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An Experiment in Autonomous Navigation
of an Underground Mining Vehicle

Steven Scheding, Gamini Dissanayake, Eduardo Mario Nebot, and Hugh Durrant-Whyte

Abstract—This paper describes the theoretical development
and experimental evaluation of a navigation system for an au-
tonomous load, haul, and dump truck (LHD) based on the results
obtained during extensivein-situ field trials.1 The particular con-
tributions of the theoretical work are in designing the navigation
system to be able to cope with vehicle slip in rough uneven terrain
using information from inertial sensors, odometry, and a bearing
only laser. Results are presented using data obtained during the
field trials.

Index Terms— Automation, inertial aiding, Kal-man filter,
LHD, mining.

I. INTRODUCTION

T he autonomous load, haul, and dump truck (LHD) (see
Fig. 1) is the workhorse of the underground mining

industry. A typical use for the LHD is in moving ore from the
rock face to a centralized dumping point. There is a strong case
for automation of these vehicles, for reasons of both safety and
productivity. The safety issue has been addressed with several
working implementations of teleoperated systems, including
the well publicized Canadian systems [1], [2]. Teleoperation,
however, offers little to increase productivity, as these sys-
tems tend to run at speeds slower than conventional manned
systems, resulting in significantly lesser productivity levels
with the additional overhead of the infrastructure required to
teleoperate. The next step to increasing productivity whilst
maintaining safety is therefore to fully automate the LHD,
using as little in-mine infrastructure as possible.

Several automatic LHD systems have been tested, including
[3] which uses a retroreflective stripe on the tunnel roof (back)
detected by cameras to guide the vehicle. This approach,
however, requires relatively major levels of infrastructure,
which must be changed whenever a new path is required
for the vehicle. Similarly, [4] also describes a system that
follows an optical path. These approaches may be thought
of simply as line following techniques, however the line is
detected optically rather than inductively as with buried wire
systems [5].
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In [6], a system is proposed that uses ultrasonic sensors
to follow the walls of a tunnel. The wall following approach
suffers from lack of an Earth-fixed coordinate system, which is
necessary for any planning operations, particularly traffic man-
agement. It is also difficult with wall following to accurately
differentiate a side tunnel from a corner.

A more robust approach is presented in [7], where infor-
mation from various sensors is fused via an Extended Kalman
Filter (EKF), to provide an estimate of position and orientation.
This approach, however, suffers from under utilization of data.
The vehicle model presented uses heading provided from
a gyro, coupled with encoder derived velocity information.
Information about articulation angle of the vehicle is simply
ignored.

A good review of mine automation techniques may be found
in [8].

A further obstacle encountered when designing a practical
navigation system for underground mining vehicles is the lack
of useful data regarding how various sensors perform in an
underground environment. It is extremely rare in the literature
to find any kind of performance index for the sensors used.

This paper presents data obtained during field trials at
an operational underground mine conducted to determine
which sensors or combinations of sensors offer a solution
to providing a robust navigation system for underground
mining vehicles. From these results, a guidance system for
an autonomous LHD mining vehicle was designed and is
presented here. The key theoretical issues addressed in the
design are the explicit modeling of slip parameters as the
vehicle maneuvers over rough terrain, and the use of inertial
measurements to estimate these parameters.

This paper is broken into two main parts. Section II is a
description of the field trials including the experimental setup.
Section III details the evolution of, and reasons for a vehicle
model which explicitly incorporates slip. This section also
details the way the various errors in the system are modeled
and the way the sensors themselves are modeled. A results sec-
tion follows (Section IV) which discusses the results obtained
during the field trials as well as an example of the naviga-
tion system using data obtained during the field trials, and
concluding remarks are made in the final section (Section V).

II. THE TRIALS PROGRAMME

The automation of underground mining vehicles is not a
simple problem. Whilst a relatively large body of information
is available for the designer of indoor navigation systems, very
little is known about how sensors, and therefore navigation
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Fig. 1. The LHD—showing sensor layout.

systems, behave in unstructured and harsh environments such
as those found in underground mining. To this end, a set of
commonly available sensors was tested underground on an
LHD mining vehicle over a period of two weeks.

The sensors used in the trials were

1) strap-down inertial navigation system (INS);
2) encoders/odometers;
3) bearing only laser scanner (GCS);
4) two time-of-flight range and bearing laser scanners

(SICK);
5) two sets of ultrasonic sensors (MASA/Polaroid).

These sensors may be broken down into two broad cat-
egories, dead reckoning sensors, and external sensors. While
dead reckoning sensors tend to be very robust, they accumulate
error with time, so that in practise they must be periodically
reset using information from the external sensors. The ex-
ternal sensors provide absolute information referenced to the
environment, typically by making measurements of prominent
known landmarks, whether they be natural or artificial. The
external sensors, however, do not tend to be as reliable as
dead reckoning sensors, so a navigation package should use
sensors of both types.

Fig. 1 shows an LHD and the sensor layout used in the
underground trials2

A. Experimental Setup

The data from the different sensors needed to be recorded so
that it could be post-processed. To achieve this, a distributed
network of computers was located on an LHD, synchronized
by a time stamp sent from the master computer to the slaves
at a rate of 50 Hz. This enabled the data from each sensor
to be individually time stamped. This is important as some of
the sensors produce data asynchronously. The overall system
is shown in Fig. 2.

Fig. 3 shows the area used during the trials. The tunnel is
approximately 150 meters long. The sensor data was collected
while the LHD was running back and forward between the
black crosses marked 1 and 2. The small square in the figure
shows the area of the tunnel for which results will be presented.

B. Suggested Navigation Systems

From the results of the field trials, two main navigation
solutions have presented themselves which are constrained

2Figs. 1 and 2 were created by J. Roberts of CMTE.

Fig. 2. The data logging system.

Fig. 3. The trials area.

by the wish for low infrastructure. The first is a geometric
solution in which encoder based dead reckoning is fused with
periodic updates to artificial landmarks using a sensor such as
the GCS laser. This solution requires infrastructure, though
far less than existing systems. The second solution is one
that is feature based. INS based dead reckoning is fused with
sensor information of natural landmarks, such as the SICK
laser or ultrasonics. Ideally, the two navigation systems will
operate in parallel, providing robustness through redundancy.
The inherent robustness is further enhanced through the use
of different sensing technologies for each navigation system,
as each separate sensor will have unique failure modes. In
systems which use double or triple redundancy of a single
sensor, the failure modes of the sensors may be identical and
therefore fail simultaneously.

The feature based navigation system is still a research issue
at the preliminary stages of investigation, so only results from
the geometric navigation system will be presented in this
paper.

III. T HE GEOMETRIC NAVIGATION SYSTEM

This section of this paper is devoted to the detailed deriva-
tion and implementation of the first suggested navigation
solution, that of encoder based dead reckoning together with
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Fig. 4. LHD kinematic geometry.

the GCS laser. A gyro is also used to aid in the estimation
of vehicle slip, which was found to be a nontrivial problem.
All data used in the following sections was obtained during
the field trials.

A. The Vehicle Model

The key to designing navigation systems for autonomous
vehicles is the model which describes how the vehicle’s
position and other key vehicle parameters evolve through time.
The model is essential to make good use of sensor data and for
describing how unobserved vehicle parameters affect vehicle
motion. This model usually consists of two parts, the vehicle
model itself, and a model which describes how errors in the
vehicle model propagate in time.

The LHD is an articulated vehicle, which means that the
vehicle has a front and rear body which can rotate relative to
each other. The front and rear wheel sets are fixed to remain
parallel with the body of the vehicle, and steering is achieved
by driving the articulation joint located midway between the
front and rear axles. Fig. 4 shows the geometry of a typical
LHD.

1) The No-Slip Model:The kinematic model of the vehicle
derived from rigid body and rolling motion constraints is given
by

(1)

where and denote the position of the vehicle relative to
some fixed global frame of reference. The angleis the
orientation of the vehicle with respect to theaxis, while

represents the linear velocity of an imaginary front wheel
located midway between the real front wheels. The angleis
defined as the articulation angle of the vehicle, andis the
half-length of the vehicle, the distance between the front or
rear set of wheels and the articulation joint. These equations
are based on the assumption that the front and rear wheel
velocities of the LHD are identical and is a constant. The
derivation is omitted here, but the result concurs with [6].

However, in practice the articulation angle changes rapidly
and in fact is the means used for steering the vehicle. Slip must
therefore occur due to the overdetermination of the wheels’
speeds. This means that the constraint of zero velocity in the

Fig. 5. LHD kinematic geometry—including slip angles.

direction of the axles (rolling motion constraint) is not valid,
and in fact this model greatly overestimates the rate of change
of orientation . A new kinematic model that explicitly models
this slip is therefore developed as follows.

2) Accounting for Slip:To take into account that the ve-
hicle will slip during motion, two slip variables and
are introduced. These variables are chosen to represent the
slip angles of the vehicle, that is, the angle between the
kinematically indicated velocity (perpendicular to the axles)
and the true velocity. The variation between true and kinematic
velocities is by definition entirely dependent on the slip.

Consider the velocity of the point in the rear body, and
the velocity at a symmetric point in the front body as shown
in Fig. 5. Generally, the prime will indicate quantities related
to the front of the vehicle, whilst no prime indicates quantities
related to the rear.

In this paper, all quantities are referenced to the rear of
the vehicle, as this is where the sensor array was located. As
will be seen, the articulation angle is considered an uncertain
parameter, making coordinate transforms from the front to rear
of the vehicle a nontrivial problem.

By obtaining the velocity of in the direction perpendic-
ular to and equating this to zero, we obtain the following
relation:

which may be solved for to yield

If the velocity of is now set to equal , the wheels
angular velocity multiplied by the nominal wheel radius, and
resolved into and , the following kinematic equations for
the motion of point are obtained:

(2)

It can be seen that the vehicle moves in the direction given
by the slip angle, i.e., the vehicle heads in the direction ,
whilst the rate of change of orientation is dependant on the
slip angles, the articulation angle, and the rate of change of
articulation angle.
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3) The Importance of Sli¸p: Comparing (2) to (1), it can be
seen that the models are significantly different, particularly
for the term . The simple model described by (1) greatly
overestimates the turning rate of the vehicle, causing the
navigation system to continuously fight to correct the modeling
error. Equation (2) is far more accurate if the slip angles
are known. This is where the Extended Kalman Filter (EKF)
plays an important role, because states that are not directly
observable, such as the slip parameters, may be estimated and
used to improve the model of the vehicle.

As the vehicle drives both the front and rear wheel sets
at the same angular velocities, insight into why the vehicle
does indeed slip may be gained by examining the different
expressions for and . The equation governing is

When the slip angles and are zero (i.e., no slip is
present), we obtain the following expression for the velocity
of the front wheel:

It is clear from this that the only conditions under which the
front and rear velocities are equal (under no-slip assumptions)
is when the articulation angle is constant or zero. Therefore
wheel slip must be present. Experimental data shows that the
rate of change of articulation anglecan be quite high, and
may cause the vehicles tyres to scrub the ground. Human
operators tend to use this effect to their advantage.

4) The Error Model: When the model addressed in (2) is
considered, it can be seen that the primary sources of error are
due to the time varying parameters and , as errors
in these parameters propagate directly through to the states.
The variables and represent well known control inputs
and thus do not need to be estimated. The slip parameters

and , however, are not directly measured, and therefore
cannot be treated in the same way as the control inputs. It
is interesting to note that the effective wheel radius of the
vehicle can also be considered to be time varying and takes
into account factors such as loading and tyre wear. The wear on
a typical LHD tyre can be as much as 15–20 cm in radius and
will therefore introduce a bias to the system over the operating
lifetime of the tyres if a constant wheel radius is assumed.
The concept of estimating wheel radius was introduced in [9],
and is extremely beneficial to this application. Therefore, the
states to be estimated should not only include position and
orientation, but also the slip angles and wheel radius.

It is salient at this point to describe how the error in each
of the parameters may be modeled, as it is important to know
how the errors propagate through time. The errors in control
input are modeled as simple additive noise and

about their respective means and at time
such that

Fig. 6. The INS and laser used in the field trials.

The errors in and , however, are extremely difficult
to model accurately as they tend to involve a combination of
other parameters, and are caused fundamentally by the vehicle
dynamics. For example, the error in slip angle will change with
respect to vehicle speed, mass, tyre-terrain interaction, and
articulation angle in a highly nonlinear way. A compromise
which has been found to work well is to model the errors in
these parameters as random walks (or Brownian motion), such
that the error in each of the parameters is the integral of white
noise as follows:

The noise sources
and are assumed zero-mean, uncorrelated, gaussian
sequences with variance and ,
respectively. Although in practice these parameters may not
evolve in a strictly Brownian manner, the Brownian model
reflects the growth in uncertainty in their true value, and the
rate at which the true value is considered to vary.

The continuous time vehicle model shown in (2) may now
be rewritten at time , adding the additional states to be
estimated as

(3)

5) Observation Model:The vehicle has a GCS laser sensor
(see Fig. 6) which is capable of detecting the angle to a number
of fixed beacons . This sensor,
although in practise very good, only allows the state to be
updated periodically, or at a low frequency, due to its 1 Hz
rotation rate. The laser observations are compared to a map
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Fig. 7. Vehicle velocity and steer angle.

of known beacon locations, and are validated statistically to
determine the correct match.

To augment the system with gyro information, information
from the three gyros is first converted to a single rotation
about the vehicles axis, then fused in the filter to provide
a better estimate of state. Gyros are well known to drift with
time, a low frequency error which is fed straight through to
the estimate if the gyro drift is not compensated for. By using
a shaping filter however, the low frequency errors in the gyro
information may be modeled, and are thus estimated by the
filter, so as not to corrupt the vehicle pose estimate.

The errors in the gyro are adequately modeled as Brownian
motion, the integral of white noise. The shaping state for the
gyro error is therefore given by

(4)

Where represents a gaussian sequence with variance
. The shaping state must now be used to augment the state

vector as follows:

(5)

The observations which the sensors will make are assumed
to be of the form

(6)

where represents the observation vector, is the
nonlinear matrix mapping observations to states and is
additive sensor noise, assumed gaussian and with zero mean.

The bearing to a beacon may be given by ,
however the vehicle is oriented in the direction, so for this
system, the measurement equation for each beacon detected
by the laser is given by the nonlinear model

(7)

and the measurement equation for the gyro is given by the
linear model

(8)

which is an observation of the orientation plus the shaping
state representing gyro drift.

The beacon locations were surveyed and therefore presumed
precisely known. To validate this data to avoid the incorpora-
tion of spurious measurements, a gate function based on a
test was used. This is explained in more detail in [9].

B. Implementing the Navigation System

To implement a Kalman Filter based on a continuous time
model, it is convenient to discretely the model, as the control
signals and and the sensor observations are sampled at
regular discrete intervals.

The discrete EKF algorithm [10] consists of a prediction-
update cycle where prediction is performed when either no
sensor information is available or to predict the state at
the next discrete time-step. An update occurs when sensor
information is available to improve the systems estimate of
state. Similar data fusion issues are addressed in [9], [11],
and [12]. The filter derivation for this system is found in the
Appendix.

IV. RESULTS

A. The Trials

The following sections summarize the results obtained from
the sensors used in the underground trials. Particular attention
is paid to those sensors used in the navigation filter. That is,
the odometry sensors, the GCS laser, and the gyros contained
within the INS.

1) Odometry: In this work, an existing inductive sensor
was used to measure the angular velocity of the LHD’s
transmission, while a potentiometer was used to measure the
articulation angle. Fig. 7 shows velocity and articulation angle
of the vehicle during a 70-s period of the run. The spikes in the
velocity estimate are due to inadequate hardware, however the
mean of the velocity is still approximately correct, as required
by the Kalman filter derivation.

Typically with odometry based dead reckoning, information
from wheel rate sensors and steer angle sensors is passed
through the particular vehicles forward kinematic equations
to obtain an estimate of position and orientation. A problem
with this form of dead reckoning is that the vehicle model is
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(a) (b)

Fig. 8. Yaw: (a) vibrating structure and (b) fiber optic.

Fig. 9. Piezoelectric gyrox and y.

usually derived in two dimensions, so the further the terrain is
from a plane, the less accurate the solution. Another problem is
that odometry based dead reckoning cannot identify wheel slip.
Odometry remains, though, as the cheapest way of obtaining
dead reckoning information reliably.

Encoders were not used in this application as they are gen-
erally regarded as insufficiently robust in harsh environments.

2) Inertial Sensors:The INS system used in the trials pro-
gramme [13] is a strap-down system consisting of a single
triaxial accelerometer and four gyros. The accelerometer pro-
vides three analog outputs proportional to the acceleration
on each of three orthogonal axes. Two gyros were used for
measuring roll and pitch rates. Two different gyros were used
for measuring the rotation rate of the vehicle around vertical
yaw. These two gyros are significantly more accurate and
expensive than the roll and pitch gyros. The gyros were
distributed in this form because in many applications yaw
(heading) will be the only inertial information required. Two
solid state gyros were used for the Roll and Pitch
axes. These sensors employ a vibrating piezoelectric prism
which distorts and produces a voltage due to the Coriolis
force generated by angular velocity. The first heading gyro is
a single axis interferometric fiber optic gyroscope. The second

heading gyro is a vibrating structure type Gyro with very low
drift characteristics.

Gyros. The two best gyroscopes were used to record heading
(yaw) data. Typical drift rates for these devices were in the
order of 0.2/min. Non-linearities in the gyros result in errors
in the measured rotations. This is especially prominent when
the gyro is rotated and returned to the zero position. Typical
accumulated errors for a 90 excursion are in the order of 1
degree for these type of gyros.

Typical heading results for the gyros are shown in Fig. 8.
The figure shows the vehicle starting out at zero degrees,
turning a near ninety degree corner, stopping, reversing and
turning back round the corner to the starting point. The gyros
were mounted on the rear of the LHD articulation. As the LHD
starts to turn, first corner in Fig. 8, the rear articulation initially
turns in the opposite direction before beginning the main
turning operation (the front of the articulation will equally
over-steer when coming out of the corner). This is clearly
seen in the data at the start of the turn and at the end of the
return corner.

From these plots it can be seen that these gyros provide
angular information that can be used for long period of time
without any on line calibration. Fig. 9 shows typical roll
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Fig. 10. Estimated LHD path—stars represent retroreflective markers.

and pitch angles recorded by integrating the output of the
piezoelectric gyros.

These gyros are particularly sensitive to large zero offset
errors. Static drift rates at a stable temperature are in the
order of 5 /min. In addition, these devices also suffer from
some hysteresis with the zero offset varying to a new random
value after motion. The offset varies by over 1/min from this
source of error alone. The linearity of these devices also seems
to be variable. The attitude of the platform can be obtained
integrating the measurements of roll, pitch and yaw angles
from gyroscopes. The orientation angles must be estimated
very accurately as even a small fraction of gravitational
acceleration attributed to true linear acceleration results in
huge position errors. The yaw gyros used for measuring
angular rates around the vertical axis are sufficiently accurate
to obtain yaw information. However, the roll and pitch gyros
used in the INS package were not sufficiently accurate to
provide sensible estimates of roll and pitch angles even over
short periods of time.

On-line calibration of these sensorsis possible however, and
the interested reader is referred to [14] and [15].

3) GCS Laser:The guidance control systems (GCS) laser
is shown in Fig. 6. The laser’s functionality is described
previously in the Observation Model section of this paper.
Fig. 10 shows a portion of the reflective beacons mounted on
the tunnel walls.

From the trials, this sensor was found to be extremely
reliable. Although the sensor was shock-mounted in order
to reduce vibration due to vehicle motion, the only problem
found was due to the vibration of the sensor. The problem,
encountered only occasionally during high speed runs, is that
the sensor appears to detect a single target more than once,
since the vibration of the vehicle can induce a net, although
very slight, backward motion in the sensor.

B. The Navigation System

This section presents the results of implementing the navi-
gation system described previously in this paper. The results
were obtained using data from the field trials on an LHD in

Fig. 11. Position standard deviation during run (x andy).

Fig. 12. Estimated wheel radius.

an underground mine in Queensland, Australia. The sensors
and their layout is shown in Fig. 1. The sensor positions were
measured accurately so that coordinate transformations could
be reliably achieved. The experimental setup is described in
earlier sections, and also in [16].

The trials themselves utilized a section of tunnel approx-
imately one hundred and fifty meters long, populated with
retroreflective strips used as beacons for the laser scanner and
is shown in Fig. 3. The strips were surveyed to provide their
positions in the tunnel. The data from all sensors on board the
vehicle was logged and time-stamped during the trials, and
post processed to provide the results seen here.

Fig. 10 shows the tracked path of the LHD during a greater
than right angle turning manoeuvre. The maximum standard
deviation, or error bound in position during this manoeuvre (as
estimated by the EKF) was approximately eight centimeters as
can be seen in Fig. 11. The spikes in the standard deviation
correspond to periods during the run when no beacons could be
seen or accurately identified. Figs. 12–14 show the estimated
wheel radius and the slip anglesand , respectively. These
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Fig. 13. Estimated slip angle�.

Fig. 14. Estimated slip angle�.

may be compared to Fig. 7 which shows the variation in
articulation angle over time. As can be seen from these graphs,
the estimated slip is highly correlated with the articulation
angle, verifying the intuitive assumption that the vehicle will
slip more while cornering. This is of particular importance in
underground mining where a majority of the tunnel corners
are tight right angled bends. In this example, the forward
slip angle approaches 6during the corner, while the rear
slip angle exceeds 20. From the kinematic model of the
vehicle shown in Fig. 5, it can be seen that the sign of the
slip angles corresponds to the vehicle turning the corner faster
than the no-slip model would allow. The magnitude of the
slip angles indicates that the rear of the vehicle slips more
than the front. Wheel slip is a function of many factors such
as the normal force between the tyre and ground, the tyre
stiffness, and mass distribution. The differences in the slip
angles observed may be attributed to these effects. Fig. 12
shows that the estimated wheel radius quickly converges from
the initial value of 0.9 m to a value of approximately 0.75
m, which was in fact the correct wheel radius at the time

of the trials. It is also interesting to note that the estimated
wheel radius decreases by approximately 0.1 m during the
turning manoeuvre. The reason for this effect is clear when
we consider that the vehicles forward velocity is given by

. Any change in the forward velocity of the vehicle
(due to forward slip) is estimated as a change in wheel radius
by the EKF. The slip angles account for the across axis, or
transverse, slip.

Further experimental results (not shown) based on the
data recorded during other runs show that the filter reliably
estimates vehicle position over the entire operating range of
vehicle speeds. The only noticeable difference between the
slow and high speed runs is the estimated position standard
deviation, which is larger at higher speeds.

V. CONCLUSION

In this paper, the results of a series of tests conducted in
an underground mine to determine which sensor or sensor
combinations will provide reliable guidance for a mining
vehicle was presented. Two suggested navigation systems were
the result. From the data, it was concluded that the vehicle slips
to a large extent, so an LHD vehicle model which explicitly
incorporates slip was developed. A navigation system was
described in which observations from a laser sensor and from
an INS unit are incorporated to aid the estimation of the
slip angles. The results clearly show that the amounts of
slip experienced by the vehicle are nonnegligible particularly
during cornering. In this case, the no-slip model simply fails.
The benefits of this approach are in making the navigation
systems for large heavy industrial machinery much more
reliable and robust in harsh uneven terrain. Future research in
this area will include the addition of a full INS unit, including
accelerometers to aid the navigation system, and research into
the use of redundant navigation packages to detect system
faults. The theory described in this paper will be extended for
use in outdoor applications. Further long term trials are needed
to determine sensor degradation patterns.

APPENDIX

A. Discrete Vehicle Model

The control signals and and the sensor observations are
sampled at regular discrete intervals. The sample interval,
is synchronous and small enough to capture maneuvers occur-
ring in the operating frequency range. The control inputs are
assumed approximately constant over this interval. Replacing
the continuous time index with a discrete time index , (3)
becomes (9), shown at the bottom of the next page.

The discrete time state vector at time can now be
defined as

(10)

where
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is the control vector at time is additive process noise
representing the uncertainty in slip angles and wheel radius
and is the nonlinear state transition function mapping the
previous state and current control inputs to the current state,
here represented by (9).

B. State Prediction

Assume the system has an estimate available at timewhich
is equal to the conditional mean

(11)

The prediction for the state at time based
on information up to time is given by expanding (10) as a
Taylor series about the estimate , eliminating second
and higher order terms, and taking expectations conditioned
on the first observations, giving

(12)

The vector state prediction function is defined by (9)
assuming zero process and control noise. The prediction of
state is therefore obtained by simply substituting the previ-
ous state and current control inputs into the state transition
equation with no noise.

Define the noise source vector as

The error between the true state and the estimated state is
given by

(13)

the prediction of covariance is then obtained as

(14)

(15)

where represents the gradient or Jacobian of
evaluated at time with respect to the states, is the
Jacobian of with respect to the noise sources, and

is the noise strength matrix given by

(16)

The noise strengths, , were determined experimentally,
and reflect the true noise variances of the signals involved.

and are given by the following:

(17)

where

where we first have the first set of equations shown at the
bottom of the next page, and then we have the second set of
equations following them.

C. Observation Prediction

The predicted observation is found by taking expectations
conditioned on all previous observations, truncating at first
order to give

(18)

If there is a predicted state for the vehicle, , we
can therefore predict the observations that will be made at that
state. From (7) and (8) and from (18), we have the predicted

(9)
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observations as

(19)

Now, the innovation or observation prediction error covariance
, used in the calculation of the Kalman gains must be

computed. This is found by squaring the estimated observation
error and taking expectations of the firstmeasurements to
give the following:

(20)

In this case, the Jacobian is given by

(21)

where is
the predicted distance between a beacon and the vehicle.

The observation variance term is given by

(22)

Again, the noise strengths, and , were determined
experimentally to reflect the true noise variances of the signals
involved.

D. Update Equations

The estimate (or update) of state and covariance is given by
the following standard Kalman filter equations:

(23)

where

(24)
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