12

is a significant difference between the SLAM naviga-

tion estimation and the absolute GPS information. The
GPS information is then incorporated as sequence of
updates as shown in the figure. These results demon-
strated that the navigation algorithm has enough in-

tegrity to work in large areas incorporating relative
landmark information and absolute position informa-
tion.

6. Conclusion

This work presents real time algorithms and imple-
mentation issues of SLAM with emphasis to outdoor

land vehicle applications. The aspect of feature detec-

tion is investigated to reliably detect the predominant
features in the environment. Algorithms to simplify the
full SLAM update and to incorporate absolute infor-

mation are also presented. Finally, the algorithms are

validated with experimental results obtained in large
unstructured outdoor environment.
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