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Abstract  

This thesis aims to develop a reliable, robust and accurate navigation filter for use on an 

autonomous land vehicle. The filter developed was based on a kalman filter 

implementation fusing data from model-based predictions using velocity and steering 

information and the absolute position information provided by the GPS. The filter was 

tuned to be able to deal with multipath efficiently and still provide accurate position 

estimates. An offline simulation was developed and this was then ported to a real time 

implementation using the Hyperkernal real time operating system. Extensive testing on 

filter performance was conducted to ensure that the filter performed adequately under 

most conditions.  

An investigation into whether consecutive laser scans could be used to localize the 

vehicle. A robust data association technique was developed based on a maximal subgraph 

between two graphs. Techniques for extracting features from raw laser data were also 

investigated and this data used to calculate pose change between consecutive scans.  
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Chapter 1:   

Introduction 

1.1 Background to the High Speed Vehicle (HSV) project 

The Australian Centre of Field Robotics (ACFR) initiated the High Speed Vehicle (HSV) 

project in 1997 as a test bed for the development of an autonomous vehicle. The mission 

statement of the project was to develop an autonomous system capable of operating in a 

variety of unknown outdoor environments and potentially at high speeds (90km/h). The 

potential applications for such a system are enormous ranging from autonomous control 

of vehicle in dangerous environments to reduce the risk to a human operator, such as in 

the mining industry or to things such as autopilot type systems for suburban vehicles.  

1.1.1 Test Vehicle 

All testing and development is conducted on a late 90’s model Holden utility, pictured in 

Figure 1.1, referred to from here on in as the Ute. The Ute has been fitted with a 

substantial suite of sensors and actuators to allow for autonomous control and navigation 

of the vehicle. For control and data logging purposes a PC (Pentium II 400mHz 64MB 

RAM) running the Windows NT operating system (with the Hyperkernal real time 

extension) along with data logging equipment such as an A/D converter have been 

installed in the Ute’s tray. A flat screen monitor has also been installed in the Ute’s cabin 

to facilitate online monitoring of system performance. 
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Figure 1.1: HSV test vehicle (the UTE) 

A substantial suite of sensors has been installed to allow for a number of different 

navigation and control options. The sensors available are as follows: 

�� Global Position System (GPS) – The GPS returns absolute positioning 

information of the vehicle in terms of latitude and longitude based on signals 

received from a number of satellites orbiting the earth. The latitude and longitude 

signals must then be transformed to a local co-ordinate frame for vehicle 

navigation. Greater accuracy can be obtained using what is known as differential 

GPS (DGPS) whereby a base station of known position is set-up to transmit GPS 

data to the vehicle.  

�� Inertial Measuring Unit (IMU) – The IMU, located in the Ute’s tray, returns 

acceleration and angular rotation rates about the Ute’s three axes (X,Y,Z). This 

information can then be integrated to obtain the velocity, position and roll, pitch 

and yaw angles of the Ute.  

�� Optical Encoder – The optical encoder is located on the rear passenger side wheel 

and returns the angular position of the wheel. When combined with a timestamp 

the difference between consecutive encoder counts is typically used to determine 

vehicle velocity.  
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�� LVDT – The linear variable displacement transducer is located on the steering 

column of the Ute and is used to determine the position of the steering column 

and hence the steering angle of the wheels.  

�� Potentiometers – Essentially variable resistors these devices are mounted onto the 

brake and throttle actuators and based on the voltage returned by the device, the 

positions of the brake and throttle can be calculated.  

�� Range and Bearing Laser – A SICK laser is mounted on the bulbar at the front of 

the Ute, on the passenger side. The laser returns range and bearing information 

over a 180� scan at a resolution of 0.5�. Based on these readings various different 

obstacle detection, mapping and navigation algorithms can be developed.  

�� Compass – A compass is also installed on the Ute to provide an alternate source 

of heading information. Typically a compass is used only for initialisation.  

�� Cameras – Three cameras are mounted atop the HSV cabin for testing and 

development of various different vision techniques like panoramic vision and 

stereovision.  

Actuation facilities on the brake, throttle and steering have also been installed to allow 

the Ute to be driven autonomously. These are as follows: 

�� Steering – A 24V DC motor mounted next to the brake pedal (shown in Figure 

1.2), is coupled directly onto the steering column via and electromagnetic clutch, 

to directly control the position of the steering wheel.  
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Figure 1.2: Steering control motor and clutch 

�� Throttle – Throttle control is achieved via a linear actuator that controls the 

displacement of the carburettor valve via a guide cable.  

�� Brake – Brake control is achieved by a linear actuator that controls the position of 

the brake pedal directly via two guide cables, shown in Figure 1.2. 

1.1.2 Hyperkernal 

It is convenient at this point to give a more detailed explanation of hyperkernal since the 

online implementation of some of the algorithms discussed is a major part of this thesis.  

Hyperkernal is a real time subsystem for Intel-based PC’s running the Windows NT 

operating system. Windows NT is a popular operating system but is simply not designed 

for real time applications. To overcome this problem the hyperkernal extension to 

Windows NT was installed on the Ute’s computer. Hyperkernal incorporates all the usual 

functions of a real time operating system such as, multi-threaded programs with multiple 

priority levels, precisely timed events and interrupts and direct access to the hardware, all 

things that are needed for a real time system but can’t be achieved using windows NT. 

Perhaps the biggest thing about hyperkernal, for this thesis anyway, is the shared 

memory database used for communication between hyperkernal and Windows NT 
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applications. Hyperkernal applications running at the highest priority level of the 

processor can read or write data to the shared memory database and Windows NT 

applications, running whenever Hyperkernal frees the CPU, can read or write the data 

to/from the shared memory. In this way hyperkernal applications and Windows NT 

applications can communicate as shown in Figure 1.3. A perfect example of this is a 

hyperkernal front-end program that reads the sensors, publishing the information into the 

shared memory, then a C++ program reads the shared memory and graphically displays 

the sensor information. 

 

Figure 1.3: Hyperkernal shared memory architecture 

The greatest attraction of the hyperkernal system as a real time platform lies in the shared 

memory communication between applications since programs can be written in the more 

user friendly and graphics friendly Matlab and run online on the vehicle. Also the 

Windows environment makes programs easier to run and debug. However Hyperkernal 

has some flaws the most obvious being that the system is very particular in that it only 

runs on Windows NT platforms and cannot be ported to other Windows operating 

systems such as Windows 2000 or XP. Hence any code developed on the hyperkernal 

system must be changed significantly before being ported to another operating system. 

Also any code that must run in the Hyperkernal part of the operating system must be 
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written in C and not C++. Despite its shortcomings hyperkernal was used as the base for 

the development and implementation of all the algorithms discussed in this thesis.  

1.1.3 Past and Current Work  

Since it’s inception in 1997 large and varied amounts of research have been carried out 

on the HSV project using the Ute as a test platform. In the early stages, most of the work 

was focussed upon installing hardware and writing drivers to allow for efficient operation 

of the sensors and actuators. Much work has also been done on the low-level control 

aspects of the vehicles actuators, ensuring that the basic framework for autonomous 

navigation has been in place. More recently work has been undertaken on more high 

level aspects of vehicle control such as path planning, taking into consideration vehicle 

constraints, path tracking, obstacle detection using the laser and obstacle avoidance or 

reactive navigation. Work has also been undertaken in the area of using vision to identify 

obstacles and for vehicle localisation, as well as in the simultaneous localisation and 

mapping problem (SLAM).  

At present the vehicle location for the high-level control modules such as path tracking 

and obstacle detection and avoidance comes solely from the GPS. Apart from GPS 

estimates being quite low frequency (5Hz), the GPS also suffers from other problems 

such as multipath when near trees or buildings due to reflection of the buildings and or 

trees or the GPS antenna being obscured by the environment. These errors make the GPS 

far from robust and as such the GPS can only be used reliably for navigation in open 

environments. Naturally differential GPS (DGPS) can be used to improve these errors, 

however DGPS may not always be available since it involves setting up a base station 

within range of the GPS receiver. As a result to allow the vehicle to operate in an 

autonomous fashion it is necessary to come up with other methods of vehicle navigation 

based upon the other sensors and available in real time. 

1.2 Goals of this Thesis 

The primary objective of this thesis is to provide a robust and reliable algorithm capable 

of providing accurate position estimates of vehicle position. The method must be 

available in real time so that other software modules may perform more complex tasks, 
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such as path tracking, obstacle avoidance or surveillance. A strong component of this 

thesis is to make the localisation routines very modular in design so that a user need have 

no knowledge of how the modules compute position; it can simply read the position 

information provided, given a template of how the position information is formatted and 

stored in memory. Another key component of the thesis is that the localisation modules 

are available in real time and as a result of this it was decided that all modules would be 

coded in C for fast operation and easy portability.  

1.3 Thesis Outline 

This thesis consists of two main areas, first a model based dead reckoning navigation 

loop is developed using a Kalman filter to fuse together position estimates based upon a 

vehicle model and also absolute position data made available by the GPS. The equations 

used by this process are analysed initially followed by a detailed analysis of the 

navigation loop under many different conditions. Fault detection is of prime importance 

to the navigation loop to ensure that even with GPS errors the navigation loop can still 

provide accurate position data.  

The second part of this thesis constitutes an investigation into whether the laser can be 

used to provide a path estimate of vehicle motion by matching consecutive scans and 

tracking objects within these scans. Features are extracted from the raw laser data using 

various line and circle detection techniques and following this, a one to one mapping of 

features is found using the maximal common subgraph method.  
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Chapter 2:   

Statistical Estimation 

2.1 Introduction 

In any localization or Navigation technique statistical estimation plays a crucial role 

since one can never be entirely sure of the vehicle position. Hence the position must be 

estimated reliably and so a robust algorithm is required to do this, so as to provide the 

position estimate with the least statistical error. The method used in this thesis is the 

Kalman filter.  

The Kalman filter essentially consists of two stages, the prediction and the update. 

During the prediction stage the next state of the system is estimated based on the current 

state and some control input. This process is repeated until some absolute information 

about the system state is available, upon which an update is performed. The update 

simply fuses together the predicted state and the observed state to provide a least squared 

estimate of the vehicle state. A prime example used in this thesis is the prediction of 

vehicle position based upon velocity data taken from wheel encoders and steering data 

taken from the steering LVDT. The vehicle position is continually predicted using this 

data until GPS information becomes available upon which an update is performed and 

the data fused to provide a new position estimate of the vehicle.  

This chapter simply outlines the mathematics and general principles behind the Kalman 

filter and the subsequent chapters it’s application in this thesis.  
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2.2 Kalman Filter 

The Kalman filter is a recursive algorithm that is used to provide statistical estimates of 

the system state given all the information preceding the current state. The nature of the 

Kalman filter is that it will minimize the least squared error of the system state during 

each iteration. The Kalman filter consists of two main stages the prediction stage, 

whereby the next state of the system is predicted based upon the current vehicle state and 

a system model, and the observation stage whereby the information provided by the 

prediction stage is fused with some external absolute information about the system states. 

The next section of this thesis will briefly outline some of the equations used to perform 

the prediction and update stages of both a linear and extended a Kalman filter. (It is noted 

that the equations used in the Kalman filter are well documented and for a more detailed 

description the reader is referred to [7], [21] and [24].) 

The prediction part of the Kalman filter is performed using a discrete time linear model, 

described by Equation 2.1. 

)()()1()()( kkkkk uBxFx ���  

Equation 2.1 

Where: 

x(k) is the predicted state of the system at time k 

F(k) is the state transition matrix at time k, which relates the previous state x(k-1) 

to the current state x(k). 

u(k) is the input control matrix at time k 

B(k) is a matrix that relates the input control signals to the system states 

The uncertainty of the system states is represented by a covariance matrix (P(k|k-1)) that 

contains the expected values of the variance of the error at time k given all information 

up to time k-1. The covariance matrix is calculated as per Equation 2.2. 

)()()1|1()()1|( kkkkkkk T QFPFP �����  

Equation 2.2 
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Where: 

P(k|k-1) is the new covariance matrix based on the model uncertainty and the 

previous covariance matrix (P(k-1|k-1)). 

F(k) is the state transition matrix described in Equation 2.1 

Q(k) is a system noise component related to the uncertainties in the model and the 

input control vector. 

For each iteration of the Kalman filter, Equation 2.1 and Equation 2.2 are computed to 

provide estimates of the system state and uncertainty, until some absolute information 

about the system states, known as an observation, becomes available. Upon observation 

the information contained in the observation is fused with the current prediction of the 

system state via Equation 2.3 to produce a new estimate of the system state. 

)()()1|()|( kkkkkk vWxx ���  

Equation 2.3 

Where: 

 x(k|k) is the new state after the observation  

 x(k|k-1) is the predicted state at time k 

 W(k) is a gain matrix produced by the Kalman filter 

 v(k) is the innovation vector  

The innovation vector (v(k)) is defined as the difference between the observation of the 

states at time k and the predicted value of the states at time k (Equation 2.4).  

)1|()()()( ��� kkkkk xHzv  

Equation 2.4 

Where: 

z(k) is the observation of the states at time k 

H(k) is a transformation matrix that relates the states to the observations since 

generally not all states are observed. 

x(k|k-1) is the predicted value of the state at time k obtained from Equation 2.1. 
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From Equation 2.3 it is clear that the updated state is simply the predicted state plus some 

weighting of the innovation vector. This weighting is known as the Kalman gain and is 

calculated so as to minimise the least squared error of the new state estimate (Equation 

2.5). 

)()()1|()( 1 kkkkk T �

�� SHPW  

Equation 2.5 

Where: 

 P(k|k-1) is the current covariance matrix 

 H(k) is the matrix that relates he observations to the states (Equation 2.4) 

 S(k) is a matrix known as the innovation covariance 

The innovation of the covariance is calculated by Equation 2.6. 

)()()1|()()( kkkkkk T RHPHS ���  

Equation 2.6 

Where: 

 R(k) is a noise matrix associated with the observation 

After the prediction information has been fused with the observation an updated 

covariance or uncertainty matrix must be calculated (Equation 2.7). 

)()()())()()(1|())()(()|( kkkkkkkkkkk TT WRWHWIPHWIP �����  

Equation 2.7 

The equations above describe the recursive Kalman filter algorithm when applied to a 

linear model that can be described by Equation 2.1. However in a large number of 

situations processes behave non-linearly or cannot be linearised efficiently and so the 

Extended Kalman filter was developed to handle such instances. 
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2.3 Extended Kalman Filter 

Similar to the Kalman filter the extended Kalman filter has a prediction stage followed 

by an update stage with the main difference being found in the fact that the model is now 

non-linear and hence the equations describing the filter are significantly different. The 

following section describes the equations behind an extended Kalman filter.  

For a non-linear system the state prediction equation is shown in Equation 2.8. 

))(),1|1(()1|( kkkkk uxFx ����  

Equation 2.8 

Where: 

F(x(k-1|k-1), u(k)) is a non-linear state transition function using the current state 

and a control input. 

The covariance matrix after a prediction is defined in Equation 2.9. 

)()()()()1|1()()1|( kkkkkkkkk TT
xx BQBFPFP �������  

Equation 2.9 

Where: 

 is the Jacobian matrix of the partial derivatives of F with respect to the 

state vector X.  

 is source error transfer matrix calculated as the Jacobian matrix of partial 

derivatives of F with respect to the control input u. 

Q(k) is the process noise covariance.  

)(kxF�

(k)TB
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Similar to the linear Kalman filter when an observation occurs the state vector is updated 

using Equation 2.10. 

)()()1|()|( kkkkkk vWxx ���  

Equation 2.10 

The innovation, innovation covariance and gain matrices are calculated using Equations 

2.11 below. 

))1|(()()( ��� kkkk xHzv  
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Equations 2.11 

Where: 

 z(k) is the observation 

 H(x(k|k-1)) is current observation model 

 P(k|k-1) is the current covariance matrix 

 )  is the Jacobian of the current observation model 

 R(k) is a noise matrix associated with the observation 

(kxH�

The new covariance matrix after the observation is given in Equation 2.12. 

)()()())()()(1|())()(()|( kkkkkkkkkkk T
xx WRWHWIPHWIP �������  

Equation 2.12 

2.4 Filter Accuracy and Fault Detection 

The algorithms discussed above provide estimates of the states of interest to provide a 

minimum least squared error, however unless a truth model of the states is known it is 
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unknown whether the filter is producing accurate estimates. The only information 

regarding the outside world comes in the form of the observation.  

For correct filter performance the innovation must have the property that it is both 

unbiased and white with a covariance of S(k). To test this, the innovations are normalised 

(Equation 1.13) and if the filter is operating correctly the normalised innovations are 

distributed as a  distribution.  2
�

)()()( 1 kkkT vSv �

��  

Equation 2.13 

However instead of using Equation 1.13 as a check of filter performance, it could be used 

as a gating function to reject wild observations. Each time the observation occurs the 

value of � is checked and if it is less than some threshold the observation is accepted if 

not the observation is rejected. The value of this threshold is calculated based on the 

standard �2
 tables based on the confidence level required. For a 95% confidence the 

threshold is 12.6.  



 

Chapter 3:   

Coordinate Frames 

Throughout this thesis various different coordinate frames are used to describe navigation 

data. It is important to clearly define each of the frames and the transformations between 

coordinate frames. A brief description of some of the coordinate systems used in this 

thesis is appropriate at this point. 

3.1 Earth Centred Earth Frames 

Earth Centred Earth Frames or ECEF frames have their origins at the fixed to the centre 

of the earth. Two major ECEF coordinate systems exist and these are rectangular ECEF 

coordinates and geodetic coordinates. [7] 

3.1.1 ECEF Rectangular coordinates 

A standard right hand rectangular coordinate system can be defined having its origin at 

the centre of the earth and is referred to as rectangular ECEF coordinates (Figure 3.1). 

The x-axis extends through the intersection of the prime meridian (0� longitude) and the 

equator (0� latitude). The z-axis extends through the North Pole. The y-axis completes 

the set passing through the equator at 90� longitude. [7] 
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3.1.2 ECEF Geodetic coordinates 

The ECEF geodetic coordinate system has three parameters � longitude, � latitude and h 

altitude defined relative to the earth’s ellipsoid (Figure 3.1). Latitude is defined in [7] as 

the angle between the ellipsoidal normal of the earth and the equatorial plane. Longitude 

is the angle in the equatorial plane between the prime meridian and the projection of the 

point onto the equatorial plane.  The altitude is the distance along the ellipsoidal normal 

from the centre of the earth. For more information regarding ECEF frames the reader 

should consult the references particularly [7].  

 

Figure 3.1: ECEF coordinate systems. ECEF rectangular (X,Y,Z) and ECEF geodetic (� is longitude, � is 

latitude and h is altitude 

3.2 Local Navigation frame 

It is often more convenient to work in a local navigation frame rather than the ECEF 

frames and so a local or navigation frame is defined. The local frame is the north, east 

and down rectangular coordinate system we use in our everyday lives.  

The local navigation frame is defined by fitting a tangent plane onto the surface of the 

earth at the particular point of interest Figure 3.2. The plane remains fixed about this 
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point and this point becomes the origin of the coordinate frame. The x-axis points to true 

north, the y-axis points east and the z-axis points towards the centre of the earth. For this 

reason the local frame is often referred to as the NED (North East Down) frame. [7] 

In this thesis the NED frame is the one used to define the navigation parameters and as 

such all measurements taken in the ECEF and body frames are converted to the NED 

frame.  

 

Figure 3.2: Local NED navigation frame [7] 

3.3 Body Frame 

Sensors reading from the vehicle are often taken with respect to the vehicle and so it is 

convenient to define the body frame as a vehicle centred rectangular coordinate system or 

polar coordinate system (Error! Not a valid bookmark self-reference.). 

 

Figure 3.3: Cartesian and polar body frames 



 

Chapter 4:   

Model Based Dead Reckoning 

Vehicle models can be used to make predictions about where a vehicle will be located at 

a particular time given information about the vehicles current position, velocity and 

steering angles. Naturally the error of such predictions will grow continually with time 

due to inaccuracies in the sensors used and in the model proposed. Therefore it is 

necessary not only to make predictions about vehicle states but also to have some 

absolute reference about the vehicle position. In this chapter the state predictions will be 

based on data from the LVDT on the steering column and the wheel encoders combined 

with a vehicle model and the absolute position information will arrive via the GPS. 

The data will be fused together using an extended Kalman filter to provide accurate 

position estimates of the vehicle in a 2D environment. 

This chapter first discusses the vehicle model used to perform the state predictions 

followed by how this model is incorporated into a Kalman filter. A brief analysis of 

aspects relating to filter tuning is also presented. 

4.1 Vehicle Model 

The vehicle model used is a simplified version of the Ackerman steering model assuming 

that both wheels have the same steering angle, so in truth the model more closely 

resembles a tricycle model. [9][11] Figure 4.1 shows the vehicle model used for dead 
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reckoning along with three coordinate frames: the navigation frame (X,Y), a vehicle 

frame centered about the centre of the rear axle (xc,yc) and a vehicle frame centered about 

the location of the GPS receiver (xv,yv).  

 

Figure 4.1: Vehicle model used for dead reckoning 

Equation 4.1 shows the discrete time equations for predicting the position of the vehicle 

in the navigation frame based on the vehicle model. The new position of the vehicle is 

predicted based upon the last position and assuming a constant velocity and steering 

angle over the sampling interval. The current steering angle and velocity are sensed using 

the LVDT on the steering rack and the optical wheel encoders respectively at a sampling 

interval of 25ms. The model assumes that the direction of vehicle travel is always the 

same direction in which the vehicle is facing. In other words the model assumes no slip 

between the tyres and the ground, a fairly good assumption at low speeds. A derivation of 

Equation 4.1 can be found in appendix A. 
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Equation 4.1 

Where:  

 X is the ‘x’ position of the vehicle in the navigation frame 

 Y is the ‘y’ position of the vehicle in the navigation frame 

 � is the heading of the vehicle in the navigation frame 

 � is the current steering angle of the vehicle 

 �t is the sampling interval of the system (25ms in this thesis) 

 vc is the velocity at the centre of the rear wheels 

 L is the wheelbase of the HSV 

 a is the distance between the rear axle and the GPS receiver 

 b is the distance between the centreline of the vehicle and the GPS receiver 

The encoder is located at the rear left wheel of the vehicle and as a result the velocity 

information must be converted the centre of the rear wheel axle. The conversion from the 

rear left wheel to the centre of the axle is given in appendix A. Equation 4.1 gives the 

position estimate at the location of the GPS antenna in the local navigation frame. 

Typically the origin of this map is given as the first GPS reading taken; hence all position 

estimates from then onwards are taken relative to this point.  

4.2 Kalman Filter Implementation 

Making dead reckoning predictions about the vehicle position using the model described 

by Equation 4.1 is extremely inaccurate over long ranges due to errors in the model and 

noise on the sensor readings. Since each prediction of vehicle position is based on the 

previous estimate position error will grow without bound until the position data is 

essentially useless. To correct this problem the GPS data, which provides absolute 
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position information, will be fused with the model based predictions using the Kalman 

filtering techniques discussed in chapter 2, Statistical Estimation.  

4.2.1 Predictions 

Predictions occur at a rate of 25ms, which is the sampling rate of the encoders and 

LVDT. Predictions are made using Equation 4.1 with the state transition matrix used by 

the Kalman filter (F(k)) being that defined by Equation 4.1. After a prediction the 

covariance matrix is updated according to Equation 4.2. 

)()()()()1|1()()1|( kkkkkkkkk TT
xx BQBFPFP �������  

Equation 4.2 

Where , the Jacobian matrix of partial derivatives of F with respect to X 

 and is given by, Equation 4.3. 
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The source error transfer matrix, B , is defined as the Jacobian of the state transition 

matrix with respect to the control input u  and is given by Equation 4.4. 
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Equation 4.4 

The matrix Q is a process noise covariance matrix based upon the perceived accuracy of 

the encoders and the LVDT. The selection of noise values for the encoders and LVDT is 

an important factor and greatly effects filter performance and is discussed in more detail 

in section 4.5 Filter Tuning as well as chapter 7, Results. The process noise matrix is 

given by Equation 4.5. 
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Equation 4.5 

Where �  and �  represent the variance on velocity readings (m/s) taken from the 

encoders and the variance on steering angle readings (rad) taken from the LVDT.  

2
vel

2
steer

4.2.2 Update 

GPS information arrives at a rate of 5 Hz (every 200ms) and when this occurs the GPS 

information regarding absolute vehicle position is fused with the predicted vehicle 

position in what is known as the update, in the Kalman filter.  

Since the observation model is a linear one the observation equations are those used in 

the linear Kalman filter section of chapter 2. Some of the relevant matrices from the 

equations of section 2.2 Kalman Filter as applied to thesis are given below.  
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Since only the first two states (X and Y) are observed the observation matrix is given as: 
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Equation 4.6 

The noise matrix (R(k)) defined in equation 2.6 represents the accuracy of the GPS.  
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Equation 4.7 

Internally to the GPS is a Kalman filter that calculates the latitude and longitude 

information based on the signals returned from the satellites. The basic general form of 

the covariance matrix of this Kalman filter internal to the GPS is shown below in 

Equation 4.8. 

�
�

�

�

�
�

�

�
� 22

22

latLongLat

LatLonglong

��

��

P  

Equation 4.8 

The GPS makes available the diagonal entries �  and �  as the variance of the GPS 

data. However it is rare that the latitude and longitude are uncorrelated meaning that the 

cross correlation terms �  and �  are non-zero. Consequently some of the 

uncertainty information is contained in these variables. Exact techniques exist to de-

correlate the data however the cross correlation must be known. The consequence of this 

is that the variance of the latitude and longitude returned from the GPS is smaller than 

the actual variance and must be used with caution. One method, suggested by Juan Nieto, 

of de-correlating the variance data for use in the filter is to multiply the correlated 

variance values returned by the GPS by a constant factor and use these new values to 

tune the filter. This is illustrated by Equation 4.9. 

2
long
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lat

2
LongLat

2
LatLong
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Equation 4.9 

Where:  and �  are the variance values returned by the GPS and K is a scaling 

constant to account for the cross correlation. In this thesis both using the variance data as 

s and using it after being scaled were tried and the results outlined in chapter 7, results.  

2
long�

2
lat

Two methods of selecting the observation noise are available either a constant noise 

based upon some a priori knowledge of the environment or using the variance values 

returned from the GPS receiver. Both methods are tested in chapter 7 and the choice of 

which method to use depends on the testing environment and desired filter performance. 

4.3 Multipath 

The latitude and longitude information from the GPS is calculated based on the time of 

flight of the signal form the satellite to the receiver. Often the path of this signal will be 

obstructed or will rebound off many surfaces before reaching the receiver. As a 

consequence the GPS will return erroneous position information. This typically causes a 

large jump in the GPS position estimates or in some cases the GPS information to drop 

out completely. This phenomenon is known as multipath. [7] 

Hence for the GPS to return accurate position information, the receiver must be in a 

wide-open space away from buildings and trees or other potential objects that may 

obscure or reflect the signal. Figure 4.2 shows some faulty GPS data taken in from the 

area next to the ACFR building at the university of Sydney where there are several 

buildings in the area and two large palm trees under which the vehicle drove. Notice the 

large and discontinuous jumps in the GPS data each time the vehicle passes under a tree.  
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Figure 4.2: Faulty GPS data taken from the area next to the ACFR building, caused by the Ute passing 

under a tree and near a building. 

4.4 Fault Detection 

For accurate navigation the presence of multipath must be detected and when the GPS 

signal is deemed to inaccurate due to multipath the update stage should be skipped and 

only vehicle predictions made until the GPS information becomes reliable again.  

The gate validation tests of section 2.4 Fault Detection can be used as a mechanism to 

detect multipath. The value of � is computed at each update and if this value is greater 

than the threshold on 12.6 then the update is rejected. 

4.5 Filter Tuning 

The performance of the navigation filter is highly sensitive to the process noise matrix 

Q(k) and the observation noise matrix R(k). Hence the correct noise values must be 

chosen to ensure smooth filter operation. 
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The process noise Q(k) is a measure of how well the model is trusted. A low process 

noise means that the model is perceived to be quite accurate and so upon observation the 

predicted position is trusted more than the observed position. Figure 4.3 shows the 

filtered position with a low process noise. The blue indicates the filtered position and the 

red the observed GPS position. Notice that since the process noise is low the model is 

trusted quite a lot and so the filtered position lies away from the GPS observations. 

 

 

Figure 4.3: Low process noise. The blue indicates the filtered position and the red indicates the observed 

GPS position. 

Figure 4.4 shows the filtered position with a higher process noise. The observation noise 

was kept constant. Notice how the filtered position lies much closer to the observations 

due to the fact that the uncertainty in the model is increased and so the predictions are not 

trusted as much as they were in Figure 4.3.  
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Figure 4.4: High process noise. The blue indicates the filtered position and the red the observed GPS 

position 

Just as the process noise is a measure of how the model is trusted the observation noise 

R(k) is a measure of how well the observations are trusted.  

Figure 4.5 shows the filter operating with a very low observation noise. Notice how the 

position estimates fall virtually exactly on top of the GPS observations. This is because 

the GPS observations are interpreted to be extremely accurate.  

Figure 4.6 shows the filter operating when the observation noise is very high. The 

position estimates lay away from the GPS observations since the accuracy of the 

observations is deemed to be low by the observation noise.  
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Figure 4.5: Low observation noise. Observed GPS data in red and filtered path estimate in blue. 

 

Figure 4.6: Large observation noise. Estimated path in blue, observations in red. 
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Clearly increasing the process noise has the same effect on filter performance as 

decreasing the observation noise and similarly decreasing the process noise will have the 

same effect as increasing the observation noise.  

Another factor that must be considered in filter tuning is what happens to the gate 

validation parameter (�) and hence the filters ability to detect and recover from the 

occurrence of multipath.  

If the observation noise is too low and the process noise is also too low the filter will 

never recover once multipath is detected. Figure 4.7 shows the filter, with incorrect 

tuning, rejecting an update due to multipath and then rejecting all updates thereafter 

when clearly multipath has never occurred. Great care had to be taken in filter tuning to 

ensure that the observation noise was not set too low to trigger the gate validation tests 

erroneously. 

 

Figure 4.7: Filter never recovering form detection of multipath 

Conversely if noise levels are too high in the observation noise matrix, the filter will 

never detect multipath and accept all observations. Figure 4.8 shows the filter failing to 

detect the presence of multipath in the GPS signal due to incorrect filter tuning. This 

posed less of a problem than the gate validation test detecting errors when there was none 
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since the filter generally still behaved acceptably and did not become unstable such as the 

case where the filter rejects all updates (Figure 4.7).  

 

Figure 4.8: Incorrect filter tuning failing to recognise multipath effects 

4.6 Initialisation 

It is very important to initialise the filter correctly. For example the initial heading may 

be wrong causing the vehicle to move off in the wrong direction initially. If the filter is 

tuned incorrectly it may never recover and become unstable returning essentially useless 

position data. One method to correct this is to use a compass to find the initial heading 

and then not accept any updates until the vehicle has started moving. A second method is 

to set the initial covariance on the states (x,y,�) to be extremely large, of the order of 

10km and 360� for position and heading respectively. Then once the vehicle starts 

moving and a GPS update arrives the GPS information is trusted effectively 100% and 

the filter will begin moving at least for a while right along the GPS path. As a 

consequence it is vitally important to begin the filter in an area where the GPS data is 

reliable. 
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4.7 Limitations 

The navigation filter presented in this chapter has several limitations associated with it. 

Primarily the filter is 2-D filter and as such will not function effectively in hilly or 3-D 

environments. Other methods such as inertial systems or slam must be used in 3-D 

environments.  

The filter is also very reliant on reliable GPS information so can only be used in 

reasonably open environments. Although the filter can detect and recover from multipath 

in the GPS, extended periods of GPS information being unavailable will result in the 

position estimates being extremely inaccurate due to the problems in the vehicle model.  

Also the module must have reliable GPS information to begin the filtering process 

otherwise the origin of the map will be wrong and the navigation loop will suffer as a 

result.  

4.8 Conclusion 

This chapter presents a 2D solution to the localisation problem utilising information 

about vehicle velocity and steering angles to predict the vehicle position and then fusing 

these estimates with absolute GPS position information. Reliability is guaranteed using 

the gate validation to reject multipath on the GPS signals providing a more robust 

navigation loop. 
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Chapter 5:   

Laser Dead Reckoning 

To date on the HSV project the 2-D range and bearing laser mounted on the Ute (see 

chapter 1) has been used for a number of different applications including identification of 

beacons in SLAM, 2-D and 3-D mapping of an environment and for obstacle detection in 

a reactive control module. However an interesting potential application for a 2-D range 

and bearing laser would be to determine vehicle pose changes from consecutive laser 

scans thus providing a dead reckoning path estimate of the vehicle or an estimate of 

vehicle velocity. 

This chapter investigates several methods proposed for vehicle pose estimation based on 

consecutive laser scans. Firstly the Iterative Closed Point method and its variants are 

analysed. Following this various methods of feature extraction are discussed along with 

methods of feature matching between scans. Finally once features between consecutive 

scans are matched the vehicle pose change can be solved for.  

5.1 Iterative Closest Point and Variations 

The Iterative Closest Point (ICP) algorithm, described in greater detail in Besl & Mackay 

[3] (1992) and Lu & Milios (1994) [12], is a method of comparing two consecutive laser 

scans on a point-by-point basis to determine the pose transformation of the 2nd scan 

relative to the first. The pose transformation of the 2nd scan relative to the 1st is equivalent 
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to the pose change of the vehicle. The pose change is defined as a translation in X and Y 

(Tx, Ty) and a rotation (�).  

For each point in the second scan the closest point in the first scan is found and these 

points are matched together. Hence every point in the second scan will have a 

corresponding point in the first scan. Using all these corresponding point pairs the least 

squares problem is solved to produce a pose transformation of the 2nd scan relative to the 

first. The data from the 2nd scan is then transposed to be relative to the first and the 

process repeated until the transformation between scans converges to zero. The equations 

to solve the least squares problem once points have been matched are given in Appendix 

B (Equations from Lu and Milios (1994)). 

Lu and Milios (1994) found that the closest point rule for matching points proved to be 

very effective in detecting translational movement but not so good at detecting rotational 

movement. So a second method for matching points between consecutive scans was 

developed known as the Iterative Matching Range Point method (IMRP). This rule 

groups points that are closest together in range. Using the iterative range point rule 

proved to be effective in identifying rotational movement but not so effective in detecting 

translational movement between scans.  

To correct the problems of the two methods Lu and Milios (1994) developed a combined 

method known as Iterative Dual Correspondence (IDC). This method took the translation 

component of the ICP method and the rotational component of the IMRP method and 

was found to converge much faster than both methods individually.  

Test were conducted on the ICP methods and their variants to see if the methods could be 

used to directly determine the pose change of the HSV on a point by point basis. It was 

found that the ICP methods performed well if all the points present in the 2nd scan are 

present in the 1st scan. Figure 5.1 shows the ICP method working well. Notice that the 

amount of points and features in the first and second scans (blue and red) is practically 

identical so each point in the second scan can be easily matched to the correct point in the 

previous scan.  
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Figure 5.2 shows the ICP method breaking down spectacularly due to the introduction of 

a corner feature in the second scan (red) not present in the first scan (blue). It is clear to 

the human eye that all points in the added line from the 2nd scan should not be matched to 

points in the 1st scan. However the ICP algorithm assumes all points present in the 

second are present in the first scan in some form or another and the ICP algorithm 

erroneously matches those point in the 2nd scan that don’t belong to the 1st scan. Hence 

due to erroneous matching of points the ICP method is not a robust method at all for 

determining pose change from consecutive laser scans.  

The ICP method is also very computationally expensive since it is a point-by-point based 

method and so a point pair must be found for every point in the 2nd scan. The ICP 

algorithm generally takes between 15-20 iterations before it converges (Lu and Milios) 

and this coupled with the fact the fact that it is a point-by-point method makes the ICP 

algorithm an extremely slow algorithm. Given that the ICP algorithm is not particularly 

robust in outdoor environments and that the algorithm is extremely slow, the ICP 

algorithm was rejected in this thesis as a method for matching consecutive scans.  
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Figure 5.1: Shows the ICP method working well when both scans contain the same features. The blue scan 

is the first (reference) scan and the red shows the second scan. The purple represents the second scan 

moved to the same frame of reference as the first scan. 
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Figure 5.2: Shows the ICP method breaking down as new features and points are introduced into the 

second scan. The blue represents the first scan, the red the second and the purple the second scan 

transformed to be in the same reference frame as the first scan.  

5.2 Feature Extraction 

Since ICP at best provided a less than reliable method of determining pose 

transformation between consecutive scans, a feature extraction method was proposed to 

attempt to extract features from any given laser scan and then track the different features 

between scans. Based on the movement of features the pose change of the vehicle could 

be determined.  

As proposed in Lee (2001), it was decided that the best features to be extracted were lines 

and circles. Hence the surfaces should be represented as a line or a series of lines and the 

trees and poles as circles.  

5.2.1 Clustering 

To correctly identify lines and circles from a laser scan it is first necessary to group the 

points into clusters with each cluster typically representing a single obstacle. The 

clustering techniques developed in Lee 2001 were used. Note that a single object or 

Matthew Ricci   -35- 



Chapter 5: Laser Dead Reckoning  Localisation of the HSV 

cluster can be represented by more than one line or circle. Recall also from chapter 1 that 

the data returned from the laser is the form of an ordered array of increasing bearing 

angles, with each element in the array representing the distance to the nearest object.  

To form a cluster of points each point in the laser scan is compared with the previous 

point in the scan and if the distance between the points is less than some threshold then 

the points are assumed to part of the same object or cluster. If the point is too far away 

from the previous point then a new cluster is started. Situations can arise where a point in 

the laser scan fails to return a value due to a reflection of an uneven surface and when 

this occurs the range reading is set to 8000, the maximum range of the laser. An example 

of this is shown in Figure 5.3. If the current point is compared only to he previous points 

it is clear that for the case where a pulse is lost a new cluster will be formed erroneously. 

So to correct this problem the current point is compared to points that are less than three 

degrees (6 bearing angles) away. Figure 5.4 shows the results of the clustering process 

with each cluster shown in a different colour.  

 

 

Figure 5.3: Showing the effects of how some laser pulses fail to return due to the pulse being lost 
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Figure 5.4: Example of successful clustering. Different clusters are shown in different colours. Note in the 

large purple cluster the three points to the right (separated by a small gap from the rest of the points) are 

still included in the cluster. 

5.2.2 Classification of Objects 

After clustering each cluster must be checked to see whether it is more likely to represent 

a line or a circle.  

Firstly the distance between cluster endpoints is checked. If this distance is deemed to 

small it is decided that any line fitted to the cluster will be too short and so the object 

most likely represents a circle.  

The second check involves checking the number of points in the cluster. If the number of 

points in the cluster is high it is very likely that the cluster will represent a line or series 

of lines and if the number of points is low then the cluster most likely represents a circle. 

Problems may occur with small lines since they may be classified as circles, when really 

they should be very short lines. So for any short objects, with four or more points a line is 

Matthew Ricci   -37- 



Chapter 5: Laser Dead Reckoning  Localisation of the HSV 

fitted and if the quality of this line is very high (co-efficient of determination discussed in 

next section was used), then a short line is fitted in place of a circle.  

5.2.3 Line Detection 

Fitting a line to a cluster of points provides more meaningful information about the 

object and reduces the amount of data required to represent the obstacle. Lines were 

decided to be a good object to fit to the raw laser data since the laser can only return the 

distance to the nearest object and so, many surfaces, such as walls and cars, can easily be 

represented by lines.  

The method used to fit lines to a cluster of points is a statistical least squares method 

aimed at reducing the square of the error of the distance of the points to the line. 

Problems arise when the cluster represents more than one line as can be seen in Figure 

5.4 where two of the clusters (the red and green) represent corners. Naturally when this 

situation occurs multiple lines must be fitted to the cluster since one line will not 

accurately describe the obstacles in the environment. This section of the report outline in 

greater detail the statistical methods used for line fitting as well as the methods used to 

extract multiple lines for a single cluster. 

5.2.3.1 Line representation 

Several methods exist for representing a line in Cartesian space. A line could be 

represented using the equation of the line (y=mx+b or ax+by+c=0), the line could be 

represented by its end points or the line could be represented in a polar form by a 

distance to the origin r and an angle �. The polar format shown in Figure 5.5 is the one 

used in this thesis since the line can be represented by two only parameters R and �. Also 

the polar format is convenient when performing calculations on pose transformation at 

latter stage. The start and end points of the line are also stored mainly for graphical 

display purposes.  
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Figure 5.5: Polar representation of a line 

5.2.3.2 Least squares regression parameters 

Least squares regression or linear regression is the method used in this thesis to find the 

‘line of best fit’ for a given number of points. The line of best fit is chosen in such a way 

as to minimise the square of the error of the points from the line. Linear regression is a 

well-documented technique for fitting lines to data sets and is commonly used in the 

fields of economics, finance and science. The following section describes the equations 

used to generate the least squares line model and it’s application to this thesis. (For more 

information on linear regression consult any standard statistics book or more specifically 

[18]. 

Given a group of ‘n’ points (the cluster in our case) where each point has two 

components an x component and a y component a least squares line can be formed 

through the points. The equation of this line takes the standard y-intercept form of a line 

shown in Equation 5.1. Depending on whether a regression is performed from y to x or 

from x to y the top or bottom equation is used. 
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Equation 5.1 
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where:  

�1 is the slope of the line 

�0 is the intercept of the line 

The slope of the line (�1) and the intercept (�0) are calculated according to the equations 

below. 

Regression y to x 
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Regression x to y 
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The polar parameters (r,�) can be calculated from these regression parameters (�1, �2) 

using simple trigonometry. For a more detailed derivation see appendix C. 
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 where atan2 is the 4 quadrant arctangent.  

The above equation is for regression from y to x. For regression x to y simply swap 

parameters x and y. 

The test to determine whether to perform a regression from y to x or vice versa is based 

on whether the line is more vertical or more horizontal. To determine this the values of 

SSxx and SSyy are compared. If SSxx is greater than SSyy the line is more horizontal and a 

regression from y to x is performed as per the equations on the left hand side above. 

Otherwise a regression from x to y is performed.  

The above linear regression equations provide no indication of the goodness of fit of a 

line, in other words do the data points make a good line. To determine whether a line fits 

the data points well we use two additional parameters about the line, the variance and the 

coefficient of determination.  

The coefficient of determination (R2) is a measure of how well a variation in the 

independent variable can be used to predict the variation in the dependant variable. In 

layman's terms the coefficient of determination is simply a measure of the linearity of the 

points. The coefficient of determination always lies between 0 and 1 with 0 meaning that 

there is no linear correlation in the data set and 1 being a perfect line fit. Figure 5.6 

shows typical values of the coefficient of determination for three different data sets.  
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Figure 5.6: Typical values for the coefficient of determination (R2) 

The coefficient of determination is calculated as follows: 

Regression y to x 

 � �01 �� �� xy

Regression x to y 

 � �01 �� �� yx

yySS
SSER �� 12  

where: 

xyyy SSSSSSE 1���   

is the sum of the squared errors 

xxSS
SSER �� 12  

where: 

xyxx SSSSSSE 1���   

is the sum of the squared errors 

 

One final piece of useful information that can be obtained from the regression 

information is the variance of the points about the line (s2). Given from standard statistics 

that 90% of points lie within two standard deviations of the line and given that the 

variance is equal to the standard deviation squared, the variance gives a measure of how 

close to the line the points lie. For a regression of y to x the variance is based on the 

vertical distance between the points and the line and for an x to y regression the variance 

is based upon the horizontal distance between the points and the line as shown in Figure 

5.7. 
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Figure 5.7: The variation in points from the line. On the left is the variation in y caused by a y to x 

regression and on the right is the variation in x caused by an x to y regression. 

The variance is calculated according to the equation below. 
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5.2.3.3 Coefficient of Determination Testing 

Testing was done on the coefficient of determination (R2), defined in the section Least 

squares regression parameters, to see if this information was useful in extracting lines 

from the cluster. Given that the coefficient of determination is a measure of the linearity 

of the points (Figure 5.6), it was postulated that the coefficient of determination could be 

used as a basis for accepting lines or for rejecting them.  

To test if the coefficient of determination was useful in extracting line information from a 

cluster, a line was firstly fitted to the entire cluster and the coefficient of determination 

computed for this line. If the value of R2 was less than a certain threshold, the line was 

accepted and added to the list of lines for that laser scan. If the value of R2 was less than 

the threshold, the cluster was bisected according to the corner method discussed in 

section 5.2.3.5 Corner Method, and lines continually fitted until a suitable value of R2 

was reached.  

It was found that the coefficient of determination was only a useful parameter if the laser 

points tested formed an almost perfect line. Figure 5.8 shows an example of a laser scan 

taken from a flat surface where all the points lie nearly perfectly on the line. The 
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coefficient of correlation for this example was 0.9995 indicating the excellent linear 

relationship between the points.  
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Figure 5.8: Laser points in a near perfect straight line, demonstrating a coefficient of correlation of R2 = 

0.9995 

Although the R2 test works well in the case where the data points spell out a near perfect 

line and a large portion of the points lie on the line, the test often fails to identify lines 

that clearly should be identified. Figure 5.9 shows a laser scan typical of a rough surface 

or perhaps a window. Clearly a linear relationship exists between the points in the middle 

section of the cluster, however the R2 test fails to pick this up. To the human eye it can be 

seen clearly that it would be possible to fit two lines almost exactly through all the data 

points and that a line of best fit would be somewhere between these two lines passing 

through only a few of the points. For this test the threshold for R2 was set to 0.5, quite a 

low value, and the linear relationship between the points was deemed to be too small for 

a line to be fitted.  

In general using the coefficient of determination proved to be an unreliable method in 

detecting lines in that points which should be extracted, as lines were often not. However 
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whenever the coefficient of determination was high, it was sure that the points spelt out 

and excellent line.  
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Figure 5.9: Scan of points showing where the R2 tests break down across the middle section (R2 threshold 

was set to 0.5 for this test).  

5.2.3.4 Variance Testing 

Given the failure of the coefficient of determination to accurately identify lines it was 

proposed the variance of the points about the line be used as a measure of whether a line 

fits the data points well.  

Given that 90% of the points lie within 2 standard deviations of the line and that the 

variance is equal to the standard deviation squared, it was assumed that if the value of the 

variance less than a certain threshold (i.e. all the points are close to the line), then a good 

line can be formed from the specified points.  
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Figure 5.10 shows the variance method for detecting lines correcting the problems 

associated with the R2 tests. The variance threshold was set to 15cm for this particular 

test.  
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Figure 5.10: Showing the variance method correcting the problems associated with the R2 test.  

5.2.3.5 Corner Method 

A large proportion of the time the points that make up a cluster define more than one line 

as shown in Figure 5.4. Obviously attempting to fit a line to the entire cluster group will 

fail and so a method must be chosen to break up the cluster into smaller groups. The 

thesis of Lee (2002) proposed a bisection and trisection method, whereby the points are 

simply trisected or bisected evenly and lines fitted to each section. If the gradient of the 

lines match up a line is fitted to the whole group, if not each section is further divided. 

This thesis uses a similar method however the method by which the cluster of points in 

bisected is based upon the most probable location of a corner.  
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Firstly a least squares line is fitted to all the points in the cluster and if both the 

coefficient of determination and variance criteria are not satisfied then the cluster of 

points is bisected. To bisect the points the two endpoints in the cluster are joined to form 

a line. Then the perpendicular distance from the line to each point in the cluster 

(excluding the end points) is computed and the point that is farthest from the line is taken 

to represent a corner. The points are then bisected using the corner point as the split 

point. A line is then fitted to each of the bisected segments and if this line satisfies the 

coefficient of determination and variance tests, then the line is accepted otherwise the 

line is further bisected until a suitable line is found.  

Figure 5.10 shows the corner bisection method working well for the case of two fairly 

well defined corners.  

5.2.3.6 Summary of Line fitting 

The final method used to identify lines is a combination of the variance and coefficient of 

determination methods. Basically once a cluster has been identified as a line, a line is 

fitted to he cluster and the value of both the variance and the coefficient of determination 

are checked, and if either of these is satisfactory the line is accepted. If not the line is 

recursively bisected according to the corner rule until either a satisfactory line can be 

fitted or there are too few points in the bisection to form a line. If after much bisection 

suitable lines cannot be fitted then no line is fitted and that feature is ignored (Figure 

5.11). Ignoring features is safe in this application since we are using the features for 

navigation purposes in an attempt to determine vehicle pose. However if the feature 

extraction were to be used for mapping purpose to determine regions where the vehicle 

cannot travel, then lines would need to be fitted to all data however good or bad.  
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Figure 5.11: Line fitting flow chart 

5.2.4 Circle Extraction 

The method used to fit circles was based on the method used in the thesis of Lee 2001 

developed by Jose Guivant and is detailed in the following section. 

Given that the laser can only return the closest point in a surface a reflection off a circular 

object such as a tree or pole will, in an ideal case, return a semi circle representing the 

front half of the object (Figure 5.12). Given this information the diameter of the tree can 

be estimated by simple trigonometry as shown by Figure 5.12.  

RD *���  
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Figure 5.12: Laser return from a typical circular object, and showing how to estimate tree diameter [7] 

Guivant proposed several different methods for finding the centre of the circle. Firstly it 

was assumed that the centre of the circle was collinear with the centreline of the obstacles 

bearing angles, Figure 5.13. The location of the centre could then be determined in one of 

two ways: 

�� The distance from the point nearest the laser to the centre is equal to the radius 

(Figure 5.14).  

�� The distance from the average range to the centre is equal to half the radius 

(Figure 5.14). 

 

Figure 5.13: Circle Centre on centreline of bearing angles[7] 
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Figure 5.14: Shows the average distance to sensor method for estimating circle centre on left and closest 

point method on right. [7] 

Based on the results shown in Lee 2001 [7] the closest range method was used for 

finding the centre of circles. Some results of circles extracted from typical laser data 

representing trees taken from Victoria Park are shown in Figure 5.15.  
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Figure 5.15: Typical circles extracted using Guivants method 

Problems with Guivants method arise when the number of points in the cluster is one or 

two. When there is only one point in the cluster the circle fitted has a centre at this point 

and a radius of 5cm, the accuracy of the laser. In the case of two points in the cluster the 

diameter of the circle is defined in the same way but the centre of the circle is defined to 

be the centroid of the two points. Figure show circles extracted with only one or two 

points.  

Matthew Ricci   -50- 



Chapter 5: Laser Dead Reckoning  Localisation of the HSV 

1534 1536 1538 1540 1542 1544 1546

2508

2510

2512

2514

2516

2518

180 185 190 195 200 205 210

2355

2360

2365

2370

2375

2380

 

Figure 5.16: Circles extracted from laser scans with 1 or 2 points 

5.3 Data Association 

After features have been extracted from the lasers scans these features must be associated 

with features in the previous scan. Correct feature matching between scans is crucial to 

the laser based dead reckoning since in correct feature mappings will result in erroneous 

pose change estimates of the vehicle. Hence a reliable and robust method must be 

implemented to correctly map features from consecutive laser scans.  

The thesis of Lee 2001 [11] proposed several methods for data association between scans 

that makes no use of the geometric relationship between scans and simply tries to match 

each line to the line in the previous scan that is a closest match to the line in question and 

tries to match each circle to the circle with a similar radius and is closest to the circle in 

question. This method proved to be very unreliable since often features would be present 

in one scan and not the second and so a false mapping would result. Also it became 

difficult to match features on a feature-by-feature basis in more cluttered environments.  

An alternate approach used in Bailey [1] makes use of the geometric relationship 

between features and hence provides a much more robust algorithm for data association. 

This method is known as the graph theoretic approach. 
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5.3.1 Graph Theoretic Approach 

The graph theoretic approach to the data association problem essentially consists of 

creating two graphs representing the features from current and previous scans and 

solving the maximum common sub-graph problem for these two graphs to provide a one 

to one mapping of features between consecutive scans. This section outlines the 

essentials of the graph theoretic approach to the data association problem as presented in 

Bailey [1]. 

5.3.1.1 Feature Graph Generation 

The data from the feature extraction process can be represented as a graph where each 

node in the graph represents a particular feature (line or circle) and each edge is the 

relationship between two features. Edges must be defined for all pairs of features or 

nodes and as a result the feature graph generated will have every node connected to every 

other node. Logically there will be two different node types in the feature graph, lines 

and circles. Therefore edges must be defined as follows: if the edge connects two lines 

the edge represents the acute angle difference between the two lines, if the edge connects 

a circle and a line the edge represents the perpendicular distance between the centre of 

the circle and the line and for two circles the edge represents the distance between circle 

centres. Figure 5.17 and Figure 5.18 show both the geometric relationship between 

features and the corresponding feature graph representation for a trivial case of 2 lines 

and three circles.  
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Figure 5.17: Geometric relationships between features  

 

Figure 5.18: Graph representation of features in Figure 5.17 

5.3.1.2 Correspondence Graph Generation 

After generating two feature graphs, one for the current and previous scans, a 

correspondence graph between the two must be generated. The method for generating the 

correspondence graph is best illustrated by example. 

Figure 5.19 shows two typical feature graphs A and B composed of two different node 

types L and C and with edge labels a through n. (Note in our case L represents a line and 

C a circle and the edge labels the geometric relationships between the lines and circles 
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but these node and edge labels could be generic labels for any type of graph.) Figure 5.20 

shows the correspondence graph generated from graphs A and B.  

To create the nodes of the correspondence graph we generate all permutations of same-

labelled nodes (nodes of the same type). For example for node type L the possible 

permutations are {A1,B1}, {A1,B2}, {A2,B1}, {A2,B2}, {A3,B1} and {A3,B2}.  

To generate the edges in the correspondence graph we must look for edge matches 

between the two graphs. Naturally for a real system an edge value will never be exactly 

the same in both scans and so edge matching will involve a certain threshold to determine 

if two edges can be matched.  

If an edge match is found between two similar node types (L to L or C to C), then two 

edges are added to the correspondence graph. For example, in graphs A and B of Figure 

5.19 the edge connecting nodes A2-A3 matches the edge connecting nodes B1-B2 and 

since these pairs have the same node label (L) it is unknown whether A2 maps to B1 or to 

B2. This ambiguity results in two lines being added to the correspondence graph thus 

joining node 3{A2,B1} to node 6{A3,B2} and node 4{A2,B2} to node 5{A3,B1}. (Figure 

5.20) 

If an edge match is found between two features of different types one edge is added to 

the correspondence graph. For example the edge connecting A3-A4 and the edge 

connecting B2-B3 match and since A3 and B2 are both of type L and A4 and B3 are both 

of type C this provides a 1 to 1 mapping of A3-B2 and A4-B3. Hence nodes 6{A3,B2} and 

7{A4,B3} are joined together in the correspondence graph.  
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Figure 5.19: Example feature graphs A and B 

 

Figure 5.20: Correspondence graph of feature graphs A and B 

Basically an edge in the correspondence graph indicates the possibility of mapping 

between two sets of points described by the nodes at the connection. A node in the CG 

with no edges into it means that there is no possibility of those two points being mapped.  
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5.3.1.3 Maximum Clique 

Bailey [1] states that finding the best mapping of features between scans is equivalent to 

finding the maximal clique of the correspondence graph.  

A clique is defined as a complete subgraph within a graph, in other words a subgraph in 

which every node is connected to every other node. The maximum clique for the 

correspondence graph is shown in Figure 5.21. The maximum clique shown indicates 

that the following features were matched together {A2,B1}, {A3,B2}, {A4,B3} and 

{A6,B5}. 

 

Figure 5.21: Maximum clique of the correspondence graph 

Although it easy to see the maximum clique visually it is another matter entirely to 

compute the maximum clique algorithmically. The method used in this thesis was based 

on a backtracking search algorithm by Bron and Kerbosch [5]. Appendix D describes this 

algorithm in more detail and a code listing of the algorithm as implemented in this thesis 

can be found on the CD attached to this thesis.  
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5.3.1.4 Effectiveness of the Graph theoretic approach 

The maximal clique method for finding correspondence between features proved to be 

quite effective in the majority of cases for clearly defining the best mapping between 

scans. However in many cases several maximum cliques all of the same size were found 

so it became difficult to determine which of these cliques contained the best mapping 

solution. This was caused mainly by symmetries in the environment and occasionally by 

the correspondence graph generation missing a match between graph edges. When this 

occurred the maximal clique algorithm always identified the correct feature mapping 

however several other false mappings were also identified with it. 

Parallel lines posed quite a large problem since lines would often be paired incorrectly 

due to the fact that the only matching information about lines is the angles between them. 

Consider the two sets of lines in Figure 5.22, A{LA1, LA1, LA1}  and B{LB1, LB1, LB1}, 

where scan B is imply formed by a rotation of scan A anticlockwise and a small 

translation forward and to the left, giving a correct matching of {LA1,LB1}, {LA2,LB2}, 

{LA3,LB3}. However given that lines 1 and 2 are parallel in both scans the possibility 

exists for a false mapping. During the correspondence graph generation stage the angle 

between LA1 and LA2 will be correctly matched with the angle between LB1 and LB3 and 

incorrectly matched to the angle between LB2 and LB3. This will causes the edges 

connecting {LA1, LB2} to {LA3, LB3} and {LA1, LB3} to {LA3, LB2} to be incorrectly added to 

the correspondence graph.  

Whilst, for the example given in Figure 5.22, the presence of the parallel lines will not 

cause an incorrect mapping, there are many cases where this will cause a problem, 

especially when combined with errors relating to circle matches.  
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Figure 5.22: Incorrect line pairing due to parallel lines 

Problems also arose with false mapping due to the distance between circles being equal 

and circles having the same distances to lines. For example consider the scenario 

depicted in Figure 5.23, showing the features extracted from two scans A & B each 

having 2 lines and 4 circles. Clearly the correct feature mapping between the two scans 

is, {AL1, BL1}, {AL2, BL2}, {AC1, BC1}, {AC2, BC2}, {AC3, BC3}, {AC4, BC4}. However notice 

that the distance between circles 1&2 is very close to the distance between circles 3&4 in 

both scans. This would result in the distance between circles 1&2 in scan A to be 

matched to both the distance between circles 1&2 and the distance between circles 3&4 

in scan B during the correspondence graph generation stage. This could potentially cause 

an incorrect matching of AC1 & AC2 to BC3 or BC4. Similar problems would occur when 

matching the distance between AC3 and AC4. 

Notice also that the distance between circles 1&2 and line 1 and the distance between 

circles 3&4 and line 2 is the same in both scans. Again the symmetries present due to the 

similar distances of the circles to the lines could result in an erroneous mapping of 

features from one scan to the next.  
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Figure 5.23: Potential false mapping due to circles being mapped incorrectly 

It must be noted here that theoretically the occurrence of such symmetries should still 

result in only one maximal clique being generated with all other erroneous cliques being 

smaller and hence ignored. However experimental results indicated otherwise with a 

small yet significant proportion of the time multiple matching occurring.  

The problems of symmetries in the environment causing false matching was solved at the 

correspondence graph generation stage by making use of the constraints of the vehicle 

motion.  

Given that the scans that are to be matched are taken consecutively at an interval of about 

200ms it can fairly safely be assumed that features that are far apart in Cartesian space 

are unlikely to represent the same feature. It was therefore decided that features (either 

circles or lines) having their range or bearing angles more than a specified distance 

threshold apart cannot be matched together. This threshold was calculated based upon the 

likely maximum velocity and turn rates of the vehicle and set at 5m and 50�, well above 

the calculated maximum movement between scans.  

During the correspondence graph generation stage any edge that would connect a node in 

which the features could not be mapped was not added to the correspondence graph. 
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Therefore the correspondence graph only contained edges connecting feature pairings 

that were allowed by the constraints of the vehicle motion. For example consider the 

scenario depicted in Figure 5.23. The distance between AC1 and AL1 would at some stage 

be matched to the distance between BC3 and BL2. This would cause an edge to be added 

between the nodes {AC1, BC3} and {AL1, BL2}. However since AC1 cannot be matched to 

BC3 since they are too far apart and AL1 cannot be matched to BL2 then the edge is not 

added to the correspondence graph. As a consequence the correspondence becomes very 

sparse and a lot of memory and execution time is wasted on nodes that will never contain 

an edge. Therefore an improvement on the maximal clique algorithm would be to only 

generate the correspondence graph with node pairings that are allowed within the 

confines of vehicle motion. Thus greatly reducing the amount of time and space required 

to store and search the correspondence graph for a maximal clique.  

Once the constraints of vehicle motion were taken into consideration the maximal clique 

method proved to be very effective in finding the best mapping of features from 

consecutive scans.  

5.4 Pose Change Calculation 

Once features from the current scan have been mapped to features in the previous scan it 

is then necessary to compute the transformation of the current scan relative to the 

previous scan. This will be equal to the change in robot pose over the interval between 

scans. The transformation will be calculated based upon a rotation � and a translation Tx, 

Ty. This pose transformation will be calculated in a vehicle frame and will therefore need 

to be subsequently converted to the navigation frame. 

A number of different methods for finding the pose transformation were used in this 

thesis depending on what kinds of features were extracted from the environment. These 

are outlined below. 

5.4.1 Circle only Transformation 

Since circles are treated as a point located at the circle centre, the only difference 

between this problem and the ICP problem is that in the ICP problem the point to point 
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mapping of features is guessed iteratively until the best match found, whereas in this case 

the point to point mapping is known via the maximal clique algorithm. Hence the pose 

transformation is simply the closed form solution to the ICP problem as presented in 

appendix B.  

It must be noted at this point that the closed form solution for the ICP problem is only 

valid if more than one pair of features is mapped between scans. Naturally the more 

features that are correctly mapped the more accurate the method becomes but the method 

will work for as little as two circle pairings.  

5.4.2 Line only Transformation 

When the only feature mapped are lines the only information that can be discerned 

directly from the lines is the rotation of the vehicle since lines were modelled as infinite 

segments, during the data association process. It was found that tracking line start and 

endpoints was unreliable due to occlusions and other factors causing line endpoints to 

move a great deal between scans.  

As a result it was proposed that the intersection of lines, or corners, could also be tracked 

as points features, providing the lines aren’t parallel. The point does not necessarily have 

to represent an actual corner but would represent where a corner would be if the line 

segments were infinite (Figure 5.24).  

So for a scan in which only lines were matched, the mean rotation is calculated based 

upon the change in gradient of the lines. When the average rotation is computed a simple 

weighting function is used based on the variance of each line. Lines with a lower 

variance are given a higher weighting and conversely lines with a higher variance are 

given a lower weighting according to Equation 5.2. 
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Where: 

2
i�

i��

 is the average variance of the two lines for which the angle difference is 

computed 

a is a weighting factor 

 is the angle difference between the ith pair of lines 

Once the mean rotation of the scans is calculated then a mean translation can be 

calculated using the closed form solution to the ICP problem presented in appendix B. 

 

Figure 5.24: Pseudo corners from intersection of line segments 

Clearly for a solution to be found the minimum number of lines features mapped must be 

two.  

5.4.3 Line and Circle Transformation 

For the case where there are both lines and circle matched between consecutive scans 

either or a combinations of both the methods discussed above may be used.  

If the number of circles matched is two or more the ICP equations may be used to 

calculate the pose transform using only the matched circles. However an alternate 

approach is to use the lines to calculate the rotation and the circles to find the translation 

in an analogous fashion to using the corners.  
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Based on the three method discussed above it is clear that the minimum amount of 

features to get a valid solution for the pose transformation is either two circle pairings, a 

pair of circles and a pair of lines or two non parallel lines. If possible the pose change is 

calculated using more than one method and the average of these is taken as the pose 

change of the vehicle.  

5.4.4 Coordinate Transform 

By summing the transformations between scans a path estimate of vehicle motion can be 

built up or at the least the transformations can be combined with a timestamp to estimate 

vehicle velocity. However the pose transformations are calculated in a vehicular frame 

and so must be converted to the navigation frame (Figure 5.25).  

 

Figure 5.25: Vehicle pose change in body frame 

The equations to transform the translation from the body frame to the navigation frame 

are given by simple trigonometry by Equation 5.3. 
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Equation 5.3 

Where: 

�  is the current vehicle heading in the navigation frame 

Once the transformations are converted to the navigation frame building a dead 

reckoning path estimate of vehicle motion is simply a matter of summing the 

transformations. 

5.5 Conclusion  

Presented in this chapter are methods to extract features from raw laser data. Suitable 

features were deemed to be lines and circles since the majority of objects in the 

environment were planes and trees. Once features were extracted the maximal common 

sub-graph method was used to find the best one to one mapping of features between 

scans. Once the features were matched then a pose transformation could be computed 

and by summing these a crude dead reckoning path estimate could be built up.  
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Chapter 6:   

Software Implementation 

This chapter outlines the different software techniques used to implement the navigation 

algorithms discussed in this thesis. Firstly the kalman filter implementation for the model 

based dead reckoning is discussed along with the techniques used for real time 

implementation. Following this the software techniques for the laser based dead 

reckoning module are discussed. Not all source code is on the data CD attached to the 

rear of this thesis. Contained also on this CD is a detailed description of the code 

including major functions and variable and a description of how to use the software. 

6.1 Model Based Dead Reckoning 

Given that the ultimate goal of this navigation loop was to implement the system in real 

time, the C programming language was selected over C++ or matlab since the 

hyperkernal real time operating system used on the HSV could only run C code in the 

hyperkernal front end. Any C++ code had to run on the Windows NT side 

communicating to the sensors via the shared memory buffer. This will be discussed in 

more detail later. 

The front-end program running on the HSV to read the sensors is written in C and is 

implemented using several hyperkernal threads, each of which reads a particular sensor 

and publishes the data into the shared memory region. [10] If written in C the code for 
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the dead reckoning filter could easily be added to these threads to be able to run in real 

time.  

Given that a transition from the hyperkernal real time operating system to the QNX real 

time operating system is likely to occur in 2003 a C++ offline simulation was also 

developed to allow future students to easily use the filter in the future to provide position 

estimates for a control module. The source code has been included on the data CD at the 

back of this thesis.  

6.1.1 Matrix Functions 

To program a kalman filter it is necessary to have a small suite of simple matrix 

functions, namely matrix multiplication, addition, subtraction, inversion and the 

transpose of a matrix.  

Using the algorithms in Numerical methods in C [25] a suite of basic matrix functions 

was written in both C and C++. Details of the functions implemented and how to use 

them can be found along with the source code on the data CD at the back of this thesis.  

6.1.2 Real Time Implementation 

As previously stated one of the main objectives of this thesis was to implement the 

navigation filter in real time. This section discusses the communication between the 

sensors and the filter in real time and the general programming concepts related to real 

time programming of the filter.  

The encoders, brake and throttle potentiometers and steering LVDT are all sampled at a 

rate of 40 Hz or 25ms. GPS updates arrive at a rate of approximately 5Hz, 200ms. Hence 

each iteration of the filter must be able to run in under 25ms in time for the next set of 

prediction data to be used. Tests conducted on the Ute’s computer using an offline 

simulation of the filter with sensor data arriving from a text file, indicated that the 

average iteration time of the filter was under 1ms meaning that the execution time would 

not pose a major problem to the running of the filter online.  
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The functionality of the filter in real time is outlined as follows. The thread sampling the 

sensors reads the information and publishes the sensor data into a known location in the 

shared memory buffer. Another thread, the filter thread, then reads this information from 

the shared memory buffer and performs a prediction or an update depending on whether 

the GPS information is current or not. The filter then publishes the position of the HSV 

back into the shared memory for another application such as control, or a user interface 

to use. Figure 6.1 shows this graphically.  

 

Figure 6.1: Software architecture and data flow for real time operation 

When working with multithreaded programs such as this, care must be taken to ensure 

that the shared data used is up to date and isn’t modified by another thread. For example 

in this application if the filter were to read the encoder information from the shared 

memory but before it could read the LVDT information the thread that reads the encoders 

and LVDT were to gain control of the machine, then the filter would be working with 

new encoder data but old LVDT data. A similar problem may arise when writing the 

position of the vehicle into the shared memory region. To ensure that thread is never 

interrupted during a data transfer to the shared memory buffer, calls to the functions 

HKEnterCriticalSection() and HKLeaveCriticalSection(), are made immediately before 

and after data transfer to disable and enable thread switching respectively.  
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6.1.3 Graphic User Interface 

A simple graphic user interface (GUI) was designed to plot the path of the vehicle in real 

time. The layout of this interface is shown in Figure 6.2. 

 

Figure 6.2: GUI to plot position 

The GUI is a Win NT application and as such is non real time. The GUI was written in 

C++ using the Microsoft Foundation Class (MFC). The GUI simply stores a pointer to 

the region in shared memory where the position updates are written and periodically 

updates the display of vehicle position. Again source code for this GUI can be found on 

the data CD. Both an offline simulated version and online version have been included.  
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6.2 Laser Based dead reckoning 

This next section discusses some of the software techniques used to implement the 

algorithms for laser dead reckoning as presented in chapter 5.  

For the same reasons as the model-based dead reckoning the laser-based dead reckoning 

module was coded using the C programming language. However due to some of the 

constraints of the algorithms (discussed in chapter 5&7) it was not possible to put this 

module into real time operation on the Ute.  

Again an outline of the functions used and major variables has been included on the data 

CD for the interested reader. However a brief mention about graph representation in 

software is discussed. 

6.2.1 Graph Representation 

[23] proposes two methods for representing a graph. The first is using a connectivity 

matrix of size mxm where m is the number of nodes in the graph. If two graph nodes are 

connected then a one is placed in the correct place of the connectivity matrix. For 

example if node one is connected to node two then a one is placed in elements (1,2) and 

(2,1) of the connectivity matrix. In general is node i is connected to node j then elements 

(i,j) and (j,i) will both be true, equal to one. From this it is clear that the connectivity 

matrix will be symmetric.  

The second method proposed is using an array of linked lists. An array of all nodes is set-

up and each element in the array is the head of a linked list containing all nodes to which 

the head node is attached. For example consider the graph shown in Figure 6.3. An array 

of four elements would be created where each element represents the head of a linked list 

of node structures. Element zero of the array would represent node one. This element 

would head a linked list whereby the first element in the list points to node two, the 

second points to node four and the third to null to indicate no more connections. Similar 

lists would be set up for each of the four nodes. This is shown graphically in Figure 6.4.  
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Figure 6.3: Example graph 

 

Figure 6.4: Graphical representation of graph linked lists 

The linked list implementation requires less storage space than the connectivity matrix 

method since in the connectivity matrix half of the space is wasted since the matrix is 

symmetric. However in the linked implementation checking to see if two nodes are 

connected requires traversing a list whereas using a connectivity matrix connection 

between nodes can be found immediately simply by checking the correct space in the 

matrix. One other advantage of the linked list implementation is that it allows data to be 

stored at the nodes.  
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Despite the advantages of the linked list implementation a connectivity matrix was used 

to represent graphs in this thesis. The main reason behind this was that the maximum 

clique algorithm of [5] used a connectivity matrix implementation.  
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Chapter 7:   

Results 

This chapter outlines the results of all the different algorithms discussed in this thesis. 

Data from the Ute’s sensors were logged in a variety of environments around the 

university. The Ute typically traveled at low speeds of less than 20km/h during testing, 

mainly for safety reasons. Some of the testing locations are outlined below: 

�� Seymore centre car park roof – Very open area no buildings nearby excellent GPS 

reception 

�� Victoria park – Many scattered trees 

�� Grass area next to ACFR building – Fairly open area enclosed by buildings, 

contains two large palm trees.  

The a discussion of the performance of the Kalman filter discussed in chapter 4 is 

presented followed by a discussion of the practicalities of using a laser based dead 

reckoning procedure.  
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7.1 Model Based Dead Reckoning 

The following results outline the performance of the Kalman filter in two main situations; 

with good GPS data and with a multi-pathed set. Both online and offline results are 

presented along with graphs related to the filter performance. All results are obtained 

from the C program that implements the filter and all plots are done in matlab using data 

saved to a text file by the C program. 

7.1.1 Accuracy of the Model 

The following data set was taken from the roof of the Seymour centre car –park at the 

university of Sydney using a differential GPS (DGPS) setup. Figure 7.1 and Figure 7.2 

shows the accuracy of the vehicle model. The blue path indicates the predicted path from 

the model and the red path is the true path from the DGPS. 

 

Figure 7.1: Accuracy of the vehicle model 
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Figure 7.2: Accuracy of vehicle predictions using the model 

The model performs very accurately over straight segments whilst a lot a less accurately 

over turns. This is because the model assumes a constant steering angle and velocity 

between predictions and when driving straight the steering angle is relatively constant but 

in the turns the steering angle and velocity are both changing somewhat. Naturally the 

accuracy of the model decreases as time goes on since the error is constantly growing 

without bound.  

These results do indicate however that the model is reliable to predict vehicle positions 

over distance of several metres with only 1-2m, as seen in Figure 7.1. Therefore during 

multipath the filter should still be able to provide fairly accurate position estimates 

provided the GPS returns after a fairly short absence and also provided that multipath is 

detected accurately. Naturally if the HSV were to drive in something like a long tunnel 

causing extended periods of bad GPS then the position estimates would become 

extremely inaccurate.  
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7.1.2 Offline Filter Performance 

The performance of the filter was first verified offline using data logged from the Ute’s 

sensors. Scenarios in which the GPS data was excellent along with cases where the GPS 

data was faulty are both examined to determine the robustness of the filter. In particular 

this section focuses on aspects of filter tuning and how it affects performance.  

7.1.2.1 Accurate GPS 

Initially the filter was tested using ideal GPS data taken from the roof of the Seymour 

centre car park using a differential GPS setup, resulting in centimeter accuracy on the 

GPS data. Figure 7.3 shows this environment with a typical vehicle path shown. 

 

Figure 7.3: Seymour centre car park roof and typical vehicle path (photo courtesy of 

http://www.bearings.nsw.gov.au/) 

Initially the performance of the filter was tuned using fixed noise values on the GPS. The 

best set of parameters found was as follows: � , , 

. The process noise parameters (�

�� 3steer smvel /3.0��

mlonglat 07.0�� �� steer and �vel) were not altered 

during these tests. Figure 7.4 and Figure 7.5 shows the vehicle path generated from this 

data set. The GPS position data is shown in red and the filtered estimates shown in blue. 
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The filter performed excellently providing a smooth path throughout that lay almost right 

on top of the GPS information.  

Notice in Figure 7.5 the saw tooth shape so typical of Kalman filters caused by the 

frequent updating of the position estimates by the GPS data.  

 

Figure 7.4: Estimated vehicle path. Data set taken from Seymore centre car park roof using DGPS. (fixed 

observation noise) 
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Figure 7.5: Close up of the estimated path shown in Figure 7.4 
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Figure 7.6: Normalised innovations (�) of Figure 7.4 

Shown in Figure 7.6 are the normalised innovations used in the gate validation tests for 

the detection of multipath effects. Notice that the normalised innovation never rises 
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above 12.6 meaning that the filter is operating well and that multipath is not an issue in 

this data set.  

A second guarantee that the filter is performing correctly is that the innovations are both 

unbiased and white. Figure 7.7 shows the innovations and Figure 7.8 shows the 

autocorrelation of the innovations. It can be seen clearly from Figure 7.7 that the 

innovations are unbiased and the autocorrelation of Figure 7.8 has a mean of zero 

indicating that the innovations are uncorrelated and hence white.  
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Figure 7.7: Innovations of Figure 7.4 
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Figure 7.8: Autocorrelation of innovations of Figure 7.4 

The performance of the filter was tested again using the same data set, only this time the 

process noise matrix R(k) was assigned using the variance information available from the 

GPS unit. To provide a stable filter output the variance from the GPS receiver had to be 

multiplied by a factor of 5. Any less and the gate validation test would detect an error and 

the filter would never recover.  

Figure 7.9 shows the estimated path generated using an observation noise matrix with 

variance values returned from the GPS receiver and multiplied by a factor of five, a value 

deemed to large to be accepted. The filter performs well but notice compared to Figure 

7.4 the path estimated is further away from the GPS data since the observation noise was 

set too high.  

Figure 7.10 shows the variance values returned from the GPS receiver for both longitude 

and latitude. The mean variance is 0.01m, which results in an average standard deviation 

of 10cm. The maximum variance is approximately 0.038m which gives a standard 

deviation of approximately 20cm. Hence it is clear that the GPS information in this data 

set is extremely accurate and there is no reason why updates should be rejected as 

multipath errors. 
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Figure 7.9: Estimated vehicle path using data set from Seymour centre car park. Observation noise set 

using variance returned by DGPS receiver. This noise was multiplied by a factor of 5.  
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Figure 7.10: Variance of DGPS data as returned by DGPS receiver. Mean value = 0.01m 
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A further test was conducted turning off the gate validation criteria and using the raw 

variance values returned by the GPS receiver un-scaled. The performance of the filter 

was ideal giving an output graph practically identical to that obtained using the fixed 

variance in Figure 7.4. In fact while the gate validation was off the filter basically 

performed excellently for a whole range of observation noise values.  

From these results is can be concluded that when the differential GPS is used in a wide-

open space such that centimetre accuracy in the GPS signals is available, the filter may 

become unstable if using the gate validation test and the observation noise is set too low. 

This is because the gate validation test may detect an error, when there is none, and the 

filter may never recover from this error rejecting all updates from that point onwards. 

Hence the gate validation test may be turned off if the integrity of the GPS data can be 

assured. If using the gate validation with centimetre accurate GPS data great care must be 

taken to ensure that the filter is properly tuned or the gate validation test is turned off. 

7.1.2.2 Inaccurate GPS 

Given that the accurate performance of the filter under ideal conditions, the filter was 

then tested using a data set containing very inaccurate GPS. The purpose of this was to 

test the robustness of the filter in terms of rejecting multipathed GPS data using the gate 

validation tests.  

The following data set was taken from the area next to the ACFR building. This area 

contains two large palm trees and is bounded on three sides by buildings. As a result the 

GPS can really only maintain an accurate signal out in the center of the test area. As soon 

as the vehicle passes under the palm trees or in some cases next to the buildings the GPS 

looses integrity. The data set was taken without using the differential GPS and as such 

the overall variance of the GPS is of the order of metres. Figure 7.11 shows an aerial 

picture of the testing environment, with a typical vehicle path.  
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ACFR 
building 

 

Figure 7.11: Aerial shot of the ACFR building and surrounds, showing a typical vehicle path (photo 

courtesy of http://www.bearings.nsw.gov.au/) 

Initially the filter is tested using a fixed observation noise of � , � , 

. Figure 7.12 shows the estimated path of the vehicle using the data 

set taken from next to the ACFR building. Compared to the accurate GPS data (Figure 

7.4) the GPS data at times seems erratic and somewhat coarse in places. The orange 

circles identify two examples of multipath. Notice that in these cases the filter simply 

ignores the GPS data and makes predictions using the vehicle model until the GPS data is 

deemed to be reliable again. Notice when the updates are accepted the estimated path 

hugs the GPS path fairly closely since the observation noise is set at 40cm, still a fairly 

small value, when compared to the noise value returned by the GPS. 

�� 3steer smvel /3.0�

mlonglat 4.0�� ��

Figure 7.13 shows the normalized innovations used by the gate validation of this data set. 

Notice that when the GPS data has multipathed the normalized innovations become 

extremely high, well above the 12.6 threshold and once the GPS data returns to normal 

the value of the normalized innovations falls below the threshold.  
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Figure 7.12: Estimated vehicle path, showing the effects of multipath rejection with a fixed observation 

noise. (Data set from area next to ACFR building) 
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Figure 7.13: Normalised Innovations of Figure 7.12 (data set taken next to ACFR building) 
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The filter was then tested with a variable observation noise matrix using the variance 

values returned by the GPS. Figure 7.14 shows the variance data from the GPS receiver 

in the data set taken from next to the ACFR building. The mean variance is around 1.5m 

with peaks occurring in areas where the data has under gone multipath, most notably the 

two peaks at around 35m. 
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Figure 7.14: Variance on GPS data taken from next to ACFR building. 

Figure 7.15 shows the results of the filter using the variance returned by the GPS receiver 

in the observation noise matrix. The noise values are used un-scaled. Again the filter 

performs admirably outputting a smooth vehicle path despite the large discontinuities in 

the GPS. Notice that in this case the estimated path deviates from the GPS path a little 

more than the fixed observation noise case (Figure 7.12). This is because the covariance 

returned from the GPS is bigger than the fixed value assumed in Figure 7.12. One thing 

of note is that when the variable observation matrix is used very few observations trigger 

the gate validation test, two in fact. Hence discontinuities in the path are avoided not by 

the gate validation test but by the variance being so large on multi-pathed data, that the 

GPS data is completely untrustworthy and so the observation hardly shifts the position at 

all.  

Both Figure 7.12 and Figure 7.15 present viable solutions for the path of the vehicle and 

it is unknown which of these more closely represents the actual vehicle path since the 
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actual position of the vehicle cannot be known 100% due to the errors on the GPS. So 

ultimately it is up to the user to determine whether a fixed observation noise or a variable 

on utilising the variance data from the GPS is used.  
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Figure 7.15: Estimated path using variable observation noise with variance data returned by the GPS 

receiver. 

Finally a scenario is shown in Figure 7.16, whereby the GPS information is very bad. In 

some instance it is hard to tell which is the good GPS data and which the bad. This has 

been included to illustrate that even under the worst conditions the filter can still provide 

smooth vehicle path estimates that are fairly accurate, at least as accurate as possible. It 

must be noted however that this is not the ideal situation for the navigation filter, as it 

should be used in open environments with a very sparse scattering of trees or buildings.  
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Figure 7.16: Estimated path using a data set with terrible GPS information. (Variable observation noise 

used) 

7.1.3 Online Results 

After verification of the results offline the filter was tested in real time using the GUI and 

the real time techniques discussed in chapter 6 software implementation. It must be noted 

that no useful information regarding correct filter operation can be gleamed online since 

no extra data regarding GPS accuracy and the gate validation and innovations is 

available. The only output is the estimated position of the vehicle. The only real 

indication about online performance is driving past the same point more than once and 

checking if it shows up as the same position in the graph. Basically if the filter works 

robustly in all simulations using logged data then it should be a trivial matter to convert 

the filter to a real time application. All that needs to happen is that the program reads and 

writes the data from shared memory instead of a text file. 
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Figure 7.17 shows one such example of the filter working well in real time in the area 

next to the ACFR building.  

 

Figure 7.17: Simple vehicle path plotted online in the area next to the ACFR building 

7.1.4 Summary 

Given the results just discussed it is clear that the performance of this navigation loop is 

highly dependant on the tuning of the Kalman filter thus it is important to tune the filter 

for the specific application and environment. 

The ideal value for the process noise was found to be � , , and 

was based on the theoretical error of the LVDT and wheel encoders. This value was 

unchanged during the tuning processes of the filter. 

�� 3steer smvel /3.0��

Matthew Ricci   -87- 



Chapter 7: Results  Localisation of the HSV 

In the situation where the base station is used to provide differential GPS resulting in 

extremely accurate GPS information, care must be taken when using the gate validation 

tests that the observation noise is not too low so as to cause the filter to reject all updates. 

It was found that the filter could use fixed noise values (standard deviation) typically of 

the order of 10-15cm with the gate validation turned on, and no problems would arise. 

An alternative to this was to turn the gate validation off and use the variance values 

returned by the GPS unit multiplied by 1.5. One method would be to leave the gate 

validation on but if the uncertainty of the GPS is lower than some threshold say 40cm 

then the gate validation is not used. Once tuned correctly it was found that the filter 

provided excellent position information with ideal GPS data. 

For the more noisy GPS data both the fixed and variable uncertainty methods provided 

accurate position estimates of the vehicle. Typically fixed values of around 0.5-1.0m for 

the standard deviation were used to provide a reliable and smooth estimate.  

In general however it was found that using fixed tuning was somewhat specific to the 

environment and the type of data logged, whereas using the uncertainty from the GPS 

receiver was more robust and worked in all environments providing that the gate 

validation was taken care of by disabling it when the uncertainty fell too low (less than 

30-40 cm).  

7.2 Laser Dead Reckoning 

The following sections outline the results of the feature extraction and data association 

techniques presented in chapter 5.  

7.2.1 Feature Extraction 

7.2.1.1 Line Detection 

The final line detection strategy used was based on the recursive bisection of a line until 

the either bisected segment meets the variance criteria or the number of points in the 

segment becomes too small for further bisection. 
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In general this method of line extraction worked very well especially in cases where the 

laser data clearly define a line or a corner. Cases in which the laser data was noisy often 

caused the method to extract lines that may not be an accurate representation of the 

object.  

Figure 7.18, Figure 7.19 and Figure 7.20 show the line extraction algorithm working 

well, extracting lines that very closely represent the shape of the objects.  
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Figure 7.18: Successful line extraction (I) 
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Figure 7.19: Successful line extraction (II) 
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Figure 7.20: Successful line extraction (III) 
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Figure 7.21 and Figure 7.22 show the line extraction technique failing to identify lines 

correctly to represent obstacles. This is due to the fact that the shapes of the obstacles 

scanned are odd shapes and/or the laser scan data is very noisy. Unfortunately not much 

can be done about this and given that the line detection algorithm worked remarkably 

well in the majority of cases, the odd situation where erroneous obstacles were extracted 

was ignored. In any case lines that were extracted incorrectly were not matched to other 

lines in the data association stage.  
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Figure 7.21: Line detection failing to some degree (I) 
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Figure 7.22: Line detection failing to some degree (II) 
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7.2.1.2 Circle Extraction 

The circle extraction techniques proved very effective in identifying circles provided that 

the cluster was correctly identified as a circle. In some instances very short clusters that 

represented very short lines were identified as circles and the circle extraction algorithm 

fitted a bad circle. In most other cases however the circle extraction method discussed in 

chapter 5 performed very well. Figure 7.23 to Figure 7.25 shows the performance of the 

circle extraction method under different scenarios. 
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Figure 7.23: Accurate circle extraction 
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Figure 7.24: Extracting an erroneous circle since the data should be a short line 

Matthew Ricci   -92- 



Chapter 7: Results  Localisation of the HSV 

600 610 620 630 640 650

0

5

10

15

20

25

30

35

40

45

 

Figure 7.25; Extracting an erroneous circle since the data should be two circles 

7.2.2 Data Association 

Results of the maximal common subgraph data association techniques presented in 

chapter 5 are shown in this section. To verify these techniques the pose changes for two 

consecutive scans was calculated and then the second scan was moved to in the same 

reference frame as the first. Ideally the two scans would then be identical.  

Figure 7.26 to Figure 7.31 shows three examples of consecutive laser scans and the 

results of the data association methods using the maximal common subgraph method. In 

each figure the red scan represents the current vehicle scan and the blue represents the 

previous scan. The features in red are matched to the features in blue using the data 

association techniques discussed in chapter 5. The pose transformation is calculated and 

the previous scan is then rotated to the same reference frame as the current scan to verify 

that correct features were matched and a correct pose transformation extracted.  
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Figure 7.26: Consecutive scans from the laser in the Seymour centre car park after feature extraction. Red 

scan is the current scan blue scan the previous. Dots represent circle centres. 
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Figure 7.27: Scan from Figure 7.26 after data association. Features translated so both scans are in the same 

frame of reference. (Tx = 7.4cm Ty = 68.9cm � = -0.41�) 
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Figure 7.28: Consecutive laser scans from Seymour centre car park after feature extraction.  
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Figure 7.29: Data from Figure 7.28 after data association. (Tx = -39.2cm Ty = 28.3cm � = 6.6�) 

Matthew Ricci   -95- 



Chapter 7: Results  Localisation of the HSV 

-1000 -500 0 500 1000 1500 2000 2500 3000 3500
0

500

1000

1500

2000

2500

3000

3500

4000

 

Figure 7.30: Consecutive laser scans taken from Victoria Park after feature extraction. Red scan is the 

current scan. Blue the previous scan. Dots represents circle centres.  
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Figure 7.31: The scan of Figure 7.30 after the data association. The previous (blue) scan has been moved to 

the same frame of reference as the current scan. (Tx = 12.33cm Ty = 85.6cm � = -2.47� ) 
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The results indicate that the maximal common subgraph method for data association is 

quite effective in determining a one to one matching of features between consecutive 

scans and hence the pose change of the vehicle based on this information.  

These pose changes were then summed and converted to the navigation coordinate frame 

in an attempt to build up a path estimate of vehicle motion. Figure 7.32 shows the path 

estimate built up from consecutive laser scans using the data set taken from the Seymour 

centre car park (Figure 7.4 shows the actual path taken). Only the initial stages of the 

dead reckoning are shown since after this the path estimates become somewhat 

unreliable.  

 

Figure 7.32: Laser Dead reckoning. Data set from seymour centre car park. 

7.2.3 Summary 

The techniques for data association and feature extraction presented here were quite 

effective in the sense that the feature extraction process reliably identified the correct 

features ion the majority of cases and the maximal common subgraph data association 

technique provided the correct feature mapping in the vast majority of cases.  

Estimating the pose change from this feature matching information proved quite effective 

on an individual basis, i.e. simply matching two scans together. As can be seen from the 
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results the error was small when two scans were mapped onto one another. However 

when several feature mappings were strung together to form a path estimate of the 

vehicle the data became unreliable since all the small errors present just grew with time. 

As a consequence the laser dead reckoning path grew less and less accurate with time. As 

was to be expected since this was a dead reckoning path of the vehicle with no absolute 

information about the actual position.  

It was hoped that the laser could be used as an alternative to the model for dead 

reckoning in situations where the GPS dropped out for extended periods of time. It was 

found that the laser dead reckoning was quite unpredictable and its performance could 

not be guaranteed reliably for all data sets. Also due to the time constraints of this thesis, 

the method was unable to be fine-tuned to produce a more robust algorithm. 

Despite the relative failure of the using the laser to perform robust dead reckoning 

predictions effective feature extraction and data association techniques were 

implemented that could find many uses outside the scope of this thesis in areas of 

mapping and reactive control.  
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Conclusion 

The kalman filter presented in this thesis to fuse vehicle state prediction based on 

encoder and LVDT data with GPS data performed reliably well in a number of different 

scenarios. A suitable filter tuning was to provide accurate position estimates when using 

the cm accuracy provided by the DGPS. Filter tuning was also provided to deal with the 

much less accurate GPS data when not using DGPS. Multipath was a common problem 

and testing showed that the filter was able to handle reasonable multipathed data. The 

online performance of the filter verified the testing performed on the offline simulation. 

The ideal situation for the filter is a wide-open area with no trees or even a sparse 

covering of trees. The area must be relatively flat however since the navigation loop only 

gives position data in 2 dimensions. If hilly areas are involved then alternate strategies 

must be used such as an inertial system. Although the filter can handle the odd 

occurrence of corrupt GPS data, the filter still requires that on the whole the GPS 

information be good. Most importantly it is necessary to start the filter in an area where 

the GPS information is known to be accurate.  

The feature extraction techniques implemented in this thesis proved to be very accurate 

in extracting features from raw laser data and even in these case where the features were 

not extracted entirely correctly the problem was not continued by the data association 

process.  
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The data association method implemented using a maximal common subgraph method to 

find the one to one feature mapping between scans was very effective in mapping 

features between consecutive scans. Initially it was postulated that laser based dead 

reckoning may provide a more accurate dead reckoning procedure since it is non model 

based. However the method proved to be often erratic if the correct number of feature 

were not matched between scans to compute a valid pose transformation.  

Although the laser dead reckoning was somewhat inaccurate the data association method 

used could have many other potential applications such as tracking features in slam or in 

map building and exploration strategies. 

Future work may include developing a three dimension navigation loop using an inertial 

unit, or using the navigation loop developed as an input to various control modules such 

as path following.  
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Abbreviations 

DGPS – Differential Global Positioning System 

GPS – Global Positioning System 

HSV – High Speed Vehicle 

IMU – Inertial Measurement Unit 

LVDT – Linear variable displacement transducer 

SLAM – Simultaneous Localisation and Mapping 

ICP – Iterative Closest Point 

IMRP – Iterative Matching Range Point  

IDC – Iterative Dual Correspondence 

ECEF – Earth Centred Earth Frame 

NED – North East Down 

GUI – Graphical User Interface 

QNX – A real time operating system 

MFC – Microsoft Foundation Class 
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Appendix A 

Derivation of Dead reckoning equations 

 

The continuous differential equation to describe the system is given by: 
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Where: 

 vc is the velocity at the centre of the rear axle 

Since the velocity is measured at the location of the encoder (ve), rear left wheel, the 

velocity must be moved to the centre of the rear axle (vc) using the following equations. 

From simple geometry we can see the position of the centre of the rear axle (PCx,PCy) 

with respect to the wheel encoder (PEx, PEy) is: 

�

�

cos
sin

HPP
HPP

EyCy

ExCx

��

��

 

Differentiating this to get Vc gives: 
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The translation from the centre of the rear axle to the GPS antenna is given by: 

��

��

cossin
sincos

bayy
baxx

cv

cv

���

���

 

Differentiating this gives: 
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Combining this with the original differential equations gives: 
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The discrete version of the above equation is: 
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Where:  

 X is the ‘x’ position of the vehicle in the navigation frame 

 Y is the ‘y’ position of the vehicle in the navigation frame 

 � is the heading of the vehicle in the navigation frame 

 � is the current steering angle of the vehicle 

 �t is the sampling interval of the system (25ms in this thesis) 

 vc is the velocity at the centre of the rear wheels 

 L is the wheelbase of the HSV 

 a is the distance between the rear axle and the GPS receiver 

 b is the distance between the centreline of the vehicle and the GPS receiver 
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Appendix B 

Closed-form Solution for Point Based Matching 

For n pairs of points:  a distance function between the 

transformed P’s and the P

,,...,1),,(),,( /// niyxPyxP iiii �

/’s is defined as the following: 
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By minimizing Edist we can obtain a closed form solution for Tx, Ty, and � as given 

below: 
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where: 
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Note also the coordinate transform to move the 2nd scan to the same frame of reference as 

the first is given by the equations below. 

Let P1 be a point on scan 2 and P2 be the corresponding point on scan 1, i.e. they both 

represent the same point in the world. The two points are related by: 
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Appendix C 

Polar Line Equations 

Given the equation of a line in the form  the polar parameters can be 

calculated as follows. 

01 �� �� xy

 

Form a line, perpendicular to the line of interest, that intersects with the origin. In the 

figure above this is a line connecting point P with the origin. The equation of this line is 

given by: 
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Point P(XP,YP) is given by the simultaneous solution of the two line equations 
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Having found the coordinate of point P the polar line parameters are simply given by 

simple trigonometry. 

��

�

cos
),(atan2

0�

�

r
xy PP  

The above equations apply for a regression from y to x. For regression from x to y simply 

reverse xp and yp. 
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Appendix D 

Finding all cliques of an undirected graph 

The algorithm for finding all cliques of an undirected graph is presented in Bron & 

Kerbosch [5] and is outlined in this appendix. For more details consult Bron and 

Kerbosch. 

The input graph is in the form of a symmetrical (m * m) matrix where m is the number of 

nodes in the graph. A 1 in entry (i,j) indicates that node i and node j are connected. The 

diagonal entries must all be 1. 

The recursive algorithm is outlined below where the set CompSub indicates all possible 

nodes for the current clique, the set candidates indicates all points that may in time serve 

as extensions to CompSub and the set Not indicates all nodes that cannot be part of the 

current clique.  

Global integer N  Comment: Size of the graph, number of nodes 
Global integer c 

Comment: The input graph, with N nodes, in the form of a connection matrix Connected  
Global boolean Matrix: Connected[N][N]   
Global integer Array: CompSub[N] 
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Function FindMaxClique() 
 integer Array ALL[1:N] 
 integer i 

 For i=1, step until i=N do 
  ALL[i] = i 
 end for 

 c = 0 

 ExtendVersion2(ALL, 0, N) 

End FindMaxClique 

Comment: ExtendVersion2 is recursive the function to find all cliques of the graph Connected.  

Function ExtendVersion2(integer Array Old, integer ne, integer ce) 
integer Array new[1:ce] 
integer nod, fixp, newne, newce, i, j, count, pos, p, s, sel,  
integer minnod 

 minnod = ce; nod = 0 

 for i = 1 while i <= ce and minnod != 0  do 
 p = old[i]; count = 0; j = ne; 
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  for j=j+1 while j <= ce and count < minnod do 
  if connected[p,old[j]] == 0 then  
   count = count +1 
   pos = j 
  end if 
 end for 

  if count < minnod then 
  fixp = p; minnod = count 
  if i <= ne then  
   s = pos 
  else  
   s = 1; nod = 1; 
  end if 
 end if 
end for 

 for nod = minnod + nod step –1 until nod = 1 do  
 p = old[s]; old[s] = old[ne+1]; 
 sel = p; old[ne+1] = p; 
 newne = 0; 

  for I = 1 while I <= ne step 1 do 
  if connected[sel, old[I]] == 1 then 
   newne = newne+1; new[newne] = old[I] 
  end if 
 end for 

  newce = newne;  

  for I = ne+1 while I <= ce step 1 do 
  if connected[sel,old[I] == 1 then 
   newce = newce+1;l new[newce] = old[I] 
  end if 
 end for 
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  c = c+1; compsub[c] = sel; 

  if newce == 0 then  
  Comment: Compsub contains a clique, save this clique  
  to check later if this clique is the maximal clique 
 else if newne < newce then 
  ExtendVersion2(new, newne, newce) 
 end if 

  c = c-1 
 ne = ne+1  
 if nod > 1 then 
  s = ne; 
  s = s+1; 
  while Connected[fixp, old[s]] == 0 do 
   s = s+1 
  end while 
 end if 
end for 

end ExtendVersion2 
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