
Decentralised Data Fusion in 2-Tree Sensor Networks

Paul R. Thompson
The Australian Centre for Field Robotics

The University of Sydney
Australia.

p.thompson@acfr.usyd.edu.au

Hugh Durrant-Whyte
The Australian Centre for Field Robotics

The University of Sydney
Australia.

hugh@acfr.usyd.edu.au

Abstract – This paper describes an algorithm for
decentralised estimation and data fusion in ‘2-tree’
networks. In earlier approaches, exact decentralised
estimation which avoids double-counting information
has generally only been possible in singly-connected or
1-tree networks, or by using conservative fusion. The
problem with tree networks is that they are very fragile;
a single node failure causes separation of the network.
In contrast, a 2-tree network is a denser network in
which two nodes must fail for the network to become
separated, but which are still much sparser, and therefore
more scalable, than fully-connected networks. This
paper describes an algorithm for decentralised estimation
in 2-tree networks that correctly accounts for common
information in communication, allowing consistent and
scalable operation. The method presented is scalable, i.e.:
storage and communcation sizes do not grow with the
size of the network. Results show the correct operation
of the algorithm on complete 2-tree, 1-tree and mixed
1&2-tree networks, and show robustness of the 2-tree
network against node and link failures.

Keywords: Decentralised data fusion, global esti-
mates, consistent fusion, scalability, survivability, net-
work topologies, message passing algorithms, graphical
models,k-trees, treewidth

1 Introduction
The central problem in sensor networks is to provide
a scalable method for consistent global data fusion.
Decentralised data fusion (DDF) algorithms aim to
provide a global estimate of a state observed by the
nodes of an arbitrary sized sensor network. DDF
methods seek a solution in which this estimate is
obtained locally, in a decentralised manner, from local
observations and from information communicated by
neighbouring nodes. DDF methods impose constraints
including no knowledge of the global network topology,
no central fusion site, and no common communication
medium. In return DDF methods provide scalability,
modularity and survivability of the network.

In previous approaches to DDF [5, 10, 11, 4], exact
decentralised estimation has generally only been possible
in singly-connected or 1-tree networks. In these networks
there is only one path between any two nodes and so
local fusion is guaranteed to be consistent. Conversely,
arbitrarily connected networks raise the possibility of
information messages coming through multiple routes
and, without data-tagging or extending message size,
conservative fusion methods must be employed to avoid
double-counting issues [6, 1, 4]. The problem with 1-tree
networks is that they are vulnerable to the failure of
any non-leaf node since this would leave the network
in two separated components. 1-tree networks include
both ‘star’ and chain topologies as well as conventional
bi-directional trees.

This paper proposes an extension beyond single
1-trees for the network communication topology, into so
called 2-tree network topologies. A 2-tree graph is made
up of cliques of 3 nodes. Each adjacent pair of cliques
overlaps at 2 nodes (a junction or separator). The
overall graph of connections between the cliques is a tree.
A 2-tree graph has treewidth of 2, so called because the
separators are made of 2 nodes. The algorithm in this
paper operates on mixed 1 and 2-tree networks. When
given a 1-tree network to operate on, the algorithm gives
identical results to prior 1-tree DDF methods. Example
2-tree and 1-tree topologies are shown in Figure 1.

The treewidth of a graph is well known for its role in

a b k l

d c h j m q

e g i n p

f o
(a) Example 2-tree topology

a b k l

d c h j m q

e g i n p

f o
(b) An example 1-tree topol-
ogy over the same nodes

Figure 1: Example 2-tree (a) and 1-tree (b) topologies



limiting the complexity of algorithms in graph theory
[2, 7, 8], graphical models [3] and sparse linear algebra
[12]. Given the strong effect of the treewidth on the
complexity of the algorithms and network, we considered
generalisations of 1-tree topologies into k-tree topologies,
especially the next-highest k; k = 2. This k-tree
approach is a computationally more feasible approach
than more general topologies such as looped networks,
meshes or broad unstructured topologies and, as this
paper shows, is amenable to problems in decentralised
estimation. The 2-tree topologies presented in this paper
are more suited to the intent of a decentralised system,
since they remain connected and correctly function
despite single node or link failures.

This paper is part of ongoing research applying
graphical models to the representation and solution
of decentralised inference architectures and algorithms.
In earlier work we considered junction-tree algorithms
embedded on dynamic spanning trees [9]. The approach
in this paper operates on 2-tree networks rather than
spanning trees, and with the representation of each
clique of 3 distributed across 3 nodes. These approaches
both adapt the junction tree algorithm for use in
decentralised data fusion.

Section 2 describes the proposed decentralised com-
munications algorithm, section 2.1 describes the 2-tree
properties which are exploited, and section 2.2 describes
the decentralised algorithm. Section 3 shows results
for the algorithm running, comparing a 2-tree to a
comparable 1-tree topology.

2 Proposed Approach

The main contribution of this paper is in the
decentralised topologies and algorithms for message
passing. The algorithm allows each node to obtain the
network global fused information using only local storage
and communication. The communications algorithm
actively limits the data sizes communicated and stored,
leading to the scalable performance of the system. The
goal of the topology and message passing is to produce
a set of terms pi(x), such that the fusion of these is a
consistent estimate for the state x:

p∪(x) =
1

c

∏
i

pi(x) (1)

These pi(x) are probabilities which are conditionally
independent of each other given x, or equivalently, that
they have independent errors.

Bayesian fusion of any variety on any state repre-
sentation could be used. This paper assumes that the
application is interested in obtaining estimates or totals
derived from exact fusion of terms which are guaranteed
to have independent errors. The actual underlying state
and fusion process is not the focus of this paper.

The approach proposed in this paper guarantees
against double-counting of information by using ex-
plicit “data-tagging” sets, but ensures scalability by
summarising the data-tagging sets into a minimal
size. This summarisation process exploits the global
k-tree property and uses the local topology around
the sending and receiving nodes. The necessary local
topology properties are guaranteed by designing the
global network topology to have a bounded treewidth
of 2.

A data-tagging set is a set of separate probabilities,
pi(x), each with a unique identifier. In this paper, any
data-tagging set stores only conditionally independent
terms, so equation 1 can be used on any data-tagging set
to recover a fused estimate. Fusion of two or more data-
tagging is performed as a set union followed by Bayesian
fusion (equation 1). The set union step identifies any
terms with matching labels and ensures that these are
counted only once in the Bayesian fusion. Thus the
data-tagging avoids double counting of information.

The approach proposed in this paper uses a very
efficient, minimal form of data-tagging. This is in
contrast to the inefficient full data-tagging appproach.
In the full data-tagging method, each node maintains
a set of independent information terms (conditionally
independent of each other, given the true state),
including its own sensor observations. In communicating
out to any neighbour, the full set of information terms
is sent. In receiving communication from a neighbour,
the received set is merged (unioned) into the local
set. This guarantees avoidance of double counting in
arbitary network topology, but is expensive for large
scale networks. Eventually every node’s storage and
every communicated set has the full list of independent
information terms arising from every other node. For
this simple but inefficient approach, the node storage
and communication size is O(n) for n nodes in the whole
network. This increasing storage and communication
size limits the scalability of the network for large n.
Therefore this paper proposes an alternative scalable
method.

The approach proposed in this paper is obtained
by optimising the data-tagging approach to exploit
the tree nature of the communications network. The
communcations and storage scheme proposed in this
paper achieves correct operation in 2-tree networks
without using full data-tagging, thus obtaining a
decentralised algorithm which is scalable in the number
of nodes.

The key properties of the proposed approach are
correct fusion, scalability and robustness against node
& link loss. These properties are all closely related
to the bounded treewidth network topology. The 2-
tree topology guarantees robustness against a single
node or link failure; The rest of the network will still
achieve a global consistent estimate (but excluding any
information contributed by the failed node). Under



other patterns of multiple node or link failures, the rest
of the network will still function correctly as long as
the network remains connected. This is a consequence
of the 2-tree network topology together with the local
data-tagging set based communication.

The key to the performance of the algorithm is
in the choice of data-tag set communicated to the
neighbours. If too many terms are included explicitly
in the communicated set, this results in excess storage
and communication size. If too few terms are included,
the result is loss of global agreement. If too many
terms are fused together inappropriately, this can lead
to data looping (“gossiping”). The key aspect is to
use the tree properties of the network to derive a
procedure for minimally reducing the data-tag set,
without compromising performance or data size.

To explain the communications algorithm, we first
consider the k-tree network properties which are used
in the algorithm.

2.1 k-Tree Network Properties

This section notes some important properties of the
designed k-tree communications topology used for the
decentralised data fusion algorithm proposed in this
paper.

Separator Property
An important k-tree property is the existence of tree

separators, as shown in Figure 2. In a k-tree any k-clique
is a separator. Each separator divides the network into
distinct parts. Within each part, the effect of all other
parts can be marginalised (fused) onto the separator.
Separators enable efficient summarisation of entire
branches of the k-tree network. Separators use the k-tree
separator property: in a k-tree, if any path between any
two nodes i, k passes through the separator, then all
paths between nodes i, k pass through the separator.
These separators are used at the borders of the local
neighbourhood L to summarise the fused total of the
rest of the network beyond the local neighbourhood.

a b

c d

e

f

g

h

Figure 2: Illustration of the separator property. In
a k-tree any k-clique is a separator. Each separator
divides the network into two parts. In this figure, b− d
is the separator. The two parts and the intersection are
shown. Within each part, the effect of the other part can
be marginalised (fused) onto the separator. Separators
enable efficient summarisation of entire branches of the
k-tree network.

Local Neighbourhood Property
In k-tree networks, the local neighbourhood around

each vertex is an efficient local summary of the relevant
parts of the global topology.

The k-tree networks allow an efficient decentralised
& local neighbourhood representation to serve as the
only required topology awareness at the nodes. This is
important for scalability, allowing the representation of
a global network with only small local neighbourhood
representations. The local neighbourhood is therefore an
important data structure used in the algorithm proposed
in this paper.

At any node, Vi, the local neighbourhood subgraph
consists of Vi, the neighbours of Vi and the links and
cliques between them, as shown in Figure 3.

The local neighbourhood representation is motivated
by the k-tree “junction path covering property”: in a
k-tree, if any path between any two nodes i, k passes
through the local neighbourhood of a node j, then
all paths between nodes i, k pass through the local
neighbourhood of j.

This junction path covering property means that
the local neighbourhood around a node j has control
over how any messages can pass from one side to
the other. The local neighbourhood encodes which
neighbours to communicate with, which information
terms must be maintained separately in data-tag sets
(for correctness) and which terms can be fused into
others (for scalability).

For 1-tree topologies used in prior works, the local-
neighbourhood representation is simply the list of
neighbouring vertices and list of the corresponding edges
to those neighbours.

a b

c d

e

f

g

h

(a) Global network topology

a b

c

a b

c d

e b

d

e

f

h

(b) Local neighbourhood representations, L , at a,
b, e respectively

Figure 3: Illustration of the local neighbourhood
representation, L . In k-tree networks, the local
neighbourhood L is an efficient local summary of the
relevant parts of the global topology

In the next section, these k-tree properties are applied
to the decentralised communications algorithm.



2.2 Communications Algorithm

Given the above k-tree properties, this section ex-
plains the decentralised communications algorithm. The
algorithm will be described by referring to the sending
node, Vt (“this vertex”) and the receiving node Vd
(“destination vertex”). The sending node has access
to its own local neighbourhood graph, L , and its own
local data-tag set. The communications algorithm works
by customising a reduced data-tag set to send to the
destination, Vd.

The communications algorithm is simply stated as
follows: The data-tag set is summarised (marginalised)
into the intersection of the local and destination
neighbourhoods. This is illustrated in Figure 4.

The local neighbourhood graph is used to determine
the intersection data-tags to send to the destination,
and also to summarise terms outside the intersection
into separators. On transmission of the data-tag set
from Vt to Vd, only terms in the intersection of their
neighbourhoods need to be individually data-tagged.
Terms in the local neighbourhood at the sending node
but outside the intersection can be fused into summary
terms, hence maintaining locality and efficiency.

The local neighbourhood representation, L , is very
important for this process for several reasons: (1): L is
used to calculate the intersection and separator sets, (2):
the local data-tag set stored at each node is guaranteed
to fit into L , the local neighbourhood graph (meaning
that the set of node and separator data-tags is at most
the same as in L ). (3): the marginalisation of L is
used to summarise out the irrelevant parts.

a b c d

g h i

k l m n

(a) The full network, highlight-
ing neighbourhoods of Vh and
Vm and their intersection

b c

g h i

l m

↑
ci

↓
g
l

↑b
g

(b) The network beyond the
immediate neighbours can be
summarised within the neigh-
bourhood

h i

l m

↑hi

↑h
l ⋃ h i

l m n

↑hi

↑h
l

(c) To prepare a communication set, Vh can marginalise
its local neighbourhood network into the intersection with
neighbour Vm (resulting in the left hand set). This set is
communicated to Vm. Vm takes the union of the received set
(left) with its local set (right).

Figure 4: Summary of the communications algo-
rithm. The local neighbourhood is marginalised i.e.:
summarised down into the intersection set for the
destination. This summarised intersection set is sent to
the destination and merged into the local set.

Algorithm 1: Compute the communication output

Input: L
:a copy of the local neighbourhood graph
Input: Vt: this node in L
Input: Vd: the destination neighbour in L
Input: localTags: the local data-tag set
Result: destTags: the output data-tag set to send
1. Initial case: No summarisation:
Copy destTags ← localTags

2. Avoid redundancy, delete terms involving Vd:
Erase term Vd from destTags

Erase any terms for Vd separators from destTags

3. Summarise away parts not local to Vd:
Determine the region to summarise out, S:
S is all vertices in L except Vd and its neighbours
while S is not empty do

Find a leaf vertex Vl of L in S
Marginalise out Vl, updating destTags

Erase Vl from S

The communications algorithm is summarised in
algorithm 1. In step 1, the algorithm initally copies
the local data-tag set to the output data-tag set.
This corresponds to a full data-tagging solution. The
subsequent steps erase and or summarise some of the
entries, thus ensuring scalability. For step 2: data-tag
terms involving the destination vertex are redundant
and can be explicitly deleted. Step 3 marginalises out
any data-tag terms which are not neighbours of the
destination vertex. This is explained in the following
section.

Marginalisation Process

This section explains the marginalisation process which
summarises non-local information, in algorithm 1.

Marginalisation proceeds from a so called “leaf
vertex”, each marginalisation step reduces the size of the
data-tag set, effectively eliminating the leaf vertex. For
this paper on 2-tree networks, a leaf vertex is either a
“1-tree leaf” or a “2-tree leaf”. Any vertex with exactly
one edge is a 1-tree leaf. Any vertex which is part of
exactly one hyperedge (clique of 3) is a 2-tree leaf.

Marginalisation of a 2-tree leaf:

a

cb

↑a
b ↑

a
c

↑bc

=⇒
cb

↑bc′

↑bc + a+ ↑ab+ ↑ac =⇒↑bc′ (2)

In the marginalisation of a 2-tree leaf above, vertex a
is deleted, along with separator terms ↑ ab and ↑ ac.
This marginalises the 2-tree leaf into an edge, leaving
a new 1-tree leaf. The separator is updated by the
marginalisation via: ↑bc′ =↑bc + a+ ↑ab+ ↑ac.



Marginalisation of a 1-tree leaf:

a b
↑ab

=⇒ b′

b + a+ ↑ab =⇒ b′ (3)

In the marginalisation of a 1-tree leaf above, vertex
a is deleted, along with separator terms ↑ ab. This
marginalises the 1-tree leaf into a single vertex. Vertex
b is updated by the marginalisation via: b′ = b+a+ ↑ab

Some example cases of the above communications
algorithm are discussed below.

. t .

d.

(a) Vt to Vd is a 1-tree link
(edge)

. t .

d.

(b) Vt to Vd is a 2-tree link

. t .

d.

(c) Vt to Vd is a 2-tree link
with some 1-tree branches on
Vt

. t .

d.

(d) Vt to Vd is a 2-tree link,
with another 2-tree clique on
Vt not involving Vd

Figure 5: Illustration of various topologies from
Vt to Vd. These are examples from the same
underlying neighbourhood marginalisation algorithm.
Shadings show the neighbourhoods of Vt, Vd and their
intersection. The possible data flow paths, and hence the
necessary data-tagging follow from these neighbourhood
intersections

1-Tree Neighbour

A 1-tree link (an edge) between Vt and Vd is the unique
path from Vt to Vd, as shown in Figure 5a and therefore
the algorithm (1) can marginalise out all other data-
tags and send only one fused term to the destination.
When given a 1-tree network to operate on, this leads
to identical results as for 1-tree DDF methods.

2-Tree Neighbour

For cases involving 2-tree cliques, the direct path
between Vt and Vd is not the unique path, there are
many possible paths. However, the k-tree property
of the network guarantees that all possible paths are
contained within the local neighbourhood subgraph L
at Vt. The main contribution of this paper is in this
stage, in the computation of the correct data-tag set to
send to the neighbouring node.

There are 3 components added into the output data-
tag set by algorithm 1:

1. The local information of nodes in the common neigh-
bourhoods of Vt and Vd. The terms for the common

neighbours are included in the communicated data-
tag set because this allows duplicated forwarding of
information via other nodes in the k-tree network,
allowing the network to survive communications
link failures.

These terms must be included separately, explicitly
in the data-tag set (i.e.: not fused together), since
the k-tree network has many loops within the local
neighbourhood.

2. Marginalised branches off Vt (such as in Figure
5 (a), (c) and (d)), which are marginalised into
additional terms on Vt. No looped data flows can
be caused by these branches, since all such data
paths flow through Vt, and therefore it is safe and
efficient to fuse these into the same output term as
for Vt.

3. Marginalised separator terms for the fusion of the
rest of the network “upstream” past each clique
separator. The values of nodes and separators
outside the intersection with the destination must
be fused into the intersection set to be sent to the
destination. This result of this process is shown in
Figure 4 as the transition from (b) to (c).

3 Results
This paper contributes an algorithm for decentralised

data fusion in 2-tree (and mixed 1 and 2-tree) networks.
The algorithm has been implemented in c++ and
demonstrated on a variety of topologies. Results show
the correct operation of the algorithm on 2-tree networks,
mixed 1 and 2-tree networks, and operation with missing
nodes and links. The results are compared against 1-tree
networks.

An example topology is shown in Figure 6, together
with tables showing the information terms stored and
communicated in the network. The topology in Figure 6
contains a mixture of 2-tree and 1-tree connections.
The algorithm works correctly on this topology, thus
showing that the algorithm correctly generalises the
1-tree case. Table 6(b) shows how the nodes store the
neighbouring independent information, together with
fused terms for the fusion of the “rest of network” past
their bordering interfaces. Storage data are all local to
the neighbourhood of the node, which is thus highly
scalable.

Table 6(c) shows some examples of the data which
nodes communicate. Communicated terms are always
in the intersection of the neighbourhoods of the nodes,
thus ensuring the scalability of the communications data
size for larger networks.

The results of the algorithm operating are shown in
Figures 8 (for normal operation), 9 (operation with a
missing node) & 10 (operation with a missing link). The
topologies used for these are shown in Figure 7. In this
example, the nodes are initialised each with 1 unit of



independent observation information. This example uses
a simple scalar accumulation, which serves as a proxy
for summation of information for fusion of Gaussian
probability distributions, summation of information
for log-likelihood discrete distributions or similar data
fusion algorithms. The global total information is 17.

In the normal operation, Figure 8, both the 2-tree
topology and the 1-tree topology operate comparably,
achieving the global total on all nodes. The strength of
the 2-tree topology is shown in Figure 9. In the scenario
in Figure 9, the node c is disabled. Figure 9 shows how
the 2-tree topology continues as normal, achieving the
correct total global information from the network. By
comparison, Figure 9 shows that the nodes in the 1-tree
topology are only able to achieve the totals for their
connected component, thus failing to reach the required
global total.

Similarly, Figure 10 shows the correct operation of
the 2-tree where a link h↔ j is disabled. In both cases
the algorithm expects the link to be present, but it is
disabled. For the 1-tree topology, the network is split
in two by the failed link, and again the nodes fail to
achieve the global total. But for the 2-tree topology,
there is redundancy in the network via links h↔ i and
i↔ j, and thus the 2-tree topology is able to pass the
correct information and achieve the required global total
information.

In the proposed algorithm, no explicit checks or case
handling is required for missing nodes or links; The 2-
tree algorithm continually sends information on all the
redundant links. This leads to circulation of messages,
but the algorithm handles the tagging of information in
a correct and efficient manner.

4 Conclusion

This paper presented an algorithm for scalable
decentralised data fusion, using exact, direct meth-
ods to maintain account of independent information
terms, avoiding double-counting information and/or
conservative fusion. Instead of earlier methods based
on tree topologies, this paper presented a method
based on more general 2-trees. These 2-tree topologies
are more connected than 1-trees, but much sparser
than fully-connected networks. These 2-tree network
topologies remain connected despite loss of a node
or communications link. This paper contributed an
algorithm for the decentralised communication and the
accounting for common-information necessary to allow
correct and scalable operation under 2-tree networks.
The method presented is scalable, i.e.: node storage and
communcation data sizes do not increase with the size
of the network. Results showed the correct operation
of the algorithm on complete 2-tree, 1-tree and mixed
1&2-tree networks, with robustness against node and
link failures.

a b k l

d c h j m q

e g i n p

f o
(a) Topology with mixed 1 & 2-tree
connections, used for the tables below.

N: Stored (term,value) data
∑

a (a,1) (b,1) (c,15) 17
c (a, b, c, d, e, g, h,↑ge,1) (↑hg,9) 17
e (d, e, f, g,1) (c,3) (↑gc,10) 17
g (e, f, g, h, i, ↑ec,1) (c,3) (↑ih,8) 17
j (h, i, j, k,m, ↑mk,1) (n,4) (↑ih,7) 17
n (n, o,1) (p,2) (j,13) 17

(b) Examples of the information stored at various nodes
in the topology above, at completion of the algorithm. For
example, node c stores independent individual information
for its neighbours (a, b, d, e, g, h & itself c, each with value 1),
and stores fused information terms for the “rest of network”
(↑ge value 1 & ↑hg value 9). Storage data are all local to
the neighbourhood of the node, thus highly scalable.

Node pair Communicated (term,value) data:
a→ b (a,1) (c,15)
b→ a (b,1) (c,15)
c→ d (e,1) (c,3) (↑ec,12)
c→ h (c,3) (g,1) (↑gc,3)
c→ g (e, h,1) (c,3) (↑ec,1)
d→ c (d,1) (e,1)
h→ c (g, h,1) (↑hg,9)
g → c (e, g, h, ↑ge,1) (↑hg,9)
j → m (k,1) (j,14)
j → n (j,13)
j → i (h,1) (j,8)

(c) Examples of the information communicated between
node pairs. For example, h sends to c independent
individual information for g & h and fused information
for the “rest of network beyond h & g”, ↑hg. Nodes with
1-tree connections, such as j → n send only a single fused
information term. Communicated data are limited to the
intersections of the neighbourhoods of the nodes, thus
highly scalable.

Figure 6: A topology with mixed 1 & 2-tree
connections, and the node storage and communication
sets generated by the algorithm. This topology has
mixed 1-tree regions and 2-tree regions, thus showing
the generality of the algorithm for both 1 and 2-tree
topologies.



a b k l

d c h j m q

e g i n p

f o
(a) 2-tree test topology

a b k l

d c h j m q

e g i n p

f o
(b) A 1-Tree topology over the same
nodes

Figure 7: Topologies compared for the results. (a)
shows a 2-tree topology. (b) is a comparable 1-tree
topology over the same nodes, with approximately the
same span. Results are shown in Figures 8, 9 & 10

0 1 2 3 4 5
0

5

10

15

Time steps

In
fo

rm
at

io
n

at
ea

ch
n

o
d

e

2-tree
1-tree

Figure 8: Normal Operation. Each node’s information
versus time. The topologies are from Figure 7. Each
node starts with its own local information (1 unit at
t = 0), increasing as they acquire information through
the decentralised communication. At completion, all
nodes have the global total information (17 units).

0 1 2 3 4 5
0

5

10

15

Time steps

In
fo

rm
at

io
n

at
ea

ch
n

o
d

e

2-tree
1-tree

Figure 9: 2-tree versus 1-tree topologies from Figure 7,
each with a missing node, c. In the 1-tree case
the missing node breaks the network into several
components, and therefore none reach the required
global fusion. In the 2-tree case, the missing node does
not separate the network, and the global fused estimate
is obtained.

0 1 2 3 4 5
0

5

10

15

Time steps

In
fo

rm
at

io
n

at
ea

ch
n

o
d

e

2-tree
1-tree

Figure 10: 2-tree versus 1-tree topologies from
Figure 7, each with a missing link (h ↔ j). In the
1-tree case the missing link breaks the network into
two components, and therefore none reach the required
global fusion. In the 2-tree case, the missing link does
not separate the network, and the global fused estimate
is obtained.



Acknowledgements
This work is partly supported by the ARC Centre
of Excellence programme, funded by the Australian
Research Council (ARC) and the New South Wales
State Government, and by the U.S. Army Research
Laboratory under the Micro Autonomous Systems and
Technology program.

References
[1] A. R. Benaskeur, “Consistent fusion of

correlated data sources,” IECON Proceedings
(Industrial Electronics Conference), vol. 4,
pp. 2652–2656, 2002. [Online]. Available:
http://dx.doi.org/10.1109/IECON.2002.1182812

[2] B. Bollobás, Modern Graph Theory. Springer,
1998.

[3] V. Chandrasekaran, N. Srebro, and P. Harsha,
“Complexity of inference in graphical models,” 24th
Conference on Uncertainty in Artificial Intelligence
and Statistics, 2008.

[4] K. Chang, C. Chong, and S. Mori,
“On scalable distributed sensor fusion,”
Cologne, Germany, 2008. [Online]. Available:
http://dx.doi.org/10.1109/ICIF.2008.4632322

[5] H. Durrant-Whyte and Mike Stevens, “Data
fusion in decentralised sensing networks.” in 4th
International Conference on Information Fusion,
Montreal, Canada, 2001.

[6] S. J. Julier and J. K. Uhlmann, “A non-
divergent estimation algorithm in the presence
of unknown correlations,” Proceedings of
the American Control Conference, vol. 4,
pp. 2369–2373, 1997. [Online]. Available:
http://dx.doi.org/10.1109/ACC.1997.609105

[7] T. Kloks, Treewidth, Computations and Approxi-
mations, ser. Lecture Notes in Computer Science,
1994.

[8] E. Korach and N. Solel, “Tree-width, path-width,
and cutwidth,” Discrete Applied Mathematics,
vol. 43, no. 1, pp. 97–101, 1993.

[9] A. Makarenko, A. Brooks, T. Kaupp, H. Durrant-
Whyte, and F. Dellaert, “Decentralised data fusion:
A graphical model approach,” Seattle, WA, United
states, 2009, pp. 545–554.

[10] E. Nettleton, “Decentralised architectures for
tracking and navigation with multiple flight
vehicles,” Ph.D. dissertation, Australian Centre
for Field Robotics, Department of Aerospace,
Mechanical and Mechatronic Engineering, The
University of Sydney, 2003.

[11] D. Nicholson, C. Lloyd, S. Julier, and J. Uhlmann,
“Scalable distributed data fusion,” in Information
Fusion, 2002. Proceedings of the Fifth International
Conference on, vol. 1, 2002, pp. 630–635 vol.1.

[12] M. A. Paskin and G. D. Lawrence, “Junction
tree algorithms for solving sparse linear systems,”
University of California, Berkeley., Tech. Rep.
UCB/CSD-03-1271, 2003.


