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Abstract

Autonomous vehicles are very useful in applications where it would be difficult or

dangerous for human operations. The High Speed Vehicle (HSV) Project is an ongoing

successful project within the Australian Centre for Field Robotics since 1997.

For an autonomous vehicle to operate without any or very little input from human

it needs to have a fully integrated system involving sensors, controls and actuators.

The sensor system is the eyes of the vehicles, it provides the vehicle with details of

its environment. A good sensor system would avoid accidents on board, and allow the

vehicle to operate safely.

For my thesis work, I have researched into stereo vision for the vehicle. Stereo

vision is the method by which most humans see the world around in three dimensions:

width, height and depth. In my project, I try to emulate this natural process and allow

the HSV to ’see’ in 3D.

A rig is built for the stereo system where the cameras can sit, other hardware for

the project such as the cameras, lenses and frame grabber were either purchased or are

already a part of the HSV system. Various methods of image rendering processes were

researched and implemented, these include edge and corner detectors, camera calibra-

tion algorithms, and image filtering algorithms. The conjugate pairs of points from the

images are matched and thus a three dimensional disparity map of the surrounding

environment can be built.
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Chapter 1

Introduction

The High Speed Vehicle (HSV) Project is an ongoing successful project within the

Australian Centre for Field Robotics (ACFR) at the University of Sydney. The aim of

the project is to develop an fully autonomous land vehicle to operate in an unknown

environment. In 2002, four undergraduate thesis are undertaken for the project. My

thesis is to investigate the practicality of Stereo Vision for use in the project.

1.1 HSV Background

The HSV project has been a successful ongoing project conducted by the ACFR since

1997 [16]. The primary objective of past undergraduate students and researchers in

the project has been the development of navigation and control algorithms to enable

autonomously autonomous operations of land vehicle operating in unknown environ-

ments.

The aim of the HSV project is to develop technologies for the automation of land

vehicles operating, at ‘high speed’ (speed up to 90 Km/h) in a variety of ‘real’ environ-

ments. The experimental prototype consists of a Holden S-series Commodore Utility

car, known to the group as the ‘Ute’, that is retrofitted with a large number of sensors,

actuators and data logging and control system. The Ute is not the prototype for the

HSV, but rather it’s a test bed for the various hardware and software that are under

1
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Figure 1.1: The ’Ute’ for the HSV project

the development for the project.

1.1.1 Existing Sensors Onboard

Since the purpose of this thesis to develop and evaluate the usefulness of another

sensor, it is important to review the existing sensors on board the Ute at the moment.

In order for an automobile such as the HSV to autonomously navigate through the

external environment without obstruction, it must be provided continually with sensory

information advising it of its location, direction of motion, speed and of the current

conditions of certain points in the environment during its locomotion.

The Ute is equipped with external sensors such as GPS, and laser giving the vehicle

information of the environmental terrain and the location for the vehicle. At the same

time internal sensors such as INS, LVDT, and encoders provide for the speed and

direction of motion of the vehicle [16]. This entire sensory information, can be used
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by the HSV in particular, to detect other vehicles, obstacles, and pedestrians with

the primary objectives of ensuring that it remains a safe distance away from static or

moving objects in its path of motion.

Differential GPS Unit

The Global Positioning System, or GPS is a series of 24 satellites orbiting the Earth,

in known orbits. When a GPS unit is in communication with four or more satellites,

it is able to receive its global position and determine where and what heading it’s

travelling. The system on the HSV is called a differential GPS, which will return a

position accuracy of approximately one meter.

Figure 1.2: The Differential GPS unit
for the Ute

The information gathered from such a sys-

tem provides a global position in the North,

East and Down (vertical elevation), as well as

the units velocities in these frames. These are

the main six data values used, but other infor-

mation on the GPS system is also provided,

such as the number of satellites transmitting

to the unit and the variance of the individual signals.

SICK Range Bearing Laser

The SICK range bearing laser is located at the front of the HSV and is able to provide

a picture of the environment around the vehicle. The basis of the bearing laser is that

it emits a single infrared laser pulse which is reflected back from any object within

its vicinity. The time that the beam takes to return to the unit is measured, and

knowing the speed of light, the distance the object is away from the bearing laser can

be calculated. An image of the environment is then constructed by rotating the laser

and taking samples at known angular intervals.
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For this SICK Bearing laser range samples are taken at every 0.5◦, for a range of

180◦ and a distance of up to 80m. The data given for each sweep of the sensor is in the

format of a range reading for every sample taken, thus a total of 361 range readings.

This model of laser also provides the intensity of the return signal, which is presented

in the same format. This feature is useful for identifying markers and reflective objects.

Figure 1.3: The SICK laser unit for the Ute.

Compass

The compass is an alternative source of vehicle heading information, measuring the

information relative to Earth’s magnetic north. The compass used is TCM2, which is

an electronic compass with an ability to eliminate mechanical gimbal.

Inertial Navigation System

The inertial navigation system (INS) consists of gyros, accelerometers and inclinome-

ters arranged along 3 perpendicular axes. The three types of sensors measures angular

velocity, acceleration, and inclination respectively. The INS provides data in all six

degrees of freedom, and is used to provide dead-reckoning estimation of the HSVs po-

sition, through integration of the acceleration and angular velocity to provide position

and heading.
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LVDT

An LVDT is a measurement device that uses the electromagnetic force that is induced

in the movement of a ferrous core through two electromagnetic coils. The LVDT uses

this principle to measure linear movement, by attaching the two ends to the linear

distance needed to be measured. For the HSV, this has been attached to the steering

system of the Ute, and returns a value of the angle the vehicles steering has shifted

Wheel Encoder

The ROD-430 wheel encoders is an incremental rotary velocity encoders from Heiden-

hain. The encoders operate on the principle of photo electrically scanning very fine

grating with a line counts between 50 to 5000. Shaft attaching to the wheel encoders

can travel up to 12 000 rpm. Output signal for this particular model is a HTL square-

wave signal which meant that an output signals are square-wave signals incorporating

a circuit that digitizes sinusoidal scanning signals, providing two 90 deg phase-shifted

pulse trains and a reference pulse. The encoders is power by the 12 Vdc from the fuse

box.

1.1.2 Past Work on Vision

Machine vision is the process of acquiring images using camera, processing the images,

recognising the features in the images and thus allow the robots to function in the

environment much like what human does. The topic, however, it extensive and chal-

lenging in many ways such as the amount of computer power required to interpret the

vast amounts of image data, and to perform the tasks quickly and reliably. It is due to

these problems that vision is an area that is looked into later on in any such projects.

For the HSV, there are a couple of previous thesis projects that investigate the use of

vision as a sensor.
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Panoramic Vision System

Panoramic vision is a recently established method of image acquisition in which the

global scene (360◦) surrounding an image acquisition device, such as a camera can be

viewed. The imaging system was first investigated in 1999 by Dimo [10] for the HSV

project to function as an additional external sensor for the HSV with the ability to

attain global information about the surroundings.

The system on board achieves the viewing of the 360 degree environment by using

a reflective mirror to transform the image onto the camera lens. The camera which

was used in field experiment is an ELMO TSP481 PAL CCD Colour Camera. The

camera is a 12 Vdc power input and medium resolution with backlight compensation

capabilities ie saturation resistance of the sunlight in an image. Thus the camera can

detect high and low intensity images in the outdoors and most importantly natural

landmarks in outdoor navigation.

The panoramic imaging system set up on the HSV is able to effectively view the

entire scene surrounding the vehicle instantaneously, in a single image frame without

distortion, and without the use of moving parts. The combination of these image frames

in series makes it possible for the image system to operate in real time. Secondly, the

imaging system serves the purpose of being able to appropriately depict and identify all

the known landmarks panoramically surrounding the vehicle in each of it’s images and

identify the bearing to these landmarks in relation to a reference on the vehicle. This

facilitates a starting point for the global homing or localisation of the vehicle through

vision.

Path Following

In 2001, Mactier [19] investigated the problem of autonomous road following in an urban

environment using a single CCD camera. This involves the autonomous localisation of
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the road, the determination of the relative position between the vehicle and the road,

and the determination of a suitable path for the vehicle to follow to remain on the

road.

This thesis details the design and implementation of an approach to perform au-

tonomous road following using a single CCD camera. It can be shown, that provided

distinct features run parallel to the road scene we can determine the position of the

lane boundaries and the curvature of the road ahead of the vehicle.

1.2 Thesis Objective

For the HSV to operate in an autonomous fashion, its sensor system requires a three-

dimensional (3D) map of the environment in front of the vehicle to navigate safely and

avoid collisions. This map must include position and motion estimates of the relevant

traffic participants and potential obstacles. Stereo vision is the application of two video

cameras to construct 3D maps through the analysis of the images returned. This ap-

plication mirrors those of other external sensors, such as the radar and laser, where the

system will localise objects within its field of view, build a map of its surrounding and

thus control the vehicle to safely navigate through the environment. Unlike the radar

and laser systems, stereo vision is a passive system, which means it does not require

the emission of signals to ‘see’ obstacles. This gives the system an advantage over the

active sensors in that there is little potential for interference with the environment.

Furthermore, it provides a much higher spatial resolution than active sensors [12].

Much research has gone into the application of stereo vision in autonomous vehicles

around the world. Whitehorn et al. [34] worked in applying stereo vision for the

enhancement of safety and productivity in the operation of a load-haul-dump vehicle

in underground mining. Nguyen and Graefe [25] worked on an approach to realise

learning calibration-free stereo vision-based robot for manipulating objects. Gavrila et
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al. [12] uses stereo vision in their approach to build a sensor system for driver assistance

in urban vehicles. And Broggi et al. [4] investigated into a calibration method for on-

board cameras used on autonomous vehicles.

The objectives of my thesis are:

• Build a stereoscopic system for the HSV,

• Develop algorithms to analyse the image returned,

• Build a 3D map from the analysis, and

• Investigate into its uses and practicality.

1.3 Thesis Structure

The thesis is organised in the following way:

Chapter 1, this chapter is the Introduction. Here I have done a quick review

of the High Speed Vehicle project’s background, its existing systems on board and a

review of the past work done on vision for the project. Furthermore, this chapter also

introduces the concept of stereo vision and the objective of this thesis.

Chapter 2 is a review of Stereo Vision. It includes the definition of stereo vision,

and its various implications to the human vision system. This chapter also deals with

the theoretical aspect of applying what we know of stereo vision’s mechanics to uses

in machine vision and how we can use it as a sensor.

Chapter 3 is on Hardware Consideration. This chapter will discuss the various

hardware used for the projects. These are the cameras and their components, the rig

for the placement of the cameras on board, and the hardware to capture the images

from the camera for analysis. Lastly, the chapter will discuss the method of acquiring

the data and the format of the data gathered.
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Chapter 4 deals with the various algorithms and methods for Image Rendering.

Firstly, the methods for calibration of the camera are discussed. Secondly, any data

gathered will have intrinsic noises and I’ll discuss the methods for dealing with the

noise. The next section is the various algorithms investigated for detecting the edges

of objects within the camera. Finally, we’ll look into the methods for corner detection.

Chapter 5 is Stereo Matching, which tackles the problem of match the corre-

sponding objects from the two images. This is one of the hardest problems in machine

vision, to find the two points that are the project of one point from an object. We’ll

look into how to find the most accurate point and how to decide which are the corre-

sponding points. Furthermore, we’ll look into methods of speeding up the correlation

process, reducing the search parameters by the use of fundamental matrix and essential

matrix.

Chapter 6, Disparity Map and Error Calculation is the process and result

of finding the 3D map and determining the error involved. The Disparity Map is the

three-dimensional map of the surrounding area of the vehicle using the data gathered by

the stereo cameras. There are however, errors in the coordinates of all the points found.

This chapter also deals with calculating these errors theoretically and experimentally.

Chapter 7 is the Conclusion. In this chapter we’ll review the processes into finding

the disparity map from the pair of images from the cameras. The advantages and dis-

advantages of Stereo Vision for the HSV project will be discussed, and the practicality

of the system in real-time. Lastly, we’ll look into any further works that can be done

for the system.



Chapter 2

Stereo Vision

2.1 Background

Stereo vision is an adaptation of the human vision system into machine vision. There

is much evidence that human vision utilises disparity, which is the differences in images

of real world scene captured by the eyes. The human eyes are located side-by-side at

the front of the head ensuring that both eyes see a view of the same area from a slightly

different angle. Thus even though there are plenty of common images taken from the

two eyes, each eye would pick up visual information the other doesn’t. The differences

are important because they encode information that often allows a reconstruction of

the three-dimensional structure of the scene from two-dimensional projections [2], [26].

Bibson [14] discussed the nature of visual perception in a dynamic environment. He

argued that the visual stimulus is inherently dynamic and that the patterns of change

in the stimulus are important sources for the perception of the spatial environment.

Gibson described the pattern of optical flow that occur when the observer moves. He

argued that along with other important visual phenomena, such as texture gradient and

linear perspective, they interact with the kinesthetic “body senses” in the perception

of a stable, upright, three-dimensional world.

When the two images arrive simultaneously at the brain, they are united into one

10



CHAPTER 2. STEREO VISION 11

by matching up the similarities and adding in the small differences. These differences

are what allowed us to see the world in 3 spatial dimensions – width, height and depth.

It is the added perception of the latter that makes stereo vision so rich and special. It

allows us to see where objects are in relation to our own especially whether an object

is moving to or away from us; it allows us to see a bit “around” an object without

moving the head around; and it allows us to perceive and measure space with our eyes

and brain.

Julesz’s experiments with random dot stereograms [18] supported the contention

that the human visual system is able to process differences between images. People

with normal stereo vision can easily perceive depth in the randomly generated pair of

images by measuring the disparity between the shifted dots on the two images.

2.2 Application to Machine Vision

The simplest model of a stereo vision is two identical cameras separated only in the

x direction by a baseline distance b as shown on figure 2.1, which is what was done

for this thesis. The image planes are coplanar in this model. A feature in the scene is

viewed by the two cameras at different positions in the image plane. The displacement

between the locations of the two features in the image plane is called the disparity. The

plane passing through the camera centers and the feature point in the scene is called

epipolar plane. The intersection of the epipolar plane with the image plane defines the

epipolar line. For the model shown on the figure, every feature in one image will lie

on the same row in the second image. In practice, there may be a vertical disparity

due to the misregistration of the epipolar lines. Many formulations of binocular stereo

algorithms assume zero vertical disparity [17].

In figure 2.1, the scene point P (x, y, z) is observed at points on the two image

planes. Without the loss of generality, let us assume that the origin of the coordinate
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(a) (b)

Figure 2.1: Stereo Matching [17].

system coincides with the left lens centre. It is easily observed that the distances x

and x′
l, as well as z and f are corresponding sides on similar triangles, thus:

x

z
=

x′
l

f
(2.1)

Similarly, same thing can be said about the right image, giving:

x− b

z
=

x′
r

f
(2.2)

where f is the focal length, and combining the equations 2.1 and 2.2 gives:

z =
bf

x′
l − x′

r

(2.3)

Thus, the depth at various scene points may be recovered by knowing the disparities

of corresponding image points.

Note that due to the discrete nature of the digital images, the disparity values are

integers unless special algorithms are used to compute disparities to subpixel accuracy.

Thus, for the given set of camera parameters, the accuracy of depth computation for
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a given scene point is enhanced by the increasing the baseline distance b so that the

corresponding disparity is large. Such wide-angle stereopsis methods introduce other

problems, however. For instance, when the baseline distance is increased, the fraction

of all scene points are seen by both cameras decreases. Furthermore, even those regions

that are seen by both cameras are likely to appear different in one image compare to the

corresponding regions in the other image due to distortions introduced by perspective

projection, making it difficult to identify conjugate pairs.

Many algorithms have been developed to build the disparity map from the stereo

imaging technique. The paradigm used by most early algorithms consists of three

steps [1]:

1. Detect suitable features in each image.

2. Find corresponding features in the two images.

3. Determine the 3D locations associated with corresponding pairs of image features,

and build the map.



Chapter 3

Hardware Consideration

As the project is mainly software based, the hardware requirement is quite simple.

Furthermore, most of the visual systems were build and set up a couple of years ago

with the panoramic imaging system for the Ute, these includes the cameras, frame

grabber and its associated software. The hardware specifically purchased/built for this

thesis are the lenses and the stereo rig.

3.1 Cameras

For this project, we are using the Panasonic WV-BP330 series CCD Camera, shown

on figure 3.1(a). These are 1/3” Digital Signal Processing B/W CCTV cameras, which

delivers a 768 × 582 pixel picture [27]. The cameras were obtained for a previous

thesis for the vision system, here both of them will be used to obtain 3D viewing. See

Appendix B.1 for the specifications of the cameras.

Two different lenses were ordered for the previous projects, for the testing of differ-

ent systems. However, in this case we’ll need to use two exact same lenses for the job.

The lens on ordering is the Panasonic 2x Variable Focal Lens WV-LZA61/2, shown on

figure 3.1(b). The lens has automatic iris, which is a necessity for outdoor use. It also

has adjustable focal length and angular field of view [28]. (Appendix B.2 shows the

specifications for the lens.) These features are desirable for the project since currently

14
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(a) (b)

Figure 3.1: The camera [27] and lens [28] used for the project.

we do not know exactly what we need to see. I have chosen to use the same brand as

the camera, as it is always recommended in the photography field that the lens and

the camera should be from the same manufacture.

3.2 Test Rig

A rig need to be built for holding the cameras on the Ute. Since we don’t know the

best distance between the cameras for our situation, the rig is to be the width of the

Ute, with holes to screw the camera on at 10cm intervals. Figure 2 shows the drawing

of the test rig.

The cameras are mounted on the Ute just behind the cab, on the bar at the front

of the tray. Figure 3.3 shows the positioning of the cameras on the test rig on the Ute.

They are placed at either side of the Ute imitating nature.

3.3 Frame Grabber

The image capture card used in the system is the same card that was used for the

panoramic imaging system. It is a standard Matrox Meteror II board as shown on

figure 3.4.
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Figure 3.2: The Test Rig

Figure 3.3: The positioning of the cameras for Stereo Vision
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Figure 3.4: The Matrox Meteor II Frame grabber [20].

The board is a standard monochrome and colour analogue frame grabber [20]. It

accepts an external trigger input, and can operate in next valid frame/field mode. The

standard board has six connectors, as shown on figure 3.4. The BNC connector is

used to receive composite analog video signals from the cameras. Alternatively, Pin 15

(VID IN1) in the Video Input socket can also be used for the same purpose [10].

As an in-built standard, the board samples or digitises the analogue input signals

from the cameras used with a resolution of 768× 576 pixels. This means that each of

the image frames grabbed by the buffers on the board, are of this default size. However,

it was possible to specify in software smaller image frame sizes to be grabbed by the

buffers on the board.

The image capture board is located in the PCI bus of the host PC for the system,

and allows for the fast transfer of image information between the image buffers located

on the board and displayable PC RAM. The layout of the board in figure 3.5 shows

that a video multiplexer on the board allows for the analogue video signals of up to

four cameras to be connected to the board and sampled individually and synchronously

with a high sample rate. This makes the board useful for multiple cameras uses as in

the stereo vision system.
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Figure 3.5: The Matrox Meteor II Frame Grabber board layout [20].

The frame grabber is supported with a library of C functions, which is a part of

the Matrox Imaging software products [20]. These are the Matrox Imaging Library

(MIL) and its derivatives, one of which is what is used for the system – MIL-Lite.

The package allows the capture, process, analyse, transfer, display, and archive of the

images. It also contains video signal drivers, which allow for each camera attached

to the frame grabber to be configured for image display on the host PC. The frame

grabber and the accompanying video signal drivers were particularly chosen as they

allow for the displaying of captured images under a real-time operating system such as

windows NT on the host PC.

The MIL-Lite package also provides four groups of functions to control the frame

grabber, these are shown on figure 3.6. These were used selectively on the host PC in

the panoramic imaging system so as to control the following functions:

• The acquisition of image frames from a camera in the system,
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Figure 3.6: The MIL-Lite software architecture [10].

• The low level allocation of memory for image buffers on the frame grabber, and

• The display of the contents of the image buffers on an interface on the host PC.

In addition, the software package allowed for the implementation of custom image

processing algorithms in C on the host PC, which were able to directly access the

image buffers on the board and use the four groups of functions the package provided.

3.4 Data Acquired

The cameras used for the project are black and white for several reasons. Firstly, the

data size from a B/W image is only one third the size of colour image. Secondly, as in

a B/W image, every pixel is described with one value (in our case a integer between

0 and 255), the two images from the cameras can be combined into one colour image,

thus eliminate the need to match data.

Figure 3.8 is a stereo image captured by the camera of the same scene as that of

figure 3.7. As seen on the stereo image, the red and green channel of the colour image

represents two pictures taken by the cameras. When processing the data, we can

separate these images out by just viewing one of the channels as shown on figure 3.9.
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Figure 3.7: A picture taken by the colour camera on board the HSV

Figure 3.8: The data received by the stereo cameras of the same view as that shown
in figure 3.7
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Figure 3.9: The left and right camera images of the stereo image show in 3.8



Chapter 4

Image Rendering

To find the distance to an object, we need to match the object from the left image to

that from the right image as discussed in section 2.2. The two points that belong to

the some object is called a conjugate pair. However, it is virtually impossible to match

point by point since the same value of a pixel can be repeated many times even on a

single row. Thus we need to find distinguished features on the image, these features

would be things like edges and corners.

4.1 Calibration

From figure 2.1, and equations 2.1, 2.2 and 2.3 we can see that there are several variables

that we need to know before we can calculate the (x, y, z) coordinates of the objects.

These variables are the focal lengths and the image centers of each camera, both of

these values are in the x and the y directions.

These calibration values are found using the calibration toolbox for MATLAB

written by Jean-Yves Bouguet [3]. The package is used with the calibration board,

which is a check board like with 12× 12 alternating squares of black and white. Each

square is 75cm in width and height. Figure 4.1 shows the calibration board.

For calibration, sets of images are taken by the cameras (for the best results, the

22
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Click on the four extreme corners of the rectangular pattern... Image 1
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Figure 4.1: Calibration step 1, original image from one of the cameras, waiting for
calibration.
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Figure 4.2: Calibration step 2, the four extreme corners identified using the mouse.
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The red crosses should be close to the image corners
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Figure 4.3: Calibration step 3, all corners within the bound predicted, shown as red
crosses.
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Figure 4.4: Calibration step 4, all corners are extracted, the blue squares shows the
limits of the corner finder.
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calibration board should be moved throughout the image with close-up and far-away

shots). The calibration program finds the various values using statistical methods, thus

a number of images need to be used. The minimum number required for the program

is 9, however, it is best to use more than 9 sets of images.

During calibrations, the program first identifies all the images for the individual

camera to be calibrated in the working path. For each image, the user is asked to

identify the four extreme corners, which are shown on figure 4.2. Straight lines are

drawn between the corners to identify the boundary of the calibration grid, the code

also checks if there are ten (or the specified number of) squares on each side. The size

of each square is entered by the user.

Next, all the corners within the boundary are predicted as shown on figure 4.3. The

user is then asked if an initial distortion value is to be guessed, based on how close

the corners predicted are to the real image corners. The corners are automatically

extracted using these positions as initial guess. Figure 4.4 shows the final stage for

each image where the corners are extracted, the blue squares around the corner points

show the limits of the corner finder window. The corners are extracted to an accuracy

of about 0.1 pixel.

After corner extraction of all the images, the code proceeds to run the main camera

calibration procedure. This is done in two steps: first initialisation, and then nonlinear

optimisation.

The initialisation step computes a closed-form solution for the calibration param-

eters based not including any lens distortion. The non-linear optimisation step min-

imises the total re-projection error (in the least squares sense) over all the calibration

parameters. The optimisation is done by iterative gradient descent with an explicit

(closed-form) computation of the Jacobian matrix. The resulting parameters of the

calibration process are:
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• fc: the focal length in x and y direction,

• cc: the principle points, i.e. the central pixel of the image in x and y direction,

• kc: the distortions of the image, this will be discussed in the later sections,

• alpha c: the skew of the image in angle, and

• err: the errors associated with the values.

For a complete description of the calibration parameters and how they are related

to the images see Appendix C.

4.2 Criteria for Image Rendering

Before any image rendering process is discussed, it is necessary to take a look at the

various criteria that should be set that defines the “best” algorithm for our project.

Canny [5], and Smith and Brady [33] all explained what sort of criteria is necessary for

image processing. Note that most of the criteria applies more to the edge and corner

detector than the filtering process, which is to be expected as that’s ultimately the

desired result. These criteria can be summarised as following:

Firstly and most importantly, the algorithm has to have a low error rate. It is

important that edges and corners that are present in the image and thus the real world

surround of the cameras are not missed and that there are no spurious responses. This

criteria, according to Canny means that the filter should maximise the signal to noise

ratios. This makes sense in the case of linear filters, which has features thresholded at

a later stage than the enhancement. However, in the case of non-linear filters, Smith

and Brady framed the criteria as it “should be a minimum number of false negatives

and false positives”.

The second criterion for the image rendering is that the features need to be well
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localised. In other words, the location of the features found by the algorithms need to

be as close to be actual location as possible. This is particularly important for stereo

vision as a small disparity in measurements between the left and the right images would

affect the actual coordinate of the objet in 3-D space.

Thirdly, detectors should be able to fix the multiple responses problem. This is

important as the algorithms will almost always turning up several detected ‘edges’ or

‘corners’ at one place. A good algorithm should be able to give just one response at

every feature.

The purpose of this thesis is to investigate the use of stereo vision systems for

real time applications, thus the fourth criterion as pointed out by Smith and Brady

is speed. The algorithm should be fast enough to be usable in the image processing

system so that the resulting data can be used by the vehicle in its control systems.

Smith and Brady also pointed out that this criterion should not be allowed to dominate

the development of the feature extraction algorithms to be used to an extent that the

quality of the results is adversely affected. It is a fine balancing act to decide the use

of a fast performing program verses one with very good detection ability.

4.3 Filtering

The first step in any vision based analysis is filtering of the image. As shown on

figure 4.5, the objects close to the edges of the image are distorted such that none of

the supposed straight edges are straight. This curved nature of the images are due

to the projective geometry of the camera [22]. As light enters a camera, it has to

pass through a complex lens system. However, the lenses are designed to mimic point-

like elements (pinholes). Practical lens systems are nonlinear and can easily introduce

significant distortions in the intrinsic perspective mapping from external optical rays to

internal pixel coordinates. This distortion can be corrected by a nonlinear deformation
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Figure 4.5: Unfiltered image, note the curves of the lamp posts and from the enlarged
section, the roughness of the edges

of the image-plane coordinates.

Furthermore, the enlarged section on figure 4.5 shows that all the edges are very

rough. This situation is caused by the way the camera captures an image. When an

image is recorded, the camera first records the odd rows and then fill in the even rows

of pixels on the image. Thus, if the vehicle is moving then the rows of the pixels will

misalign from each other and result in the unevenness of the edges. This problem can

be solved simply by realigning the rows of the images.

Figure 4.6 shows the result of the filtering process. As shown on the image, the
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Figure 4.6: Filtered image, note that now the lamp posts are straight and from the
enlarged section, the edges in the images are smooth

Figure 4.7: Filtered image where every second row of the image is deleted
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lamp post near the right edge is now clearly straight from the undistortion process.

Also, from the enlarged section of the building and the lamp, we can see that the edges

are now smooth as the rows are now aligned. However, the second process depends on

the speed of the vehicle as to how many pixels the rows have to be shifted by. The

easiest method in this case would be to ignore every second row of the image. This will

not affect the process of detection edges and corners, although slight adjustment will

need to be made in depth determination. Figure 4.7 shows the image from the right

camera where every second row of pixels is deleted.

4.4 Edge Detection

Distinct features from the images need to be extract in order for stereo matching to

take place. Edges are often the first stage of information extraction from images as

they are significant local changes in the image. Edges typically occur on the boundary

between two different regions in an image. Algorithms for edge detection contain three

steps [17]:

Filtering: Since gradient computation based on intensity values of only two points

are susceptible to noise and other vagaries in discrete computations, filtering is com-

monly used to improve the performance of an edge detector with respect to noise.

However, there is a trade-off between edge strength and noise reduction. More filtering

to reduce noise results in a loss of edge strength.

Enhancement: In order to facilitate the detection of edges, it is essential to deter-

mine changes in intensity in the neighbourhood of a point. Enhancement emphasises

pixel where there is a significant change in local intensity values and is usually per-

formed by computing the gradient magnitude.

Detection: We only want points with strong edge content. However, many points

in an image have a nonzero value for the gradient, and not all of these points are edges
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for a particular application. Therefore, some method should be used to determine

which points are edge points. Frequently, thresholding provides the criterion used for

detection.

It is important to note that detection merely indicates that an edge is present

near pixel in an image, but does not necessarily provide an accurate estimate of edge

location or orientation. The errors in edge detection are errors of misclassification:

false edges and missing edges. The errors edge estimations are modelled by probability

distributions for the location and orientation estimates.

4.4.1 Gradient

As mentioned previously, edges are significant local changes in an image. Mathemat-

ically, this is the first derivative of the intensity, i.e. the gradient. The gradient is a

measure of change in a function, and an image can be considered to be an array of

samples of some continuous function of image intensity. By analogy, significant changes

in the gray values in an image can be detected by using a discrete approximation to

the gradient. The gradient is the two-dimensional equivalent of the first derivative and

is defined as the vector :

G[f(x, y)] =





Gx

Gy



 =





∂f
∂x

∂f
∂y



 (4.1)

There are two important properties associated with the gradient: (1) the vector

G[f(x, y)] points in the direction of the maximum rate of increase of the function

f(x,y), and (2) the magnitude of the gradient, given by

G[f(x, y)] =
√

G2
x + G2

y (4.2)

equals the maximum rate of increase of f(x, y) per unit distance in the direction G.

It is common practice, however, to approximate the gradient magnitude by absolute
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values:

G[f(x, y)] ≈ |Gx|+ |Gy| (4.3)

or

G[f(x, y)] ≈ max(|Gx|, |Gy|) (4.4)

From vector analysis, the direction of the gradient is defined as:

α(x, y) = tan−1

(

Gy

Gx

)

(4.5)

where the angle α is measured with respect to the x axis.

Many edge detectors have been developed in the last two decades. In the following

sections are the various methods that were investigated for the thesis.

4.4.2 Simple Gradient Operator

For digital images, the derivative in equation 4.1 are approximated by differences. The

simplest gradient approximation is:

Gx
∼= f [i, j + 1]− f [i, j]

Gy
∼= f [i, j]− f [i + 1, j]

(4.6)

Remember that j corresponds to the x direction and i to the negative y direction.

These can be implemented with simple convolution masks as shown below:

Gx = -1 1 Gy =
1
-1

(4.7)

When computing an approximation to the gradient, it is critical that the x and y

partial derivatives be computed at exactly the same position in space. However, using

the above approximations, Gx is actually the approximation to the gradient at the

interpolated point [i, j + 1
2
] and Gy at [i + 1

2
, j]. For this reason, 2× 2 first differences,

rather than 2× 1 and 1× 2 masks, are often used for the x and y partial derivatives:

Gx =
-1 1
-1 1

Gy =
1 1
-1 -1

(4.8)
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Right camera, simplest gradient operator for edge detection
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Figure 4.8: Results from the simplest gradient edge detector on the right camera image,
using a threshold σ = 40.

Figure 4.8 shows the result of applying the masks in equation 4.8 on the right camera

image. Each resulting pixel is the magnitude of the gradient as shown in equation 4.3.

4.4.3 Roberts Operator

The Roberts cross operator provides a simple approximation to the gradient magnitude:

G[f [i, j]] = |f [i, j]− f [i + 1, j + 1]|+ |f [i + 1, j]− f [i, j + 1]| (4.9)

Using convolution masks, this becomes

G[f [i, j]] = |Gx|+ |Gy| (4.10)

where Gx and Gy are calculated using the following masks:

Gx =
1 0
0 -1

Gy =
0 -1
1 0

(4.11)

The result of Robert edge detection is shown in figure 4.9, this is the same image

as that of figure 4.8.
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Right camera, Roberts Operator
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Figure 4.9: Results from the Roberts edge detector on the right camera image, σ = 40.

a0 a1 a2

a7 [i, j] a3

a6 a5 a4

Figure 4.10: The labelling of neighbourhood pixels for the 3× 3 masks

4.4.4 Prewitt Operator

The previous two detectors are uses 2 × 2 masks for the derivatives, the positions

about which the gradients in the x and y directions are calculated are the same. This

point lies between all four pixels in the 2× 2 neighbourhood at the interpolated point

[i+ 1
2
, j + 1

2
]. This fact may lead to some confusion. Therefore, an alternative approach

is to use a 3× 3 neighbourhood and calculate the gradient about the centre pixel.

Consider the arrangement of pixels about the pixel [i, j] shown in figure 4.10. The

Prewitt operator is the magnitude of the gradient computed by

M =
√

s2
x + s2

y (4.12)
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Right camera, Prewitt edge operator

100 200 300 400 500 600 700

50

100

150

200

250

Figure 4.11: Results from the Prewitt edge detector on the right camera image, σ = 50.

where the partial derivatives are computed by

sx = (a2 + ca3 + a4)− (a0 + ca7 + a6)

sy = (a0 + ca1 + a2)− (a6 + ca5 + a4)
(4.13)

with the constant c = 1.

The gradient operators in equation 4.13 can be written as the convolution masks:

sx =
-1 0 1
-1 0 1
-1 0 1

sy =
1 1 1
0 0 0
-1 -1 -1

(4.14)

Figure 4.11 shows the performance of the Prewitt operator on the image from the right

camera of the view shown in figure 4.7.

4.4.5 Sobel Operator

The Sobel operator uses the same equations as the Prewitt operator, except tat the

constant c = 2. Therefore, the convolution masks from equation 4.13 is:

sx =
-1 0 1
-2 0 2
-1 0 1

sy =
1 2 1
0 0 0
-1 -2 -1

(4.15)
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Right camera, Sobel edge operator
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Figure 4.12: Results from the Sobel edge detector on the right camera image, σ = 60.

Unlike the Prewitt operator, these masks places an emphasis on pixels that are

closer to the centre of the mask. This makes the Sobel operator one of the most

commonly used edge detectors, as it would detect a corner at the same time of edge

detection. The figure 4.12 shows the performance of the Sobel detector, again on the

same image.

4.4.6 Laplacian Operator

The edge detectors discussed earlier computes the first derivative and, if it was above

a threshold, the presence of an edge point was assumed. this results in detection of too

many edge points. (Notice the thick lines especially in figures 4.11 and 4.12.)

A better approach would be to find only the points that have local maxima in

gradient values and consider them edge points, in other words, an edge has a zero

value in the second derivative. The Laplacian operator is one in two dimensions that

correspond to the second derivative. The formula for the Laplacian of a function f(x, y)
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is

∇2f =
∂2f

∂x2
+

∂2f

∂y2
(4.16)

The second derivatives along the x and y directions are approximated using difference

equations, giving the following equations [17]:

∂2f

∂x
= f [i, j + 1]− 2f [i, j] + f [i, j − 1]

∂2f

∂y
= f [i + 1, j]− 2f [i, j] + f [i− 1, j]

(4.17)

By combining these two equations into a single operator, the following mask can be

used to approximate the Laplacian:

∇2 ≈
0 1 0
1 -4 1
0 1 0

(4.18)

Figure 4.13 shows the result of applying the above mask to the right camera image

from figure 4.7. The Laplacian operator signals the presence of an edge when the

output of the operator makes a transition through zero. Trivial zeros (uniform zero

regions) are ignored.

4.4.7 Canny Operator

The Canny Edge Detector was first discussed by John Canny [5] and the result is shown

on figure 4.14 for the image captured by the right camera.

Canny operator is optimised to the three criteria as shown in section 4.2. The

detection problem is formulated as following: Begin with an edge with white Gaussian

noise as in figure 4.15(a). Convolve the edge with a filter as shown on figure 4.15(b) or

(d). The outputs of these are as shown in figure 4.15(c) or (e).

Detection and Localisation Criteria

Firstly, we deal with the signal-to-noise ratio for the problem. Let the impulse response

of the filter be f(x) and denote the edge itself by G(x). We will assume that the edge
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Right camera, Laplacian edge operator
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Figure 4.13: Results from the second order Laplacian edge detector of equation 4.18
on the right camera image, σ = 60.

Right camera, Canny edge operator
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Figure 4.14: Results from the Canny edge detector on the right camera image.
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Figure 4.15: Optimisation of edge detection as demonstrated by Canny: (a) A noisy
step edge. (b) Difference of boxes operator. (c) Difference of boxes operator applied
to the edge. (d) First derivative of Gaussian operator. (e) First derivative of Gaussian
applied to the edge. [5]
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is centred at x = 0. Then the response of the filter to this edge at its centre HG is

given by a convolution integral:

HG =

∫ +W

−W

G(−x)f(x)dx

assuming the filter has a finite impulse response bounded by [−W,W ]. The root-mean-

squared response to the noise n(x) only, will be

Hn = n0

[
∫ +W

−W

f 2(x)dx

]1/2

where n2
0 is the mean-squared noise amplitude per unit length. The output SNR is

thus defined as:

SNR =

∣

∣

∣

∫ +W

−W
G(−x)f(x)dx

∣

∣

∣

n0

√

∫ +W

−W
f 2(x)dx

(4.19)

For localisation, we have defined the edge as the local maximum value in response

to the filter f(x), i.e. the first derivative of the response will be zero. Furthermore,

the reciprocal of the root-mean-squared distance of the marked edge from the centre

of the true edge is used as a measurement of the localisation criterion.

Let Hn(x) be the response of the filter to noise only, and HG(x) be its response

to the edge, and suppose there is a local maximum in the total response at the point

x = x0. The we have

H ′
n(x0) + H ′

G(x0) = 0

The Taylor expansion of H ′
G(x0) about the origin gives

H ′
G(x0) = H ′

G(0) + H ′′
G(0)x0 + O(x2

0)

Canny showed that the response HG(x) is always symmetric, and that its derivatives

of odd orders are zero at the origin, thus giving:

H ′′
G(0)x0 ≈ −H ′

n(x0) (4.20)
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Now H ′
n(x0) is a Gaussian random quantity whose variance is the mean-squared

value of H ′
n(x0), and is given by

E[H ′
n(x0)

2] = n2
0

∫ +W

−W

f ′2(x)dx

where E[y] is the expectation value of y. Combining this result with equation 4.20 and

substituting for H ′′
G(0) gives

E[x2
0] ≈

n2
0

∫ +W

−W
f ′2(x)dx

[

∫ +W

−W
G′(−x)f ′(x)dx

]2 = δx2
0 (4.21)

where δx0 is an approximation to the standard deviation of x0. The localisation is

defined as the reciprocal of δx0.

Localisation =

∣

∣

∣

∫ +W

−W
G′(−x)f ′(x)dx

∣

∣

∣

n0

√

∫ +W

−W
f ′2(x)dx

(4.22)

Equations 4.19 and 4.22 are mathematical forms for the first two criteria, and design

problem reduces to the maximisation of both of these simultaneously. Thus, we seek

the maximum of the product of the criteria for arbitrary edges:

∣

∣

∣

∫ +W

−W
G(−x)f(x)dx

∣

∣

∣

n0

√

∫ +W

−W
f 2(x)dx

∣

∣

∣

∫ +W

−W
G′(−x)f ′(x)dx

∣

∣

∣

n0

√

∫ +W

−W
f ′2(x)dx

(4.23)

Eliminating Multiple Responses

The first two criteria can be maximised as following: From the Schwarz inequality for

integrals, the SNR in equation 4.19 is bounded by

n−1
0

√

∫ +W

−W

G2(x)dx

and localisation in equation 4.22 by

n−1
0

√

∫ +W

−W

G′2(x)dx



CHAPTER 4. IMAGE RENDERING 42

Both bounds are attained, and the product of SNR and localisation is maximised when

f(x) = G(−x) in [−W,W ]. Thus, the optimal detector according to the first to criteria

is a truncated step, and does not take into account the behaviour of the filter nearby

the edge centre.

The maxima are close together that it is not possible to select one as the response

to the step while identifying the others as noise. We need to add to our criteria the

requirement that the function f will not have “too many” responses to a single step

edge in the vicinity of the step. In order to have a low probability of declaring more

than one edge, we’ll need to limit the number of peaks in the response. Ideally, we

would like to make the distance between peaks in the noise response approximate the

width of the response of the operator to a single step. This width will be some fraction

of the operator width W .

In order to express this as a functional constraint on f , we need to obtain an

expression for the distance between adjacent noise peaks. Firstly, the mean distance

between adjacent maxima in the output is twice the distance between adjacent zero-

crossing in the derivative of the operator output. The mean distance between zero-

crossings of f ′ is:

xzc(f) = π

(
∫ +∞

−∞
f ′2(x)dx

∫ +∞

−∞
f ′′2(x)dx

)1/2

(4.24)

The distance between adjacent maxima in the noise response of f , denoted xmax,

will be twice xzc. We set this distance to be some fraction k of the operator width.

xmax(f) = 2xzc(f) = kW (4.25)

This is a natural form for the constraint because the response of the filter will be

concentrated in a region of width 2W , and the expected number of noise maxima in

this region is Nn where

Nn =
2W

xmax

=
2

k

Fixing k fixes the number of noise maxima that could lead to a false response.
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4.5 Corner Detection

Another method in selecting features from the images is to detect the interesting points

or feature points. These points are what we consider as corners, they are better in stereo

matching problems than edges as these points are a lot more unique than edges. Corner

detection should satisfy a number of important criteria [24]:

• All the true corners should be detected;

• No false corners should be detected;

• Corner points should be well localised;

• Corner detector should be robust with respect to noise;

• Corner detector should be efficient.

As with the edge detectors, there are a lot of proposed algorithms for the corner

detector, here I will discuss the various methods that was used during the thesis.

4.5.1 Sobel Operator

In addition to its ability to detect the edges, the Sobel operator also has the added

advantage of finding the corners due to the extra weighting used on the centre pixels

(ref. equation 4.15). Figure 4.16 is the un-threshold version of figure 4.12 and is in

colour instead of black and white. This give us the idea of the coordinates of the

highest values, which should be where the corners are. However, we can see that in

practice it does not distinguish the corners too well. Thus, other algorithms need to

be employed.
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Right camera, Sobel edge operator

100 200 300 400 500 600 700

50

100

150

200

250

Figure 4.16: Results from the Sobel edge detector on the right camera image using the
jet colour map and without applying thresholding.

4.5.2 Plessey Operator

The Plessey Operator was devised by Charnley et al. for the Plessey Company [6].

Corke applied the Plessey detector in his work for stereo vision used on autonomous

helicopter [9]. The algorithm is the following:

The first gradients are approximated by

X = I ⊗
(

−1, 0, 1
)

≈ ∂I/∂x

Y = I ⊗
(

−1, 0, 1
)T
≈ ∂I/∂y

(4.26)

where I(x, y) is the grey level intensity of each pixel on the image. Let

A = X2 ⊗ w

B = Y 2 ⊗ w

C = (XY )⊗ w

where w is the Gaussian smoothing function. And let the matrix M be:

M =

[

A C
C B

]

The Plessey corner function is given by:

R = traceM/ detM (4.27)
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However, I have found the operator is not very effective in that it misidentifies a

lot of the corners that do not exist in the image. This could be due to detM can be

equals to zero sometimes and from equation 4.27 we can see that it would give infinity

as an answer.

4.5.3 Harris Operator

Some papers claims that the Harris Corner Detector is another name for the Plessey

detector [33]. However, in their paper, Harris and Stephens showed that it is slightly

different [15].

The corner response function is given by:

R = detM− k(traceM)2 (4.28)

where k is a parameter set to 0.04 [30].

The Harris operator implemented here is slightly different from what is stated here.

In finding ∂I/∂x and ∂I/∂y, instead of the masks used in equation 4.26, I’m using the

first derivatives are those used in the Sobel detector as shown in equation 4.15 due to

the central weight. If at a certain point of the matrix M are large, then a small motion

in any direction will cause an important change of grey level. This indicates that the

point is a corner.

Figure 4.17 shows the result from running the Harris corner detector on the right

camera image as shown in figure 4.7. Here, the highest 100 corners are picked out.

We can see from the figure that the detector is a fairly good algorithm, since most of

the corners are detected. However, some of the corners are not present due to various

reason. These include when the edges almost run like a straight line thus the corner is

been ‘hidden’, or when the contrast between the two regions are not large enough.
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Right camera image, Harris corner detector
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Figure 4.17: Results from the Harris corner detector on the right camera image

4.5.4 SUSAN operator

The SUSAN operator was introduced by Smith and Brady as a new approach to image

processing [33]. The acronym SUSAN stands for “Smallest Univalue Segment Assimi-

lating Nucleus” and is explained as follows:

Consider figure 4.18, which shows a gray rectangular shape on top of a white back-

ground. At various positions around the figure, we see that there are five circular masks

(with a centre pixel called the “nucleus” by the authors) covering different amount of

the rectangle. If the brightness of each pixel within a mask is compared with the

brightness of that mask’s nucleus then an area of the mask can be defined with having

the same (or similar) brightness as the nucleus. This area of the mask shall be known

as the “USAN”. In figure 4.19 each mask from figure 4.18 is depicted with its USAN

shown in white.

This concept of each image point having associated with it a local area of similar

brightness is the basis for the SUSAN principle. The local area or USAN contains much
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Figure 4.18: Four circular masks at different places on a simple image [33].

a
b

c

e

d

boundary of mask

nucleus of mask

dark area

light area

b
c

e

d

a

section of mask where pixels have same brightness as nucleus

section of mask where pixels have different brightness to nucleus

Figure 4.19: Four circular masks with similarity colouring; USANs are shown as the
white parts of the masks [33].
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information about the structure of the image. It is effectively region finding on a small

scale. From the size, centroid and second moments of the USAN two dimensional

features and edges can be detected. This approach to feature detection has many

difference to the Harris operator, for example, the most obvious being that no image

derivatives are used and that no noise reduction is needed.

The area of an USAN conveys the most important information about the structure

of the image in the region around any point in question. As can be seen from figures 4.18

and 4.19, the USAN area is at a maximum when the nucleus lies in a flat region of

the image surface, it falls to half of this maximum very near a straight edge, and falls

even further when inside a corner. It is this property of the USAN’s area which is used

as the main determinant of the presence of edges and two dimensional features. The

SUSAN principle is:

“An image processed to give as output inverted USAN area has edges and

two dimensional features strongly enhanced, with the two dimensional fea-

tures more strongly enhance than edges.”

SUSAN operator uses no image derivatives, the integrating effect of the principle,

together with its non-linear response, give strong noise rejection. This can be under-

stood simply if an input signal with identically independently distributed Gaussian

noise is considered. As long as the noise is small enough for the USAN function to

contain each “similar” value, the noise is ignored. The integration of individual values

in the calculation of areas further reduces the effect of noise. Another strength of the

SUSAN edge detector is that the use of controlling parameters is much simpler and

less arbitrary (and therefore easier to automate) than other algorithms.

The SUSAN corner algorithm will now be discussed in detail. Firstly, all the pixels
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within a circular mask are compared with the nucleus, using the following equation:

c(−→r ,−→r0 ) = exp

(

−(
I(−→r )− I(−→r0 )

t
)6

)

(4.29)

where −→r is any pixel in the mask, −→r0 is the nucleus of the mask, and t is the brightness

difference. Although it might take some processing power to run equation 4.29 as it

is, in practise, we can create a look up table with the variables and results and thus

speed up the process. The sum of these comparisons is calculated using

n(−→r0 ) =
∑

−→r

c(−→r ,−→r0 ) (4.30)

within the mask to determine the minimum contrast of features. Note that performance

is not dependent on any ‘fine-tuning’ of the value t.

Next, n is compared with the geometric threshold g. For a “corner” to be present,

n must be less than half of its maximum possible value, nmax. This is the same as

saying that if the nucleus of the mask lies on top of a corner, then the USAN area will

be less than half of the mask area, and will be a local minimum. It is safe to set g to

be exactly half of nmax because of the nature of a quantised straight edge.

The geometric threshold g affects the “quality” of the output, in other words,

it affects the shape of the “corners” detected. For example, if it were reduced, the

allowed “corners” would be sharper. Thus this threshold can be fixed and will need

no further tuning. This is a good feature of the SUSAN detector, since an algorithm

where the threshold need to be adjusted for single uses are ultimately limited in its use.

No weakness, however, is introduced into the algorithm by the use of the geometric

threshold.

The brightness threshold t, on the other hand affects the “quantity” of the output,

i.e. it affects the number of “corners” detected. This is due to the fact that t determines

the allowed variation in brightness within the USAN, a reduction in this threshold picks

up more subtle variations in the image and gives a correspondingly greater number of
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reported “corners”. Although it might seem to be a negative point about the detector,

it should be noted that in practise the threshold can be determined by the contrast of

the images, where a low number be assigned to low contrast images and vice versa.

To create an initial response image, the following equation is used with g = nmax/2:

R(−→r0 ) =

{

g − n(−→r0 ), if n(−→r0 ) < g,

0, otherwise
(4.31)

where R(−→r0 ) is the initial response.

The final stage in the SUSAN corner detector is to search the initial response

over 5 × 5 pixel regions for local maxima (above zero). However, before this non-

maximum suppression is carried out, two small procedures are run to reduce false

positive responses from edges and from noise.

SUSAN will give false detection when blurring of boundaries between regions occurs.

This problem is eliminated by the following method: The centre of gravity of the USAN

is found. Then the distance of the centre of gravity from the nucleus is found. A proper

corner occurs when the centre of gravity if not near the nucleus.

Lastly, if there is a lot of noise or fine complicated structures, it will also cause

false corners to be reported. It is noted that all of the pixels within the mask, lying

in a straight line pointing outwards from the nucleus in the direction of the centre of

gravity of the USAN must be part of the USAN, for a corner to be detected. This

addition to the algorithm forces it to have a degree of uniformity.

In summary, the SUSAN corner detection algorithm performs the following steps

at each image pixel:

1. Place a (circular1) mask around the pixel in question (the nucleus);

1In their paper, Smith and Brady experimented with different sized masks: 3 × 3 square, and

circular mask with radius of 3.5 pixels making the mask of 25 pixels in total. It was felt however, a

mask of this size would slow the algorithm down and was not investigated.
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Right camera, SUSAN Corner Detector
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Figure 4.20: Result from the SUSAN corner detector on the right camera image using
the same sorting criteria as the Harris detector as shown on figure 4.17.

2. Use equation 4.29 to calculate the number of pixels within the circular mask that

have similar brightness to the nucleus (these are the USAN pixels);

3. Use equation 4.31 to subtract the USAN size from the geometric threshold to

produce a corner strength image;

4. Test for false positives by finding the USAN’s centroid and its contiguity;

5. Use non-maximum suppression to find corners.

Figure 4.20 shows the result from the SUSAN corner detector on the right camera

image. It shows the highest 100 corners from the detector. Note that most of corners are

detected by the algorithm, however some corners are also missed due to bad contrast.
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4.6 Discussion

As discussed in section 4.2 of this chapter, there are four important criteria in image

rendering algorithms:

1. Low error rate;

2. Features well localised;

3. Fix multiple response problem;

4. Fast enough for use in real time image processing system.

In this section, I will discuss about how the various algorithms shown in this chapter

measures up to the criteria as stated above.

4.6.1 Filtering

The second and third criteria in the list above does not apply to the filtering process

of the image rendering phase of the stereo system. This is because the filtering process

is simply there to reduce the noise in the received data and possible error in future

distance calculation.

In section 4.3, it was shown that there are two processes in the filtering stage:

un-distortion and un-interlacing. Un-distortion restores the image to a more ‘natural’

look instead of the ‘fish-eyed’ look caused by the pin-camera effect, and un-interlacing

removes every second row in the image to smooth out the edges.

The first criteria discussed above is low error rate. For the two filtering process,

un-distortion utilises the intrinsic parameters of the camera found using the calibration

toolbox, thus errors in the process is basically caused by the quality of the calibration

procedure. The accuracy of the algorithm can be checked by finding the equation of
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the lines of the edges in the image and check if each and every pixel belonging to the

edge lies on the line.

As for the un-interlacing process of filtering, there are no immediate errors asso-

ciated with the procedure, since it is a simple process of removing half of the rows

and no other data are introduced nor algorithms performed. It however, does affect

later algorithms, such as edge/corner detection and fundamental matrix calculation.

In case of the former, the positions of vertical edges would not be affected, but the

position of any horizontal edges will have an error of ± 1 pixels. The same situation

applies to the corner detector, the positives from the algorithm will have a ± 1 pixel

in the y direction. The fundamental matrix will be discussed in detail in Chapter 5,

but the data for it’s calculation are from the matched pixels in the two images, thus

un-interlacing will add an extra ± 1 pixel in the y direction to the input data.

The fourth criterion for image rendering is speed of the algorithms. This is a crite-

rion that need to be kept in mind all the time, in real-time image processing, it is always

a trade-off between speed and accuracy. In the filtering process, it should be noted

that both procedures need to be performed on the left and the right camera images

(unlike in edge/corner detection where only one image is processed, to be discussed

later).

To find the speed of the algorithms, we use the MATLAB functions tic and toc to

measure the processing time. It was found that using a 64Mb RAM, 600MHz processor,

the un-distortion process took nearly 430s and the un-interlacing took 14.2s for each

image. The time spent un-distorting the images is obvious far too long, as both images

will take almost 15min to process.

Therefore, we need to think about whether it is “worth it” to un-distort the images.

Firstly, it should be kept in mind that this is only the first process in the stereo vision

algorithm in building the 3D map. The most process intensive part of the program
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is in finding the conjugate pairs of the same point in 3D space and thus finding its

coordinates. Secondly, the distortion of the images varies radially outwards. In other

words, the further out a pixel is, the more distorted it will be, this is seen from the

before and after images of figures 4.5 and 4.6. Therefore, an object at the edge of the

image could be ‘out’ by 10, 20 pixels, while at the centre of the image, it could only

have an error of 1 or 2 pixels. Thirdly, we should remember that at 30km/h the Ute

would’ve travelled approximately 7.5km, and at the desired top speed for the HSV of

90km/h it would have travelled 25km. This is highly unacceptable, since any map

found through stereo vision will be useless by the end of the program execution.

From the points here, it can be concluded that the un-distortion process should

not be included in the stereo vision program, unless in future days when it can be

done within seconds. And the errors resulted from this exclusion might have to be a

shortcoming that has to be included to give “real-time” processing ability to the Ute.

On the other hand, the un-interlacing problem occurs due to the moving vehicle

and the method by which the camera records the data. We know that the faster

the vehicle moves, the more misaligned the rows in the images will be. Unlike the

un-distortion process, which affects the resulting coordinates of the objects identified,

the misalignment of the rows will affect the edge/corner detectors in a way that false

positives will be identifies and real features missed. Furthermore, although the timing

of the process is about half a minute for the pair of images, the algorithm is written

in MATLAB which is particularly slow in its execution of for loops. For the program

to run in real-time it needs to be written in C or C++ both of which would give much

faster run time with the same algorithm. Therefore, the un-interlacing procedure is

one that has to be included in the whole stereo vision program.
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4.6.2 Edge Detector

Every one of the criterion shown on the list on page 52 need to be considered when

deciding the best detector for edge finding in this case. Each one of them will be

discussed in detail below.

The first criterion for the detector is to have a low error rate. This is not much of

a problem for all of the detectors except the second derivative Laplacian. As shown

on figure 4.13 the result of the aforementioned detector is very noisy with speckles of

white dots over the entire image. All of the first derivative detectors however, do not

have the same problem

The second criterion is that the detector need to be able to localised the features

well. As shown by the low threshold value for the result of Simplest Gradient detector

and the Roberts detector on figure 4.8 and 4.9 respectively, these two algorithms are

not very efficient in detecting most of the features. Comparing with figure 4.12 of the

Sobel detector, where the threshold is set 50% higher, these two detectors still have less

features identified. The localisation and thresholding of the Canny detector as shown

on figure 4.14 however, can not be used for comparison as this algorithm compares the

maximum and minimum pixel values of the result and finds the threshold (which is

equals to 0.1× (Imax − Imin) + Imin).

The third criterion for the detector is avoiding multiple responses. The best result

from the algorithms under investigation is the Laplacian detector, this is reasonable as

in second derivative an edge has a value of zero, unlike in first derivative where it is

simply the local maxima. This gives Laplacian operator the advantage of finely defined

edges as results.

The last criterion for the algorithms is the speed of the process. Table 4.1 shows

the various run time speed of the algorithms.
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Algorithm MATLAB run time

Gradient 0.94s
Roberts 0.55s
Prewitt 0.77s
Sobel 0.72s
Laplacian 0.39s
Canny 1.59s

Table 4.1: Comparison of the speed of the edge detection algorithms runtime per image

We can see from the table that there are not a lot of differences in the run time

of the various algorithms. It should be noted however, that the Canny detector is run

without the ‘thinning’ process which would reduce the multi-response problem but at

the same time very process intensive. Even with this omission, Canny detector is still

the slowest algorithm and its result is not superior than the others. The Laplacian

detector is the quickest as it only utilises one mask while the rest uses two to find the

derivative in x and y direction separately.

In conclusion, Laplacian detector can be categorised as the ‘best’ here as it has

superior results in 3 of the 4 criteria. The problem, with this detector is the noise

generated at the same time. A different mask of similar nature might give a better

result than the mask used in this thesis. However, finding the best edge detector is

slightly out of the scope of this thesis as shown in later chapters.

4.6.3 Corner Detector

The same criteria discussed in the last section also applies to finding the best corner

detector. In other words, we need firstly an algorithm with low error rate of detecting

the corners. In this case, both the Sobel Operator and the Plessey Operator are not

suitable for the purpose, as neither have a good detection rate. The same can be said

of the two detectors about the second criterion, which is that the features has to be

well localised.
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Algorithm MATLAB run time

Harris 3.9s
SUSAN 109.9s

Table 4.2: Comparison of the speed of the corner detection algorithms runtime per
image.

The Harris and SUSAN operator on the other hand presents a different point to the

criteria. Both operator have very little error as shown on figure 4.17 and 4.20 and both

have good response to the actual corners. However, SUSAN give a lot more corners

than the Harris operator. Although it is hard to say which operator give the best

response, both have misses of various corners in the image. The criteria for eliminating

multiple response is hard to judge from the figures as another algorithm was used to

“clean up” the corners detected to eliminate possible multiple responses.

Therefore, the major comparison between the two algorithms is the last criterion:

time. Table 4.2 shows the run time between two the corner detection algorithms. From

the table we can see that while SUSAN detector might theoretically be a better algo-

rithm in corner detection than the Harris operator, the latter only requires a fraction

of the run time of the former. And in the case here, since both algorithms give very

similar corner responses, then the Harris operator is a superior detector.



Chapter 5

Stereo Matching

Once unique features in the images are found, then it is necessary to identify the

conjugate pairs of the images for use in the stereo imaging formulae (equation 2.3). A

conjugate pair is two points in different images that are the projections of the same

point in the scene [17] (refer to figure 2.1 for the geometry).

Detection of the conjugate pair in stereo images, however, has been an extremely

challenging research problem known as the correspondence problem. It can be stated

as follows: for each point in the left image, find the corresponding point in the right

image [17].

5.1 Edge Matching

Edge matching involves comparing the edges’ orientations and strength on the epipolar

lines. The edges are first matched at coarse resolution to avoid false matches as there

are fewer edges at coarse scale. To simplify the matching procedure, the search for a

match for each feature takes place along the corresponding epipolar line in the second

image for a limited distance centred around its expected position [17].

There are however, many problems associated with edge matching. Firstly, as the

edges are matched along the epipolar line, the horizontal edges can not be matched.

58
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Secondly, the matching process must begin at a coarse scale to determine an approxi-

mate value for the disparity and then redone at a finer scale. This is done to avoid false

matches, however, it is an extra process for computing thus not for real time operation.

Most importantly, the value of the computed depth is not meaningful along occluding

edges where the depth is not well defined. Along these edges, the depth is anything

between the foreground object and the background object. Therefore, edge matching

is not an viable option in stereo matching.

5.2 Region Correlation

The region correlation method is one of the many methods developed for finding po-

tential features for correspondence using the corners detected. Using the corners have

many advantages over the edges: Firstly, as they are only points, we don’t need to

worry about the problem of not picking up horizontal edges. Secondly, corners are a

lot more unique than edges, as the area surrounding the corners have high variance.

A simple technique in matching feature points is to compute the correlation between

a small window of pixels centred around every potential matching feature in the second

image. The feature with the highest correlation is considered as the match [17], [30].

One approach to this is to look at the local intensity value, however, many points will

have similar intensity value and that this measure is very sensitive to noise and changes

in illumination.

A better approach is to take the information of more pixels into account by compar-

ing local neighbourhoods of the corners. A small window of (2N +1)× (2N +1) pixels

centred around the points for comparison is used. A measurement of the similarity

between the windows is given by the correlation coefficient C defined as [17] [30]:
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C =

N
∑

i=−N

N
∑

j=−N

(I(x− i, y − j)− I)(I ′(x′ − i, y′ − j)− I ′)

{

N
∑

i=−N

N
∑

j=−N

[

(I(x− i, y − j)− I)
]2 N
∑

i=−N

N
∑

j=−N

[

(I ′(x′ − i, y′ − j)− I ′)
]2

}1/2

(5.1)

with I and I ′ the intensity/pixel values at a certain point, and I and I ′ are the mean

intensity values of the window. Also the points (x, y) and (x′, y′) are the points of

interest. The value of N should be chosen with care, as although a larger window

would produce a more accurate result, it will slow the computation time. Typically,

N = 2 or 3, here I used the latter giving window size of 7× 7.

Figure 5.1 shows the left and right camera images (after removing half of the rows)

with the corners detected. To illustrate the result of the correlation test from equa-

tion 5.1, we will take corner 1 labelled on the figure and run the correlation test over

the corresponding corner on the right image.

Figure 5.2 shows the aforementioned corners, the figure on the left centres on the

corner detected by a corner detector, and the window is 7 × 7 pixels in accordance

to the size of the window used in the the correlation test. The figure on the right is

centred on the corresponding corner detected by the same corner detector. The window

outlined by yellow is the search window in which each pixel will be compared with the

central pixel on the left. The entire window is 3 pixels larger on each side to show the

area to be used for equation 5.1.

Table 5.1 shows the result of applying the correlation test to compare the central

pixel from the left image on figure 5.2 to the window bounded by the yellow box from

the right image. The value in the centre of the table is the comparison between the

two identified corners, which shows a correlation of 55.78%. However, we can also see

that on the same row there are three pixels with correlation coefficients of higher than

90%, with the second pixel having a value of nearly 98%. Therefore, we can say that
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Left camera, Harris Corner Detector
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Figure 5.1: The left and right images with the corners detected

Figure 5.2: The pixels used for the correlation test
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0.2176 0.2707 0.2929 0.2831 0.2699 0.2695 0.2731 0.2779 0.2742
0.3246 0.3828 0.3878 0.3488 0.3092 0.2856 0.2738 0.2752 0.2816
0.5700 0.6131 0.5723 0.4809 0.3970 0.3372 0.2983 0.2847 0.2866
0.7514 0.8276 0.7827 0.6589 0.5190 0.3969 0.2960 0.2361 0.2080

0.9164 0.9797 0.9036 0.7378 0.5578 0.4033 0.2694 0.1788 0.1274
0.7252 0.8150 0.7773 0.6598 0.5199 0.4017 0.2707 0.1493 0.0684
0.6579 0.7067 0.6578 0.5517 0.4316 0.3478 0.2515 0.1287 0.0045
0.5083 0.5910 0.5910 0.5332 0.4541 0.4096 0.3661 0.3211 0.2060
0.5908 0.6823 0.6822 0.6173 0.5411 0.4992 0.4770 0.4604 0.3177

Table 5.1: Result of the correlation test on figure 5.2

this is the pixel that forms the conjugate pair with the identified corner from the left

image.

5.3 Epipolar Constraints and Fundamental Matri-

ces

In the previous section, we used the correlation test to find the similarities between the

points on the images. It should be noted that in the situation presented previously,

we found the corresponding pixel of the conjugate pair by visually looking for its

approximate position and then use the correlation test of equation 5.1 to find the exact

pixel position. In actual correlation tests, however, we need to search the entire second

image for the corresponding pixel of the conjugate pair, since we do not know it’s

approximate position.

With the size of a normal camera image (768× 582 pixels in this case, or 768× 291

for the un-interlaced images), it would be impossible to check every point on the second

image to find the conjugate pair, as it would be quite process intensive. Thus, it is

necessary to reduce this process down to just several dozens of pixels near the expected

position of the conjugate pixel. This is possible by looking for the point along the

corresponding epipolar line (see figure 2.1 for a reminder of the stereo geometry).

The geometry shown in figure 2.1 assumes that the epipolar lines are on the same
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Figure 5.3: Epipolar Geometry [22]

horizontal line, in other words, the cameras are on a level plane and are at the exact

height. However, in practice, it is impossible to place the cameras at an exact height

with an accuracy of one pixel, which is usually a few micrometres. Furthermore, as the

vehicle moves, the cameras will inevitably shift slightly and cause the corresponding

epipolar lines to move. Therefore, it is necessary to find the epipolar lines for any

potential conjugate pairs before the correlation tests. This is done using the epipolar

constraints and fundamental matrix.

5.3.1 Basic Theory

The epipolar line-line and line-plane correspondences are projective and it is all there

is to know about a stereo rig. Using the epipolar geometry, we can reduce the second

image from a 2D plane to a 1D epipolar line that corresponds with the first image’s

point. The following steps shows the method of finding the epipolar lines [22] [30].

Let m = (x, y, t)t be the homogeneous coordinates of a point in the first image and

e = (u, v, w) be the coordinates of the epipole of the second camera in the first image.

The epipolar line through m and e is represented by the vector l = (a, b, c)t = m× e.
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The mapping m→ l is linear and can be represented by a 3× 3 rank 2 matrix C:





a
b
c



 =





yw − zv
zu− xw
xv − yu



 =





0 w −z
−w 0 u
z −u 0









x
y
z



 (5.2)

The mapping of epipolar lines l from image one to the corresponding epipolar lines l′

in image two is a collineation defined on the 1D pencil of lines through e in image one.

It can be represented (non-uniquely) as a collineation on the entire dual space of lines

in P
2. Let A be one such collineation: l′ = Al. Let the matrix F = AC the equation

becomes:

l′ = ACm = Fm (5.3)

F is called the fundamental matrix. As C has rank 2 and A has rank 3 [22], F has rank

2. The right kernel of C – and hence F – is obviously the epipole e. The fact that all

epipolar lines in the second image pass through e′ (i.e. e′t.l′ = 0 for all transferred l′)

shows that the left kernel of F is e′: e′tF = 0.

F defines a bilinear constraint between the coordinates of corresponding image

points. If m′ is the point in the second image corresponding to m, it must lie on the

epipolar line l′ = Fm, and hence m′t.l′ = 0. The epipolar constraint can therefore

be written:

m′tFm = 0 (5.4)

5.3.2 Estimating the Fundamental Matrix

To obtain the epipolar geometry, we need to estimate F . This can be done using some

initial point correspondences between the images found using the correlation tests.

Assume that we have already found some matches m ↔ m′ between the images.

Each correspondence provides a linear constraint on the coefficients of F : m′tFm = 0.

Expanding, we get:

xx′f11 + xy′f12 + xf13 + yx′f21 + yy′f22 + yf23 + x′f31 + y′f32 + f33 = 0
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where the coordinates of m and m′ are respectively (x, y, 1)t and (x′, y′, 1)t and fij are

the elements of the matrix F in equation 5.4. Combining the equations obtained for

each match gives a linear system that can be written as:

Af = 0 (5.5)

where f =
[

f11 f12 f13 f21 f22 f23 f31 f32 f33

]

is a vector containing the 9

coefficients of F , and each row of A is built from the coordinates m and m′ of a

single match. Since there are nine unknowns in the fundamental matrix (nine elements

in the 3 × 3 matrix), we need 8 equations ((A) has eight rows) to obtain an unique

solution [22].

This can be done by taking the Singular Value Decomposition (SVD) of F and

setting the smallest singular value to zero. Basically, SVD decomposes F in the form

F = USVT

where U and V are orthogonal matrices, and S is diagonal matrix containing the

singular values. These singular values σi are positive and in decreasing order. Therefore

in our case σ9 is guaranteed to be identically zero (8 equations for 9 unknowns) and thus

the last column of V is the correct solution (at least as long as the eight equations are

linearly independent, which is equivalent to all other singular values being non-zero).

A complete mathematical proof of the SVD algorithm is shown in Appendix A.1. It is

trivial to reconstruct the fundamental matrix F from the solution vector f .

5.3.3 Normalising the Fundamental Matrix

The above method is standard, but if applied näıvely it is quite unstable. A typical

image coordinate in a 512×512 image might be ∼ 200. Some of the entries in a typical

row of A are xx′ ∼ 2002, others are x ∼ 200, and the last entry is 1 ∼ 1, so there is a

variation in size of ∼ 2002 among the entries of A, and hence of 2004 ∼ 2 · 109 among
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the entries of AtA. This means that numerically, AtA is extremely ill-conditioned: the

solution contains an implicit least squares trade off, but it is nothing like the trade off

we would actually like for maximum stability.

It has been pointed out that in practic it is very important to normalise the

equations. This is for example achieved by transforming the image to the interval

[−1, 1] × [−1, 1] so that all elements of the matrix A are of the same order of magni-

tude.

A simple solution to this is to normalise the pixel coordinates from [0, 512] to [−1, 1]

before proceeding. This provides a well-balanced matrix A and much more stable and

accurate results for F . In a practical implementation, a considerable effort must also

be spent on rejecting false correspondences in the input data, as well as choosing data

with high correlation values.

5.3.4 More Points

In the presence of noise, the fundamental matrix can easily be affected that the resulting

matrix will give a huge error when applied in transformation. It is important, therefore,

to choose the initial m and m′ pairs to have a very high correlation value. When

more points are available the redundancy should be used to minimise the effect of the

noise [30]. In other words, we can add as many pairs as possible into the matrix A of

equation 5.5.

Even then the error that is minimised is an algebraic error which has no real “phys-

ical” meaning. It is always better to minimise a geometrically meaningful criterion. In

Fundamental Matrix, the physical meaning of the error is the difference between the

epipolar line calculated from the fundamental matrix for the corresponding pixel and

the actual pixel in the second image. Assuming that the noise on every feature point is

independent zero-mean Gaussian with the same sigma for all points, the minimisation
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of the following criterion yields a maximum likelihood solution:

C(F )
∑

(D(m′,Fm)2 + D(m,FT m′)2) (5.6)

with D(m, l) the orthogonal distance between the point m and the line l. This criterion

can be minimised through a Levenberg-Marquardt algorithm [31], which is discussed

in detail in Appendix A.2. The results obtained through linear least-squares can be

used for initialisation [30].

5.3.5 Cost Functions

The cost function method is discussed extensively by Chojnacki, Brooks and van den

Hengel in their report [7]. The promise of using this method is to greatly reduce the

effect of the noise on the value of the fundamental matrix. The method can be sum-

marised as a weighted least squares (WLS) cost function is obtained by considering

an optimal maximum likelihood formulation, and applying certain necessary approxi-

mations to solve the problem numerically. Various iterative schemes are tried for the

problem.

Let’s rewrite the epipolar constraint as shown in equation 5.4 as:

θTu(x) = 0 (5.7)

where

θ =
[

f11 f12 f13 f21 f22 f23 f31 f32 f33

]T

is the vector of parameters,

x =
[

x, y, x′, y′
]T

is the vector of variables, and

u(x) =
[

xx′, yx′, x′, xy′, yy′, y′, x, y, 1
]T

is the vector of carriers.
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For simplicity, setting aside the ancillary constraint, given a cost function J =

J(θ; x1, . . . , xn), a corresponding estimate θ̂ is defined by

J(θ̂) = min
θ 6=0

J(θ; x1, . . . , xn)

A straightforward cost function is:

Ja(θ; x1, . . . , xn) =

∑n
i=1 θT u(xi)u(xi)

T θ

(θ1 + · · ·+ θl)
(5.8)

It leads to an ordinary least squares estimate θ̂OLS from the previous sections (i.e. the

fundamental matrix found using the SVD method).

When some information about the measurement error is available, more involved

cost functions can be devised. If the uncertainty of each data point xi can be described

by a k × k covariance matrix Σx, then an appropriate cost function is:

Jb(θ; x1, . . . , xn) = min{
n
∑

i=1

(xi − xi)
T Σ−1

xi
(xi − xi) : θ and x1, . . . , xn

such that θT u(xi) = 0 for each i = 1, . . . , n}

(5.9)

This function is justified via the principle of maximum likelihood and represents the

minimum sum of the squared Mahalanobis distances between the data xi and he ‘cor-

rected data’ xi, each xi lying on a hypersurface of the form {x : θT u(x) = 0}. The

minimiser for this function of J is called the maximum likelihood estimate and de-

noted θ̂MLE, which is the minimum adjustment required in the data in the sense of the

Mahalanobis distance. The first order approximation of Jb is:

Jc(θ; x1, . . . , xn) =
n
∑

i=1

θT u(xi)u(xi)
T θ

θT ∂xu(xi)Σxi
∂xu(xi)T θ

(5.10)

where, for any k vector y, ∂xu(y) denotes the l× k matrix of the partial derivatives of

x→ u(x) evaluated at y and can be written as:

∂xu(y) =





∂u1

∂x1

(y) . . . ∂u1

∂xk

(y)

. . . . . . . . . . . . . . . . . .
∂ul

∂x1

(y) . . . ∂ul

∂xk

(y)
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The various equations are for continues data, however, in real images the data are

always discrete. Therefore, we’ll need numerical schemes to find the WLS estimate in

practise.

Fundamental Numerical Scheme

The fundamental numerical scheme can be regarded as a variant of the Newton-

Raphson method. In the algorithm a guess of θk is made, then an improved guess

can be obtained by picking a vector θk+1 from that eigenspace of Xθk
, which most

closely approximates the null space of Xθ. The matrix Xθ satisfies Xθθ = 0.

The value of Xθ is found using the following procedure: Let’s first introduce a l× l

matrix

A(x) = u(x)u(x)T (5.11)

For each i = 1, . . . , n, let

Ai = A(xi) (5.12)

A straightforward estimator is derived from the cost function to be:

J1(θ; x1, . . . , xn) =
θT Mθ

(θ1 + · · ·+ θl)
(5.13)

where

M =
n
∑

i=1

Ai (5.14)

Writing J1(θ) as a short for J1(θ; x1, . . . , xn), the value of Xθ is found by:

Xθ =
M − J1(θ)I

(θ1 + · · ·+ θl)
(5.15)

An vector θ would satisfy the variational equation

Xθθ = 0 (5.16)

only if it falls into the null space of the matrix Xθ.

The steps for the fundamental numerical scheme is as the following:
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1. Set θ0 = θ̂OLS;

2. Assuming that θk−1 is known, compute the matrix Xθk−1
;

3. Compute a normalised eigenvector of Xθk−1
corresponding to the eigenvalue clos-

est to zero and take this eigenvector for θk;

4. If θk is sufficiently close to θk−1, then terminate the procedure, otherwise incre-

ment k and return to step 2.

Iteratively Reweighted Least Squares Scheme

In this scheme, the noise in the data is taken into account by using the covariance

matrix Σ. The value for the matrix A is still the same as that of equations 5.11

and 5.12.

Let the matrix B take into the account any k × k matrix Σ:

B(y, Σ) = ∂xu(y)Σ∂xu(y)T (5.17)

and for each i = 1, . . . , n, let

Bi = B(xi, Σxi
) (5.18)

Now the matrix M as shown in equation 5.14 is written as:

Mθ =
n
∑

i=1

Ai

θT Biθ
(5.19)

The iteratively reweighted least squares scheme has the procedure:

1. Set θ0 = θ̂OLS;

2. Assuming that θk−1 is known, compute the matrix Mθk−1
;

3. Compute a normalised eigenvector of Mθk−1
corresponding to the smallest (non-

negative) eigenvalue and take this eigenvector for θk;
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4. If θk is sufficiently close to θk−1, then terminate the procedure, otherwise incre-

ment k and return to step 2.

First Order Renormalisation Scheme, version I

Renormalisation is a different type of modification to Mθ based on statistical consider-

ation. The requirement is that the modified or renormalised Mθ be unbiased in some

sense. Using the renormalised Mθ an equation an be formulated to define an estimate

of θ. The first order renormalisation will be applicable under the condition that noise

in an appropriate statistical model is small.

The unbiased Mθ can be written as:

Yθ =
n
∑

i=1

Ai − J6(θ)Bi

θT Biθ
= Mθ − J6(θ)Nθ (5.20)

where Mθ is given in equation 5.19 and Nθ is defined by:

Nθ =
n
∑

i=1

1

θT Biθ
Bi (5.21)

and the cost function J6(θ) is:

J6(θ; x1, . . . , xn) =
1

n

n
∑

i=1

θT Aiθ

θT Biθ
=

θT Mθθ

θT Nθθ
(5.22)

The renormalisation equation is:

Yθθ = 0 (5.23)

which is analogous to the variation equation is non-linear and unlikely to admit solu-

tions in closed form.

The first order renormalisation scheme, version I (FORI) has the following proce-

dure:

1. Set θ0 = θ̂OLS;
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2. Assuming that θk−1 is known, compute the matrix Yθk−1
using equation 5.20;

3. Compute a normalised eigenvector of Yθk−1
corresponding to the eigenvalue closest

to zero and take this eigenvector for θk;

4. If θk is sufficiently close to θk−1, then terminate the procedure, otherwise incre-

ment k and return to step 2.

First Order Renormalisation Scheme, Version II

The FORI scheme can be slightly modified to give the first order renormalisation

scheme, version II. The cost function in this scheme is given by:

J7(θ, ξ; x1, . . . , xn) =
θT Mξθ

θT Nξθ
(5.24)

Let,

Yθ,ξ =
n
∑

i=1

Ai − J7(θ, ξ)Bi

ξT Biξ
= Mξ − J7(θ, ξ)Nξ (5.25)

where J7(θ, ξ) is an abbreviation of J7(θ, ξ; x1, . . . , xn). It can be shown that this

satisfies the renormalisation equation of 5.23, where Yθ is Yθ,ξ for each θ and each

ξ 6= 0. Also,

J7(θ, θ) = J6(θ) (5.26)

and

Yθ,θ = Yθ (5.27)

giving

Yθk−1
= Yθk−1,θk−1

= Mθk−1
− ck−1Nθk−1

(5.28)

where

ck−1 = J7(θk−1, θk−1) (5.29)

Under certain approximation, ck can be updated directly from ck−1 rather than

using the above equation, and it is given by:

ck = ck−1 +
λk

θT
k Nθk−1

θk

(5.30)
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Therefore, version II of the first order renormalisation scheme has the following

procedure:

1. Set θ0 = θ̂OLS and c0 = 0;

2. Assuming that θk−1 and ck−1 are known, compute the matrix Mθk−1
− ck−1Nθk−1

;

3. Compute a normalised eigenvector of Mθk−1
− ck−1Nθk−1

corresponding to the

smallest eigenvalue λk and take this eigenvector for θk, then define ck by equa-

tion 5.30;

4. If θk is sufficiently close to θk−1, then terminate the procedure, otherwise incre-

ment k and return to step 2.

Algebraic Least Squares Estimator

In another paper, Chojnacki et al. proposed a fast algebraic least square estimator

based on the same principle [8]. The matrix A in this scheme is the same as those

shown in equations 5.11 and 5.12. The matrix B however, is slightly different from

those shown in equations 5.17 and 5.18 and is written as:

Bi = ∂xu(xi)∂xu(xi)
T (5.31)

The cost function for the ALS estimator is the same as those of equation 5.15,

and the θ for which JALS is minimal is denoted θ̂ALS. Adopting a maximum likelihood

approach, the cost function for approximated maximum likelihood (AML) estimator

is:

JAML(θ; x1, . . . , xn) =
n
∑

i=1

θT Aiθ

θT Biθ
(5.32)

and the associated θ is denoted θ̂AML.

The variational equation is phrased as:

X ′θ = 0 (5.33)
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where

X ′ =
n
∑

i=1

Ai

θT Biθ
−

n
∑

i=1

θT Aiθ

(θT Biθ)2
Bi (5.34)

In practise θ̂AML has to be found numerically, and assume θ̂AML lies close to θ̂ALS. This

assumption is to increase the chances that any candidate minimiser obtained via a

numerical method seeded with θ̂ALS coincides with θ̂AML.

The fundamental numerical scheme for this estimator is:

1. Set θ0 = θ̂ALS;

2. Assuming that θk−1 is known, compute the matrix X ′
θk−1

;

3. Compute a normalised eigenvector of X ′
k−1 corresponding to the eigenvalue closest

to zero and take this eigenvector for θk;

4. If θk is sufficiently close to θk−1, then terminate the procedure, otherwise incre-

ment k and return to step 2.

5.3.6 Summary and Discussion

In summary, the procedure for estimating the epipolar geometry is:

• Extract points from the images

• Using correlation test to find appropriate conjugate pairs (typically use pairs with

correlation coefficients of over 97%)

• Build the matrix A using the conjugate pairs, we’ll need at least 8 pairs but use

as many pairs as possible to give less errors

• Normalise all the values of the pixels to [-1,1]

• Use the SVD algorithm to estimate the first guess for the fundamental matrix
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• Minimise the errors using Levenberg-Marquard algorithm

• Optimise the result using the Cost Function algorithms.

Theoretically, the algorithms would return a matrix that satisfies the epipolar con-

straints, which says:

mT

L
FmR = 0

where mL = [xL, yL, 1]T and mR = [xR, yR, 1]T are any conjugate pairs for the stereo

images. However, upon closer inspection, it was found that fundamental matrix is very

easily affected by noise in the data. Using over 20 conjugate pairs each with correlation

of 97% and above, the resulting matrix would still give the value in the order of 103

when substituted into the equation above, using conjugate pairs from the input data.

The result improves slightly when the input data have correlation of 98% and above,

but would still give the result of mT

L
FmR in the order of several hundreds.

Furthermore, although it was claimed that the cost function methods will give a

satisfactory result for the fundamental matrix, in practice it does not vary the resulting

matrix much.

5.4 MATLAB Calibration Toolbox

In the latest release (9th October 2002) of the MATLAB Calibration Toolbox [3],

an undocumented feature of Stereo Calibration is added. This toolbox calibrates the

intrinsic and extrinsic parameters of stereo cameras.

The toolbox assume that the two cameras have first been calibrated with the same

view of a 3D location. Furthermore, the same points on the images are selected during

calibration. Of course, the same number of images are selected for use in the calibration

of both cameras.

These criteria are easily met in my case, as the left and right images at a given
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time is save onto a single file. Therefore, in calibration of each camera, care need

to be taken not only of choosing a ‘good’ image, but also one which is used in both

calibration processes.

The inputs to the stereo calibration functions are the calibration results from the

left and the right cameras, generated by the standard calibration toolbox on the two

cameras individually. The main result from the stereo calibration are the relative

rotation matrix R, and the translation vector T of the right camera with respect to the

left camera.

Consider a point P of coordinates XL and XR in the left and right camera reference

frames respectively. From the discussion on epipolar geometry in section 5.3, we know

that these two coordinates are related in a certain way. In fact, using the output of

the calibration toolbox, we can write the following rigid motion transformation for XL

and XR:

XR = RXL + T (5.35)

Therefore, R and T fully describe the relative displacement of the two cameras.

Now, introducing the Essential Matrix E [11] [21]:

E = T ×R

= [T]×R
(5.36)

where [T]× is the “cross product matrix” of T and defined as:

T =





TX

TY

TZ



 [T]× =





0 −TZ TY

TZ 0 −TX

−TY TX 0





The transformation of XL and XR in equation 5.35 can also be written using the above

relationship as:

X′
L
EXR = 0 (5.37)

The vectors XL and XR are the real world coordinates of the point P in the left

camera and right camera reference frame respectively. They are related to the camera
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coordinates m = [x, y, 1]′ as:

mi = KiXi

Xi = K−1
i mi

(5.38)

where the matrix K contains the intrinsic parameters of a camera in the following

arrangement:

K =





fx 0 Cx

0 fy Cy

0 0 1





where f is the focal length and C is the centre of image.

Substituting the relationships in equation 5.38 into essential matrix equation 5.37,

we have the following:

X′
R
EXL = 0

(K−1
R mR)TE(K−1

L mL) = 0

mT
R(K−1

R )TEK−1
L mL = 0

mT
RFmL = 0 (5.39)

Equation 5.39 is simplest the epipolar constraints as shown in equation 5.4. Therefore

the fundamental matrix F and the essential matrix E are related using the following:

F = (K−1
R )TEK−1

L (5.40)

Therefore, using the intrinsic and extrinsic parameters from the stereo calibration

process we can find the fundamental matrix. We found that resulting value of mT
RFmL

using the fundamental matrix calculated from the calibration parameters are within

an order of magnitude. The result, while not satisfactory is still a great improvement

from the fundamental matrix calculation in the last section.



Chapter 6

Disparity Map and Error
Calculation

The final procedure in Stereo Vision algorithm is the building of the disparity map. This

is the process by which the distances to the objects identifies in the previous steps are

found and stored for use by the vehicle. In this chapter, we’ll discuss the shortcomings

of building the disparity map, and the errors involved in the 3D coordinates of the

objects from the many variables in the calculation.

6.1 Disparity Map

Disparity is the distance between points of a conjugate pair when the two images are

superimposed [17]. To build the disparity map we need to first find all the conjugate

pairs of known corners in the image.

When the corners from the left image are found by the corner detector, the cor-

responding corners from the right image can be find using the fundamental matrix

F:

l = FmL (6.1)

where mL = [xL, yL, 1]′ is the image coordinates of the object, and l = [a, b, c]′ are the

78
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coefficients of the line where mR lies. The equation of the line is:

y = −
a

b
x−

c

b
(6.2)

Using the correlation equation shown on page 60 and search along the line, we can

find mR assuming it is the one pixel that gives the highest correlation with mL. A

decision also need to be made of the thresholding correlation value at which we can

judge that mR is related to mL. This is because not every point on the left image

will have a corresponding pixel in the right image. Furthermore, we know that the x

coordinates of mR is to the left of the the x coordinates of mL, however as the distance

to the object increases, it will shift towards the right and eventually move to the right

of mL. The search pattern for mR will ignore those pixels on the right hand side of mL

(see section 6.3 for a discussion on the reason for this decision), thus even if an object

appears in both images, it’s coordinates in the right image might not be part of the

search pattern.

When the conjugate pairs of points are detected then we can use the equation

for stereo imaging on page 12 and find the points’ x, y and z co-ordinates in space.

However, it should be noted that as the focal length of the cameras are inevitably

slightly different, equation 2.3 need to be altered slightly as a result to give:

z =
b

xl−xcl

fxl

− xr−xcr

fxr

(6.3)

And thus able to generate a 3D map such as that shown on figure 6.1.

A two dimensional representation for the three dimensional space is always slightly

misleading especially when there are no connections between the points. Therefore,

figure 6.2 shows the views from the top and front of the same map, giving a better

understanding of the data. Note that the origin of the x axis is the central axis of the

Ute, the origin of the y and z axis are at the position of the cameras (approximately

2m and 3.2m above ground and from the very front of the Ute respectively).
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Figure 6.1: The disparity map of the images shown through this thesis.
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Figure 6.2: Different views of the disparity map shown on figure 6.1: (a) top view, and
(b) view from the Ute
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From the figures, we can see several shortcomings of the algorithm in finding the

disparity map. The most obvious error is the Electrical Engineering building (refer

to figure 3.7 on page 20 for the colour photo of the image, the Electrical Engineering

building is the white building at the background with the satellite dish on the roof),

which we know is at least over 500m from the site. However from the patterns on the

figures, it seems that the program find it is to be around 50 to 60m in the distance.

This is because the corners of the ‘windows’ on the buildings are very similar in its

individual pixel intensity and the surrounding patterns. Therefore in the correlation

process, the corners can easily be mismatched and thus leading to the wrong distance

calculation.

The most important issue with vision is the speed of the algorithm. We require the

algorithm to run in real time to give the vehicle an idea of its surrounding. The map

on figure 6.1 is generated using 50 corners from the left image, the search pattern is all

the x values to the left of each mL at a width of ± 10 pixels from the expected y value.

The algorithm for the disparity map for these corners took slightly less than 600s to

run in MATLAB.

Furthermore, any real life equipments will inevitably have errors associated with

the result, in this case, it is the error in the calculated (x, y, z) position of objects from

its real position. The estimation of the percentage error of the result is very important

for the vehicle to navigate safely.

For the rest of this chapter, we will look into the errors resulted from the distance

calculations both theoretically and experimentally. The experimental validation of any

on board system requires that they go through various testing procedures and verify

the data received from the sensor from a reliable control source.

The error calculation will also enable us to select the best camera parameters for

use in the stereo system. There are three variables associated with the system: baseline
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distance, focal length and camera field of view.

6.2 Experiment Setup

In finding the error of the resulting distance, we need to know the position of the

object exactly to accurately check the result from the stereo system. The control

sensor used in the experiment is the SICK laser, which has been tested vigorously in

the past therefore it is an excellent system to use for the verification of the results. On

figure 1.1 we can see two lasers mounted at the front of the Ute, one facing forwards

and the other facing upwards. Since the stereo system is used mainly for finding the

depth to a distant object, only the forward facing laser will need to be used.

For the testing process, poles are set up on an open area and the distance to

these poles will be measured by the laser. The poles used can be seen at the back of

figure 1.1. The laser system will provide the x and z position of the poles (i.e. the

horizontal distance from the central axis of the Ute and the depth of the object). It

will not give the height of any object, this however is not a very big problem as the

poles are of known height and thus can be checked easily.

Furthermore, there are inevitable angle bias between the laser and the stereo system.

In other words, the horizontal axis as seen by the laser (from its 0◦ to 180◦) is not exactly

parallel to the horizontal axis of the stereo system. Also, we do not know the exact

distance between the origin of the stereo system and the laser. Therefore, it is best to

compare the absolute distance measured by the sensors, that is the distance between

the poles.

It should also be noted that the laser system on board has a system error of roughly

±5cm [32]. Also it is possible for the laser to measure one side of the pole while the

stereo camera to detect the other side, thus it will add a further 10cm to the errors.
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6.3 Baseline

From figure 3.2 we can see that the cameras can be set at various baselines from 0.1m

to 1.1m at 0.1m increment. However, it is best to keep the cameras at either side of

the central axis of the Ute. Therefore, only three different baselines were tested, they

are 0.7m, 0.9m and 1.1m respectively.

Although the focus of the camera has not changed during the tests for each baseline,

the various calibration values of the camera would inevitably vary slightly. Therefore,

the camera calibration procedure discussed in section 4.1 is used for finding these values

and are shown on table 6.1.

Calibration b = 0.7m b = 0.9m b = 1.1m
variables left right left right left right

x focal length, fx 857.23 866.71 864.01 865.32 903.62 867.71
fx error 22.85 11.73 11.84 12.04 41.17 12.41
y focal length, fy 857.62 866.10 863.43 865.22 901.93 868.03
fy error 22.18 11.80 11.99 12.16 39.46 12.54
x centre, cx 359.20 363.14 362.76 360.85 366.83 359.65
cx error 7.04 2.48 4.24 2.88 11.26 3.77
y centre, fy 265.81 273.90 261.87 266.04 239.51 268.48
cy error 9.10 6.51 6.23 8.03 16.19 6.95

Table 6.1: The focal length and centre of view for the two cameras at various baseline
values.

Calibration b = 0.7m b = 0.9m b = 1.1m
variables left right left right left right

x focal length, fx 864.08 858.74 871.00 865.36 867.18 861.42
fx error 6.76 6.69 7.76 7.64 9.70 9.78
y focal length, fy 863.46 857.68 870.11 864.04 866.91 860.86
fy error 6.69 6.67 7.76 7.51 9.62 9.70
x centre, cx 365.58 364.51 364.11 356.18 366.72 362.13
cx error 5.18 1.71 2.64 6.15 6.84 2.46
y centre, fy 269.06 278.94 270.55 277.84 265.45 274.80
cy error 3.78 3.20 2.73 4.57 3.63 3.69

Table 6.2: The focal length and centre of view for the two cameras at various base-
line values after re-calibration using the Stereo Calibration Toolbox on the values in
table 6.1.
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It should be noted that some of the error values from the calibration are quite large,

even though they are equals to 3 standard deviations. However, these can be reduced

using the stereo calibration toolbox discussed in section 5.4. As the toolbox takes into

account that the cameras are related and the images from the left and right cameras

are of the same three dimensional space view, the error for the intrinsic values for each

camera after stereo calibration would reduce greatly. Table 6.2 shows the optimised

calibration values, note how all the error haves have reduced to less than 10 pixels.

6.3.1 Theoretical Calculations

The theoretical calculations are made to check for the following:

• Maximum distance;

• Error due to corner detection;

• Distance error due to the calibrated intrinsic parameters.

Maximum distance

From figure 2.1 we assume that the horizontal position of an object in the right image

will always be to the left of the same object in the left image. However, as the distance

to the object increases, the difference between the pixel coordinates of that object in

the two images decreases. Eventually, the pixel coordinates in the images will ‘switch

side’ and the horizontal pixel position of the object on the right image will be larger

than the corresponding one on the left image.

From equation 6.3, we can see that due to the difference in the focal length and

centre of image between the two cameras, the distance to an object depends not only

on the value of xr − xl but both x coordinates of the pixel on the images.

Tables 6.3, 6.4 and 6.5 show the calculated z for a stereo baseline of 0.7m, 0.9m
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Pixel z value (m)
difference xl = 50 xl = 250 xl = 400 xl = 650

-3 155.0932 227.7320 351.0412 3598.3
-1 320.4497 939.8459 −2090.1 −327.9532
0 686.3168 −1667.9 −466.8503 −212.1891
1 −4842.4 −441.8683 −262.7724 −156.8298
2 −534.7396 −254.6681 −182.8442 −124.3797
3 −282.9951 −178.8832 −140.1994 −103.0560
4 −192.4116 −137.8588 −113.6847 −87.9738
5 −145.7566 −112.1408 −95.6039 −76.7425

Table 6.3: The calculated value of z for xr ≥ xl, for baseline b = 0.7m at various
positions of xl.

Pixel z value (m)
difference xl = 50 xl = 250 xl = 400 xl = 650

-10 190.0476 277.8263 425.0761 3643.9
-1 −158.8811 −125.6837 −108.6563 −88.6413
0 −131.9610 −108.2196 −95.3532 −79.5836
1 −112.8416 −95.0168 −84.9524 −72.2053
2 −98.5613 −84.6852 −76.5973 −66.0791
3 −87.4894 −76.3801 −69.7385 −60.9111
4 −78.6539 −69.5584 −64.0071 −56.4929
5 −71.4392 −63.8554 −59.1463 −52.6723

Table 6.4: The calculated value of z for xr ≥ xl, for baseline b = 0.9m at various
positions of xl.

Pixel z value (m)
difference xl = 50 xl = 250 xl = 400 xl = 650

-8 171.7694 226.2422 296.8457 618.5793
-1 −638.7286 −337.0036 −248.8420 −173.2874
0 −381.5412 −248.5914 −197.0850 −146.4965
1 −272.0136 −196.9278 −163.1510 −126.8804
2 −211.3439 −163.0432 −139.1860 −111.8972
3 −172.8022 −139.1076 −121.3597 −100.0789
4 −146.1496 −121.3001 −107.5812 −90.5186
5 −126.6201 −107.5343 −96.6123 −82.6256

Table 6.5: The calculated value of z for xr ≥ xl, for baseline b = 1.1m at various
positions of xl.
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and 1.1m for the situations of when the image of an object from the right camera will

have a greater horizontal position than that of the corresponding image from the left

camera.

From the table, we can see that for xr > xl (even when xr < xl and the two values

are very close) the calculated depth is unreliable since it is impossible to have an object

with negative depth and still in the images. From the tables, we can also see that the

maximum “reliable” distance calculated varies as the position of xl moves. It is safe

to say, however, that any conjugate pair where xr > xl − 10 should be discarded.

Therefore, giving the system a maximum “reliable” depth perception of over 150m.

This distance is reasonable is the feature found is a building or other large objects

where its size on the images will have enough pixels length and width wise for the

detectors to identify it. It is at the same time not possible for objects such as the poles

to be detected at these distance as they would be reduced to approximate 1 or 2 pixels

in width, which is not enough for the detectors.

Corner Detection

From the figures 4.17 and 4.20 of the results from Harris and SUSAN detector, we

know that the corners detected by the algorithm do not always lie directly on top of

a said corner. This is mostly due to two reasons: Firstly, any feature recorded by the

camera (an edge or a corner) upon close inspection would not have very sharp change

of intensity, the colour will inevitably blur into the next few pixels. Secondly, the

detector is not perfect and thus misses the actual pixel where the corner is.

Thus, we need to have an idea of the differences to the final depth value when the

detected corner is several pixels away from the ‘real’ corner. Again, we will calculate

these theoretically using the parameters shown on table 6.2.

Table 6.6 shows the difference in the depth value if the detected corner is not
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Distance
(m)

Pixel Difference in z value (m)
difference b = 0.7m b = 0.9m b = 1.1m

10

1 0.0010 0.0008 0.0007
2 0.0021 0.0017 0.0014
4 0.0042 0.0033 0.0028
8 0.0083 0.0067 0.0056
16 0.0167 0.0133 0.0111

20

1 0.0042 0.0033 0.0028
2 0.0084 0.0067 0.0056
4 0.0167 0.0133 0.0113
8 0.0334 0.0266 0.0226
16 0.0670 0.0534 0.0452

30

1 0.0094 0.0075 0.0064
2 0.0188 0.0149 0.0128
4 0.0377 0.0299 0.0257
8 0.0755 0.0599 0.0514
16 0.1514 0.1200 0.1030

Table 6.6: The difference in depth when the detected corner is not exactly on top of
the actual feature, for various distances of objects at the different baselines. Assuming
the object is directly in front of the central axis of the vehicle.

exactly at where the actual corner is. From the table, we can see that the error caused

by varying the position of the detected corner is very small. Even at 30m, using a

baseline value of 0.7m and the detected corner is 16 pixels from the actual corner on

the image, the resulting error is still only 15cm.

Recalling from the discussion in Chapter 4 on the distortion of the image due to

the properties of the camera, and whether it is a worth while concept to un-distort

the image. It was decided that un-distortion is an unnecessary process because the

algorithm takes approximately 15min to run for both images, thus making it unrealistic

for this application. From the error calculation done here, it is safe to say that the

omission of un-distortion process in image rendering is sound, as the resulting error in

the depth of an object is very insignificant.
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b = 0.7m b = 0.9m b = 1.1m
∆z/z (%) 3.447 4.225 4.798

Table 6.7: The percentage error of the depth calculation for each baseline from the
errors of camera intrinsic parameters.

Intrinsic Parameters

During camera calibration, errors will result in finding the various parameters. These

errors were also given in the result and they are shown in table 6.2 for the set up for

this thesis. These errors will accumulate into the resulting depth value of the system.

To calculate the percentage error as a result, let’s write the stereo vision equation as

shown on page 79 here with the errors for the intrinsic parameters:

z ±∆z =
b

xl−(xcl±∆xcl)
fxl±∆fxl

− xr−(xcr±∆xcr)
fxr±∆fxr

(6.4)

The percentage error of the result is approximately the sum of the percentage errors

in the components [29]. Thus:

∆z

z
=

∆xcl

xcl

+
∆xcr

xcr

+
∆fxl

fxl

+
∆fxr

fxr

(6.5)

Using the values shown on table 6.2, the percentage error for ∆z/z for the various

baselines are shown on table 6.7. The percentage errors are less than 5% for all the

baseline, this equates to less than 0.5m at z = 10m. This value looks much larger

than the other errors associated with the depth calculation, however, it should be

remembered that the errors given by the calibration toolbox are of 3 standard deviations

(90% of the samples), thus more than half of the times the percentage error is less than

2% (i.e. less than 0.2m at z = 10m).

6.3.2 Experimental Calculations

Experimentally verifying the accuracy of the stereo system is very important in de-

termining its practicality of the sensor. This is because experimental results are often
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very different from theoretical calculations. Experimentally checking the theoretical

error calculations using both the stereo system as well as an independent system would

further validate the sensor.

As discussed in section 4.3 the camera records its images one row at a time, and

it interlaces its recorded images. Therefore when the vehicle is moving, the recorded

image will not have smooth edges due to the interlacing, furthermore, the bottom rows

of the image will be shifted away from the top rows. Thus to avoid complications, all

the data recorded for use in the experiments are those where the vehicle is kept at

stationary.

The second independent control sensor used by the experiment is the SICK laser,

which has an error of ±5cm as discussed previously. The laser sweeps over an area of

180◦, and the data is taken every 0.5◦. Figure 6.3 shows a map of the surrounding area

of the Ute generated from the data collected by the laser. The corresponding image

gathered by the right camera is shown on figure 6.4 as a comparison. Note how the

laser has missed some of the poles in the image, this is most likely be caused by the

angular displacement of the particular pole is less than 0.5◦.

Many sets of data were taken for the experiment, these includes sets of all three

baselines, for each baseline value, the data are taken with the Ute close up and far

away from the poles to check for the depth of the stereo system for finding objects with

various z values. It should also be noted that although the laser has a maximum range

of 80m it is reliable up to 20m. Therefore, any coordinates found that are more than

20m from the vehicle can not be double checked.

As discussed earlier in this chapter, there is a slight angle bias between the laser

and the stereo system. Furthermore, the exact relationship between the position of

the laser and the stereo vision rig is not known. Therefore it is useless to compare the

relative position of the poles as measured by the laser and the stereo vision algorithms.
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Figure 6.3: A typical map of the surrounding area generated by the laser on board the
Ute.
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Figure 6.4: The view from the right camera of the same scene shown on the map
generated by the laser data on figure 6.3.



CHAPTER 6. DISPARITY MAP AND ERROR CALCULATION 91

The solution is to compare the absolute distances between the poles, since this

will not involve any local frame of reference. Using this method, the various distances

between the poles were calculated and compared. It was found that even with some

poles at 20m, the difference between the laser and stereo absolute distances are around

20cm. Keeping in mind that the laser also has its own associated errors, this result

shows that the stereo vision system would give reliable depth of objects with very little

error.

6.4 Focal Length and Angular Field of View

From the stereo vision equation 2.3, we can see that the change in the focal length will

affect the depth of an object given the same image coordinates. Specifically, increase

in the focal length will increase the resulting depth. Therefore, the variation in the

focal length of the system will change the maximum perceived “reliable” depth of the

stereo vision system.

Error-wise, from section 6.3 the most significant error in the final result is in the

calibrations of the camera system, the differences in pixel coordinates contributes only

a fraction of the total error. Therefore, the variable of focal length in the system is not

very important in terms of reducing the errors in the final 3D coordinates.

The last variable, angular field of view, only affects how much data the camera can

take in and is something that need to be considered when evaluating the mission ob-

jective of the vehicle. In other words, is it necessary to know whether there are objects

besides the vehicle. However, recall that the camera records data with a distortion

due to the pin-hole effect, a large angular field of view might not be very desirable.

The situation can be better solved if the cameras are in a pan-and-tilt unit. There-

fore, the angular field of view was not be adjusted and kept at the constant value of

approximately 45◦.



Chapter 7

Conclusion

7.1 Stereo Vision Procedure

The procedure used for Stereo Vision algorithm as used in this thesis is:

1. Open image;

2. Split the data into its left and right camera components;

3. Un-interlace the image to remove every second row;

4. Use the Harris corner detector to find the features on the left image;

5. For each corner find in the left image, use the fundamental matrix to find the

corresponding epipolar line on the right image and use the correlation test to find

the conjugate pair;

6. For every conjugate pair identified, find the associated coordinates of the object

in three dimensional space;

7. Thus building the disparity map for the surrounding of the vehicle.
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7.2 Conclusion

The aim of this thesis is to develop a stereo vision system, as well as to investigate

the practicality of such a system for the High Speed Vehicle project. The section

above shows the procedure that was developed to implement the stereo vision system

to build a map of the three dimensional space surrounding the vehicle. I have showed

that by using the various algorithms discussed, we can employ two camera to generate

a disparity map.

The various feature detection algorithms presented in this thesis do give very good

results in which most features are identified. Although fundamental matrix calcula-

tion is one of the most difficult task of the project, a method of finding the optimal

fundamental matrix is ultimately utilised. Furthermore, it was found that the errors

involved in the resulting object 3D coordinates are small compared to their distances

from the vehicle. And the largest error in the system is from the camera calibration

process, which can be reduced greatly when the images are chosen with care.

There are however many shortcomings in the stereo system for use as a real-time

sensor in an unknown environment. The biggest and most important of these is the

speed at which a map can be generated by the system. Currently, the entire process

from loading the images, to filtering, to corner detection, to finding the conjugate

pairs, to calculating coordinates and thus generating the map will take approximately

15mins. This is obviously far too long for any practical use as a real-time sensor, where

the turn-over period should be in milliseconds to provide any useful information.

Also due to missed corners from the detectors, not all of the object seen in the

images are presented in the final disparity map. And objects that are very similar

in make up and are close together will confuse the program and placing obstacles in

areas where it is empty. Therefore, although the stereo vision system works, it is not

a practical sensor system for real-time use on the High Speed Vehicle.
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7.3 Further Work

There are a lot of further work to be done on this project, the following is a short list

of ideas that might help to bring stereo vision into practise as a reliable sensor.

• Faster algorithm;

• Better corner detectors;

• Better fundamental matrix calculation;

• Pan-tilt system.

• Dynamic vision;

• Object recognition;

7.3.1 Faster Algorithm

The most important shortfall of the current stereo vision system is the speed of the

algorithms. This criterion has been discussed constantly throughout this thesis, as

the speed of the program determines its practicality. All of the algorithms written

for the thesis has been in MATLAB, because the program is a lot easy to use for

image viewing and matrix manipulation. However, MATLAB is particularly slow in its

execution of for loop, as well as been a slow language for programming in general. A

better language for use is C/C++, thus it should be the first thing in follow up work

– transfer all the MATLAB codes into C/C++ language.

7.3.2 Corner Detector

Another of the shortfall of the system is in the accurate detection of all the corners in

the image. The two algorithms that was investigated in detail are the most popular
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detectors. A third detector was also looked into, that is the Curvature Scale Space

corner detector (for a brief overview of the algorithm see Appendix A.3). It is claimed

to be a better algorithm in finding the corners as well as low error rate of detecting false

corners. Furthermore, the authors claims that 85% of the run time for the detector is

in the corner detection algorithms, which is the Canny Operator. From the tables 4.1

and 4.2, we can see that it would be faster than the Harris algorithm. The algorithm,

however, was not developed fully to verify these claims.

7.3.3 Fundamental Matrix

Much work was concentrated on finding the fundamental matrix. However, as was

discussed in Chapter 5, the final result for the matrix still have an error of slightly less

than 10. This is not a good enough answer as it increases the search pattern for the

conjugate pairs and thus slow down the algorithm for disparity map. More work need

to be done on finding better methods and algorithms for calculating the fundamental

matrix.

7.3.4 Pan and Tilt System

As the cameras has a angular field of view of approximately 45◦, it has a very limited

view. A pan and tilt unit for the system would allow the cameras to move in vertical

and most importantly horizontal direction, giving the system more lateral viewing

perspectives. A lot of adjustments will need to be made in the current version of

algorithm to allow for the extra feature.

7.3.5 Dynamic Vision

Most biological vision systems have evolved to cope with the changing world. In stereo

vision, we need to remember that not only the camera is moving with the vehicle,

objects within the scene is also moving at the same time. A dynamic vision system
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would be able to cope with moving and changing objects, changing in illumination,

and changing in viewpoints. A dynamic vision system will also be important for the

stereo vision system to build up the disparity map as the vehicle moves around, and

able to react to moving objects in the environment.

7.3.6 Object Recognition

From the disparity map shown in figure 6.1 on page 80, we can see that the data

presented does not represent a good idea of the three dimensional space the vehicle

occupies in. We only see the position of a point on a feature in the surrounding space,

there are no other data concerning the rest of the object. This might be enough if

the objective is to avoid obstacles in the path of the vehicle. However, to operate the

vehicle in an unknown environment we need to local objects.

An object recognition system finds objects in the real world from an image of the

world. The task is surprisingly difficult, when considering that humans perform object

recognition effortlessly and instantaneously [17]. In the algorithms an object must be

recognised from its background scenery. And in real world cases, a scene would contain

multiple entities. Discussions on the complexity of object recognition algorithms is

beyond this thesis, but for a truly dynamic stereo vision system, it is an essential part

of the whole.



Appendix A

Matrix Computations and Other
Algorithms

A.1 Singular Value Decomposition

Singular Value Decomposition (SVD) is a popular algorithm used to solve matrix equa-

tions such as those in equation 5.5. Golub and van Loan [13] explained the theory

behind the algorithm:

If A ∈ R
m×n then there exist orthogonal matrices

U = [u1, . . . , um] ∈ R
m×n (A.1)

and

V = [v1, . . . , vn] ∈ R
m×n (A.2)

such that

UT AV = diag(σ1, . . . , σp) (A.3)

where

p = min{m,n} and σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0

The σi are the singular values of A and the vectors ui and vi are respectively, the

i-th left singular vector and i-th right singular vector. So we can write the matrix A
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as:

A = UΣV T (A.4)

where Σ is the matrix of singular values, as defined in equation A.3. the singular

values of a matrix A are precisely the lengths of the semi-axes of the hyperb ellipsoid

E defined by

E = {y|y = Ax, ‖x‖2 = 1} (A.5)

Golub & van Loan [13] also described an algorithm for SVD. Given A ∈ R
m×n(m ≥

n) and ε, a small multiple of the unit roundoff, the following algorithm overwrites A

with UT AV = D + E, where U ∈ R
m×n and V ∈ R

n×n are orthogonal, D ∈ R
m×n is

diagonal, and E satisfies ‖E‖2 ∼= u‖A‖2:

1. Use the QR with Column Pivoting algorithm on page 99 to compute the bidiag-

onalisation

A := (U1 . . . Un)T A(V1 . . . Vn−2)

2. Set ai,i+1 to zero if |ai,i+1| ≤ ε(|aii|+ |ai+1,j+1|) for any i = 1, . . . , n− 1

3. Find the largest q and the smallest p such that if

A =









A11 0 0
0 A22 0
0 0 A33

0 0 0









p
n− p− q

q
m− n

then A33 is diagonal and A22 has a nonzero superdiagonal.

4. If q = n then quit

5. If any diagonal entry in A22 is zero, then zero the superdiagonal entry in the same

row and go to 2

6. Apply the Golub-Kahan SVD step on page 99 to A22

A := diag(Ip, Ū , Iq+m−n)T Adiag(Ip, V̄ , Iq)
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7. Go to 2

In the QR with Column Pivoting algorithm given A ∈ R
m×n, the following algorithm

computes the factorisation AΠ = QR.

1. cj := j (j = 1, . . . , n)

2. γj :=
m
∑

i=−1

a2
ij (j = 1, . . . , n)

3. For k = 1, . . . , n

• Determine p(k ≤ p ≤ n) so γp = max
k≤j≤n

γj

• If γp = 0, then quit

• else

(a) Interchange ck and cp, γk and γp, and aik and aip for i = 1, . . . ,m

(b) Determine a Householder Q̃k such that

Q̃k







akk
...

amk






=







∗

0
...
0







(c) A := diag(Ik−1, Q̃k)A

(d) γj := γj − a2
kj (j = k + 1, . . . , n)

In the Golub-Kahan SVD step given a bidiagonal matrix B ∈ R
n×n having no

zeros on its diagonal or superdiagonal, the following algorithm overwrites B with the

bidiagonal matrix B̄ = UT BV̄ where Ū and V̄ are orthogonal.

1. Let µ be the eigenvalue of the trailing 2-by-2 submatrix of T = BT B that is

closer to tnn

2. y := t11 − µ
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3. z := t12

4. For k = 1, . . . , n− 1

• Determine c = cos(θ) and s = sin(θ) such that

[

y z
]

[

c s
−s c

]

=
[

∗ 0
]

• B := BJ(k, k + 1, θ)

• y := bkk

• z := bk+1,k

• Determine c = cos(θ) and s = sin(θ) such that

[

c −s
s c

] [

y
z

]

=

[

∗
0

]

• B := J(k, k + 1, θ)T B

• If k < n− 1 then

(a) y := bk,k+1

(b) z := bk,k+2

A.2 Levenberg-Marquardt Algorithm

The Levenberg-Marguardt has become the standard of nonlinear least-squares routines,

in their book, Press et al. described the procedure as following [31]:

Consider fitting when the model depends nonlinearly on the set of M unknown pa-

rameters ak, k = 0, 1, . . . ,M − 1. We define a χ2 merit function and determine best-fit

parameters by its minimisation. With nonlinear dependence, however, the minimi-

sation must proceed iteratively. Given trial values for the parameters, we develop a

procedure that improves the trial solution. The procedure is then repeated until χ2

stops decreasing.
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Sufficiently close to the minimum, we expect the χ2 function to be well approxi-

mated by a quadratic form, which is written as:

χ2(a) ≈ γ − d · a +
1

2
a ·D · a (A.6)

where d is an M -vector and D is an M ×M matrix. If the approximation is a good

one, we know how to jump from the current trial parameters acur to the minimising

ones amin in a single leap, namely

amin = acur + D−1 · [−∇χ2(acur)] (A.7)

On the other hand, equation A.6 might be a poor local approximation to the shape

of the function that we are trying to minimise at acur. In that case, we’ll take a step

down the gradient using the steepest descent method:

anext = acur − constant×∇χ2(acur) (A.8)

where the constant is small enough not to exhaust the downhill direction.

To use equation A.7 and A.8, we must be able to compute the gradient of the χ2

function at any set of parameters a. To use equation A.7 we also need the matrix D,

which is the second derivative matrix (Hessian matrix) of the χ2 merit function, at any

a.

Let the model to be fitted to be

y = y(x; a) (A.9)

and the χ2 merit function is

χ2(a =
N−1
∑

i=0

[

yi − y(xi; a)

σi

]2

(A.10)

The gradient of χ2 with respect to the parameters a, which will be zero at the χ2

minimum, has components

∂χ2

∂ak

= −2
N−1
∑

i=0

[yi − y(xi; a)]

σ2
i

∂y(xi; a)

∂ak

k = 0, 1, . . . ,M − 1 (A.11)
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Taking an additional partial derivative gives

∂2χ2

∂ak∂al

= 2
N−1
∑

i=0

1

σ2
i

[

∂y(xi; a)

∂ak

∂y(xi; a)

∂al

− [yi − y(xi; a)]
∂2y(xi; a)

∂ak∂al

]

(A.12)

Removing the factor of 2 by defining:

βk ≡ −
1

2

∂χ2

∂ak

αkl ≡
1

2

∂2χ2

∂ak∂al

(A.13)

making [α] = ∂12D in equation A.7, in terms of which that equation can be rewritten

as the set of linear equations
M
∑

l=0

αklδal = βk (A.14)

This set is solved for the increments δal that, added to the current approximation,

give the next approximation. In the context of least-squares, the matrix [α], equal to

one-half times the Hessian matrix, is usually called the curvature matrix. Furthermore,

the equation A.8, the steepest descent formula, translates to

δal = constant× βl (A.15)

The Levenberg-Marquardt method is based on two elementary insights. Consider

the “constant” in equation A.15, there is no information about what value (even what

order of magnitude) it should be in the gradient. The first insight is that the compo-

nents of the Hessian matrix, even if they are not usable in any precise fashion, give

some information about the order-of-magnitude scale of the problem.

The quantity χ2 is non-dimensional, i.e., is a pure number, evident from its def-

inition in equation A.10. On the other hand, βk has the dimensions of 1/ak, which

may well be dimensional, i.e., have units like cm−1, or kilowatt-hours. The constant

of proportionality between βk and δak must therefore have the dimensions of a2
k. Scan

the components of [α] and you see that there is only one obvious quantity with these

dimensions, and that is 1/akk, the reciprocal of the diagonal element. So that must set

the scale of the constant. But that scale might itself be too big. So divide the constant
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by some fudge factor λ, withe the possibility of setting λ� 1 to cut down the step. In

other words, replace equation A.15 by

δal =
1

λαll

βl or λαllδal = βl (A.16)

It is necessary that αll be positive, but this is guaranteed by:

αkl =
N−1
∑

i=0

1

σ2
i

[

∂y(xi; a)

∂ak

∂y(xi; a)

∂al

]

(A.17)

Marquardt’s second insight is that equations A.16 and A.15 can be combined by

we define a new matrix α′ by the following prescription:

α′
jj ≡ αjj(1 + λ)

α′
jk ≡ αjk (j 6= k)

(A.18)

and then replace both equation A.16 and A.15 by

M−1
∑

l=0

α′
klδal = βk (A.19)

When λ is very large, the matrix α′ is forced into being diagonally dominant, so equa-

tion A.19 goes over to be identical to equation A.16.

Given the initial guess for the set of fitted parameters a, the recommended Mar-

quardt recipe is as follows:

1. Compute χ2(a);

2. Pick a modest value for λ, say λ = 0.001;

3. Solve the linear equations A.19 for δa and evaluate χ2(a + δa);

4. If χ2(a + δa) ≥ χ2(a), increase λ by a factor of 10 (or any other substantial

factor) and go back to 3;

5. If χ2(a + δa) < χ2(a), decrease λ by a factor of 10, update the trial solution

a← a + δa, and go back to 3
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A.3 Curvature Scale Space Corner Detector

This is a corner detector based on the Curvature Scale Space (CSS) representation first

proposed by Mokhtarian and Suomela [24]. In their papers and in a later paper by

Mokhtarian and Mohanna [23], it was claimed that the method is an improvement over

the ‘traditional’ methods such as the Harris Detector and the SUSAN Detector. The

subsequent images used for demonstrating the method also shows that the CSS detector

has a better chance of finding the right corners and less chance of false detection.

The CSS technique is suitable for recovering invariant geometric features such as

curvature extrema or zero-crossing points of a planar curve at multiple scales. The

curve Γ is first parameterised by the arc length parameter u:

Γ(u) = (x(u), y(u)) (A.20)

An evolved version Γσ of Γ is defined by:

Γσ = (X(u, σ), Y (u, σ)) (A.21)

where

X(u, σ) = x(u)⊗ g(u, σ) Y (u, σ) = y(u)⊗ g(u, σ)

where g(u, σ) denotes a Gaussian of width σ, and sigma is also referred to as the scale

parameter. The process of generating evolved versions of Γ as σ increases from zero to

infinity is referred to as the evolution of Γ. In order to find curvature zero-crossings or

extrema from evolved versions of the input curve, the curvature need to be computed

accurately and directly on an evolved version Γσ. Curvature κ on Γσ is given by:

κ(u, σ) =
Xu(u, σ)Yuu(u, σ)−Xuu(u, σ)Yu(u, σ)

(Xu(u, σ)2 + Yu(u, σ)2)1 .5
(A.22)

where

Xu(u, σ) = x(u)⊗ gu(u, σ) Xuu(u, σ) = x(u)⊗ guu(u, σ)

Yu(u, σ) = y(u)⊗ gu(u, σ) Yuu(u, σ) = y(u)⊗ guu(u, σ)

The outline of the CSS corner detector is as following [23]:
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• Extract edges from the original image;

• Extract image edge contours, filling the gaps and finding T-junctions;

• Use different scales of the CSS for contours with different lengths;

• Compute the absolute curvature on the smoothed contours;

• Smooth the absolute curvature function for long contours;

• Detect initial local maxima of the absolute curvature for short contours;

• Detect initial local maxima of the smoothed absolute curvature functions for long

contours;

• Consider those local maxima as initial corners whose absolute curvature are more

than twice as much as one of the neighbouring local minima;

• Track the corners down to the lowest scale for each contour to improve localisa-

tion;

• compare the T-junction corners to the corners found using the curvature proce-

dure to unify close corners.



Appendix B

Camera and Lenses Specifications

B.1 Camera

The camera used for the thesis is the Panasonic Digital Signal Processing 1/3” B/W

CCD Cameras in of the WV-BP330 Series. The cameras incorporate a 1/3” interline

transfer type CCD (447,000 pixels: effective) and achieve high sensitivity of 0.08 lx at

F1.4, outstanding 570-line horizontal resolution and signal-to-noise ratio of 50 dB [27].

The key features of the camera are:

• 1/3” CCD pick-up element with 768 (H) x 582 (V) pixels provides a high 570

lines of horizontal resolution.

• A vertical digital 2H enhancement improves signal strength at the horizontal and

vertical edges to provide a crisper images.

• Knee circuit effectively expands the dynamic range when viewing brightly illu-

minated objects.

• Outstanding 50 dB of signal-to-noise ratio provides natural images.

• Minimum scene illumination of 0.08 lx at F1.4

• A specially developed lens mount configuration accepts both C and CS mount
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lenses, as well as both DC and Video voltage for ALC lenses.

• An advanced Electronic Light Control (ELC) enables the use of inexpensive fixed

iris lenses for more cost effective systems. Gen-lock capability for system expend-

ability, and other a variety

• Gen-lock of synchronisation modes (Line-Lock, VD2, Internal).

• WV-BP330 Camera Series are:

– WV-BP330: 220-240V AC, 50Hz

– WV-BP332: 12V DC

– WV-BP334: 24V AC, 50Hz

• The maximum extensible coaxial cable length between the camera and the mon-

itor is shown below.

Type of 3C-2V 5C-2V 7C-2V 10C-2V
coaxial cable (RG-59/U) (RG-6/U) (RG-11/U) (RG-15/U)
Recommended maximum

cable length
(m) 250 500 600 800
(ft) 825 1,650, 1,980, 2,640

The major operating controls, accessories, specifications and appearance for the

camera is shown on figure B.1.
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Figure B.1: Specifications for the camera [27].
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B.2 Lens

The Lens used for the project is the Panasonic 2x Variable Focal Lens WV-LZA61/2, for

use with 1/3-type CCD cameras in CCVE lens line-up. WV-LZA61/2, adjustable a de-

sired focal length (3.8-8mm) and angular field of view (H: 35.6◦−73.6◦, V: 26.6◦−53.4◦)

suited to fixed cameras [28]. Figure B.2 shows the specification and the measurements

for the lens.

Figure B.2: Specifications for the lens [28].



Appendix C

Camera Calibration Parameters

The list of variables after calibration can be separated into two groups: intrinsic pa-

rameters and extrinsic parameters [3]. The former are variables related to the camera

at large, for example the focal length of the camera, the image centres etc. The latter

variables are those associated with the individual images, such as the rotation and

translation.

Since we are only concerned with the intrinsic parameters for the use in the various

calculations, the extrinsic parameters will not be discussed. The intrinsic parameters

calculated by the calibration program are:

• Focal Length: The focal length is calculated with the unit in pixels, the values

are stored in a 2× 1 vector of fc,

• Principle Point: These are the centre coordinate of the image, stored in a 2×1

vector of cc,

• Skew Coefficient: The skew coefficient defines the angle between the x and the

y axes and is stored in the scalar alpha c, and

• Distortion: These are the image distortion coefficient in radial and tangential

directions and are stored in a 5× 1 vector kc.
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Let P be a point in space of coordinate vector XXc =
[

Xc Yc Zc

]T
in the camera

reference frame. The intrinsic parameters (fc, cc, alpha c, kc) will relate the point

to a point on the image plane in the following steps:

Let xn be the normalised (pinhole) camera image position:

xn =





Xc/Zc

Yc/Zc



 =





x

y





and r2 = x2 + y2. After adding in the distortion, the new normalised point coordinate

xd is:

xd =





xd(1)

xd(2)



 = (1 + kc(1)× r2 + kc(2)× r4 + kc(5)× r6)× xn + dx

where dx is the tangential distortion vector given by:

dx =





2× kc(3)× x× y + kc(4)× (r2 + 2x2)

kc(3)× (r2 + 2y2) + 2× kc(4)× x× y





Therefore, the 5-vector kc contains both radial and tangential distortion coefficients

(observe that the coefficient of 6th order radial distortion term is the fifth entry of the

vector kc). The tangential distortion is due to “de-centring”, or imperfect centring of

the lens components and other manufacturing defects in a compound lens.

Once distortion is applied, the final pixel coordinates x pixel =
[

xp yp

]T
of the

projection of P on the image plane is:

xp = fc(1)× (xd(1) + alpha c× xd(2)) + cc(1)

yp = fc(2)× xd(2) + cc(2)

Therefore, the pixel coordinate vector x pixel and the normalised (distorted) co-

ordinate vector xd are related to each other through the linear equation:





xp

yp

1



 = KK





xd(1)
xd(2)

1
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where KK is known as the camera matrix, and defined as follows:

KK =





fc(1) alpha c× fc(1) cc(1)
0 fc(2) cc(2)
0 0 1





In addition to computing estimates for the intrinsic parameters fc, cc, kc and

alpha c, the toolbox also returns estimates of the uncertainties on those parame-

ters. The MATLAB variables containing those uncertainties are fc error, cc error,

kc error, alpha c error. Those vectors are approximately three times the standard

deviations of the errors of estimation.



Bibliography

[1] Ahuja, N. and Abbott, A. L. “Active Stereo: Integrating Disparity, Vergence,

Focus, Aperture, and Calibration for Surface Estimation”, IEEE Trans. Patt.

Anal. Machine Intell., Vol. 15, No. 10, pp. 1007-1029, 1993

[2] Barnard, S. T. and Thompson, W. B. “Disparity Analysis of Images”, IEEE

Trans. Patt. Anal. Machine Intel., Vol. PAMI-2, No. 4, pp. 333-340, July 1980

[3] Bouguet, J. “Camera Calibration Toolbox for Matlab”,

http://www.vision.caltech.edu/bouguetj/calib doc/index.html updated Oc-

tober 10th, 2002

[4] Broggi, A.; Bertozzi, M.; and Fascioli A. “Self-Calibration of a Stereo Vision

System for Automotive Application”, Proc. of the 2001 IEEE Int. Conf. on

Robotics & Automation, pp. 3698-3703, May 2001

[5] Canny, J. “A Computational Approach to Edge Detection”, IEEE Trans. Patt.

Anal. Machine Intell., Vol. PAMI-8, No. 6, pp. 679-698, Nov. 1986

[6] Charnley, D.; Harris, C. G.; Pike, M.; Sparks, E. and Stephens, M. “The

DROID 3D Vision System - algorithms for geometric integration”, Tech. Rep.

72/88/N488U, Plessey Research Roke Manor, 1988

[7] Chojnacki, W.; Brooks, M. J.; and van den Hengel, A. “Fitting surfaces to data

with covariance information: Fundamental methods applicable to computer

113



BIBLIOGRAPHY 114

vision”, Tech. Rep. TR03-99, version 2.1, Department of Computer Science,

University of Adelaide, Auguest 1999

[8] Chojnacki, W.; Brooks, M. J.; van den Hengel, A.; and Gawley, D. “A

Fast MLE-Based Method for Estimating the Fundamental Matrix”, Proc.

APRS/IEEE Workshop on Stereo Image and Video Processing, pp. 33-36, De-

cember 2000

[9] Corke, P. “Real-time Stereo Vision for Height Estimation on an Autonomous

Helicopter”, Proc. APRS/IEEE Workshop on Stereo Image and Video Process-

ing, pp. 19-23, December 2000

[10] Dimo, Gajendra Ganesh; A Panoramic Imaging System for the HSV, BE thesis,

University of Sydney, November 1997

[11] Fisher, B. “Geometric Framework for Vision I: Sin-

gle View and Two-View Geometry Andrew Zisserman”

http://www.dai.ed.ac.uk/CVonline/LOCAL COPIES/EPSRC SSAZ/epsrc ssaz.html

Robotics Research Group, University of Oxford, Updated: April 16, 1997

[12] Gavrila, D. M.; Franke, U.; Wohler, C; and Gorzig, S. “Real-Time Vision for

Intelligent Vehicles”, IEEE Instrumentation & Measurement Magazine, pp. 22-

27, June 2001

[13] Golub, G. H. and Van Loan, C. F. Matrix Computations Johns Hopkins Uni-

versity Press, 1983

[14] Gibson, J. J. The Perception of the Visual World, Cambridge, MA: Riverside,

1950

[15] Harris, C. and Stephens, M. “A Combined Corner and Edge Detector”, Forth

Alvey Vision Conf., pp. 147-151, 1988



BIBLIOGRAPHY 115

[16] http://www.acfr.usyd.edu.au/projects/research/ute/main.html High Speed Ve-

hicle (HSV) Project

[17] Jain, R; Kasturi, R; Schunch, B. G. Machine Vision, McGraw-Hill, New York,

1995

[18] Julesz, B. Foundations of Cyclopean Perception, Chicago, IL: Univ. Chicago

Press, 1971

[19] Mactier, T. G. Urban Road following using a single CCD camera, BE thesis,

University of Sydney, November 2001

[20] Matrox Imaging Matrox Meteor-II Installation and Hardware Reference Matrox

Electronic Systems Ltd., Manual no. 10577-101-0301, April 2000

[21] McLauchlan, P. F. “Gandalf: The Fast Computer Vision and Numerical Li-

brary” http://gandalf-library.sourceforge.net/tutorial/report/report.html Imag-

ineer Software Ltd., Updated April 29, 2002

[22] Mohr, R. and Triggs, B. Projective Geometry for Image Analysis, A Tutorial

given at ISPRS, Vienna, July 1996

[23] Mokhtarian, F. and Mohanna, F. “Enhancing the Curvature Scale Space Corner

Detector” Proc. Scandinavcan Conf. on Image Analysis pp. 145-152, Bergen,

Norway, 2001

[24] Mokhtarian, F. and Suomela, R. “Robust Image Corner Detection Through

Curvature Scale Space” IEEE Tran. Patt. Anal. Machine Intell. Vol. 20, No.

12, pp. 1376-1381, Dec. 1998

[25] Nguyen, M. and Graefe, V. “Object Manipulation by Learning Stereo Vision-

Based Robots”, Proceedings of the 2001 IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems, Maul, Hawaii, USA, pp. 146-151, Oct. 29 - Nov. 03, 2001



BIBLIOGRAPHY 116

[26] http://www.vision3d.com/stereo.html Optometrists Network, accessed 9th

March, 2002

[27] Panasonic, Digital Signal Processing 1/3” B/W CCD Cameras, WV-BP330

Series Panasonic, Matsushita Communication Industrial Co., Ltd. Japan

[28] Panasonic, 2x Variable Focal lens WV-LZA61/2 Panasonic, Matsushita Com-

munication Industrial Co., Ltd. Japan

[29] Physics, School of Experimental Physics Notes for Intermediate Physics School

of Physics, University of Sydney, 1999

[30] Pollefeys, M. (2000) Tutorial on 3D Modeling from Images In conjunction with

ECCV 2000, Dublin, Ireland

[31] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; and Flannery, B. P. Numerical

Recipes in C++, The Art of Scientific Computing Cambridge University Press,

Cambridge, UK, 2nd ed., 2002

[32] SICK Technical Description of LMS 200 / LMS 211 / LMS 220 / LMS 221 /

LMS 291 Laser Measurement Systems SICK AG, Auto Ident, Germany, June

2000

[33] Smith, S. M. and Brady, J. M.; “SUSAN - a new approach to low level image

processing” Int. J. of Comp. Vision Vol. 23, No. 1, pp. 45-78, May 1997

[34] Whitehorn, M.; Vincent, T.; Debrunner, C.; Steele, J.; “Stereo Vision in LHD

Automation”, IEEE, pp. 1388-1395, 2001


