IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 5, OCTOBER 2001 731

The Aiding of a Low-Cost Strapdown Inertial
Measurement Unit Using Vehicle Model
Constraints for Land Vehicle Applications

Gamini Dissanayake, Salah Sukkariétssociate Member, IEEEduardo NebgtMember, IEEEand
Hugh Durrant-Whyte

Abstract—This paper presents a new method for improving low frequency absolute sensors which bound the positioning er-
the accuracy of inertial measurement units (IMUs) mounted on rors associated with the high frequency sensors [5].

land vehicles. In contrast to the typical techniques used for IMUs Wheel and steering encoders are extremely effective dead
mounted on flight vehicles, the algorithm exploits nonholonomic . . . .
constraints that govern the motion of a vehicle on a surface to reckoning sensors in planar environments but do not provide ac-

obtain velocity observation measurements which aid in the esti- curate information when the deviation from planar motion is sig-
mation of the alignment of the IMU as well as the forward velocity nificant [6]. A full six-degree-of-freedom inertial measurement
of the vehicle. It is shown that this can be achieved without any ynijt (IMU) can provide 3-D position and velocity information.

external sensing provided that certain observability conditions are A typical IMU consists of three accelerometers and three gy-
met. A theoretical analysis is provided together with a comparison

of experimental results between a nonlinear implementation of the roscopes mounted in a §Et of three orthqgonal axes. The lMU
algorithm and an IMU/GPS navigation system. This comparison Measures the acceleration and the rotation rate of the vehicle
demonstrates the effectiveness of the algorithm. The real time in all three dimensions at a high sampling rate, typically at fre-
implementation is also addressed through a multiple observation quencies higher than 100 Hz. From this information, attitude,

inertial aiding algorithm based on the information filter. The = \/o14city and hence position of the vehicle can be derived.
observations used in the information filter include position and

velocity of the vehicle from a GPS unit, speed from a wheel Inertial units have always been presented as a valuable sensor
encoder, and virtual observations due to the constraints on the IN many applications. The advantages of inertial navigation are
motion of the vehicle. The results show that the use of these well known: high update rates; position and velocity in three di-
constraints and vehicle speed guarantees the observability of the mensions along with attitude and heading information; and with

velocity and the attitude of the inertial unit, and hence bounds the . . .
errors associated with these states. The observations from the GPS. > requirement of a vehicle model. However, until recently the

unit adds extra information to the estimate of these states as well Nigh cost of these units has always kept them from being imple-
as providing observability of position. The strategies proposed in mented in civilian applications. The major driving force behind
this paper provides for a tighter navigation loop which can sustain the drop in price has been the development of cheaper gyro-
outages of GPS for a greater amount of time as compared to when scopes, generally in a ceramic version [7], [8], and recently sil-
the inertial unit is used with standard integration algorithms. icon models, [9], [10]. This reduction in cost however, has also
_Index Terms—Aiding, inertial measurement units, Kalman |ed to a drop in accuracy of the inertial unit as a whole. The pre-
filter, vehicle modeling. dominant error sources in the inertial sensors, whether they are
gyros or accelerometers, is bias, scale factors and random walk,
|. INTRODUCTION [11]. It is the errors encountered in the gyros which have the

. most detrimental affect on the inertial navigation output, since
ITH the commercial development of autonomous Ianiii1 g P

vehicles in applications such as surface and underaro gse errors are reflected directly into the computed attitude. At-
mining [1], [2], a ricFL)JFI)ture [3], and cargo handling [4] ther(ga h;tsri]tude of the IMU is used to compute and cancel the effect of the

gl l<], agric ' 9 nating 121, 8r vitational acceleration on the observed accelerations. As typ-
been a corresponding development of havigation systems. St¢

. . ical vehicle accelerations are significantly smaller than the grav-
systems are necessary to provide knowledge of vehicle pasi

. . . tAtional acceleration, even small errors in the attitude, lead to
tion and trajectory and subsequently to control the vehicle alop e ; " . .
. : T . e drifts in the velocity and hence position estimates. Attitude
a desired path. Reliable localization is an essential componen ; o
. ; o .~ @érrors due to the biases are usually accounted for by estimation
of any autonomous vehicle. The basic navigation loop imple

) : D . or through temperature compensation, especially since there is a
mented in a typical land vehicle is based on dead reckoning s g P P P y

. . N %Pr'ong correlation between changes in bias and changes in tem-
sors, which predict the vehicle’s high frequency maneuvers, and ; Lo
péerature. Itis the random walk, due to the mathematical integra-

tion of signal noise, which cannot be combated unless external
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navigation sensor. Since GPS does not require a vehicle mo Body Frame
the IMU/GPS navigation suite is independent of vehicle kine
matics. At the Australian Centre for Field Robotics (ACFR)
the GPS aiding of inertial units has been used extensively
many land vehicle applications [11],[12]. This navigation suit
has been developed to a level where centimeter accuracy
be attained with low-cost inertial units together with the us
of carrier phase-differential GPS. Furthermore, fault-detectic
techniques have also been incorporated to increase the integ
of the navigation suite, by detecting errors such as multipe
of the GPS signal. It is during the periods where the decisi
analysis detects faults in the GPS signal that the inertial u
is left to perform on its own. The resulting lack of externay
information causes the navigation output of the inertial unit 1
drift. The drift rate depends on the accuracy of the IMU and tt
length of time where there are no external observations. Ob

Vehicle

ously for autonomous applications the longer the inertial ur Navigation Frame
can maintain a position estimate that is acceptable for a giv n
practical application, in the absence of external observatiol

the greater the integrity of the navigation system. o

There is a vast body of literature on the strategies for using
IMUs for position estimation. These are typically based on a|95lg. 1. Motion of a vehicle on a surface. The navigation framig fixed and
ith d | d for IMU ted fliaht vehicl E % represented by the North, East, and Down axes. The body flayiegn the
.r' ms developed tor S mounte On. ight vehic ?S' XCeRlcal tangent plane to the surface and is aligned with the kinematic axes of the
in the case of a recent study reported in [13] that discusses thEicle. The rotation angles about they and= axes is represented by rail
aiding of an IMU using aircraft dynamics, none of these strat@iich . and yaw:, respectively.

gies pay attention to the behavior of the vehicle on which the

IMU is mounted. Clearly, unlike in an aircraft, there is scopghese observations is achieved using a linear information filter.
to exploit the fact that land vehicles are constrained to move @i particularly easy to fuse observations at different rates origi-
a surface. One contribution of this paper is the formulation @hting from different sensors using an information filter, making
the equations governing the behavior of an IMU mounted gfcomputationally more efficient than the standard Kalman filter
a land vehicle. It is shown that the presence of nonholonomjgplementations. It is shown that the assumptions on linearity
constraints for a vehicle moving on a surface allows for the ogre valid for a practical system and that the use of additional sen-
line estimation of the roll, pitch and the forward velocity of theors significantly improve the quality of the position estimate.
vehicle from the measurements obtained from the IMU. Resuitijs is of fundamental importance since it makes the inertial
from experiments using an instrumented car and from comput§istem less dependent on external information.

simulations are presented. It is shown that the rate of growth ofrnpe paper is organized as follows. Section Il provides the the-
the error in position estimates obtained from an IMU can Rgetical background and the observability analysis. Section Il
SubStantially reduced when a vehicle model with Constraintsd%sents the information f||ter implementation. Section \Y pro_

used. Thisis Clearly of value when external information, for e)@ides results using simulated and real data and Section V will
ample, from GPS, is not available for extended periods of tinge the conclusions.

due to outages in the GPS signal.

An observability analysis is also presented to determine the II. MOTION OF A LAND VEHICLE
conditions that guarantee observability of attitude and forward ] ) .
velocity. It is demonstrated with theoretical and experimentdt General Three-Dimensional (3-D) Motion
results that forward velocity is unobservable when certain de-Fig. 1 shows a wheeled vehicle moving on the earth sur-
grees of freedom are not excited. This is the case when the feze. The Navigation framerepresented by the orthogonal axis
hicle is travelling along a straight path, without any pitching dxorth, East, and Down (NED) is the coordinate frame with re-
yawing motion. In such situations the speed of the vehicle neesfsect to which the location of the vehicle needs to be estimated.
to be measured, typically achieved with the addition of a whe®he coordinate framb is attached to the vehicle and is aligned
encoder. Furthermore, heading and position of the vehicle avith the axes of the IMU. Without any loss of generality, as-
always unobservable. Therefore, external information, for egume that the IMU is placed at the center of the rear axle of the
ample from a GPS is always required if it is necessary to usewahicle such thab,, is in the direction of the rear axle ahg is
IMU for navigation over long periods of time. in the direction of forward motion of the vehicle.

Finally, this paper also presents a real time algorithm for thelt is also assumed that the vehicle is steered using the front
aiding of an inertial unit with the three forms of observationeheels. Position of the vehiclB,, = [Pm,,PW,PW]T is the
mentioned above, namely position and velocity derived froposition vector of the origin of framb in the navigation frame
GPS, speed from a wheel encoder and virtual observations @umel velocity of the vehicl&, = [V,,, V,y, VM]T is the rate
to the constraints on the motion of the vehicle. The fusion of change ofP,,.
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The orientation of the vehicle is represented by the three Euler

angles, yaw), pitch ), and roll (), where the order of ro-
tation is aboub followed by b, and thenby. This results in
a rotation matrix describing the orientation of framevith re-
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different techniques. If the sampling time is sufficiently
small, as usually is the case in many practical applica-
tions, a simple Euler scheme is adequate.

3) ltis possible to linearize these equations, for sufficiently

spect to the navigation frame

small samplingintervals, by incorporating all the elements
of the direction cosine matriC;’ into the state equation.

. O0ctpe —Pcs + Psbsthe  Puths + ebsthe Although this approach ignores the intrinsic relationship
G = 9&9/)5 Pepe ; 5)595% _‘7)51/’;)5‘7)0981/’5 between the elements GF practical experience suggests

where the subscriptsandc refer to sine and cosine. Measure-
ments of the IMU are the acceleratioAs = [Ay,, Ay, Abz]T

and angular velocitie®, = [wi, wiy, wa]T in the body frame

b. Let the motion of the vehicle be described by the state equa—4)

tion

where the vehicle state vector= [PL, VI .6, ¢] T andthe 5)

thatthisis notanimportantissue and the computational ef-
ficiency gained is substantial. Alternative schemes for rep-
resenting orientation of abody can also be used, eg. quater-
nions, in the formulation of state equations.

Whené = +7/2, the set of equations presented above is
singular. Although this is important for airborne vehicles,
this condition is equivalent to driving up or down a 90 de-
(1) gree slope, therefore, will not occur in the case of land ve-
hicles.

Two factors contribute to the rapid growth in the error

x =f(x,u)

measurementa = [AbT,wa]T. of position estimates computed using measurements of a

Assuming that, in the context of a land vehicle, the gravity
vectorG is constant parallel ta., the accelerations measured
by the IMU are related to the accelerations in the navigation
frame A, by

Equation (2) was derived using the orthogonal propertigs;of
where the inverse of this matrix is simply its transpose.

Using the kinematic relationship between and the rates
of changes of the Euler angles, and assuming that the rate of
rotation of the earth is negligible, the state equations for vehicle
motion can now be written as

Equations (3)—(7) are the fundamental equations that enableig?ﬁ

typical IMU.

a) The estimate for the vehicle positiBY, is arrived at
after three integration steps in timeOne integra-
tion to obtain the Euler anglésand ¢ from mea-
suredw;; then computeA , using measuredy;, ¢
and ¢; integrateA ,, twice to obtainP,, . The error
in the position estimate due to any unidentified bias
in the gyroscopes will, therefore, be proportional
tot3. In addition, any Gaussian noise present in the
IMU readings will deliver a drifting INS solution of
random walk (Brownian Motion) behavior, which
can be characterized as an error proportionafto
as demonstrated in [11], after each integration step.

b) Typical accelerationA ,, for land vehicles are small

A, = [CY" [AL+G]. @)

I.)n _VZ 3) compared to the gravity vecté. Therefore, even
Va =Gy A," -G (4) small errors in the estimated attitude of the vehicle,
g =2 sin ¢ + w;. cos ¢ (5) henceCy, can introduce large errors in the com-

. cost/ puted vehicle acceleration.
0 =wpy cos ¢ — wyz sing (6) Clearly, the rate of error growth can be reduced if the velocity

¢ =wpy + (way sin ¢ + wy cos @) tan 6. (7) of the vehicle and the Euler anglésand ¢ can be estimated
directly. It will be shown in the next section that this is indeed

sible for a vehicle moving on a surface by exploiting the

computation of the state of the vehicle from an initial state resulting nonholonomic constraints.
x(0) and a series of measuremedts andw, . It is important to

note the following with respect to these equations.

B. Motion of a Vehicle on a Surface

1) These equations are valid for the general motion of a bodyypjike in the case of a flight vehicle, motion of a wheeled ve-

in three-dimensional space. It should be pointed out thgie on a surface is governed by two nonholonomic constraints.
in some inertial applications, effects such as the Schul@fhen the vehicle does not jump off the ground and does not
frequency, Earth rotation, and the fact that gravity is nQfjige on the ground, velocity of the vehicle in the plane perpen-
necessarily constant as the vehicle traverses over lagggyiar to the forward direction is zero. Under ideal conditions,

distances, modifies the equation stated here. HoweVgfere is no side slip along the direction of the rear axle and no

for low cost IMU’s which cannot measure such effectyotion normal to the road surface, the constraints are
or changes in these effects, these terms do not find their

way into these equations. This is coupled to the fact that
in many land, civilian applications, as concerned with in
this paper, the error drift in the INS solutions is dramatic
enough to warrant constant aiding. In any practical situation, these constraints are somewhat vio-

Viy =0 (8)

2) Equations (4)—(7) represent a set of nonlinear differetated due to the presence of side slip during cornering and vi-

tial equations that can easily be solved using a variety bfations caused by the engine and suspension system. In partic-
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ular the side slip is a function of the vehicle state as well as tire(15). The filter computes an estimate which is equivalentto the
interaction between the vehicle tyres and the terrain. conditionalmeag(p|q) = E [x(p)|Z](p > q),whereZisthe
A number of models are available for determining side sligequence of observations taken up to tiyere all equal to zero.
but these models require the knowledge of the vehicle, tyre afhide errorinthe estimateisdenotégh|q) = %(p|q)—x(p). The
ground characteristics that are not generally available. Alterrigalman filter also provides arecursive estimate of the covariance
tively, information from external sensors can be used to estimzﬂ@mq) ) [g(p|q)g(p|q)T|qu in the estimate(p|q). We
slip on-line. As a first approximation, however, it is possible t§yiefly summarize the algorithm here for completeness. Detailed
model the extent of constraint violations as follows: descriptions may be found in [14]. The Kalman filter algorithm
Vi — 17 =0 (10) proceeds'recurs'ively in three stages. . .

v Prediction: Given that the models described in (14) and (15)
Vie — . =0 (11) hold, and that an estimatgk|k) of the statex(k) at timek
Ilggether with an estimate of the covariarleék|k) exist, the
algorithm first generates a prediction for the state estimate, the
gpservation and the state estimate covariance atiird ac-
cording to

where, and, are Gaussian white noise sources with ze
mean and varianoej anda?, respectively. The strength of the
noise can be chosen to reflect the extent of the expected ¢
straint violations.

Using the following equation that relates the velocitiesinthe g (x|x — 1) =f(&(k — 1)k — 1), u(k— 1), (k— 1) (16)
body frameV;, = [Vis, Viy, Vi2] " t0 Vi

z(klk — 1) =h(k — D)x(k|k - 1) a7)
Vi =[CH" Va, P(k|k — 1) = VE,(k — )Pk — 1|k — )VE(k — )T
_ _ T
it is possible to write constraint (10) and (11) as a function of + V(b - 1)QVEL(E —1) (18)
the vehicle state and a noise vectow = [, l/Z]T respectively.
v , Observation: Following the prediction, it is assumed that an
{be} =M+ {;}y} (12) observatiorz(k) thatis identical to zero is made. An innovation
bz * is then calculated as follows:

whereM is given in (13), shown at bottom of the page. It is ) N
now required to obtain the best estimate for the state vector v(k) = z(k) — 2(klk — 1) (19)

modeled by the state (4)—(7) from a series of measuren?ents yherez(k) is in fact set to zero. An associated innovation co-

andwy, subjected to the constraint (12). An estimation theoretig, riance given by the following equation is also computed:
approach based on the extended Kalman filter for this purpose

is described in the following subsection. S(k|k — 1) = Vh,(k — )P(k|k — 1)Vh,(k — 1)T

. . . T
C. Estimation of the Vehicle State in the Presence of +Vhy (k= DR(E = DVhe(k =17 (20)

Constraints Update: The state estimate and corresponding state estimate

The state equation, obtained by the discretization (4)—(7), f@Vvariance are then updated according to

x(k) = f(x(k — 1), u(k — 1), (k — 1) (14) x(k|k) =x(k|k — 1) + W(k)(2(k) — h(x(k|k — 1)))
. : . . .  P(k|E) = P(k[k — 1) = W(k)S(k)W (k)
and the discrete time version of the constraint equation obtained
from (12) where the gain matri® (k + 1) is given by
z(k) = hi(x(k),w(k)) (15) W(k) = P(k|k — 1)Vh,(k — 1)'S™(k) (21)

wherek is the time step and(k) is expected to be zero. whereV represents the gradient operator, &hdndR are ma-

Estimation of the state vecter subjected to stochastic con-trices representing noise in the IMU measurements and the con-
straints can be done in the framework of an extended Kalmaifiaint equations, respectively.
filter.

Itis proposedtotreat (15) as an observation equation where the
“virtual observation” at each time instahis in fact identicalto  Although an extended Kalman filter algorithm was developed
zero. The Kalmanfilter recursively computes estimates for a staiehe previous section in order to obtain estimates of the gtate
x(k) which is evolving according to the process model in (14)ot all the state variables are observable. For example, inspection
and which is being observed according to the observation modéthe state equation;the position, velocity and attitude vector, and

Observability of the States

Ve cos@costp 4V, cosfsiney — V. sinf

Vs (sin ¢ sin @ cosp — cos ¢psiny) + Vi, (cos pcostp + sin¢psin @sinep) + V,, . sin ¢ cos (13)
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observation equation; velocity measurements along the normale
and axial directions, suggest that the estimation of the vehicle po-
sition,P,,, requiresdirectintegrations andthereforeis notobserv-
able. Furthermore,ifthe vehicle movesinatrajectorythatdoesnot ¢
excite the relevant degrees-of-freedom, the number of observable
states may be further reduced. Intuitively, forward velocity is the
direct integral of the measured forward acceleration during mo-
tion along straight lines, therefore is not observable. Clearly an
analysis is required to establish the conditions of observability.
As the state and observation equations are nonlinear, this is not
straightforward. In this section an alternative formulation of the
state equations, that directly incorporates the nonholonomic con-
strains, are developed in order to examine this issue.

Consider the motion of a vehicle on a surface as shown in
Fig. 1. Assume that the nonholonomic constraints are strictly
enforced and therefore the velocity vector of the vehicle in the
navigation framéV,, is aligned withb,. Let s, $ and s be the .
distance measured from some reference location to the current
vehicle location along its path, and its first and second deriva-
tives with respect to time. Therefore

V =sby
Acceleration of the vehicle is given by
A =V =5b, + 5bs.

As the angular velocity of the coordinate frameis given by
wy, then

A =5b, + Swp X by
A =5by + sw.by — swyb..
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When the forward acceleration is zero the raet) @nd
pitch (@) can be directly computed from the IMU mea-
surements.

If one of the angular velocities, or w, is not zero, the
forward velocity can also be computed directly.

Even when the forward acceleration is nonzero, it is pos-
sible to write a differential equation containing only the
forward velocity and the IMU measurements by substi-
tuting (23) and (24) into (22). Therefor&} can be ob-
tained by one integration step involving the IMU measure-
ments. If the constraints are not used, two integration steps
are required to obtain velocities. This result is of signifi-
cant importance. The fact that the forward acceleration is
observable makes the forward velocity error growth only
a function of the random walk due to the noise present in
the observed acceleration.

It is possible to use (23) and (24) directly to obtain the
complete vehicle state without going through the Kalman
filter proposed in the previous section. This, however,
makes it difficult to incorporate models for constraint
violations in the solution. Also, when the constraint
violation is significant, such as in off road situations
or cornering at high speeds, the white noise model is
inadequate. For example, if there is significant side slip,
explicit slip modeling may be required.

I1l. THE LINEAR INFORMATION FILTER APPROACH

The information filter (IF) is mathematically equivalent to the
Kalman filter (KF) and hence produces exactly the same result.
The difference between the two is that the IF is developed in in-

Components of the acceleration of the vehicle in the body frarff@mation space instead of state space. The distinct advantage of

B become

the implementation of the IF is the ease with which one can in-

troduce multiple observations from various sources without the

A b, =5
Ab, =s5w,
Ab, =—sw,.

concern of correlations feeding their way through the innovation
sequence, as is common with the multiple observation form of
the KF. The reader is referred to [15], [16] for the IF derivation

and its appeal to multiple sensor applications.

Using (2) in the above, we obtain

Ape Vi
Aby = Vfwz
Abz —Vfwy
9(:1/}(: 9(:1/}5 _95
+ _d)cws + (/)5951/)6 (/)CZ/)C + d)sesws (/)596
(/)51/)5 + d)cesz/)c _(/)s"(/)c + ¢c951/)5 ¢c9c
0
0
-9

Theprimaryreasonfortheimplementation ofthe IFinthiswork
is the relative ease of fusing multiple observations from various
sensors: position and velocity from GPS, speed from a wheel en-
coder,andvelocity fromthe nonholonomic constraints previously
discussed. Thefilter also results in a computationally efficient al-
gorithm that is easy to implement in a real time system. As dis-
cussed previously, the use of multiple observations provide more
accurate state estimates as well as guarantees the observability of
position, which is essential in a practical application.

The key components in the IF are the information state ma-
trix, Y, and the information state vectgr, Y is the inverse of

whereg is the gravitational constant andg = s is the speed the covariance matrix found in statistical estimation, that is,

of the vehicle. Rearranging the above, the following three equa-
tions relating the vehicle motion to the measurements from the
IMU can now be obtained:

Vf — Apr + gsin6 =0
— Apy — gsingcost =0

(22)
Vfwz
Viw, + Ap. + gcos pcos =0. (24)

The following points are clear from the above equations.

Y(k) = P—l(k) (25)
while the information state vector is
y(k) = Y(k)x(k) (26)

(23) wherex(k) is the state vector at timie The predicted informa-
tion state vector is given by

y(klk — 1) = Y(k|k - DF(k)Y (kk — 1).

(27)
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The corresponding information state matrix is Constraints and the Vehicle Speeds discussed in Sec-

. _— T . tion 11-B, motion of the land vehicle is subjected to constraints.
Ykk-1)=[F&k)Y (k-1k-1F" (k) + Q(k)] Thus, the observation constrainGdnsy.;) are

whereQ(k) is the process noise of the mod#&lk). The model Consyer, =0
that is implemented in the filter is the standard linear inertial

. . . ) Consyer, =0.
error model employed in typical inertial feedback systems

[11],[12] The noise strength is depicted by the observation noise matrix
R.ons. At this stage, the velocity vector is only partly com-
] o 01 0 ép, pleted, requiring the speed of the vehicle in thedirection
vy [ =0 0 Ay ovy | . (28) ' which is obtained from the speed encoder. The velocity vector
o 00 0 Otpn that is formed by combining the speed data along with the mod-

eling constraints is termed the “constraint” observation. This ob-

With this model, the position erroép,,, velocity errorsév,,, . SN .
and attitude errorsdy, of the inertial navigation system areServation vector which is in the body frame is converted to the
navigation frame using’y. Thus, the observation is

evaluated during motion. The terd,,, is the acceleration as
evaluated by the inertial unit in the navigation frame. The es- Zyirtual(k) = Inertialye (k) — Virtualye (k) (36)
timated errors are fed back to the inertial navigation solution

in order to correct it. This model is an error form of the inertiai'nere

navigation equations described in (3)—(7). The derivation of this Encoderve (k)
model follows a simple perturbation analysis as outlined in [17]. Virtualvye (k) =Cp 0 . (37)
When an observatioa(k) is made, the information observa- 0

tion vector and the corresponding information observation Mag . gpservation model is given by
trix is formed as

Hvirtual(kK) = (03x3  Isxz Osx3). (38)
i(k) =H" (k)R (k)z(k) (29— bservat . ik
e observation covariance matrix is
I(k) =H" ()R~ (k)/H(k) (30) veton coval !
. . . RVirtual(k)
whereH(k) is the observation model ari8(k) is the obser- R (k) 0 0
. . .. . . . . . FEncoderyq)
vation noise matrixi(k) is the information contribution of the ~ _ 0 Re (k) 0
observationz(k), to the state variable¥(k) represents the cer- 0 . R ")
tainty, that is, the amount of information in the observation pro- Consver. (39)
jected onto the state variables. Once the observations are ob-
tained, the estimate proceeds as Since the velocity vector is transformed from the body frame to
) - . the navigation frame, the observation noise covariance needs to
y(klk) =y(klk — 1) +i(k) (31)  pe transformed as well and is done so by

Yk =i D+ 10 B2 Rupiani(®) = CB) Ryirenni(l) (€00, (40)
The information observation vector and matrix are generated forGP& When position and velocity are obtained from the
any observation from any sensor or a virtual observation 9eNBIPS the observation vector is

ated by the constraints. The benefits of (31) and (32) is that the .

estimates can be easily computed when multiple aiding is used zaps (k) = <Inert1.alPos(k) — G’PSPOS(k)) (41)
since the information observation vector and matrix is simply Inertialve (k) — GPSve (k)

the sum of the individual observation information vectors anthe GPS observations are obtained in the NED frame. The ob-

matrices, that is, servation model is
F(k|k) =y(klk — 1) + > ions(k) (33) Heps(k) = <13x3 0353 03x3> _ (42)
. - O3x3 Iszxz Osxs
Y (klk) =Y (klk = 1)+ > Tons (k). (34) " The observation noise matrix is
_ [ Poszyxs(k) O3x3
A. Observations Raps(k) = < Osys Velgya(k) ) (43)
When an observation from the aiding sensor is made, the ob-
servation vector generated is the observed error of the inertial IV. RESULTS

system, that is, This section presents the results of both the computer simula-

z(k) = Inertialyaio(k) — Observationgae(k). (35) tionsandexperimentson aland vehicle. The simulations are pri-
marily aimed at examining the issues related to the observability

Once the observation is made, the information state vectorofsthe states when using the algorithm based on constraints de-
generated along with the corresponding information matrigcribed in Section Il. The experiments address two areas: IMU
(31) and (32), and the estimate proceeds using (33) and (34)without any external observations to demonstrate the use of the



DISSANAYAKE et al. LOW-COST STRAPDOWN INERTIAL MEASUREMENT UNIT 737

50 i R
/ ———  Constrained INS
———  Direct Integration

Error in Velocity (m/sec)

_o0}k 4

~-30 -

1 1 i | 1 1 1 1 1

200 400 600 800 1000 1200 1400 1600 1800
Time (sec)

Fig. 2. Errors in vehicle speed when the vehicle is moving at a constant velocity of 10 m/s while the angular velocity,abadnzero in the time interval
700-1300 s.

algorithm presented in Section Il and IMU aided by a vehicleimulate the motion of a wheeled vehicle on a predefined trajec-
speed sensor and GPS to demonstrate the effectiveness oftthrigand generate the resulting accelerations and angular veloc-
algorithm and its implementation through the information filteities. These accelerations and velocities, corrupted with noise,

in a practical land vehicle navigation system. were then used to generate estimates of the vehicle position and
The test vehicle used in the experimental work, shown irelocity.
Fig. 8, is a standard utility fitted with the following. To examine the effect of the angular velocitiesbin b, and

« Ashtech Carrier Phase Differential GPS receivers (GG2k) on the estimation algorithm, simulated data corresponding
— Rated accuracy of 0.02 m in position and 0.02 m/s i#® & vehicle moving at constant velocity was generated.

Ve|ocity when at least six satellites are in view. Samp]e All angular velocities of the vehicle were set to zero except
rate is 10Hz one of the angular velocities was set to arandom walk in the time

« Watson Inertial Measurement Unit (IMU-BA604) com-interval between 700 to 1300 s. Figs. 2—4 show the error in the
prising of three VSG's gyros and three Piezo Acceleronredicted speed of the vehiclg. It is seen from these figures,
eters. Sample rate is 125 Hz and provides predicted pods expected, that any excitation duesg andw. results in a
tion, velocity and attitude information after inertial inte-2€ro error in predicted vehicle speed where as motianirhas
gration. no effect on this error.

« Wheel encoder providing forward speed with an accuracy It is also seen from Fig. 5 that the errors in roll and pitch do not
of 1 m/s at 20 Hz. The encoder was mounted on the I&ffow when the proposed algorithm was used for their prediction.
back wheel. The resolution of the encoder is 4095 pulsé§isisanimportantresultbecause as can be seenfromFig. 2, that
per revolution. Since the wheel encoder provides data&though the errorin velocity is not reduced to zero it only grows
20 Hz, the constraints can also be applied at this rate sirf¢e to noise as random walk. Again, as expected, the errorinyaw
they form one velocity vector (37). However, 20 Hz is fasgrows withtime. This effectis clearerwhenthere are unestimated
enough to assume constant velocity between samples, &pes presentin the gyroscope readings (see Fig. 6).

so the virtual velocity vector can be generated at the samé™ig. 7 shows that the error in the predicted speed of the ve-
sampling rate as the inertial unit, that is at 125 Hz. hicle reduces to zero even when the velocity of the vehicle is not

constant.
A. Simulation Results

In order to examine the effectiveness and the theoretical linkf: EXperimental Results With an Unaided IMU
tations of the proposed algorithm, computer simulations wereThe trial area used in this experiment was a tarred road with
performed where the trial conditions can be accurately cogently sloping terrain with an approximate change in elevation
trolled. In particular, the effect of not having sufficient excitatiorf about 6 m. This area was selected so that multipath errors
that make the algorithm unobservable were examined to verifythe GPS were not present. The vehicle was driven at speeds
the predictions made in Section II-D. A program was written tof up to 10 m/s. Fig. 9 shows the position of the vehicle in two
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Fig. 3. Errors in vehicle speed when the vehicle is moving at a constant velocity of 10 m/s while the angular velocity,abawnzero in the time interval
700-1300 s.
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Fig. 4. Errors in vehicle speed when the vehicle is moving at a constant velocity of 10 m/s while the angular velocity.abmdnzero in the time interval
700-1300 s.

situations, firstly using the algorithm discussed in [11] for fusing Figs. 10 and 11 show the errors in position and velocity of the
information from IMU and GPS sensors, and secondly usinghicle estimated using direct integration of the inertial data and
the extended Kalman filter with constraints. The difference insing the constraint based filter. As shown, the position error in-
position between these two methods is so small that it cannotdseases quadratically such that after approximately 2 min (note
seen clearly in this plot. The “true” position and velocity of th¢hat the axes are labeled in terms of inertial iteration counts),
vehicle that is used in subsequent results is obtained from the free IMU result has drifted to over 750 m N, 300 m E, while
IMU/GPS algorithm. the constrained based algorithm produces an error which stays
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Fig. 6. Errorsinroll, pitch, and yaw when the vehicle is moving at a constant velocity of 10 m/s while the angular velocity.alsognzero in the time interval
700-1300 s. A constant unestimated biag@f* rad/s is introduced to all angular velocity observations.

below 10 m N, 5 m E. Similarly, the velocity error increasesial run after the vehicle has stopped. When the vehicle is sta-
linearly in the case of direct integration such that an error @ibnary the “true” roll and pitch can be obtained by two tilt sen-
approximately 10 m/s N, 5 m/s E is observed where as thesm@s incorporated in the IMU, which have an accuracy o0f.0.1
errors are much smaller (less than 1 m/s) when the constraihtis seen that the direct integration results in greater error than
are utilized.The path taken by the vehicle as estimated by tthat of the constrained method. It is these roll and pitch errors
IMU/GPS system and the proposed algorithm. Figs. 12 and tt#t cause incorrect compensation for the gravitational acceler-
show the errors in roll and pitch accumulated at the end of th&on, resulting in velocity errors and hence position drift.
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Fig. 7. Errorsin the vehicle speed when the vehicle is moving at a constant acceleratioh mfs’ for 1000 s and then decelerating at the same rate for another
1000 s. The angular velocity abdut is nonzero in the time interval 700-1300 s.

Fig. 8. The vehicle used in the experiments. The IMU is placed in the rear tray. A differential RTK GPS unit is also present providing position gnafveloci
the vehicle to accuracies of 0.02 m and 0.02 m/s, respectively. The drive wheel encoder is located at the left rear wheel.

Itis clear that the use of constraints in the computations sigeriment than that presented in the previous section. The filter
nificantly improves the location estimates obtained. implemented uses constraints, encoder velocity and GPS infor-
mation. The results are discussed into two parts; firstly only the
information from the constraints and the speed sensor are uti-
lized to demonstrate that the linearization assumptions are ex-

Finally the results of a real time implementation of the inetremely satisfactory in practice, and secondly the complete in-
tial navigation system based on the linear information filter arfdrmation filter that also uses the GPS and the wheel encoder to
the assumptions discussed in section Section Il is presentsidow the effectiveness of the algorithm presented in Section I
Note that the results presented here are of a much longer ixa practical navigation system.

C. Experimental Results With an Aided IMU
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Fig. 9. The path taken by the vehicle as estimated by the IMU/GPS system and the proposed algorithm. The difference between the paths is too emall to be se
clearly. The vehicle was driven at speeds of up to 10 m/s on a tarred road for about two minutes during this experiment.
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Fig. 10. Errors in position estimated using direct integration and the proposed constraint motion algorithm. The “true” position used to cemerrte sheas
obtained using the IMU/GPS system.

Fig. 14 shows the position error in North and East directiortgence position evaluation, to drift as well. Thus the addition
when the inertial unit is used as a stand alone sensor, and wbéthe virtual observation corrects the attitude and velocity of
the vehicle speed and virtual observations due to constraittie inertial unit, thus minimizing the impact of drift on these
are used. As before results from the fusion of IMU/GPS bassthtes. Since the attitude is corrected, the velocity error of the
on [11] is used to provide the ground truth. As seen, the erranit is contained and hence position error minimized. It can be
growth of the position is bounded in this situation. Likewisseen that the results are very similar to those obtained with the
Fig. 15 shows that the velocity error does not grow due to tlfigll nonlinear implementation.
use of these observations. With the addition of GPS observations, more information is

Fig. 16 shows the roll and pitch of the vehicle. As mentionggrovided to align the inertial system since this information can be
previously, any drift in these states causes the velocity, amterently derived from the velocity obtained through the GPS.
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Fig. 11. Errors in velocity estimated using direct integration and the proposed constraint motion algorithm. The “true” velocity used to caraguterthe/as
obtained using the IMU/GPS system.
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Fig. 12. Errorsinroll accumulated at the end of the trial run (after about 2 mins), estimated using direct integration and the proposed coitstraigoritbtn.
The errorin the IMU/GPS solution is provided as well. The “true” roll angle is provided by tilt sensors which have an accuracywbfd. the vehicle is stationary.

The position observationsfromthe GPS avoidsthelack of obseis s. When comparing the plots, the greatest improvement can
ability encountered with the constraint only implementation. THee seen with the position error since this is unobservable with
greaterthe frequency of observations fromthe GPS unit, the meine use of constraints alone. Improvements in the estimated
information is added to the estimate [see (33) and (34)]. velocity and attitude of the inertial system can also be seen.

Figs. 17-19 compare the constrained inertial unit and tiowever, these improvements are minimal since the states
constrained inertial unit with GPS observations provided eveaye already observable even when the virtual observations
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Fig. 13. Errorsin pitch accumulated at the end of the trial run (after about 2 min), estimated using direct integration and the proposed coistraigritiom.
The error in the IMU/GPS solution is provided as well. The “true” pitch angle is provided by tilt sensors which have an accuratywied.the vehicle is

stationary.
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Fig. 14. Errors in position estimated using direct integration and the proposed constraint motion algorithm based on the linear informaftoa ‘fittes
position used to compute these errors was obtained using the IMU/GPS system.

due to constraints are used. Furthermore, the latter provideskaained using only inertial data can be contained between
significant amount of information due to the high update ra8PS fixes. This dramatically improves the navigation suite as a
used in the application of constraints. The more frequently thole, since the inertial system can navigate for a substantially
GPS observations are added, the less error will develop in treater amount time without GPS. The duration of this time

attitude and velocity of the inertial system. More importantlis in turn dependent on the accuracy of the inertial unit used

however, these results show that the errors in the estimadesl the target application.
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velocity used to compute these errors was obtained using the IMU/GPS system.
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Fig. 16. These two plots show the roll and pitch errors accumulated at the end of the trial run, obtained using direct integration and the promised const

motion algorithm based on the linear information filter. The “true” attitude angles were provided by tilt sensors which have an accuragyheiOtiie vehicle
is stationary.

D. Summary of Results inertial system is the rapid error growth that is encountered. This
Tables | and Il provide a summary of the experimental resul& Primarily due to drift in attitude estimate of the unit caused
obtained. by the noise and nonlinearities in the gyro data. With the algo-

rithm presented in this paper, the duration of time for which an
IMU can be relied upon as the sole navigation tool can be sig-
nificantly extended as compared to conventional techniques.
The popularity of IMUs in the automotive industry is everin- The core of the algorithm presented lies in the use of con-
creasing. The major disadvantage of using a low-cost strapdostraints that govern the motion of the vehicle. It was shown that

V. CONCLUSION
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Fig. 17. These two plots show the error in position obtained with the virtual velocity observation, and with the virtual velocity and GPS everynld thive
low sampling rate, incorporation of the information from GPS dramatically improves the resulting position estimates.
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Fig. 18. These two plots show the error in velocity obtained with the virtual velocity observation, and with the virtual velocity and GPS every éBeits v
is observable between the GPS fixes, the improvement obtained is only marginal.

under ideal conditions the velocity of the vehicle in the bodtined. Slip or vibrations cannot be regarded insignificant in all
frame is represented by a vector in the forward direction, thiand vehicles, in particular for vehicles that operate in rough ter-
is, along ther axis. Hence the velocity along the remaining tweain. These effects, therefore, need to be modeled appropriately
axes, namely andz, are constrained to be zero. However, dué the use of white noise is not a sufficiently accurate represen-
to the presence of wheel slip and the effects of the suspensiation.

commonly encountered in land vehicles, the velocities in theseThe information filter framework has allowed for the addition
two directions are not identically zero. As a first approximasf multiple observations to aid the inertial unit. The implemen-
tion, these velocities were simply modeled as white noise. Thiion described in this work can be further extended to include
appears satisfactory in many situations and the experimentala#itude provided by either GPS or tilt sensors. Mostimportantly,
sults show a dramatic improvement in the position estimates dbe addition of the observations due to the constraints bounds the
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a slight improvement is seen when the GPS observations are used. This again is due to the fact that the attitude is observable between GPS fixesh&he jump

pitch error seen at the end of the run is due to a jump in velocity fix from the GPS receiver.

TABLE |
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error growth of the attitude and velocity of the inertial system
thus also bounding the position errors. This has a dual effect of
providing more information to aid the IMU when GPS obser-
vations are obtained, and furthermore contains the error growthy;
between GPS observations, which is highly desirable in situa-
tions where GPS signal outages or multipath can occur. 2

VI (3]

There are principally two areas where this algorithm can be
further developed. The first is the modeling of the constraints[4l
using the knowledge of the vehicle to ground interactions. This
will then cover a wider range of land vehicles and also pro- [5]
vide a better representation of the constraints. The second area
is the investigation of the minimum number of inertial sensors g,
required to predict the position of a land vehicle considering the
nonholonomic constraints. This is of fundamental importancel’]
since this in turn will reduce the cost of inertial systems used ong,
land vehicles.
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