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Abstract—This paper presents a new method for improving
the accuracy of inertial measurement units (IMUs) mounted on
land vehicles. In contrast to the typical techniques used for IMUs
mounted on flight vehicles, the algorithm exploits nonholonomic
constraints that govern the motion of a vehicle on a surface to
obtain velocity observation measurements which aid in the esti-
mation of the alignment of the IMU as well as the forward velocity
of the vehicle. It is shown that this can be achieved without any
external sensing provided that certain observability conditions are
met. A theoretical analysis is provided together with a comparison
of experimental results between a nonlinear implementation of the
algorithm and an IMU/GPS navigation system. This comparison
demonstrates the effectiveness of the algorithm. The real time
implementation is also addressed through a multiple observation
inertial aiding algorithm based on the information filter. The
observations used in the information filter include position and
velocity of the vehicle from a GPS unit, speed from a wheel
encoder, and virtual observations due to the constraints on the
motion of the vehicle. The results show that the use of these
constraints and vehicle speed guarantees the observability of the
velocity and the attitude of the inertial unit, and hence bounds the
errors associated with these states. The observations from the GPS
unit adds extra information to the estimate of these states as well
as providing observability of position. The strategies proposed in
this paper provides for a tighter navigation loop which can sustain
outages of GPS for a greater amount of time as compared to when
the inertial unit is used with standard integration algorithms.

Index Terms—Aiding, inertial measurement units, Kalman
filter, vehicle modeling.

I. INTRODUCTION

W ITH the commercial development of autonomous land
vehicles in applications such as surface and underground

mining [1], [2], agriculture [3], and cargo handling [4], there has
been a corresponding development of navigation systems. Such
systems are necessary to provide knowledge of vehicle posi-
tion and trajectory and subsequently to control the vehicle along
a desired path. Reliable localization is an essential component
of any autonomous vehicle. The basic navigation loop imple-
mented in a typical land vehicle is based on dead reckoning sen-
sors, which predict the vehicle’s high frequency maneuvers, and
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low frequency absolute sensors which bound the positioning er-
rors associated with the high frequency sensors [5].

Wheel and steering encoders are extremely effective dead
reckoning sensors in planar environments but do not provide ac-
curate information when the deviation from planar motion is sig-
nificant [6]. A full six-degree-of-freedom inertial measurement
unit (IMU) can provide 3-D position and velocity information.
A typical IMU consists of three accelerometers and three gy-
roscopes mounted in a set of three orthogonal axes. The IMU
measures the acceleration and the rotation rate of the vehicle
in all three dimensions at a high sampling rate, typically at fre-
quencies higher than 100 Hz. From this information, attitude,
velocity and hence position of the vehicle can be derived.

Inertial units have always been presented as a valuable sensor
in many applications. The advantages of inertial navigation are
well known: high update rates; position and velocity in three di-
mensions along with attitude and heading information; and with
no requirement of a vehicle model. However, until recently the
high cost of these units has always kept them from being imple-
mented in civilian applications. The major driving force behind
the drop in price has been the development of cheaper gyro-
scopes, generally in a ceramic version [7], [8], and recently sil-
icon models, [9], [10]. This reduction in cost however, has also
led to a drop in accuracy of the inertial unit as a whole. The pre-
dominant error sources in the inertial sensors, whether they are
gyros or accelerometers, is bias, scale factors and random walk,
[11]. It is the errors encountered in the gyros which have the
most detrimental affect on the inertial navigation output, since
these errors are reflected directly into the computed attitude. At-
titude of the IMU is used to compute and cancel the effect of the
gravitational acceleration on the observed accelerations. As typ-
ical vehicle accelerations are significantly smaller than the grav-
itational acceleration, even small errors in the attitude, lead to
large drifts in the velocity and hence position estimates. Attitude
errors due to the biases are usually accounted for by estimation
or through temperature compensation, especially since there is a
strong correlation between changes in bias and changes in tem-
perature. It is the random walk, due to the mathematical integra-
tion of signal noise, which cannot be combated unless external
sensors are used to constantly bound the errors.

In military applications, external sensors used for the aiding
of inertial units have taken on many forms, doppler radar,
global positioning system (GPS) and star trackers to name a
few. In the civilian sector GPS is used as the external sensor
due to the increasing popularity and decreasing cost of this
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navigation sensor. Since GPS does not require a vehicle model,
the IMU/GPS navigation suite is independent of vehicle kine-
matics. At the Australian Centre for Field Robotics (ACFR),
the GPS aiding of inertial units has been used extensively in
many land vehicle applications [11],[12]. This navigation suite
has been developed to a level where centimeter accuracy can
be attained with low-cost inertial units together with the use
of carrier phase-differential GPS. Furthermore, fault-detection
techniques have also been incorporated to increase the integrity
of the navigation suite, by detecting errors such as multipath
of the GPS signal. It is during the periods where the decision
analysis detects faults in the GPS signal that the inertial unit
is left to perform on its own. The resulting lack of external
information causes the navigation output of the inertial unit to
drift. The drift rate depends on the accuracy of the IMU and the
length of time where there are no external observations. Obvi-
ously for autonomous applications the longer the inertial unit
can maintain a position estimate that is acceptable for a given
practical application, in the absence of external observations,
the greater the integrity of the navigation system.

There is a vast body of literature on the strategies for using
IMUs for position estimation. These are typically based on algo-
rithms developed for IMUs mounted on flight vehicles. Except
in the case of a recent study reported in [13] that discusses the
aiding of an IMU using aircraft dynamics, none of these strate-
gies pay attention to the behavior of the vehicle on which the
IMU is mounted. Clearly, unlike in an aircraft, there is scope
to exploit the fact that land vehicles are constrained to move on
a surface. One contribution of this paper is the formulation of
the equations governing the behavior of an IMU mounted on
a land vehicle. It is shown that the presence of nonholonomic
constraints for a vehicle moving on a surface allows for the on-
line estimation of the roll, pitch and the forward velocity of the
vehicle from the measurements obtained from the IMU. Results
from experiments using an instrumented car and from computer
simulations are presented. It is shown that the rate of growth of
the error in position estimates obtained from an IMU can be
substantially reduced when a vehicle model with constraints is
used. This is clearly of value when external information, for ex-
ample, from GPS, is not available for extended periods of time
due to outages in the GPS signal.

An observability analysis is also presented to determine the
conditions that guarantee observability of attitude and forward
velocity. It is demonstrated with theoretical and experimental
results that forward velocity is unobservable when certain de-
grees of freedom are not excited. This is the case when the ve-
hicle is travelling along a straight path, without any pitching or
yawing motion. In such situations the speed of the vehicle needs
to be measured, typically achieved with the addition of a wheel
encoder. Furthermore, heading and position of the vehicle are
always unobservable. Therefore, external information, for ex-
ample from a GPS is always required if it is necessary to use an
IMU for navigation over long periods of time.

Finally, this paper also presents a real time algorithm for the
aiding of an inertial unit with the three forms of observations
mentioned above, namely position and velocity derived from
GPS, speed from a wheel encoder and virtual observations due
to the constraints on the motion of the vehicle. The fusion of

Fig. 1. Motion of a vehicle on a surface. The navigation frame (n) is fixed and
is represented by the North, East, and Down axes. The body frame (b) is on the
local tangent plane to the surface and is aligned with the kinematic axes of the
vehicle. The rotation angles about thex; y andz axes is represented by roll�,
pitch �, and yaw , respectively.

these observations is achieved using a linear information filter.
It is particularly easy to fuse observations at different rates origi-
nating from different sensors using an information filter, making
it computationally more efficient than the standard Kalman filter
implementations. It is shown that the assumptions on linearity
are valid for a practical system and that the use of additional sen-
sors significantly improve the quality of the position estimate.
This is of fundamental importance since it makes the inertial
system less dependent on external information.

The paper is organized as follows. Section II provides the the-
oretical background and the observability analysis. Section III
presents the information filter implementation. Section IV pro-
vides results using simulated and real data and Section V will
give the conclusions.

II. M OTION OF A LAND VEHICLE

A. General Three-Dimensional (3-D) Motion

Fig. 1 shows a wheeled vehicle moving on the earth sur-
face. The Navigation framerepresented by the orthogonal axis
North, East, and Down (NED) is the coordinate frame with re-
spect to which the location of the vehicle needs to be estimated.
The coordinate frame is attached to the vehicle and is aligned
with the axes of the IMU. Without any loss of generality, as-
sume that the IMU is placed at the center of the rear axle of the
vehicle such that is in the direction of the rear axle and is
in the direction of forward motion of the vehicle.

It is also assumed that the vehicle is steered using the front
wheels. Position of the vehicle is the
position vector of the origin of frame in the navigation frame
and velocity of the vehicle is the rate
of change of .
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The orientation of the vehicle is represented by the three Euler
angles, yaw ( ), pitch ( ), and roll ( ), where the order of ro-
tation is about followed by and then . This results in
a rotation matrix describing the orientation of framewith re-
spect to the navigation frame

where the subscriptsand refer to sine and cosine. Measure-
ments of the IMU are the accelerations
and angular velocities in the body frame

. Let the motion of the vehicle be described by the state equa-
tion

(1)

where the vehicle state vector , and the

measurements .
Assuming that, in the context of a land vehicle, the gravity

vector is constant parallel to , the accelerations measured
by the IMU are related to the accelerations in the navigation
frame by

(2)

Equation (2) was derived using the orthogonal properties of
where the inverse of this matrix is simply its transpose.

Using the kinematic relationship between and the rates
of changes of the Euler angles, and assuming that the rate of
rotation of the earth is negligible, the state equations for vehicle
motion can now be written as

(3)

(4)

(5)

(6)

(7)

Equations (3)–(7) are the fundamental equations that enable the
computation of the state of the vehicle from an initial state

and a series of measurementsand . It is important to
note the following with respect to these equations.

1) These equations are valid for the general motion of a body
in three-dimensional space. It should be pointed out that
in some inertial applications, effects such as the Schuler
frequency, Earth rotation, and the fact that gravity is not
necessarily constant as the vehicle traverses over large
distances, modifies the equation stated here. However,
for low cost IMU’s which cannot measure such effect,
or changes in these effects, these terms do not find their
way into these equations. This is coupled to the fact that
in many land, civilian applications, as concerned with in
this paper, the error drift in the INS solutions is dramatic
enough to warrant constant aiding.

2) Equations (4)–(7) represent a set of nonlinear differen-
tial equations that can easily be solved using a variety of

different techniques. If the sampling time is sufficiently
small, as usually is the case in many practical applica-
tions, a simple Euler scheme is adequate.

3) It is possible to linearize these equations, for sufficiently
small sampling intervals, by incorporating all the elements
of the direction cosine matrix into the state equation.
Although this approach ignores the intrinsic relationship
between the elements of practical experience suggests
that this is not an important issue and the computational ef-
ficiency gained is substantial. Alternative schemes for rep-
resenting orientationof abodycan alsobe used, eg. quater-
nions, in the formulation of state equations.

4) When , the set of equations presented above is
singular. Although this is important for airborne vehicles,
this condition is equivalent to driving up or down a 90 de-
gree slope, therefore, will not occur in the case of land ve-
hicles.

5) Two factors contribute to the rapid growth in the error
of position estimates computed using measurements of a
typical IMU.

a) The estimate for the vehicle position is arrived at
after three integration steps in time. One integra-
tion to obtain the Euler anglesand from mea-
sured ; then compute using measured ,
and ; integrate twice to obtain . The error
in the position estimate due to any unidentified bias
in the gyroscopes will, therefore, be proportional
to . In addition, any Gaussian noise present in the
IMU readings will deliver a drifting INS solution of
random walk (Brownian Motion) behavior, which
can be characterized as an error proportional to
as demonstrated in [11], after each integration step.

b) Typical accelerations for land vehicles are small
compared to the gravity vector. Therefore, even
small errors in the estimated attitude of the vehicle,
hence , can introduce large errors in the com-
puted vehicle acceleration.

Clearly, the rate of error growth can be reduced if the velocity
of the vehicle and the Euler anglesand can be estimated
directly. It will be shown in the next section that this is indeed
possible for a vehicle moving on a surface by exploiting the
resulting nonholonomic constraints.

B. Motion of a Vehicle on a Surface

Unlike in the case of a flight vehicle, motion of a wheeled ve-
hicle on a surface is governed by two nonholonomic constraints.
When the vehicle does not jump off the ground and does not
slide on the ground, velocity of the vehicle in the plane perpen-
dicular to the forward direction is zero. Under ideal conditions,
there is no side slip along the direction of the rear axle and no
motion normal to the road surface, the constraints are

(8)

(9)

In any practical situation, these constraints are somewhat vio-
lated due to the presence of side slip during cornering and vi-
brations caused by the engine and suspension system. In partic-
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ular the side slip is a function of the vehicle state as well as the
interaction between the vehicle tyres and the terrain.

A number of models are available for determining side slip,
but these models require the knowledge of the vehicle, tyre and
ground characteristics that are not generally available. Alterna-
tively, information from external sensors can be used to estimate
slip on-line. As a first approximation, however, it is possible to
model the extent of constraint violations as follows:

(10)

(11)

where and are Gaussian white noise sources with zero
mean and variance and , respectively. The strength of the
noise can be chosen to reflect the extent of the expected con-
straint violations.

Using the following equation that relates the velocities in the
body frame to :

it is possible to write constraint (10) and (11) as a function of
the vehicle state and a noise vector

(12)

where is given in (13), shown at bottom of the page. It is
now required to obtain the best estimate for the state vector
modeled by the state (4)–(7) from a series of measurements
and , subjected to the constraint (12). An estimation theoretic
approach based on the extended Kalman filter for this purpose
is described in the following subsection.

C. Estimation of the Vehicle State in the Presence of
Constraints

The state equation, obtained by the discretization (4)–(7), is

(14)

and the discrete time version of the constraint equation obtained
from (12)

(15)

where is the time step and is expected to be zero.
Estimation of the state vectorsubjected to stochastic con-

straints can be done in the framework of an extended Kalman
filter.

It is proposed to treat (15) asanobservation equationwhere the
“virtual observation” at each time instantis in fact identical to
zero.TheKalman filter recursivelycomputesestimates forastate

which is evolving according to the process model in (14)
and which is being observed according to the observation model

in (15). The filter computes an estimate which is equivalent to the
conditionalmean ( ),where isthe
sequence of observations taken up to timeare all equal to zero.
Theerror in theestimateisdenoted .The
Kalman filter also provides a recursive estimate of the covariance

in the estimate . We
briefly summarize the algorithm here for completeness. Detailed
descriptions may be found in [14].The Kalman filter algorithm
proceeds recursively in three stages.

Prediction: Given that the models described in (14) and (15)
hold, and that an estimate of the state at time
together with an estimate of the covariance exist, the
algorithm first generates a prediction for the state estimate, the
observation and the state estimate covariance at time ac-
cording to

(16)

(17)

(18)

respectively.
Observation: Following the prediction, it is assumed that an

observation that is identical to zero is made. An innovation
is then calculated as follows:

(19)

where is in fact set to zero. An associated innovation co-
variance given by the following equation is also computed:

(20)

Update: The state estimate and corresponding state estimate
covariance are then updated according to

where the gain matrix is given by

(21)

where represents the gradient operator, andand are ma-
trices representing noise in the IMU measurements and the con-
straint equations, respectively.

D. Observability of the States

Although an extended Kalman filter algorithm was developed
in the previous section in order to obtain estimates of the state,
not all the state variables are observable. For example, inspection
of thestateequation; theposition,velocityandattitudevector,and

(13)
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observation equation; velocity measurements along the normal
and axial directions, suggest that the estimation of the vehicle po-
sition, , requiresdirect integrationsandtherefore isnotobserv-
able.Furthermore, if thevehiclemovesinatrajectorythatdoesnot
excite therelevantdegrees-of-freedom, thenumberofobservable
states may be further reduced. Intuitively, forward velocity is the
direct integral of the measured forward acceleration during mo-
tion along straight lines, therefore is not observable. Clearly an
analysis is required to establish the conditions of observability.
As the state and observation equations are nonlinear, this is not
straightforward. In this section an alternative formulation of the
state equations, that directly incorporates the nonholonomic con-
strains, are developed in order to examine this issue.

Consider the motion of a vehicle on a surface as shown in
Fig. 1. Assume that the nonholonomic constraints are strictly
enforced and therefore the velocity vector of the vehicle in the
navigation frame is aligned with . Let and be the
distance measured from some reference location to the current
vehicle location along its path, and its first and second deriva-
tives with respect to time. Therefore

Acceleration of the vehicle is given by

As the angular velocity of the coordinate frameis given by
, then

Components of the acceleration of the vehicle in the body frame
become

Using (2) in the above, we obtain

where is the gravitational constant and is the speed
of the vehicle. Rearranging the above, the following three equa-
tions relating the vehicle motion to the measurements from the
IMU can now be obtained:

(22)

(23)

(24)

The following points are clear from the above equations.

• When the forward acceleration is zero the roll () and
pitch ( ) can be directly computed from the IMU mea-
surements.

• If one of the angular velocities or is not zero, the
forward velocity can also be computed directly.

• Even when the forward acceleration is nonzero, it is pos-
sible to write a differential equation containing only the
forward velocity and the IMU measurements by substi-
tuting (23) and (24) into (22). Therefore, can be ob-
tained by one integration step involving the IMU measure-
ments. If the constraints are not used, two integration steps
are required to obtain velocities. This result is of signifi-
cant importance. The fact that the forward acceleration is
observable makes the forward velocity error growth only
a function of the random walk due to the noise present in
the observed acceleration.

• It is possible to use (23) and (24) directly to obtain the
complete vehicle state without going through the Kalman
filter proposed in the previous section. This, however,
makes it difficult to incorporate models for constraint
violations in the solution. Also, when the constraint
violation is significant, such as in off road situations
or cornering at high speeds, the white noise model is
inadequate. For example, if there is significant side slip,
explicit slip modeling may be required.

III. T HE LINEAR INFORMATION FILTER APPROACH

The information filter (IF) is mathematically equivalent to the
Kalman filter (KF) and hence produces exactly the same result.
The difference between the two is that the IF is developed in in-
formation space instead of state space. The distinct advantage of
the implementation of the IF is the ease with which one can in-
troduce multiple observations from various sources without the
concern of correlations feeding their way through the innovation
sequence, as is common with the multiple observation form of
the KF. The reader is referred to [15], [16] for the IF derivation
and its appeal to multiple sensor applications.

TheprimaryreasonfortheimplementationoftheIFinthiswork
is the relative ease of fusing multiple observations from various
sensors: position and velocity from GPS, speed from a wheel en-
coder,andvelocityfromthenonholonomicconstraintspreviously
discussed. The filter also results in a computationally efficient al-
gorithm that is easy to implement in a real time system. As dis-
cussed previously, the use of multiple observations provide more
accurate state estimates as well as guarantees the observability of
position, which is essential in a practical application.

The key components in the IF are the information state ma-
trix, , and the information state vector,. is the inverse of
the covariance matrix found in statistical estimation, that is,

(25)

while the information state vector is

(26)

where is the state vector at time. The predicted informa-
tion state vector is given by

(27)
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The corresponding information state matrix is

where is the process noise of the model . The model
that is implemented in the filter is the standard linear inertial
error model employed in typical inertial feedback systems
[11],[12]

(28)

With this model, the position errors , velocity errors ,
and attitude errors , of the inertial navigation system are
evaluated during motion. The term , is the acceleration as
evaluated by the inertial unit in the navigation frame. The es-
timated errors are fed back to the inertial navigation solution
in order to correct it. This model is an error form of the inertial
navigation equations described in (3)–(7). The derivation of this
model follows a simple perturbation analysis as outlined in [17].

When an observation is made, the information observa-
tion vector and the corresponding information observation ma-
trix is formed as

(29)

(30)

where is the observation model and is the obser-
vation noise matrix. is the information contribution of the
observation, , to the state variables. represents the cer-
tainty, that is, the amount of information in the observation pro-
jected onto the state variables. Once the observations are ob-
tained, the estimate proceeds as

(31)

(32)

The information observation vector and matrix are generated for
any observation from any sensor or a virtual observation gener-
ated by the constraints. The benefits of (31) and (32) is that the
estimates can be easily computed when multiple aiding is used
since the information observation vector and matrix is simply
the sum of the individual observation information vectors and
matrices, that is,

(33)

(34)

A. Observations

When an observation from the aiding sensor is made, the ob-
servation vector generated is the observed error of the inertial
system, that is,

(35)

Once the observation is made, the information state vector is
generated along with the corresponding information matrix,
(31) and (32), and the estimate proceeds using (33) and (34).

Constraints and the Vehicle Speed:As discussed in Sec-
tion II-B, motion of the land vehicle is subjected to constraints.
Thus, the observation constraints ( ) are

The noise strength is depicted by the observation noise matrix
. At this stage, the velocity vector is only partly com-

pleted, requiring the speed of the vehicle in thedirection
which is obtained from the speed encoder. The velocity vector
that is formed by combining the speed data along with the mod-
eling constraints is termed the “constraint” observation. This ob-
servation vector which is in the body frame is converted to the
navigation frame using . Thus, the observation is

(36)

where

(37)

The observation model is given by

(38)

The observation covariance matrix is

(39)

Since the velocity vector is transformed from the body frame to
the navigation frame, the observation noise covariance needs to
be transformed as well and is done so by

(40)

GPS: When position and velocity are obtained from the
GPS, the observation vector is

(41)

The GPS observations are obtained in the NED frame. The ob-
servation model is

(42)

The observation noise matrix is

(43)

IV. RESULTS

This section presents the results of both the computer simula-
tions and experiments on a land vehicle. The simulations are pri-
marily aimed at examining the issues related to the observability
of the states when using the algorithm based on constraints de-
scribed in Section II. The experiments address two areas: IMU
without any external observations to demonstrate the use of the
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Fig. 2. Errors in vehicle speed when the vehicle is moving at a constant velocity of 10 m/s while the angular velocity aboutb is nonzero in the time interval
700–1300 s.

algorithm presented in Section II and IMU aided by a vehicle
speed sensor and GPS to demonstrate the effectiveness of this
algorithm and its implementation through the information filter
in a practical land vehicle navigation system.

The test vehicle used in the experimental work, shown in
Fig. 8, is a standard utility fitted with the following.

• Ashtech Carrier Phase Differential GPS receivers (GG24)
— Rated accuracy of 0.02 m in position and 0.02 m/s in
velocity when at least six satellites are in view. Sample
rate is 10Hz.

• Watson Inertial Measurement Unit (IMU-BA604) com-
prising of three VSG’s gyros and three Piezo Accelerom-
eters. Sample rate is 125 Hz and provides predicted posi-
tion, velocity and attitude information after inertial inte-
gration.

• Wheel encoder providing forward speed with an accuracy
of 1 m/s at 20 Hz. The encoder was mounted on the left
back wheel. The resolution of the encoder is 4095 pulses
per revolution. Since the wheel encoder provides data at
20 Hz, the constraints can also be applied at this rate since
they form one velocity vector (37). However, 20 Hz is fast
enough to assume constant velocity between samples, and
so the virtual velocity vector can be generated at the same
sampling rate as the inertial unit, that is at 125 Hz.

A. Simulation Results

In order to examine the effectiveness and the theoretical limi-
tations of the proposed algorithm, computer simulations were
performed where the trial conditions can be accurately con-
trolled. In particular, the effect of not having sufficient excitation
that make the algorithm unobservable were examined to verify
the predictions made in Section II-D. A program was written to

simulate the motion of a wheeled vehicle on a predefined trajec-
tory and generate the resulting accelerations and angular veloc-
ities. These accelerations and velocities, corrupted with noise,
were then used to generate estimates of the vehicle position and
velocity.

To examine the effect of the angular velocities in, , and
on the estimation algorithm, simulated data corresponding

to a vehicle moving at constant velocity was generated.
All angular velocities of the vehicle were set to zero except

one of the angular velocities was set to a random walk in the time
interval between 700 to 1300 s. Figs. 2–4 show the error in the
predicted speed of the vehicle . It is seen from these figures,
as expected, that any excitation due to and results in a
zero error in predicted vehicle speed where as motion inhas
no effect on this error.

It is also seen from Fig. 5 that the errors in roll and pitch do not
grow when the proposed algorithm was used for their prediction.
This is an important result because ascan be seen from Fig.2, that
although the error in velocity is not reduced to zero it only grows
due to noise as random walk. Again, as expected, the error in yaw
growswith time.Thiseffect isclearerwhen thereareunestimated
biases present in the gyroscope readings (see Fig. 6).

Fig. 7 shows that the error in the predicted speed of the ve-
hicle reduces to zero even when the velocity of the vehicle is not
constant.

B. Experimental Results With an Unaided IMU

The trial area used in this experiment was a tarred road with
gently sloping terrain with an approximate change in elevation
of about 6 m. This area was selected so that multipath errors
in the GPS were not present. The vehicle was driven at speeds
of up to 10 m/s. Fig. 9 shows the position of the vehicle in two
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Fig. 3. Errors in vehicle speed when the vehicle is moving at a constant velocity of 10 m/s while the angular velocity aboutb is nonzero in the time interval
700–1300 s.

Fig. 4. Errors in vehicle speed when the vehicle is moving at a constant velocity of 10 m/s while the angular velocity aboutb is nonzero in the time interval
700–1300 s.

situations, firstly using the algorithm discussed in [11] for fusing
information from IMU and GPS sensors, and secondly using
the extended Kalman filter with constraints. The difference in
position between these two methods is so small that it cannot be
seen clearly in this plot. The “true” position and velocity of the
vehicle that is used in subsequent results is obtained from the
IMU/GPS algorithm.

Figs. 10 and 11 show the errors in position and velocity of the
vehicle estimated using direct integration of the inertial data and
using the constraint based filter. As shown, the position error in-
creases quadratically such that after approximately 2 min (note
that the axes are labeled in terms of inertial iteration counts),
the free IMU result has drifted to over 750 m N, 300 m E, while
the constrained based algorithm produces an error which stays
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Fig. 5. Errors in roll, pitch, and yaw when the vehicle is moving at a constant velocity of 10 m/s while the angular velocity aboutb is nonzero in the time
interval 700–1300 s.

Fig. 6. Errors in roll, pitch, and yaw when the vehicle is moving at a constant velocity of 10 m/s while the angular velocity aboutb is nonzero in the time interval
700–1300 s. A constant unestimated bias of10 rad/s is introduced to all angular velocity observations.

below 10 m N, 5 m E. Similarly, the velocity error increases
linearly in the case of direct integration such that an error of
approximately 10 m/s N, 5 m/s E is observed where as these
errors are much smaller (less than 1 m/s) when the constraints
are utilized.The path taken by the vehicle as estimated by the
IMU/GPS system and the proposed algorithm. Figs. 12 and 13
show the errors in roll and pitch accumulated at the end of the

trial run after the vehicle has stopped. When the vehicle is sta-
tionary the “true” roll and pitch can be obtained by two tilt sen-
sors incorporated in the IMU, which have an accuracy of 0.1.
It is seen that the direct integration results in greater error than
that of the constrained method. It is these roll and pitch errors
that cause incorrect compensation for the gravitational acceler-
ation, resulting in velocity errors and hence position drift.
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Fig. 7. Errors in the vehicle speed when the vehicle is moving at a constant acceleration of0:05m/s for 1000 s and then decelerating at the same rate for another
1000 s. The angular velocity aboutb is nonzero in the time interval 700–1300 s.

Fig. 8. The vehicle used in the experiments. The IMU is placed in the rear tray. A differential RTK GPS unit is also present providing position and velocity of
the vehicle to accuracies of 0.02 m and 0.02 m/s, respectively. The drive wheel encoder is located at the left rear wheel.

It is clear that the use of constraints in the computations sig-
nificantly improves the location estimates obtained.

C. Experimental Results With an Aided IMU

Finally the results of a real time implementation of the iner-
tial navigation system based on the linear information filter and
the assumptions discussed in section Section III is presented.
Note that the results presented here are of a much longer ex-

periment than that presented in the previous section. The filter
implemented uses constraints, encoder velocity and GPS infor-
mation. The results are discussed into two parts; firstly only the
information from the constraints and the speed sensor are uti-
lized to demonstrate that the linearization assumptions are ex-
tremely satisfactory in practice, and secondly the complete in-
formation filter that also uses the GPS and the wheel encoder to
show the effectiveness of the algorithm presented in Section III
in a practical navigation system.
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Fig. 9. The path taken by the vehicle as estimated by the IMU/GPS system and the proposed algorithm. The difference between the paths is too small to be seen
clearly. The vehicle was driven at speeds of up to 10 m/s on a tarred road for about two minutes during this experiment.

Fig. 10. Errors in position estimated using direct integration and the proposed constraint motion algorithm. The “true” position used to compute these errors was
obtained using the IMU/GPS system.

Fig. 14 shows the position error in North and East directions
when the inertial unit is used as a stand alone sensor, and when
the vehicle speed and virtual observations due to constraints
are used. As before results from the fusion of IMU/GPS based
on [11] is used to provide the ground truth. As seen, the error
growth of the position is bounded in this situation. Likewise
Fig. 15 shows that the velocity error does not grow due to the
use of these observations.

Fig. 16 shows the roll and pitch of the vehicle. As mentioned
previously, any drift in these states causes the velocity, and

hence position evaluation, to drift as well. Thus the addition
of the virtual observation corrects the attitude and velocity of
the inertial unit, thus minimizing the impact of drift on these
states. Since the attitude is corrected, the velocity error of the
unit is contained and hence position error minimized. It can be
seen that the results are very similar to those obtained with the
full nonlinear implementation.

With the addition of GPS observations, more information is
provided to align the inertial system since this information can be
inherently derived from the velocity obtained through the GPS.
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Fig. 11. Errors in velocity estimated using direct integration and the proposed constraint motion algorithm. The “true” velocity used to compute these errors was
obtained using the IMU/GPS system.

Fig. 12. Errors in roll accumulated at the end of the trial run (after about 2 mins), estimated using direct integration and the proposed constraint motion algorithm.
The error in the IMU/GPS solution is provided as well. The “true” roll angle is provided by tilt sensors which have an accuracy of 0.1when the vehicle is stationary.

ThepositionobservationsfromtheGPSavoidsthelackofobserv-
ability encountered with the constraintonly implementation. The
greater the frequencyofobservations fromtheGPSunit, themore
information is added to the estimate [see (33) and (34)].

Figs. 17–19 compare the constrained inertial unit and the
constrained inertial unit with GPS observations provided every

15 s. When comparing the plots, the greatest improvement can
be seen with the position error since this is unobservable with
the use of constraints alone. Improvements in the estimated
velocity and attitude of the inertial system can also be seen.
However, these improvements are minimal since the states
are already observable even when the virtual observations
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Fig. 13. Errors in pitch accumulated at the end of the trial run (after about 2 min), estimated using direct integration and the proposed constraint motion algorithm.
The error in the IMU/GPS solution is provided as well. The “true” pitch angle is provided by tilt sensors which have an accuracy of 0.1when the vehicle is
stationary.

Fig. 14. Errors in position estimated using direct integration and the proposed constraint motion algorithm based on the linear information filter.The “true”
position used to compute these errors was obtained using the IMU/GPS system.

due to constraints are used. Furthermore, the latter provides a
significant amount of information due to the high update rate
used in the application of constraints. The more frequently the
GPS observations are added, the less error will develop in the
attitude and velocity of the inertial system. More importantly
however, these results show that the errors in the estimates

obtained using only inertial data can be contained between
GPS fixes. This dramatically improves the navigation suite as a
whole, since the inertial system can navigate for a substantially
greater amount time without GPS. The duration of this time
is in turn dependent on the accuracy of the inertial unit used
and the target application.
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Fig. 15. Errors in velocity estimated using direct integration and the proposed constraint motion algorithm based on the linear information filter.The “true”
velocity used to compute these errors was obtained using the IMU/GPS system.

Fig. 16. These two plots show the roll and pitch errors accumulated at the end of the trial run, obtained using direct integration and the proposed constraint
motion algorithm based on the linear information filter. The “true” attitude angles were provided by tilt sensors which have an accuracy of 0.1when the vehicle
is stationary.

D. Summary of Results

Tables I and II provide a summary of the experimental results
obtained.

V. CONCLUSION

The popularity of IMUs in the automotive industry is ever in-
creasing. The major disadvantage of using a low-cost strapdown

inertial system is the rapid error growth that is encountered. This
is primarily due to drift in attitude estimate of the unit caused
by the noise and nonlinearities in the gyro data. With the algo-
rithm presented in this paper, the duration of time for which an
IMU can be relied upon as the sole navigation tool can be sig-
nificantly extended as compared to conventional techniques.

The core of the algorithm presented lies in the use of con-
straints that govern the motion of the vehicle. It was shown that
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Fig. 17. These two plots show the error in position obtained with the virtual velocity observation, and with the virtual velocity and GPS every 15 s. Even at this
low sampling rate, incorporation of the information from GPS dramatically improves the resulting position estimates.

Fig. 18. These two plots show the error in velocity obtained with the virtual velocity observation, and with the virtual velocity and GPS every 15 s. As velocity
is observable between the GPS fixes, the improvement obtained is only marginal.

under ideal conditions the velocity of the vehicle in the body
frame is represented by a vector in the forward direction, that
is, along the axis. Hence the velocity along the remaining two
axes, namely and , are constrained to be zero. However, due
to the presence of wheel slip and the effects of the suspension
commonly encountered in land vehicles, the velocities in these
two directions are not identically zero. As a first approxima-
tion, these velocities were simply modeled as white noise. This
appears satisfactory in many situations and the experimental re-
sults show a dramatic improvement in the position estimates ob-

tained. Slip or vibrations cannot be regarded insignificant in all
land vehicles, in particular for vehicles that operate in rough ter-
rain. These effects, therefore, need to be modeled appropriately
if the use of white noise is not a sufficiently accurate represen-
tation.

The information filter framework has allowed for the addition
of multiple observations to aid the inertial unit. The implemen-
tation described in this work can be further extended to include
attitude provided by either GPS or tilt sensors. Most importantly,
the addition of the observations due to the constraints bounds the
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Fig. 19. Error in attitude obtained with the virtual velocity observation, and with the virtual velocity and GPS every 15 s. As in the previous case of velocity, only
a slight improvement is seen when the GPS observations are used. This again is due to the fact that the attitude is observable between GPS fixes. The jumpin the
pitch error seen at the end of the run is due to a jump in velocity fix from the GPS receiver.

TABLE I
SUMMARY OF RESULTS FOR THEFIRST EXPERIMENT. COMPARISON OF THEFREE INERTIAL SOLUTIONS TO THEAIDED INERTIAL SOLUTIONS USING

THE CONSTRAINT OBSERVATIONS

TABLE II
SUMMARY OF RESULTS FOR THESECOND EXPERIMENT. COMPARISON OF THEFREE INERTIAL SOLUTIONS TO THEAIDED INERTIAL SOLUTIONS USING THE

CONSTRAINT OBSERVATIONS ANDSPEEDDATA IN THE INFORMATION FILTER, AND CONSTRAINT OBSERVATIONS, SPEEDDATA AND GPSIN THE INFORMATION

FILTER. THE JUMP IN THE PITCH ESTIMATION WHEN USING GPSIS DUE TO A JUMP IN THE VELOCITY FIX FROM THE GPS RECEIVER

error growth of the attitude and velocity of the inertial system
thus also bounding the position errors. This has a dual effect of
providing more information to aid the IMU when GPS obser-
vations are obtained, and furthermore contains the error growth
between GPS observations, which is highly desirable in situa-
tions where GPS signal outages or multipath can occur.

VI. FURTHER WORK

There are principally two areas where this algorithm can be
further developed. The first is the modeling of the constraints
using the knowledge of the vehicle to ground interactions. This
will then cover a wider range of land vehicles and also pro-
vide a better representation of the constraints. The second area
is the investigation of the minimum number of inertial sensors
required to predict the position of a land vehicle considering the
nonholonomic constraints. This is of fundamental importance
since this in turn will reduce the cost of inertial systems used on
land vehicles.
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