
A Novel Augmented Graph

Approach for Estimation in

Localisation and Mapping

Paul Robert Thompson

A thesis submitted in fulfillment

of the requirements for the degree of

Doctor of Philosophy

Centre for English Teaching (CET)

University of Sydney

Agent Information Pack – 2007

International

“Education's purpose is to replace an empty mind with an open one.”

Australian Centre for Field Robotics

School of Aerospace, Mechanical and Mechatronic Engineering

The University of Sydney

March, 2009

Declaration

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by

another person nor material which to a substantial extent has been accepted for the

award of any other degree or diploma of the University or other institute of higher

learning, except where due acknowledgement has been made in the text.

Paul Robert Thompson

March, 2009

i

ii

Abstract

Paul Robert Thompson Doctor of Philosophy
The University of Sydney March, 2009

A Novel Augmented Graph
Approach for Estimation in
Localisation and Mapping

This thesis proposes the use of the augmented system form - a generalisation of the
information form representing both observations and states. In conjunction with this,
this thesis proposes a novel graph representation for the estimation problem together
with a graph based linear direct solving algorithm.

The augmented system form is a mathematical description of the estimation problem
showing the states and observations. The augmented system form allows a more
general range of factorisation orders among the observations and states, which is
essential for constraints and is beneficial for sparsity and numerical reasons.

The proposed graph structure is a novel sparse data structure providing more sym-
metric access and faster traversal and modification operations than the compressed-
sparse-column (CSC) sparse matrix format. The graph structure was developed as a
fundamental underlying structure for the formulation of sparse estimation problems.
This graph-theoretic representation replaces conventional sparse matrix representations
for the estimation states, observations and their interconnections.

This thesis contributes a new implementation of the indefinite LDL factorisation
algorithm based entirely in the graph structure. This direct solving algorithm was
developed in order to exploit the above new approaches of this thesis. The factorisation
operations consist of accessing adjacencies and modifying the graph edges. The
developed solving algorithm demonstrates the significant differences in the form
and approach of the graph-embedded algorithm compared to a conventional matrix
implementation.

The contributions proposed in this thesis improve estimation methods by providing
novel mathematical data structures used to represent states, observations and the
sparse links between them. These offer improved flexibility and capabilities which are
exploited in the solving algorithm. The contributions constitute a new framework
for the development of future online and incremental solving, data association and
analysis algorithms for online, large scale localisation and mapping.

Acknowledgements

First of all, I would like to thank my supervisor, Salah Sukkarieh and co-supervisor,
Hugh Durrant-Whyte. It’s been a long journey, and I thank you both for your patience,
encouragement and trust in my direction.

I would like to thank my friends at the ACFR for being alongside me through this
journey, particularly Dave, Jason, Mitch, Sharon, Toby and Stewart. Thank you to
those who came before me for passing on your wisdom - Eric, Tim B, Ian, Fabio,
Grover, Alex, Alex and Alexei. In turn, to those who are following - good luck.

Thank you to Jeremy, Ali, Esa and Tim H for the experiences on the Brumby, and for
your consistently high standards which motivated me to do my best.

To Dad, David, Lainie and Lisa, Andrew and Lynda, thank you for everything. Thank
you for providing a loving family home environment to retreat to, and for growing
with me through this.

To Mum, I dedicate this to you - this thesis is for both of us. Thank you for inspiring
me and sharing the experience with me. I miss you every day.

To my second family, Frank, Helen, Ross and Jacqui, thank you for your welcoming,
kind friendship.

Thank you to James, Brooke, Ben, Katherine, Andy, for your friendship and support.

Finally, a special thank you to Marcelle for being my constant companion though
this time and for always. I trust and value your encouragement, you know me better
than anyone. I love you and I want you to know that I truly appreciate your amazing
support and I am eagerly looking forward to everything we will do and share together
in the future.

iii

tenpo li tawa la sona li kama

For Bev 1953-2008

Contents

Declaration i

Abstract ii

Acknowledgements iii

Contents v

List of Figures x

List of Tables xiii

List of Examples xiv

Nomenclature xv

1 Introduction 1

1.1 Thesis Contributions . 3

1.2 Motivation for Approaches . 6

1.3 Motivating Problem . 8

1.4 Thesis Structure . 10

2 Estimation In Localisation and Mapping 12

2.1 Localisation and Mapping Literature 12

2.1.1 Smoothing and Mapping (SAM) 16

2.1.2 Viewpoint based SLAM . 18

v

CONTENTS vi

2.1.3 SLAM Filtering . 20

2.2 Graphical Models Literature . 21

2.3 Assumptions and Context . 22

2.4 Solving Overview . 25

2.4.1 Step Based Approach . 27

2.4.2 Solving Linear Systems . 28

2.5 Summary . 30

2.6 Graph Notation . 31

3 Augmented Methods in Estimation 33

3.1 Introduction . 33

3.2 Augmenting Observations and Constraints 37

3.2.1 Information Formulation . 38

3.2.2 Lagrangian Formulation . 40

3.2.3 Constraints . 46

3.2.4 Mixed Observations and Constraints 52

3.2.5 Equivalence to the Information Form: Eliminating Observations 54

3.2.6 Literature - Augmented System Form 57

3.2.7 Nonlinear Observations . 60

3.2.8 Properties of the Augmented System Form 61

3.2.9 Regularisation of the Augmented System Form 63

3.3 Augmenting Trajectory States . 65

3.3.1 Formation of the Trajectory States 66

3.3.2 Discussion . 68

3.3.3 Equivalence . 70

3.4 Relation To Graphical Models . 73

3.4.1 Relation to Factor Graphs . 74

3.4.2 What are the systems before conditioning on the observations? 76

3.5 Insights for Data Fusion . 78

CONTENTS vii

3.6 Residuals & Innovations . 81

3.6.1 Innovations . 82

3.6.2 Residuals . 83

3.6.3 Discussion . 85

3.6.4 Multiple Observation Terms 87

3.6.5 Chi-Squared Degrees of Freedom 89

3.6.6 Lagrange Multipliers for Measurement of Consistency 91

3.6.7 Conclusion . 93

3.7 Benefits for Estimation . 93

3.7.1 Factorisation Ordering for Sparsity 94

3.7.2 Factorisation Ordering for Numerical Stability 118

3.7.3 Handling Nonlinear Observations 122

3.7.4 Conclusion . 123

3.8 Future Research . 123

3.9 Chapter Conclusion . 123

4 Graph Theoretic Representation 126

4.1 Introduction . 126

4.2 Literature . 130

4.3 Graph Representation of Linear Systems 133

4.3.1 Dense Vectors . 134

4.3.2 Matrix Entries . 136

4.3.3 Sparse Vectors . 138

4.3.4 Matrix Categories . 139

4.3.5 Discussion . 140

4.4 Graph Representation . 141

4.4.1 Edges and Loops . 142

4.4.2 Symmetric and Directed Edges 142

4.4.3 Multiple Edge Sets . 144

CONTENTS viii

4.4.4 Discussion and Conclusion . 145

4.5 Graph Representation Implementation 146

4.5.1 Edges . 147

4.5.2 Loops . 148

4.5.3 Multiple Edge-Sets . 149

4.5.4 Vertices . 149

4.5.5 Graph . 151

4.5.6 Ordering Properties . 152

4.5.7 Examples . 153

4.6 Comparisons . 153

4.6.1 Qualitative Comparison . 153

4.6.2 Insertion Test . 156

4.6.3 Access Test . 163

4.7 Future Research . 167

4.8 Conclusion . 169

5 Graph-Theoretic Solution Methods 171

5.1 Introduction . 171

5.2 Symmetric LDL Factorisation Introduction 172

5.2.1 LDL Factorisation, Mathematical Form 176

5.2.2 LDL Factorisation, Dense Matrix Form 181

5.3 Symmetric LDL Factorisation - Graph Form 183

5.3.1 Graph Based Factorisation Steps 183

5.3.2 Graph Based Linear Algebra Procedures 189

5.4 Linear Systems Solve Using the LDL Factorisation 195

5.4.1 Graph Based Block Diagonal Solve 198

5.4.2 Graph Based Triangular Solve 198

5.4.3 Graph Based Solve Implementation 200

5.5 Reconstruction From LDL Factorisation 207

CONTENTS ix

5.6 Discussion . 209

5.6.1 Relation to the Junction Tree Algorithm 209

5.7 Future Research . 211

5.7.1 Factorisation Approach . 211

5.7.2 Factorisation Ordering Choice 212

5.8 Chapter Conclusion . 217

6 Conclusion and Future Research 219

6.1 Summary of Contributions . 219

6.2 Future Research . 221

6.2.1 Online Methods . 221

6.2.2 Iterative Methods . 223

6.2.3 Data Association Methods . 224

6.2.4 Decentralisation . 225

6.3 Conclusion . 226

A Augmented System Details 227

A.1 Eliminating States . 227

A.2 Terms Relating to Residuals and Innovations 230

A.3 Quadratic Forms and Mahalanobis Distances 231

A.4 Linear Systems . 232

A.5 Proof of Equivalence of Residual and Innovation Distances 233

Bibliography 245

List of Figures

1.1 Thesis outline (subsets of this thesis) 2

1.2 Thesis outlook (supersets of this thesis) 2

2.1 SLAM frameworks . 14

2.2 SLAM frameworks (detail) . 15

2.3 Major components of the optimisation algorithm. 27

2.4 Graph notation for example systems 32

3.1 Two views of contours of the Lagrangian surface. The solution in x and
ν (circled) is the stationary point on the Lagrangian. The two dark
lines indicate solutions to the partial derivatives ∇νL = 0 (concave up)
and ∇xL = 0 (concave down). The quadratic in the (x, L) space is
the projection of the line ∇νL = 0 into x, which is the quadratic cost
function F (x). 45

3.2 The ranges 0 to ∞ for covariance and information forms 51

3.3 Schematic illustration of the augmented system form and the informa-
tion form. 56

3.4 A set of equivalences between graph concepts and linear systems in
estimation . 76

3.5 The augmented and information forms before observation-conditioning 77

3.6 Illustration of the innovation and residual terms 81

3.7 Illustration of the residual approach for multiple observations 88

3.8 A multiple-residual case arising from a trajectory smoothing structure 89

3.9 Alternative system forms and solving approaches 95

x

LIST OF FIGURES xi

3.10 Number of nonzeros in the augmented form and the information form
for various Nstate, in the case of a large observation degree & small state
degree. 98

3.11 Number of nonzeros in the L factor for various ordering approaches, in
the case of a large observation degree & small state degree. 99

3.12 A large observation degree, small state degree example, systems A and
Y+ . 100

3.13 A large observation degree, small state degree example showing the L
for the alternative orderings. 101

3.14 Large state degree, small observation degree - L sparsity vs. Nstate . . 104

3.15 Large state degree, small observation degree - L sparsity (orderings) . 105

3.16 A large state degree, small observation degree example, systems A and
Y+ . 106

3.17 A large state degree, small observation degree example showing the L
for the alternative orderings. 107

3.18 Structure of states and observations for a dynamic system example. . 109

3.19 Example factorisation ordering . 115

3.20 Typical fragments of the factorisation ordering generated by colpermamd(A).116

4.1 Graph representation of symmetric linear systems 128

4.2 An example triangular square linear system L shown in both matrix
and graph forms. 129

4.4 Matrix and graph equivalents for a dense vector 134

4.3 Squareness and symmetry ambiguity of matrices resolved in the graph
form . 135

4.5 Vector oriented and vertex oriented data storage schemes. 136

4.6 Matrix and graph equivalents for scalar matrix entries, for symmetric
(undirected), unsymmetric (directed) and diagonal entries. 137

4.7 Sparse vector representations . 138

4.8 Matrix and graph equivalents for a block diagonal matrix 140

4.9 The edge data structure . 148

4.10 The loop data structure. 148

4.11 The graph containment of the vertex objects. 157

LIST OF FIGURES xii

4.12 The graph containment of the edge objects. 158

4.13 The vertex containment of the edge objects 159

4.14 The CSC matrix format . 160

4.15 Insertion time versus the number of shifted entries for the CSC matrix
format and the graph format . 162

4.16 Graph and Matrix representations of a linear chain for the traversal test.164

4.17 Traversal time versus chain length . 166

5.1 Graph based LDL factorisation example 184

5.2 scalar outer product, graph form . 193

5.3 Off-diagonal outer product, graph form 197

5.4 In vs. out edges for triangular (acyclic) systems 201

5.5 Acyclic graph root and leaf boundaries. 206

List of Tables

3.2 Number of nonzeros in the augmented form and the information form,
in the case of a large observation degree & small state degree. 98

3.3 Number of nonzeros in the L factor for various ordering approaches, in
the case of a large observation degree & small state degree. 99

3.4 Number of nonzeros in the augmented form and the information form,
in the case of a large state degree & small observation degree. 104

3.5 Number of nonzeros in the L factor for various ordering approaches, in
the case of a large state degree & small observation degree. 105

3.6 Summary of dimensions of observations and their linked states 111

3.7 Summary of dimensions of states and their linked observations 111

3.8 Augmented system L factor sparsity for various ordering algorithms . 112

3.9 Sparsity of the un-factorised augmented and information form systems. 113

3.10 Triangular Factor Sparsity . 114

xiii

List of Examples

3.1 The elimination of constraint-deviation bias using equality constraints 47

3.2 The case of zero eigenvalues due to over-defined constraints 62

3.3 The regularisation of over-defined constraints 64

3.4 Sparsity factorisation ordering in a large observation degree case . . . 97

3.5 Sparsity factorisation orderings in a large state degree case 103

3.6 Sparsity factorisation in a localisation and mapping example 109

3.7 Numerical stability of the augmented system versus information form
near constraints . 119

3.8 Numerical stability of differing factorisation orderings near constraints 120

5.1 The requirement for 2 by 2 block factorisation steps. 179

5.2 L versus LT , forward versus backward directions for directed-acyclic
(triangular) solving . 199

xiv

Nomenclature

Typefaces

A, Y Matrices
x, b vectors
x,v scalars
add edge Code and pseudo code
A,L,D graph edge-sets
G graphs

Notation

x Any state
ν Any observation or constraint Lagrange multiplier
h(x) A (nonlinear) observation function of state x
z The obtained observation value
h(x)− z The residual of the observation, evaluated at x
∆x An increment or step to state x
H The observation Jacobian

(either linear or a particular linearisation of a nonlinear h)
HT The H matrix transposed
Y+ The posterior value of Y
E[v] Expectation of v
a→ b Replacement of a into b
xe Solution (final estimate) of x
x̂ Mean of a prior estimate of x
(obs,states) Concatenation of the sequence of observations followed by states

xv

NOMENCLATURE xvi

Abbreviations

SLAM Simultaneous Localisation and Mapping
DoF Degrees of Freedom
nnz Number of nonzeros
CSC Compressed-Sparse-Column (sparse matrix format)
CSR Compressed-Sparse-Row (sparse matrix format)
MAP Maximum-a-posteriori (estimate)
PDF Probability density function

Chapter 1

Introduction

This thesis contributes innovative mathematical structures and approaches for the

formulation and solution of estimation problems. These consist of: the augmented

system form; the graph representation of estimation problems and linear systems; and

the graph embedded solving of linear systems.

The approaches presented in this thesis have improved capabilities and flexibility over

their conventional alternatives. The approaches are more general but mathematically

equivalent alternatives to existing methods. By offering novel and general alterna-

tives to fundamental underlying tools, this thesis contributes towards the bottom-up

improvement of estimation solving methods. In particular, this thesis contributes

detailed linear and nonlinear systems structures and associated data structures. These

are used to represent observations, states and the links between them. This thesis

also contributes novel approaches to a solving algorithm which operates within those

structures. The topics contributed by this thesis operate in a complementary manner

with each other, while still being separately and individually beneficial.

This thesis is aimed at improvements in nonlinear, high dimensional estimation

problems in localisation and mapping. Further potential applications exist in a wider

variety of estimation problems and related high-dimensional solving or optimisation

problems.

1

CHAPTER 1. INTRODUCTION 2

This

Thesis

Variable

augmentation

Sparse

linear systems

Trajectory

state methods

Augmented system

form

Graph

representation

Graph

solving methods

Figure 1.1: Thesis outline (subsets of this thesis). This thesis includes topics relating

to the augmentation of additional variables, including trajectory states and observations,

sparse linear systems including a novel graph representation and associated solving

algorithms.

This

Thesis

Localisation

& mapping

Graphical

models

Autonomous systems Engineering systems

Figure 1.2: Thesis outlook (supersets of this thesis). Applications and extensions to

this thesis lie in localisation & mapping and graphical models, for example. These in turn

relate to autonomous systems and engineering systems more generally.

CHAPTER 1. INTRODUCTION 3

1.1 Thesis Contributions

The principal contributions of this thesis are as follows:

1. Augmented Methods in Estimation

This thesis proposes and develops an estimation approach consisting of the

augmentation of observations and constraints, in addition to the states. This

augmented system method is based upon the trajectory state augmentation

approach, since the benefits of retaining the observations rely on retaining their

related states.

The augmentation of observations makes the augmented form more general than

the information form, since it describes the dual system of both the states and

the observations & constraints. The observations and constraints are augmented

as dual variables, rather than marginalised into the states.

This thesis proposes that the augmented system form is a more general starting

point for estimation algorithms than the information form. The conventional

approach of solving the information form can equivalently be recovered by

eliminating the observations first. In addition, a wider range of elimination orders

can be obtained by eliminating observations and states in a mixed order, including

the simultaneous elimination of pairs of variables in the observations and/or

states. This flexible elimination is essential in the presence of constraints, and

improves the numerical conditioning in cases of near constraint tight observations.

This flexible elimination is also beneficial for sparsity and numerical reasons,

depending on specific numerical and graph structure properties of the states and

observations.

The augmented form is a mathematical description of the estimation problem

showing explicitly and separately the states and observations together with

a cross-coupling interaction. The augmented system form describes the full

structure of the sparse estimation problem as a mathematically solvable system.

The augmentation of observations exposes their Jacobians directly, allowing

simple linearisation changes, whereas in the information form the Jacobians

CHAPTER 1. INTRODUCTION 4

are mixed in together and expressed on the states. This formulation approach

brings insights into data fusion and estimation systems by explicitly showing

the interaction of observations and states via Lagrange multipliers.

2. A novel graph-theoretic structure for sparse estimation problems

This thesis contributes a new structure for representing estimation problems.

This structure is a graph based structure, focusing on the representation of

objects and the links between them, rather than using conventional vector and

matrix semantics. The structure represents estimation problem states, nonlinear

observation terms and their linearisation but also focuses on linear systems

generally. This structure offers improved capabilities and efficiency of storage,

access and online modification.

This thesis contributes a novel approach for the mapping of vectors and matrices

into graph vertices and edges as an explicit structure for runtime operations.

In particular, this thesis contributes a graph structure distinguishing loops,

symmetric and directed edges, and containing multiple edge sets which are all

motivated from the requirements for representing linear systems.

The structure introduced in this thesis departs from conventional vector and

matrix semantics. This thesis proposes a new interface based on object access

rather than integer indexing. This subtle change actually has a significant effect

on the arrangement of algorithms.

This thesis contributes a practical implementation of the graph based structure

for linear systems. This thesis compares the graph structure implementation

against a conventional sparse matrix format for insertion and traversal operations,

showing significant benefits to performance.

3. Estimation direct solving algorithm in the graph structure

This thesis proposes a novel graph based implementation of the LDL direct

factorisation and solving algorithm. This algorithm exploits the graph embedded

representation of the linear systems to allow greater flexibility and capabilities

in the factorisation, particularly regarding the factorisation ordering. The new

CHAPTER 1. INTRODUCTION 5

graph data structure opens up the development of a new variety of estimation

theoretic and linear algebraic tools which may be useful in future for faster

solving and online modification algorithms.

The relationships between these contributions are as follows:

Augmented system form & Graph structure

The augmented system form provides a mathematical system representing both

observations and states, while the graph structure provides a fundamental tool

for representing sparse relationships between variables generally. The graph

structure helps by efficiently representing the observations and states, and the

sparse observation Jacobians which link them. The graph structure complements

the benefits of the augmented system form by allowing fast augmentation linking

and access operations and a decoupling of algorithmic orderings with storage

orderings.

Augmented system form & Graph solving

While the augmented system form provides the mathematical system, the graph

solving algorithm describes how to solve it. In particular, the graph solving

algorithm supports the solution of indefinite linear systems, which occur as

a result of using the augmented system form. The graph solving algorithm

complements the augmented system form by allowing flexible factorisation

orderings.

Graph structure & Graph solving

The graph structure provides the representation of the problem and the tools

for manipulation, while the graph solving algorithm utilises the graph structure

tools as the manipulations in the solving algorithm. The graph solving algorithm

exploits the benefits of the graph structure in terms of easy and fast insertions

and adjacency accesses. The graph solving algorithm operates with the novel

facilities of the graph structure approach, especially in terms of indexing and

access properties.

CHAPTER 1. INTRODUCTION 6

1.2 Motivation for Approaches

This thesis presents an interlinked set of approaches which derive from an investigation

into alternative structures for the formulation and solving methods in estimation.

The methods were motivated by the trajectory state or delayed state paradigm for

estimation [20, 24, 26, 46, 70, 71]. It was desirable to be able to rapidly insert states

and observations into the representation and perform online modification solving.

Considerations for the online modification were motivated by iterative methods. The

concept of this was to traverse through the structure of the observations and states,

starting from the point of insertion of new observations, where the residuals and

solution were disturbed, and terminating several steps later, where the solution and

residuals would be less affected.

This motivated the idea to use a graph representation to manage the structure of

the observations and their connections to the states of the estimation problem. This

included the idea that the observation Jacobian matrix would be easily stored on

the graph edges between the observations and the states. Indeed, a key insight was

that any sparse linear system could be encoded onto a graph between variables of

the system. An essential aspect was that the graph structure would be a core part of

the implementation, rather than a matrix based implementation, as well as being an

important theoretical tool.

The graph representation had mathematical appeal over the alternative sparse matrix

representation. The graph representation offered explicit encoding of the sparsity

structure and fast access to adjacent variables. The graph representation would operate

without a row or column orientation preference, giving it a symmetry advantage over

a matrix representation.

The graph representation presented considerable conceptual hurdles in relation to how

it would relate mathematically to the estimation problem and how it would relate to a

direct solving process. The representation initially considered was a bipartite directed

representation consisting of edges pointing from states to observations, and with distinct

treatments for observations and constraints. However, there were some unresolved

CHAPTER 1. INTRODUCTION 7

questions in this representation. The primary focus of the bipartite graph was on the

representation of H, the Jacobian of the observations with respect to the states. H

is fundamentally rectangular and directed. It was then unclear how to represent Y,

the prior information matrix, which is fundamentally square and symmetric. Also, in

the bipartite directed representation it was not clear what mathematical system or

solving process corresponded to the joint system of observations and states.

Iterative methods were considered for the solution process. In particular, the conjugate-

gradient method for the normal equations (CGNR) [61] was considered. The CGNR

performs matrix-vector multiplication in the normal equations ((HTH) x) in the

form HT (Hx). The directed bipartite edges were well suited to these forward and

transposed matrix-vector multiplications required for the iterative method.

However, this approach is based on the information form (normal equations) rather

than solving a joint system in the observations and constraints.

It was also important to consider direct solving methods, due to the need to be able

to perform marginalisation and obtain individual or small joint covariances, for data

association purposes, and to relate the developed methods back to existing estimation

methods. It was not clear how the bipartite graph representation approach would sup-

port the factorisations required for direct solving. One consideration was to introduce

new pseudo-observation vertices corresponding to each row in the factorisation. The

QR factorisation of the observation Jacobian was considered, based on [10] and [20]

however, there were difficulties adapting this to constrained systems.

The augmented system form, from both the least squares [10] and equality constraint

literature[12], provided a mathematical model for an estimation problem formulation

consisting of explicit separation of the observations and states. This justified and

motivated alterations to the graph embedded representation. Instead of the bipartite

graph linking states to observations or constraints, the augmented system form

described a symmetric graph. The augmented system form described how to uniformly

represent each of the terms H and Y, as undirected edges. (H is represented by

undirected edges because it is an off-diagonal between the states and observations

in the augmented system, which is symmetric). The augmented form also allowed

CHAPTER 1. INTRODUCTION 8

for generalised observations & constraints with a single, unified treatment via the

observation/constraint uncertainty covariance, R. The augmented system also emerged

during this thesis as a fundamental underlying mathematical system for the estimation

problem.

The factorisation process was then able to be clearly understood as the LDL factorisa-

tion of the augmented system, which is a single symmetric system. The graph concept

was extended in order to be able to simultaneously represent both the undirected,

symmetric systems of the estimation problem (augmented form) and the unsymmetric,

triangular, directed-acyclic systems of the linear system factorisation. This required

extensions to the graph concept, guided by the mathematics of the linear systems

forms which were required.

Finally, an initial set of direct solving algorithms based entirely in the new graph repre-

sentation were developed. These adapt existing algorithms into the new representation

to explore the consequences of the new representation and the augmented system

form. The direct solving algorithms presented are the beginning of new alternative

methods which exploit the graph representation.

1.3 Motivating Problem

This thesis was motivated by the problem of online, joint estimation of external

feature mapping and vehicle localisation. This mapping and localisation problem

was considered in the context of multiple unmanned aerial vehicles operating jointly

on the mapping and localisation task. The sensors driving the estimation task were

considered to be primarily vision and inertial sensing, which further motivated the

inclusion of various sensor calibration and bias parameters.

This application problem is subject to various fundamental challenges:

• The system models, such as the observation and prediction models, are inherently

nonlinear. Nonlinearity impairs the ability of the system to predict the variation

CHAPTER 1. INTRODUCTION 9

of the models at a distant point in state space, given analysed information from

a present point in state space. This reduces the ability of the estimator to

accurately determine the effects of adjustments to the state estimates. This in

turn means that adjustments must be made more carefully, checking validity

and re-computing linearisation values.

• The observation and prediction models in this application context are typically

partial rank models. A partial rank observation model refers to an observation

which provides fewer observation outputs than the number of input states.

Consequently, the observation cannot be inverted to obtain estimates of the

states. For example, the vision sensing provides a projective, bearing-only

observation of only two dimensions, despite the state consisting of many degrees

of freedom in the observer, camera and feature.

This thesis addresses partial rank models by relying exclusively on the one

direction in which models can always be used: the computation of projected

observations from states (rather than the inversion of observations back into

state estimates). Furthermore, sufficiently general linear algebra operations or

precautions are required when handling general rank models, since various terms

may appear invertible.

• The states used in the application consist of mixed static and dynamic states.

The vehicle position, velocity and attitude states are highly dynamic, whereas

the feature states are modelled as stationary, static states. (Sensor calibration

and bias parameters might be modelled either way depending on application

domain choices). Furthermore, the static and dynamic states are coupled, since

the mapping task requires the vehicle to observe each of the map features.

From an estimation point of view, the mixture of static and dynamic states leads

to a problem structure consisting of various chain-like and looped structures.

Furthermore, this structure varies continuously in an unpredictable manner. The

chain-like aspect derives from discretisation of continuous dynamics, and this

evolves with a steady chain-like structure. Looped structures form when earlier

CHAPTER 1. INTRODUCTION 10

features are re-observed at a later time.

These high dimensional, sparse interlinking structures motivated the develope-

ments in this thesis.

• The estimation problem derives from online systems which continually input

sensor and prediction observations. Therefore, the estimation problem is changing

and growing continually. The problem of online estimation motivated the

developments in this thesis.

1.4 Thesis Structure

Chapter 2 gives an overview of the estimation process, indicating where the contribu-

tions of this thesis fit in.

Chapter 3 describes the augmented system method. The concept and theory of the

approach is described and its relation to existing methods in estimation is shown.

The augmented form is a key tool for solving equality constrained problems. The

augmented form is an important generalisation of the information form which offers

benefits in the full representation of the estimation problem including the observations

and states. The augmented system form can be factorised using a mixed ordering in

the observation and state variables, allowing improved sparsity and numerical stability

properties.

Chapter 4 proposes a novel graph embedded representation of the estimation problem

and associated sparse linear systems. The theory and implementation of the graph

representation are described. Numerical evaluations compare the proposed graph

representation of linear systems against the conventional compressed-sparse-column

(CSC) matrix representation. Compared to the matrix representation, the graph rep-

resentation allows constant time insertion and removal of edges or vertices, allows fast

& constant time access to adjacent variables, and decouples the factorisation ordering

from the underlying storage. The proposed graph representation also incorporates

CHAPTER 1. INTRODUCTION 11

novel graph representation elements motivated by the need to represent sparse linear

systems.

Chapter 5 presents a graph based direct solving algorithm for the solution of esti-

mation problems. This algorithm exploits the graph embedded representation of the

linear systems. The fast insertion and adjacency capabilities of the graph embedded

representation alter the complexity of sparse direct solving algorithms. This allows the

solving algorithm to use a more flexible factorisation ordering approach, determined

mid-factorisation.

Chapter 6 concludes the thesis and outlines areas for future research.

Chapter 2

Estimation In Localisation and

Mapping

This chapter gives a broad overview of the overall estimation processes to indicate

where the contributions of this thesis reside within the context of the estimation

process.

The methods of this thesis are broadly based on prior approaches in probabilistic

estimation [8, 50], estimation in simultaneous localisation and mapping [20, 70, 71],

bundle adjustment [72], numerical optimisation [12, 54], numerical linear algebra

[10, 37] and graphical models [40, 41, 44, 56]

2.1 Localisation and Mapping Literature

There are several primary approaches in the literature on localisation and mapping

which will be considered in this thesis. These are illustrated in figures 2.1 and 2.2.

Further surveys of the literature in SLAM are given in [7, 23, 70].

• Augmented system form. (Proposed in this thesis). The estimated variables are

the vehicle pose trajectory states, static feature map states and the observation

Lagrange multipliers.

12

CHAPTER 2. ESTIMATION IN LOCALISATION AND MAPPING 13

• Pose trajectory and map form (smoothing and mapping or SAM). The estimated

variables are the vehicle pose trajectory states and the static feature map states.

• Pose-only trajectory form (viewpoint based SLAM). The estimated variables are

the vehicle pose trajectory. Note that the terminology “trajectory state methods”

used in this thesis covers both the trajectory-only estimation (viewpoint based

SLAM) and the trajectory plus map estimation approaches (smoothing and

mapping).

• Filtering form. The estimated variables are the present vehicle pose state and

the static feature map states.

CHAPTER 2. ESTIMATION IN LOCALISATION AND MAPPING 14

(a) The augmented observations, trajectory and map form of this thesis. The estimated variables
are: vehicle pose trajectory states, the static feature map states, plus the observations.

(b) The SLAM trajectory and map form (smoothing and mapping or SAM). The estimated
variables are: vehicle pose trajectory states and the static feature map states. This is obtained
from 2.1a by eliminating the observation variables.

(c) The SLAM pose trajectory only form (viewpoint based SLAM). The estimated variables
are: vehicle pose trajectory states. This is obtained from 2.1b by eliminating the feature states.

(d) The SLAM filtering form. The estimated variables are: the present vehicle pose state and
the static feature map states. This is obtained from 2.1b by eliminating the vehicle trajectory
states.

Past vehicle state Present vehicle state

Feature state Vision Observations Dynamic Observations

Figure 2.1: SLAM frameworks. Each framework considers certain sets of variables
jointly. The methods all relate to marginalised subsets of the augmented system form. In
marginalising these links, it is important to consider the internal dimensions hidden in
each vertex, shown expanded in figure 2.2

CHAPTER 2. ESTIMATION IN LOCALISATION AND MAPPING 15

pos. tk

att. tk pos. tk+1

att. tk+1

feat. pos.

vis. obs.vis. obs.

(a) Augmented System Form (vehicle states, features and observations). Nlinks = 36

pos. tk

att. tk pos. tk+1

att. tk+1

feat. pos.

(b) Smoothing and Mapping form (vehicle states and features). Nlinks = 69

pos. tk

att. tk pos. tk+1

att. tk+1

(c) Viewpoint form (vehicle states only). Nlinks = 66

Figure 2.2: SLAM frameworks (detail). In this case, showing the internal dimensions
of the vehicle position(3) and attitude(3), the feature position(3) and the vision obser-
vations(2) shows the significant fill-in when marginalising. The augmented system form
contains the most variables (19) but the least number of links (36).

CHAPTER 2. ESTIMATION IN LOCALISATION AND MAPPING 16

2.1.1 Smoothing and Mapping (SAM)

The smoothing and mapping (SAM) approach is illustrated in figure 2.1b. The

estimated variables are the vehicle pose trajectory states and the static feature map

states.

The SAM approach forms large scale sparse networks consisting of the vehicle trajectory

and feature map states, followed by operation of sparse system solvers on that network

[3, 20, 42].

The SAM approach is an important prior method to the approach proposed in this

thesis. In this thesis, the proposed augmented system form augments the observation

Lagrange multiplier variables onto the smoothing and mapping state variables. Conse-

quently, from the point of view of this thesis, the smoothing and mapping approach is

derived from the augmented system form by eliminating the observation Lagrange

multiplier variables. Compared to the augmented system form approach proposed in

this thesis, the SAM approach is an example of a fixed elimination policy approach;

The observation variables are eliminated unconditionally.

The smoothing and mapping approach proposes the widest range of state variables

among the methods reviewed in this section (consisting of the vehicle trajectory and

the map states). Descriptions of the smoothing and mapping approach refer to this as

the “full SLAM problem” [20, 69].

This thesis also recommends adopting such a fully representative formulation of the

problem. 1

The method of “bundle adjustment” from the field of photogrammetry [72] is closely

related to the smoothing and mapping method; The estimated variables are the

sequence of vehicle (or camera) positions together with the set of feature positions.

However, in bundle adjustment there is no dynamic model linking the successive

camera positions. The camera positions are only linked through the observations to

1Another class of significant state variables are bias variables associated with the observations,
for example, calibration and alignment states or measurement bias states. These should also be
augmented into the system where applicable.

CHAPTER 2. ESTIMATION IN LOCALISATION AND MAPPING 17

the features. Triggs [72] provides an extensive summary and survey article on the

methods of bundle adjustment. Methods in bundle adjustment frequently apply a

fixed marginalisation or factorisation strategy of eliminating either the map points or

camera points first [13, 47, 72]. This is particularly applicable in bundle adjustment

since, in that context, the feature-feature and camera-camera blocks are sparse and

block-diagonal.

Recent work in localiation and mapping estimation literature has a focus on high

fidelity formuation frameworks coupled to efficient solution methods. For example,

[3] forms a large scale graph network of vehicle states and features, linked by vision

frames. Such a network represents a general smoothing-and-mapping formulation of

the problem. This network is then selectively marginalised down to a tractable size

for realtime operation. The method presented in [3] performs significant reductions

in the network size through marginalisation aided by nonlinear parameterisation

methods. The choice of parameterisation is important as it affects the accuracy of

approximations introduced by linearisation and made permanent in the posterior after

marginalisation [72]. The choice of parameterisation is an important topic but is

orthogonal to the methods proposed in this thesis.

Dellaert [20] discusses the importance of the size of the representation of the problem

formulation. The alternatives considered in [20] are the posterior information form

(Y+), the system measurement Jacobian matrix (H) and the system posterior covari-

ance matrix (P+). The information matrix and measurement Jacobian are shown

to be naturally sparse in the SAM formulation, whereas the covariance matrix is

naturally dense.

The sparsity of the SAM form arises due to the limited number of variables which

are involved in any one factor. The properties of the possible types of factors are

known when the system is designed. In particular the factors arising in mapping and

localisation have guaranteed maximum degree. The SAM information and Jacobian

systems are then sparse for nontrivial trajectories and maps. The sparsity of the

SAM form is closely related to the discussion in section 3.4.1 regarding the augmented

system form and factor graphs in smoothing and mapping.

CHAPTER 2. ESTIMATION IN LOCALISATION AND MAPPING 18

The improved sparsity that arises from maintaining the additional vehicle trajectory

states is discussed in [20]. By maintaining both the vehicle trajectory states and the

feature map states, the elimination or factorisation order of the variables can mix

between the trajectory and map states. Algorithms such as [18] which determine the

factorisation ordering can operate on the feature and trajectory states jointly. The

resulting orderings are, in general, better than choosing either the features first or the

trajectory states first [20].

In summary, instead of using a fixed policy for the factorisation ordering or solving

approaches, this thesis recommends building the formulation of the system followed by

analysis of the factorisation ordering and operation of the solver on that formulation.

This motivated the development in this thesis of the augmented system form, in which

the factorisation ordering can mix between the observation and state variables.

2.1.2 Viewpoint based SLAM

In viewpoint based SLAM, the estimation variables are the vehicle pose trajectory

states only.

Descriptions of this approach in the literature [24, 25, 49] operate in contexts where the

sensor data (images or scans) are able to be processed into relative pose relationships

between pairs of vehicle poses. These pose displacements then chain and loop together

to form the overall connected structure which defines the estimation problem. The

viewpoint based approach does not directly estimate feature states. However, “features”

are less well defined because some view based implementations process the sensor data

into pose relationships without features (for example, scan or image matching). This

means that viewpoint based approaches are effectively equivalent to the elimination

of the features [24]. Thus the viewpoint based approach to SLAM takes the fixed

elimination policy of eliminating the features. By contrast, the SAM and augmented

system form approaches formulate the system with the features included.

The viewpoint based SLAM approach is claimed to have a naturally sparse information

CHAPTER 2. ESTIMATION IN LOCALISATION AND MAPPING 19

matrix representation [24]. This is due to the pattern of using sensor images to generate

vehicle pose relations.

The elimination of features onto the vehicle trajectory will cause fill-in among the

remaining vehicle trajectory states. The systems in [24, 49] operate close to the sea

floor. Features are seen at relatively close range for relatively short durations during

traversal (and seen again occasionally in loop closure). This short duration gives the

system structure a small feature degree such that it is beneficial to marginalise out

the features and adopt a trajectory or pose oriented framework. The extent of fill-in

is kept small because of the limited range of view to the features.

Repeatedly eliminating features will become inconsistent if the same feature or feature

pair is used. However, the description in [24] states that it is able to avoid re-use

of the data to overcome this. This is helped by the environment which has a short

duration of visibility of features, and the specific features used for matching in images

changes frequently.

However, the application considered for this thesis is in airborne mapping and lo-

calisation. In the airborne context it is possible and desirable to observe and track

particular features for extended durations. The view based approach to SLAM makes

long observations of a feature difficult because marginalising such a feature would

cause fill-in among many vehicle states. If the single feature is repeatedly added and

marginalised, the system will become inconsistent in a manner which will accumulate

during the long observation of the feature.

The sparsity of the viewpoint based SLAM approach is not fundamentally guaranteed

but is a consequence of the typical scenarios encountered. (For an atypical example, a

single feature seen for all time would cause dense fill-in over all the vehicle trajectory

states).

In these cases involving repeated or long duration use of a single feature, or in the

general case (where such properties may not be known in advance or may vary from

feature to feature) this thesis recommends the use of the smoothing and mapping

(SAM) or augmented system form in order to deal with the sparsity and consistency

CHAPTER 2. ESTIMATION IN LOCALISATION AND MAPPING 20

issues.

The graphSLAM system described in [69, 71] also has aspects in common with the

view based approach. In particular it focuses on elimination of the map features first

as a fixed factorisation policy. This can result in significant fill-in onto the vehicle

trajectory states in the case of extended observation of a feature. However, the system

described in [71] has much in common with the SAM approach of [20] and could

feasibly eliminate the variables in any order.

The viewpoint based approach is therefore seen as a subclass of the smoothing

and mapping approach which is appropriate in cases where the features are defined

implicitly in sensor matching and/or the features have a short duration of visibility

such that their structural pattern encourages their early elimination.

2.1.3 SLAM Filtering

The final primary approach considered in this section is the filtering approach to

SLAM. In the filtering approaches to SLAM, the estimated variables are typically the

single present vehicle pose state and the collection of static feature states (the map).

This form is also known as “feature based SLAM”.

The primary difficulties with filtering based approaches to SLAM are linearisation errors

and system sparsity problems. A filtering approach fundamentally aims to represent

the entire problem history into the latest posterior probabilistic representation. The

difficulty lies in the inability of reasonable functional forms (especially the Gaussian

distribution) to properly represent the nonlinear distributions over the variables in

the final posterior. Linearisation choices adopted earlier in the filtering cycle cannot

be adjusted at later stages.

Even in a completely linear scenario, a second difficulty is that in both the covariance

and the information form, the posterior Gaussian distribution becomes fully dense.

This arises due to the elimination of the past vehicle states from the estimation

variables. All seen features therefore become fully linked and correlated. This causes

CHAPTER 2. ESTIMATION IN LOCALISATION AND MAPPING 21

infeasible scalability as the number of map features grows. This is discussed further

in [24]. This filtering approach is the earliest method and a wide variety of derived

methods exist [7, 23, 70].

2.2 Graphical Models Literature

A graphical model is a representation of a joint, high dimensional probabilistic model.

For a high dimensional set of variables x, a graphical model encodes the joint probabity

(or probability density) P (x). In graphical models, vertices represent variables and

edges represent conditional dependencies between variables. Graphical models have

been referred to as “a family of techniques which exploit a duality between graph

structures and probability models.” [66]. Broader introductions to graphical models

are given in [40, 41, 44, 51, 56, 66].

There are three main types of graphical model which will be of interest to the methods

developed in this thesis:

Factor graphs

Factor graphs [20, 44] are bipartite graphs consisting of two types of vertex:

state variables and observation variables. In this thesis, the augmented system

form developed in chapter 3 is closely related to the factor graph model.

Markov Random Fields

Markov Random Fields (MRFs) or Markov networks are undirected graphical

models with vertices consisting of state variables [41]. Gaussian MRFs are

equivalent to the information form (sparse, symmetric linear system). MRFs

are related to factor graphs; Factor graphs are reduced into Markov Random

Fields via marginalisation. This is developed further in chapter 3.

Bayes Nets

Bayes nets are acyclic directed graphical models [51]. Bayes nets are equivalent

to sparse triangular linear systems. Such systems are important in this thesis in

the context of direct factorisation methods for the solution process. Both factor

CHAPTER 2. ESTIMATION IN LOCALISATION AND MAPPING 22

graphs and MRFs can be factorised into acyclic directed graphical models for

solving. This is developed further in chapter 5.

This thesis contributes to methods for estimation in localisation and mapping by

applying techniques from the more general field of graphical models.

The general factor graph model and formulation approach [44] is applied back into

Gaussian models in estimation and used to derive a form which has been missing

from the estimation literature: The augmented system form (chapter 3). The aug-

mented system form developed in chapter 3 adds a key ingredient from (factor graph)

graphical models into the models used in estimation: a full formulation describing

the existence and links between both observations and states. Further relationships

between graphical models and the augmented system form are developed in chapter 3.

This thesis also derives from approaches used in graphical models, developing software

for a fundamentally graphical representation for sparse linear systems (chapter 4) and

associated graphical solving algorithm (chapter 5).

2.3 Assumptions and Context

Section 2.1 discussed the choice of variables which represent the problem. The

estimation methods described in this thesis are founded upon a series of fundamental

assumptions. This section notes a hierarchy of these assumptions in order to give

context to the methods chosen for this thesis.

Nonlinear Bayesian estimation problem

The observations and states of the estimation problem formulation describe a

nonlinear, Bayesian, joint high-dimensional probability model. This thesis adopts

the Bayesian probabilistic methods for describing and manipulating uncertainties.

This assumption implies the existence of state variables, which define the problem

output, and observations in the form of probabilistic models, which define the

input to the estimation problem. This thesis assumes a discrete (or finite) set of

CHAPTER 2. ESTIMATION IN LOCALISATION AND MAPPING 23

continuous-valued variables, thus excluding the treatment of smooth continuum

functions This Bayesian approach is a widely used fundamental approach to

estimation problems [8, 50].

Note that at this point the problem is formulated as a joint and high-dimensional

probability model. No assumption is made here regarding the ability to apply

recursive Bayesian methods or assume Markovian dynamics of the variables and

models. These assumptions are deferred until well into the solving techniques

and instead, the full joint model is formulated.

Continuous & Differentiable

The probability model is assumed to exist as a continuous & differentiable

function over continuous valued states, thus taking the form of a probability

density function (PDF). This assumption also applies to the observation model

functions. The observation models are also assumed to exist as continuous

& differentiable functions over continuous valued observation variables. This

assumption excludes the treatment of sampled PDF approaches or discrete state

or observation variables.

Approximately Convex

This thesis assumes a convex log-likelihood model for the observation models. In

the observation space, the log-likelihood model for that observation is assumed

to be a convex function. A convex function has no local extrema, only global

extrema. This implies using a reasonable observation residual, h(x) − z and

obtaining the property that when the observation residual is zero (h(x)− z =

0) the optimum extrema of the convex log-likelihood is obtained. The log-

PDF model for the observations is important since the summation of these,

projected as likelihoods into the state space, becomes the log-PDF model for the

solution. Convexity and the representation of the observations in residual form

are complementary. Therefore, this thesis represents observations in a residual

form, whereby the observation function returns a vector-valued residual. This

corresponds to the intuitive idea of giving preference to observation projections

with smaller residual.

In addition to the assumed convex log-likelihood model for the observations (in

CHAPTER 2. ESTIMATION IN LOCALISATION AND MAPPING 24

the observation space), the overall convexity assumption implies and requires

an assumption that the transformations between the states and observations

approximately preserve convexity.

In accordance with this assumption on the observation models, the PDF for

the states is approximated as a single modal and approximately log-convex

function. This thesis therefore does not consider multi-modal Bayesian functional

representations. This assumption of approximate convexity applies only to the

method for the selection of the estimate. It does not assume that the PDF

can be permanently replaced by a convex model, only that a convex model is

a reasonable local assumption for the operation of the estimation algorithm.

Convex methods are described further in [12].

MAP Estimate & Optimisation Methods

For the “solution” state estimate for the PDF, the maximum-a-posteriori x

estimate is used. Seeking the MAP estimate is consistent with the assumption

of log-convexity of the PDF, since a convex function will have either a single

optimum value or a convex region of equally optimum values. Seeking the MAP

estimate allows us to characterise the posterior solution as a single state estimate,

x̂, a point in Rn, together with a region of uncertainty, rather than outputting a

full representation of the PDF.

An alternative to the MAP estimate is the mean estimate on the PDF. The

use of the MAP estimate is motivated by computational considerations; The

MAP estimate can be obtained, adjusted and verified by (repeated) examination

of an infinitesimal region of the PDF, whereas the mean estimate is a quan-

tity obtained by integration over the infinite PDF. The nonlinear form of the

PDF representation is easily suitable for evaluation and differentiation. The

optimisation techniques used in this thesis rely on utilising the point-evaluated

value, gradient and curvature of the function. For example, requiring that the

gradients balance out to zero at the solution. By contrast, the mean requires a

balance in the integrated “probability mass” all around the solution. But the

nonlinear models are not, in general, suitable for analytical integration necessary

to find the mean. Requiring a mean estimate therefore usually requires utilising

CHAPTER 2. ESTIMATION IN LOCALISATION AND MAPPING 25

a global functional or sampled PDF approximate representation.

Utilising the MAP estimate does not entail discarding the underlying Bayesian

probabilistic approach to the estimation problem. The system maintains the

estimation problem formulation as the original representation of the Bayesian

PDF. The solution state estimate is not intended to replace the problem formu-

lation and PDF. Instead the solution state estimate is simply an output interface

for one particular representative point in state space.

In previous conventional approaches to estimation, the full PDF is required in

order to re-compute the estimate when further factors are fused in. However,

the system in this thesis can update the formulation representation to reflect

the fusion of additional factors and then proceed to find an updated estimate

solution. In other words, the output of the posterior solution is different from

the underlying representation of the PDF necessary to compute the posterior

solution.

The MAP estimate is used as the basis for the iterated-extended Kalman filter

(IEKF) [8]. The IEKF provides an intermediate example between Gaussian

filtering based estimation and nonlinear optimisation based estimation.

2.4 Solving Overview

The above assumptions about the nature of the estimation problem break the esti-

mation problem down to one of convex optimisation. The approach to solving this

convex optimisation problem is broken down further into a series of subproblems as

follows. The essence of these methods is summarised in figure 2.3.

Convex Optimisation

Under the conditions of the approximately convex log-PDF assumption and the

requirement for the MAP estimate, methods of convex optimisation are applied.

For further background on convex optimisation, refer to [12].

Newton’s method

Given the above assumptions, it is appropriate to adopt Newton’s method. The

CHAPTER 2. ESTIMATION IN LOCALISATION AND MAPPING 26

essence of the method is that the log-PDF is approximated locally by a quadratic

model. The quadratic model is then solved for the next solution point, where

the gradient is projected to be zero. The process is then iterated to a solution

within acceptable tolerance.

The essential form of Newton’s method is:

∇2f(x0)∆x = −∇f(x0) (2.1)

A∆x = b (2.2)

• Where f(x) is the local quadratic approximation function.

A variety of quadratic models are available. The second order Taylor expansion

of the function about the current estimate requires evaluation of the Hessian of

the objective function, which in turn requires evaluation of the Hessian of each

scalar observation. By contrast, the Gauss-Newton approximation provides an

alternative quadratic model involving only the Jacobian (first order) derivatives

of the observations. This amounts to forming a linear approximation of the

observations (which is then squared into a quadratic model), rather than forming

a best-fit quadratic approximation to the nonlinear log-PDF function. For

further details see [48].

Solution to sparse linear systems

The solution of the quadratic model for Newton’s method above requires the

solution of linear equations. These are large, sparse linear systems. This thesis

discusses the methods for solving these linear equations.

Line Search

The optimisation of the nonlinear problem, following selection of a search

direction from Newton’s method, requires evaluation of the nonlinear problem

along a one dimensional line. A step is finally chosen, updating the estimation

variables via x← x + t∆x. In some cases t = 1 is used, under the assumption

that the quadratic model is well formed and that the solution ∆x is acceptable.

CHAPTER 2. ESTIMATION IN LOCALISATION AND MAPPING 27

Convex Optimisation

Quadratic Approximation

Linear Solving

Preconditioned DirectIterative

Line Search

Step updates x← x + t∆x

Figure 2.3: Major components of the optimisation algorithm. For the Nonlinear

Optimisation on the System Graph the major components are the building of the quadratic

model and the linear solving approach.

2.4.1 Step Based Approach

Newton’s method in equation 2.2 above solves for a step in x, ∆x, rather than solving

for an absolute solution. The step based approach introduces the current estimate,

notated as x0, as a tool to aid the solution process.

The reasons for adopting this approach are as follows:

• As the solution tends towards its final, optimum value, both the right-hand-side

vector (∇f(x)) and solution ∆x tend toward zero. This allows a norm of ∇f(x)

or ∆x to serve as an indicator of the quality of the solution and a termination

criterion. This also allows the use of sparse methods to exploit any actual or

approximate zeros in ∇f(x) or ∆x.

• For rank deficient A, the system can be solved in a damped (also known as

regularised) or minimum norm manner, which biases ∆x toward zero. In the

CHAPTER 2. ESTIMATION IN LOCALISATION AND MAPPING 28

case of solving for ∆x, no permanent bias is introduced into the solution x.

Instead, the steps are moderately attenuated. However, in the case of solving

absolutely for x, a damped or minimum norm approach biases the solution

towards x = 0 permanently.

2.4.2 Solving Linear Systems

This section describes the process for direct solving of linear systems in general terms,

and introduces the LDLT factorisation. This solving process is significantly expanded

in chapter 5.

The LDL factorisation helps solve linear systems (Ax = b) by transforming A into a

product of triangular and diagonal systems, which are simpler to solve. The diagonal

pivoting LDLT method ([14] and [37, page 168]) factorises A as follows:

PAPT = LDLT (2.3)

• A is the input square, symmetric matrix.

• P acting on A via PAPT represents a symmetric permutation of A. P encodes

the factorisation ordering.

• L is a unit lower triangular matrix.

• D is a block diagonal matrix.

The diagonal pivoted LDLT factorisation is based on the following block partitioning

of A:

PAPT =

 E CT
 s

C B n− s
s n− s

(2.4)

• E is the block which will be factorised out of A. E is built from s variables from

A, permuted into a block via P.

• C is the symmetric matrix off diagonal block connecting E to the rest of the

system B.

CHAPTER 2. ESTIMATION IN LOCALISATION AND MAPPING 29

The block factorisation is then written as:

PAPT = LDLT (2.5)

=

 Is 0

CE−1 In−s

E 0

0 B− CE−1CT

Is E−1CT

0 In−s

 (2.6)

The full factorisation continues by factorising A2 = B− CE−1CT in the same manner,

using Equation 2.6.

LDL Solve

Using the factorisation LDLT = A, the solution involves a sequence of solves as

follows:

To solve Ax = b for x,

using factorisation LDLTx = b

1. solve: Lu = b for u, where u = DLTx

2. solve: Dr = u for r, where r = LTx

3. solve: LTx = r for x

Where indicates a triangular (directed-acyclic) solve and indicates a block diagonal

solve.

Overall the process can be written as:

x = A−1b (2.7)

x = L−TD−1L−1b (2.8)

Each matrix inversion is a notation to indicate the required solve stages rather than

explicit inversion.

CHAPTER 2. ESTIMATION IN LOCALISATION AND MAPPING 30

Factorisation versus Marginalisation

Marginalisation is equivalent to factorisation, but discards the factorised variables

along with the D and L entries necessary to retrieve them again.

With marginalisation the aim is to reject a portion of the problem which is no longer

interesting, while reflecting its influence back onto the rest of the system. Factorisation

is more general since it includes the expression for the marginal, as well as the L and

D entries which are used for the (optional) back solve to the “factorised-out” part.

This allows the system to keep an active subset of states, while still having the option

for returning to the inactive states.

This is the difference between marginalisation and factorisation. The process of

marginalisation implicitly forms a triangular, block LDLT system, but then discards

a portion of the L and D matrices to retain only the marginal and not the rest of the

factorisation.

Factorisation Ordering

The factorisation ordering describes the sequence in which variables are eliminated

from the problem. In the solving stage, the (reversed) factorisation order describes

the order of recovery of variables. Variables recovered early are used to recover later

variables. Ideally this pattern of recovering variables, and subsequently using these to

recover later variables follows a sparse pattern and is numerically stable.

2.5 Summary

Algorithm 1 outlines the main estimation loop in which the methods of this thesis are

applied.

CHAPTER 2. ESTIMATION IN LOCALISATION AND MAPPING 31

Algorithm 1: Main estimation loop

begin
for Each timestep do

Obtain sensor data observations
for Each data association candidate do

Add observations system according to data-association
for Each iteration of nonlinear solution do

Update the linearisation for changed entries
Update the factorisation
Linear solve A∆x = b for the Newton direction
for Each point of a line search: do

Update parameterisations for changed entries
Re-evaluate gradient terms for changed entries

Optimise data associations over residual Mahalanobis distance

end

2.6 Graph Notation

Various examples in this thesis will show a set of states, some observations and their

interconnections. In order to introduce the notation for these, consider a system

with states x1 and x2, and an observation z with observation noise covariance R and

observation Jacobian H =
[
H1 H2

]
with respect to the two states. Suppose that

the states have independent prior information Y1 and Y2 respectively. Figure 2.4

functions as a notation for indicating the structure of various examples but also contains

some of the essential aspects of the augmented system form and graph embedded

representation described in this thesis. Chapter 3 discusses the mathematical basis

for this representation. Chapter 4 discusses the graph representation of systems in

greater detail.

CHAPTER 2. ESTIMATION IN LOCALISATION AND MAPPING 32

z

x1 x2

Y1 Y2

H
1

H
2

R

Figure 2.4: Graph notation for example systems, full details (left) and simplified

schematic (right). This functions as a notation for indicating the structure of various

examples in this thesis.

Chapter 3

Augmented Methods in Estimation

3.1 Introduction

This chapter proposes a generalisation of the information form by augmenting ob-

servations & constraints in addition to the states. The augmented system form is

derived in section 3.2. The Lagrangian quadratic is introduced as the mathematical

background of the approach, and the equivalence of the augmented system form to

the information form is shown.

This form is referred to as the augmented system form, since it augments both

observations and states. This thesis argues that the augmented system form is a more

general starting point for estimation than the information form, allowing a wider range

of alternative solution strategies.

The augmentation approach has benefits in the ability to retain and utilise the original

nonlinear functions which define the estimation problem. In addition, the augmented

system form has benefits in the flexibility of re-linearisation.

Depending on specific conditions of the system, the augmented system form can show

improved sparsity and numerical performance than the information form. Since the

augmented system form is easily reduced down to the information form, this thesis

argues that the augmented system form should be formed first, followed by elimination

33

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 34

or factorisation of the observation and state variables in an appropriate, specifically

considered order.

The augmented system form is complementary to the graph representation of the

next chapter. Both the augmented system form and the graph structure favour using

entries for all of the state and observation variables modelled by the system and their

interconnections.

The augmented system form brings new insights into the nature of data fusion by

writing out the roles of the observations, states and their interaction explicitly (see

section 3.5). The augmented system form satisfies the requirement for a mathematical

description of the estimation problem showing explicitly and separately the states and

observations together with a cross-coupling interaction.

The contributions of this chapter are as follows:

• The augmented observation form is introduced in an estimation context and the

relationships between estimation problems and the augmented system method

are developed.

. The augmented system method is developed in an estimation context with

observations rather than from an equality constraint point of view. This

results in a novel Lagrangian formulation, including a new term which

generalises between observations and constraints.

. The relationship between the augmented system method and the informa-

tion form is shown. The information form is shown to be a marginalised

reduction of the augmented system form. Whereas the augmented sys-

tem form describes both the observation and state variables jointly, the

information form describes only the state variables.

. The augmented system form complements the trajectory state augmentation

approach (section 3.3). Both of these approaches have similar goals and

present similar challenges, and both are complementary to the graph

based structure described later, in chapter 4. The trajectory state form is

discussed because the augmented system form operates in the context of the

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 35

trajectory state form. The augmentation of observations makes sense only

when the associated states are also augmented. The graph structure and

augmented system method are both designed in context of the trajectory

state approach.

. The observation-augmented form brings new insights into the nature of

data fusion. The observation-augmented form shows both observations

and states explicitly and shows their interaction via a shared Lagrange

multiplier, rather than being expressed as an addition of information.

. Generalised extensions to the concept of innovations and innovation dis-

tances are presented under these additional augmented terms. The aug-

mented system form has an inherent ability to evaluate network-wide

residuals, not simply the innovations of new observations against current

predictions as is conventional in filtering approaches. Given this, this thesis

contributes a novel form of Mahalanobis distance, which is equivalent to the

conventional innovation distance but offers additional generality, including

the ability to operate with rank deficient information terms and multiple

observation terms.

• The augmented system form is complementary to the graph structure for the

representation of the problem structure and its linearised form.

. Both the full-structural form and the graph structure use entries for all of

the state and observation variables modelled by the system and provide

facilities to represent their interconnections.

. The full structural properties of the augmented system form are comple-

mentary to the explicit graph structure used to represent the system.

. Together, the graph structure and the augmented observation approach

form the necessary data structures to contain the full formulation of the

estimation problem in the implementation.

• The benefits of using the augmented observation form for estimation problems

are shown.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 36

. The augmented system form allows a wider range of factorisation orderings

than the information form. In the augmented system form, variables may

be factorised in any order mixing observation and state variables, whereas

the information form implicitly eliminates the observation variables first.

. Depending on specific conditions of the system, the augmented system form

shows improved sparsity and numerical performance than the information

form.

. Since the augmented system form is able to be reduced down to the

information form, this thesis argues that the augmented observation form

provides a more general starting point for estimation algorithms and that

the augmented observation form should be formed first. The solving method

may then generally consider the specific order of elimination of variables.

. In other words, if the information form is used, the “formation” of the

information form (HTR−1H), given the set of observation Jacobians (H)

and observation covariances (R) is equivalent to the elimination of the

observation Lagrange multiplier variables out of the augmented system

form. The use of the information form is therefore a “fixed-marginalisation

policy” in the variables. This thesis argues that systems should not take a

fixed elimination or factorisation policy and instead evaluate the ordering in

the states and observations at runtime for the particular cases encountered.

. The factorisation or elimination of observations first, as in the information

form, can adversely affect the numerical stability if the observations have

small (or zero) noise covariance. In this case the augmented system form is

able to factorise some states first, resulting in improved numerical stability.

. The augmented system form separately represents the observations and

the states. This has the benefit that the Jacobians for each observation are

separate from each other, enabling simple access for re-linearisation.

. The augmented system form is a jointly solvable system for the states

and observations, rather than just a data structure. This means that the

augmented system form describes the operations necessary to solve it from

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 37

both observations and states, whereas a simple data structure connecting

observations to and from states would not imply a jointly solvable system

and would instead require manual conversion to a solvable system (to the

information form, for example).

. The augmented observation approach has benefits in the ability to retain

and utilise the original nonlinear functions which define the estimation

problem. The augmented system form has benefits in the flexibility of

relinearisation, due to its property of avoiding marginalising observation

terms into the states.

The augmented system form described in this chapter is designed to operate in

conjunction with the graph embedded system representation described in chapter 4 and

with the graph embedded solving algorithm described in chapter 5. The augmented

system form provides a mathematical system representing both observations and

states while the graph structure provides a fundamental tool for representing sparse

relationships between variables generally. The graph structure helps by efficiently

representing the observations and states, and the sparse observation-state link structure

and its associated Jacobian entries.

3.2 Augmenting Observations and Constraints

This section derives the equations for the augmented observation and constraint system.

The derivation starts with an estimation problem containing an observation term and

later generalises this to include equality constraints. This section provides an initial

description of what the augmented system is and what it involves. The justification

for using the augmented system is given in section 3.7 and throughout this chapter.

For clarity, the explanation will initially consider a linear estimation problem. The

case of a nonlinear estimation problem is described in section 3.2.7.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 38

3.2.1 Information Formulation

1. Consider the linear estimation problem consisting of state x, with:

• A prior information term with inverse-covariance Y at a prior estimate of

xp.

• A linear observation z = h(x) + w = Hx + w with unknown zero mean

observation noise, w, with covariance, R. This will be expressed in terms

of the residual, h(x)− z.

H is the linear observation matrix, the derivative of h(x) with respect to

x. H = ∂
∂(x)

h(x). H ∈ Rnobs×nstate .

2. The objective function for this estimation problem is given by:

xe = arg minF (x) (3.1)

F (x) =
1

2
(h(x)− z)TR−1(h(x)− z) +

1

2
(x− xp)

TY(x− xp)

Observation Prior

(3.2)

• xe is the solution for the state estimate. x̂ ∈ Rnstate

• x is any point in the state, acting as a function argument. x ∈ Rnstate

• F (x) is the objective function. F : Rnstate → R.

• z is the known, obtained observation vector. z ∈ Rnobs

• R is the observation covariance matrix. R ∈ Rnobs×nobs . R−1 is initially as-

sumed to exist (as required for the above expressions), but this requirement

is later relaxed as the observations are generalised into constraints.

• Y is the Hessian or Information matrix of the prior information term.

Y ∈ Rnstate×nstate

• xp is the centre estimate of the prior information term. xp ∈ Rnstate

3. Since the observation h(x) is linear, and the prior term is quadratic, F (x) is

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 39

quadratic. F (x) can be written in incremental form as:

F (x0 + ∆x) = F (x0) +∇F (x0)
T ∆x +

1

2
∆xT∇2F (x0)∆x (3.3)

The Jacobian and Hessian of F (x) are:

∇F (x) = HTR−1(h(x)− z) + Y(x− xp) (3.4)

∇2F (x) = HTR−1H + Y (3.5)

The incremental form for the gradient of F (x) is:

∇F (x0 + ∆x) = ∇F (x0) +∇2F (x0)∆x (3.6)

The solution, ∆x, satisfies:

∇F (x0 + ∆x) = 0 (3.7)

The result yields the information form expressions for the solution, ∆x, also

known as the Newton step [12].

∇2F (x0)∆x = −∇F (x0) (3.8)

With equations 3.4 and 3.5 this becomes the information form:

(HTR−1H + Y)∆x = −(HTR−1(h(x0)− z) + Y(x0 − xp)) (3.9)

Equation 3.9 shows how the observation HTR−1H is added onto the prior information

Y (and similarly in the vector components on the right-hand-side). This indicates

that the observation information is merged into the prior information (forming the

posterior information).

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 40

The prior information, Y is not treated differently from the observation information.

Instead, the prior information term is included separately in order to show how the

observation information is merged into the prior information in this information-form

approach.

3.2.2 Lagrangian Formulation

In this section, the derivation moves to the Lagrangian formulation. This will be

justified in the rest of this chapter by relating it back to the objective function and

information form. The Lagrangian formulation leads to the augmented system form.

This Lagrangian formulation is a novel contribution of this thesis due to a novel term

which generalises between observations and constraints.

Consider the following Lagrangian function, L(x,ν) (see figure 3.1 for a diagram):

L(ν,x) =
1

2
(x− xp)

TY(x− xp) − 1

2
νTRν − νT (h(x)− z)

State-functional Constraint relaxation
Weighted constraint

(3.10)

• ν and x are independent variables. ν ∈ Rnobs . x ∈ Rnstate .

• L(ν,x) is a scalar function from vector variables ν and x.

L : Rnobs × Rnstate → R.

L(ν,x) consists of three terms:

• A “state-functional” term. In general this state-functional term will contain

any objective terms relating only to the state, not relating to the observations

or constraints. However, in this particular derivation example, this term is the

prior information quadratic objective term. It is necessary to place the prior

information in this term because this enables a direct comparison with the

information form approach. 1

1If desired, one could model “prior information” in a uniform manner with observations by writing
them as “identity observations” of the state.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 41

• A “weighted constraint” term. This term multiplies each scalar observation or

constraint term, hi(x− zi), by a Lagrange multiplier scalar νi.

• A “constraint relaxation” term. The result of this term is that observations

with nonzero R are allowed to relax away from h(x)− z = 0. The amount of

relaxation is controlled by R. This term is a novel contribution, which generalises

between both observations and constraints.

The partial derivatives of L(ν,x) are:

∇νL = −Rν − (h(x)− z) (3.11)

∇xL = Y(x− xp)−HTν (3.12)

A necessary condition for the solution ν and x is that they are a stationary point of

the Lagrangian in (3.10).

∇νL = 0 ∇xL = 0 (3.13)

The stationary point of the Lagrangian corresponds to a saddle point as opposed

to an optimum point of the information quadratic or point of maximum probability

density. The solution lies at the saddle point of the Lagrangian because the Lagrangian

simultaneously represents both a maximisation and a minimisation relating to the

observation Lagrange multipliers and the states. These need to be in opposite signs

so that the marginalisation of observations adds information into the states instead of

subtracting it.

The stationary point conditions in equation 3.13 generalise the stationary-point

requirements for an extrema. In this case, ∇νL = 0 means that the solution must be

an extrema with respect to variation in ν and ∇xL = 0 means that the solution must

be an extrema with respect to variation in x.

Since L is a quadratic, the solution to meet conditions 3.13 is given by the Newton

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 42

step:

∇2L(ν0,x0)∆

ν

x

 = −∇L(ν0,x0) (3.14)

∇2L(ν0,x0) = −

 R H

HT −Y

 (3.15)

∇L(ν0,x0) = −

 Rν0 + (h(x0)− z)

HTν0 −Y(x0 − xp)

 (3.16)

The result is the following augmented system form, written in incremental form:

 R H

HT −Y

∆ν

∆x

 = −

 Rν0 + (h(x0)− z)

HTν0 −Y(x0 − xp)

 (3.17)

The augmented system form in equation 3.17 is the focus of this chapter.

• The left-hand-side of augmented system form,

 R H

HT −Y

 is a square, sym-

meric linear system representing the solution of the Lagrangian L(ν,x). It has

dimensions (nobs + nstate)
2.

• The right-hand-side is written in the incremental form where ν0 and x0 are any

initial values of the entire state before solving. When the system is at a solution,

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 43

the right-hand-side equals zero. At the solution ν and x:

Rν + (h(x)− z) = 0

HTν −Y(x− xp) = 0

This indicates that, at the solution, the observation residual (h(x)−z) is balanced

by the Lagrange multiplier through Rν. For R = 0 it must have (h(x)− z) = 0.

The residual of the prior information Y(x − xp) is balanced by the Lagrange

multipler through HTν.

The explanation below considers the relationship between the Lagrangian L(ν,x) and

the quadratic F (x). This relationship is obtained by requiring ∇νL = 0 to be satisfied.

This requirement is one part of the complete requirement for the solution stated in

equation 3.13. This yields a relationship from x to ν, a function: ν̃(x).

ν̃(x) = −R−1(h(x)− z) (3.18)

Under this functional relationship for ν, L becomes a function of x only. The resulting

function L(x) is identically F (x).

L(ν,x) subject to {ν = ν̃(x)} =⇒ L(ν̃(x),x) (3.19)

=⇒ F (x) (3.20)

In figure 3.1, L(ν,x) subject to {ν = ν̃(x)} is the concave-up dark line. It’s projection

into x is identically F (x), which is proven as follows:

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 44

L(ν,x) =
1

2
(x− xp)

TY(x− xp)−
1

2
νTRν − νT (h(x)− z)

L(ν̃(x),x) =
1

2
(x− xp)

TY(x− xp)−
1

2
ν̃(x)TRν̃(x)− (h(x)− z)T ν̃(x)

=
1

2
(x− xp)

TY(x− xp)−
1

2
ν̃(x)TRν̃(x) + (h(x)− z)TR−1(h(x)− z)

=
1

2
(x− xp)

TY(x− xp) +
1

2
ν̃(x)T (h(x)− z) + (h(x)− z)TR−1(h(x)− z)

=
1

2
(x− xp)

TY(x− xp) +
1

2
(h(x)− z)TR−1(h(x)− z)

= F (x)

The result of this section is that the Lagrangian of equation 3.10 generalises the

quadratic objective function of equation 3.2. The Lagrangian explicitly separates the

observation Lagrange multiplier variables from the state variables, and was shown to

reduce back to the conventional objective function in the states only.

The above derivation shows the formation of the augmented system consisting of the

state prior term in Y and xp and the linear observation with R, H and z. Section

3.2.7 notes how the expressions are modified for nonlinear observations. Section 3.2.3

describes how this augmented form is suited to the generalisation of observations into

constraints.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 45

x

ν

L

x

ν

L

Figure 3.1: Two views of contours of the Lagrangian surface. The solution in x and ν
(circled) is the stationary point on the Lagrangian. The two dark lines indicate solutions
to the partial derivatives ∇νL = 0 (concave up) and ∇xL = 0 (concave down). The
quadratic in the (x, L) space is the projection of the line ∇νL = 0 into x, which is the
quadratic cost function F (x).

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 46

3.2.3 Constraints

This section describes the generalisation of observations into constraints, in relation

to the augmented form. Constraints are the subset of observations with zero R (or

more generally, singular R). At small but nonzero R, the term may also be described

as a “relaxed constraint” or a “tight observation”.

This thesis considers linear equality constraints. Inequality constraints require more

general methods from convex optimisation [12]. Nonlinear equality constraints deviate

away from convexity; The methods used for linear equality constraints can be applied

with linearisation of the constraints under the assumption of approximate convexity.

Constraints appear whenever the system contains any observation or prediction model

or mathematical requirement that is perfect or deterministic. Constraints are also an

abstract generalisation of observations, taking the limit as the uncertainty tends to

zero.

Using an observation with small but nonzero R results in a small but nonzero deviation

from the constraint, if pulled away by other terms. In other words, for nonzero R,

a finite value of the Lagrange multiplier, ν must arise from a finite deviation of the

constraint, whereas a genuine constraint with zero R can have any value of ν despite

a zero deviation.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 47

Example 3.1.

The elimination of constraint-deviation bias using equality constraints

Consider a two dimensional state, x and y subject to a prior information term and

an observation/constraint. The observation/constraint will be parametrised by R = ε

where finite R > 0 corresponds to an observation and R = 0 corresponds to a constraint.

For the observation/constraint: H =
[
1 −1

]
z = 2 R = ε

The residual is: (Hx− z) = (x− y − 2)

For the prior information term: Y =

3 0

0 3

 xp =
[
4 4

]T

The augmented system form is: R H

HT −Y

ν

x

 =

 z

−Yxp

 (3.21)


ε 1 −1

1 −3 0

−1 0 −3


ν

x

 =


2

−12

−12

 (3.22)

The solution is: ν =
6

3ε+ 2
x =

12ε+ 6

3ε+ 2
y =

12ε+ 10

3ε+ 2
(3.23)

The residual is: Hx− z =
−6ε

3ε+ 2
(3.24)

For a pure constraint (ε = 0), the residual is zero (Hx− z = 0) indicating that the

constraint is exactly satisfied. For small ε, the residual is approximately −3ε. Thus for

tight-observations the residual is not exactly zero and some bias is introduced compared

to using a true constraint.

�

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 48

Some reasons why constraints are important are described below:

Deterministic Models

If an observation or prediction model has any deterministic component, then

that component becomes a constraint.

An observation or prediction is modelled as a vector residual f as a function of

the state x, obtained data z and unknown noise w: f(x, z,w). The covariance

of the uncertainty of the residual is related through to the uncertainty of the

noise injected into the model:

G = ∇wf (3.25)

E(wwT) = Q (3.26)

R = GQGT (3.27)

R becomes rank deficient (and therefore contains constraints) whenever Q has

fewer dimensions than R. If the model Q does not attribute noise to some

components, these become constraints. Constraints are therefore introduced

simply by the absence of modelled uncertainty.

Some examples of constraints include:

• Deterministic modelling of the relationship between successive positions

and velocities.

• Zero lateral slip assumption in modelled dynamics of simple wheeled vehi-

cles.

Constraints are important in these cases because the constraint terms will

generally repeat over many timesteps and chain into each other. Genuine

constraints are therefore important to prevent the accumulation of bias and

reduced stiffness arising from using the alternative tight-observations.

Agreement of separately modelled entities

Equality constraints can be used to enforce agreement between separate represen-

tations of a single entity, for example in local submaps [77] and in decentralisation

estimation [62]. In decentralisation, entities are modelled at each estimation

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 49

node and are all required to agree. In data association, entities which may be

initially distinct can be identified as being the same and forced into equality by

linking them with equality constraints.

A single entity, x, can be modelled multiple (n) times (for example:
[
x1 x2 x3

]
),

together with n−1 equality constraints indicating that these need to be identical:

H =

1 −1 0

1 0 −1

 (3.28)

Parametrisation constraints

Constraints are also required when groups of scalar states belong to a constrained

parametrisation. For example:

• groups of 4 scalar states can belong to a quaternion parametrisation of an

attitude, and as such are constrained to unit normalisation [45].

• pairs of 2 scalar states representing an angle are constrained to lie on the

unit circle.

Constraints in Localisation and Mapping Estimation

Constraints have been used in the localisation and mapping estimation literature,

often for the purpose of binding together multiple instances of a single state.

For example, [77] uses constraints to link features which are represented in both

the global map and local submaps. This used the covariance form to implement

the constraints, for which the covariance form is well suited.

Constraints applied in the information form are usually applied as tight (large

information) observations. For example, [71] uses “infinite” information to

represent the “anchoring constraint” necessary to constrain the initial pose, and

[70] refers to a large information “soft correspondence constraint” used to bind

two instances of a single state to represent a data association choice.

Constraints are also implied in the following practice: when two objects fa and fb

are identified as being a single object, their links or information to measurements

can be merged. This is equivalent to forming the equality constraint and

eliminating the constraint and one of the two objects.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 50

The problem with using large information to represent constraints is that it is

numerically unstable and also does not enforce the constraints; a finite bias away

from the constraint will exist if other terms affect the constrained states.

The augmented system form is able to fully represent constraints. Furthermore,

the constraint Lagrange multiplier is obtained. If the constraint represents

a data association choice, the Lagrange multiplier will show the amount of

“force” necessary to enforce the constraint. This may be useful in future work

to evaluate the consistency of supposed data association constraints via this

Lagrange multiplier.

Constraints have also been applied in decentralised contexts for enforcing agree-

ment (or more general convex relationships) among separately represented

entities [62].

3.2.3.1 Constraints, Covariance, Information and Augmented Forms

This section discusses constraints in the context of the covariance form, information

form and the augmented system form. The point of this section is that constraints can

be represented in the covariance form but not the information form. The technique

which allows the augmented system form to include constraints is to use a dual

representation containing both information and covariance terms.

Figure 3.2 shows the applicable ranges for the conventional covariance and information

forms. The covariance form has the ability to represent constraints via a singular P.

This is not possible in the information form, where Y does not exist for constrained

terms (infinite information) or is numerically poorly conditioned, with large entries,

for near-constraint terms. Similarly, zero information prior terms can be included in

the information form, but in the covariance form these would require large covariance

entries, resulting in poor numerical conditioning.

Constraints are easily represented in the augmented form, because the augmented form

uses a covariance form for representing observations and constraints. Furthermore,

the augmented form is able to represent zero-information terms. This section contrasts

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 51

this with the capabilities of the covariance form and information form.

The augmented form retains the observations in covariance form and the states in

information form, and hence is able to include the case of both constraints and zero-

information terms. The augmented form therefore achieves unification of observations

and constraints. The zero covariance and zero information terms can coexist simulta-

neously. For example the system A =

0 1

1 0

 represents a scalar 1D state with zero

prior information constrained in place by a (zero covariance) constraint.

∞

∞

1

1

0

0

Covariance form

C

Information form

Z

R, P, Y−1

R−1, P−1, Y

Augmented form, obs part

Augmented form, state part

Figure 3.2: The ranges 0 to ∞ for covariance and information forms. The covariance

axis spanning from 0 to ∞ (top left to right) is the dual of the information axis spanning

from ∞ to 0 (bottom left to right). The covariance form covers from zero to finite

covariance. Constraints are represented by ‘C’ at zero covariance (infinite information).

The information form covers from zero to finite information. Zero information terms (eg

priors) are represented by ‘Z’ at zero information. The augmented form, shown as the

union of an ‘observation part’ and a ‘state part’ represents the observations in covariance

form and the states in information form in a coupled manner.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 52

3.2.3.2 Analytical Notes On Constraints

This section describes some analytical properties relating to the generalisation from

observations to constraints.

Equation 3.18 is only valid in the limit as R approaches zero and is undefined (0
0
)

for constraints, R = 0. For observations, equation 3.18 can be used to express ν

in terms of x and z. However, for constraints both R and Hx − z equal zero so ν

cannot be determined from equation 3.18 but can instead be solved jointly using the

augmented form. The Lagrange-multiplier ν therefore takes on a more significant role

for constraints.

The above augmented observation system applies equally well to equality constraints

as for observations. The Lagrangian, equation 3.10 expresses the observation in a

form involving R only (instead of R−1). The augmented observation form inherently

retains the R expression throughout. In this way R is not required to be invertible

and reduces the constrained case when R = 0.

The augmented system form also has the ability to handle near -constraints (also

known as tight observations) in a manner which smoothly approaches the behaviour of

constraints. No large transition in the approach required or in the values of variables

occurs in shifting from an R = 0 absolute constraint to a near-constraint with R = ε

(R infinitesimally small but positive definite).

3.2.4 Mixed Observations and Constraints

When R is positive-definite, the term is described as an observation. When R is zero,

the term is described as a constraint. However, R may also be positive-semi-definite,

in which case the term is a linear combination of observations (non-zero eigenvalues of

R) and constraints (zero valued eigenvalues of R). The observation/constraint term

may also consist of an ill-conditioned R where some eigenvalues approach zero.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 53

In the case of prediction observations, the observation R term is obtained from:

R = GQGT (3.29)

G is a particular evaluation (linearisation) of the prediction residual’s derivative with

respect to any input noise terms. The term GQGT depends on the specific conditions

when evaluating the linearisation of the prediction model. In general, GQGT will

represent a mix of observations and possibly constraints.

For these cases of mixed observations and constraints, the augmented form is partic-

ularly useful. The augmented form is able to implicitly encode constraints without

having to numerically identify them among other observations. A positive-semi-definite

R, containing a mix of observations and constraints, can be analysed by an eigenvalue

decomposition to identify the constraint directions. The following replacement can

be used to separate the components of the observation according to eigenvalues of

R. The R is replaced by the diagonal D, thus allowing the zero eigenvalues to be

identified explicitly for separate treatment:

Eigenvalue decomposition of R R = VDVT (3.30)

Replace R R→ D (3.31)

Replace H H→ VTH (3.32)

However, this method is not preferred 2 since it is desirable to augment the observations

even when R has small eigenvalues, not only when R has zero eigenvalues. It is also

preferable to augment the observations & constraints because then the full structure

is retained and uniform treatment is given to all terms. Furthermore, the selective

elimination of certain terms ahead of others is a core operation in the direct solving

method (see chapter 5) and it is preferable to only define and apply these operations

once, consistently for all terms.

Observations can be converted to unit weight by dividing z and H by
√

R, which is

2Eigenvalue decomposition of R is not preferred, augmenting R as-is is preferred.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 54

sometimes used to express observations in a uniform manner without the R param-

eters (for example: [20]). However, this cannot be performed for constraints and is

numerically ill-advisable for tight observations.

3.2.5 Equivalence to the Information Form: Eliminating Ob-

servations

This section shows how the augmented system form relates back to the conventional

information form for estimation problems. This shows that the augmented form is

an extension to the information form and is reducible to the information form. This

section considers the relation of the augmented-observation form to the information

form by considering the elimination of the observations.

If the observation elements of the augmented form matrix are marginalised out, the

resulting observation information term (Schur complement HTR−1H) is added onto

the state elements (Y). The result is that the effect of the observations is expressed

in the states only, in a form added onto the prior information.

The elimination of the observations requires the use of R−1. In the case of constraints

(singular R) it is not possible to form R−1. For this reason, the information form

cannot represent constraints and the more general augmented system form described

in this chapter must be used.

Equation 3.17, marginalised into only the state variables, x, results in the equation

for the Newton step in x for the original problem in Equation 3.2: R H

HT −Y

∆ν

∆x

 = −

 Rν0 + (h(x0)− z)

HTν0 −Y(x0 − xp)


(
−Y −HTR−1H

)
∆x = −(HTν0 −Y(x0 − xp)) + HTR−1(Rν0 + (h(x0)− z))(

Y + HTR−1H
)

∆x = HTν0 −Y(x0 − xp)− (HTν0 + HTR−1(h(x0)− z))

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 55

(
Y + HTR−1H

)(
∆x
)

= −Y(x0 − xp)−HTR−1(h(x0)− z) (3.33)

or in non-incremental form 3:

(
Y + HTR−1H

)
x = Yxp −HTR−1(h(x0)− z−Hx0) (3.34)

The observation-update cycle of the information form is obtained by noting that the

observation terms play the same role as the information prior terms, and hence can be

accumulated into the information prior terms to represent the posterior information

terms as shown in equation 3.35.

Y+ = Y + HTR−1H (3.35a)

Y+x+
p = Yxp + HTR−1(h(x0)− z−Hx0) (3.35b)

Equation 3.33 corresponds to the conventional information form, consisting of only the

state variables. This is significant because it shows that the conventional information

form is a marginalised reduction of variables from the joint state and observation

(augmented) form down to only the state variables. In the information form, the

observations appear directly as Hessian and gradient terms on the state x.

The difference between the augmented form and the information form is illustrated in

figure 3.3.

The information form is additive, because the augmented-observation-form is augmen-

tative. Extra observations augmented become extra terms added onto the information

matrix when marginalised.

3 The observation term in the right-hand-side of equation 3.34 comes from keeping h(x) − z
together as an irreducible expression for the residual of the observation, and adding in Hx0 when
converting from ∆x to x on the left-hand-side.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 56

States
x

Observations
ν

Yx
Rν

HTν

Hx

(a) In the augmented system form, both the observation (constraint) and state variables are
represented jointly. Gradient (HT ν) and state projections (Hx) reflect between the observations
and states.

States
& Observations

x

Y + HTR−1H

(b) In the information form, the states are represented and observations are marginalised on
top of the states as posterior terms. The observation terms, R−1, are projected back onto the
states during marginalisation to form HT R−1H, which is then permanently added onto the
prior terms (Y).

Figure 3.3: Schematic illustration of the differences between the augmented system
form and the information form regarding the representation of states and observations.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 57

The elimination of the observations is equivalent to a direct solving approach.

Equation 3.33 shows the marginalisation of A, eliminating the observations. The

following shows the factorisation of A for eliminating the observations out of the

augmented system form.

A =

 R H

HT −Y

 (3.36)

A = LDLT (3.37)

A =

 I 0

HTR−1 I

R 0

0 −(Y + HTR−1H)

I R−1H

0 I

 (3.38)

The following are therefore mathematically equivalent:

• Forming the information form from the observations and prior terms,

• Eliminating (factorising or marginalising) the observations, and

• Direct solving the augmented system form (starting with eliminating the obser-

vations).

This section has shown that the augmented form is an extension to the information

form and is reducible to the information form. This section has also shown that the

formation of the information form is equivalent to direct solving. The consequences of

this for the solution of estimation problems is further developed in section 3.7. Direct

solving is further developed in chapter 5.

3.2.6 Literature - Augmented System Form

This section provides references to the literature on the augmented system form, used

as prior work to the developments presented in this thesis.

The specific mathematical form of the augmented system described in this thesis

derives from the systems described in references [10, 12, 37, 64]. None of these

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 58

specifically discuss its graph-theoretic connections or application to localisation and

mapping.

• Bjork [10] uses the augmented system in a non-weighted, zero prior-information

least squares context with the form shown in equation 3.39.

A =

 I H

HT 0

 (3.39)

• An early example of the use of the augmented system form as an alternative to

the “normal equations” (information form) is in Siegel [64]. Siegel essentially

describes the advantages of the augmented system form as being a better starting

point than the information form for the solution of least squares problems. Siegel

describes the advantage of being able to write down the formulation of the

problem without requiring additional calculations, followed by a full solving

procedure. These properties and approaches are also exploited in this thesis.

Siegel also uses the augmented system form of equation 3.39 (i.e.: excluding the

extensions for constraints and prior information).

• In linear algebra the augmented system form is known as an “equilibrium system”

or “saddle point form” [37, pg 170] & [74]. Gansterer et al [29] survey a range

of equilibrium system properties and problem domains which use such systems.

• The augmented system form for positive-definite R and positive-definite Y is

known as symmetric quasi-definite (SQD) and special methods exist to take

advantage of the SQD property [73], [32]. Positive-definite R states that all

observations are subject to nonzero observation uncertainty (i.e.: no constraints).

Positive-definite Y states that all states (all eigenvalues) have nonzero prior

information.

• In electrical engineering and related fields, the augmented system form is known

as the “sparse tableau” form [74]. In this context the augmented system applies

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 59

for simultaneously representing the dual variables voltage (at nodes) & current

(in circuit loops).

• In the optimisation literature, the augmented system form is known as a KKT

(Karush-Kuhn-Tucker) system where the augmented system is developed in an

augmented Lagrangian context for equality constrained optimisation [12, 54].

• A simple code for assembling A (with R = I and Y = 0) is available in Matlab

as spaugment.

• The method of solving the whole augmented system (as opposed to first elimi-

nating one set of variables) is known as:

. Primal-dual method [12, pg 532]

. Augmented Lagrangian method [54]

. The term “augmented system” is used in the numerical least squares

literature [6].

This thesis generalises beyond equation 3.39 ([10]) to include general R and Y as

shown in equation 3.41. The generalised R (compared to R = I) allows different

weights on observations (diagonal R), groups of correlated observations (block diagonal

R) and mixed observations and constraints (R with some singular diagonal blocks).

The generalised Y allows varying structures of prior information to be inserted into

the problem formulation.

A =

 I H

HT 0

 (Bjork [10]) (3.40)

→

 R H

HT −Y

 (This thesis) (3.41)

This thesis makes a contribution beyond the literature described here: by generalising

the form to include both observations and constraints with the associated Lagrangian

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 60

quadratic system theory; by considering the role of the augmented system form as a

representation of the estimation problem in the wider system together with its graph

based representation; by integrating it with trajectory state methods in localisation

and mapping; and by considering both the sparsity and numerical properties in

factorisation.

3.2.7 Nonlinear Observations

For a system with nonlinear observations, the function F (x) in equation 3.2 is not

necessarily quadratic. Instead, a quadratic Taylor approximation, F̂ (x) is used.

The Jacobian derivative of F̂ (x) is still given by equation 3.4, with the replacement

that H is ∇h(x), the Jacobian of h(x) evaluated at x.

The correct Hessian for the second order Taylor approximation is given by:

∇2F̂ (x) = HTR−1H +
∑
i

ti∇2hi(x) (3.42)

t = R−1(h(x)− z) (3.43)

This contains an additional higher-order Hessian term beyond the Hessian given in

equation 3.5.

However, the Hessian in equation 3.5 can be used as an approximation. Equation

3.5 avoids the requirement to compute second derivative Hessian matrices of the

components of the observation function h(x). The use of equation 3.5 is called the

Gauss-Newton method. For further details, refer to [12] and [48].

In this thesis, the Gauss-Newton Hessian of equation 3.5 will be used.

It is difficult to fit the full Taylor/Newton Hessian into the augmented system form

of this thesis. This is because the additional higher-order Hessian term from the

observations (
∑
i

ti∇2hi(x)) is obtained directly as a system in the state variables. By

comparison, the term HTR−1H is obtained first as H and then reduced down into

the states only.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 61

The full extra Hessian term could be added as follows, however the extra Hessian

terms of each observation are added onto each other:

A =

 R H

HT −Y −
∑
i

ti∇2hi(x)

 (3.44)

Alternatively, another layer of augmentation can separate out the extra Hessian terms:

A =


R H

T J

HT JT −Y

 (3.45)

Where T is
∑
i

ti∇2hi(x), for i in the same block pattern as R. This makes the

extra Hessian terms spread out in a block diagonal fashion such that the Jacobian

and Hessian of an individual observation can be modified independently of the other

observations. J is sparse and contains ones. However, these approaches are not

pursued in this thesis.

The Gauss-Newton approximation is justified for small residual problems, since the

deviation of the approximation is scaled by R−1(h(x) − z) of x at the solution.

In general, one should evaluate the magnitude of the deviation in the particular

environment of the application. If invalid, this approximation slows the nonlinear

convergence rather than affecting the obtained solution estimate. The Gauss-Newton

approximation is built into the information filtering and Kalman filtering approaches

which precede this thesis.

3.2.8 Properties of the Augmented System Form

In general the augmented system matrix, A, can have positive, zero and negative

eigenvalues. This makes A generally semi-indefinite. The solving of indefinite systems

is considered in chapter 5. By contrast, the information matrix Y and covariance

matrix P are either positive definite or possibly positive-semi-definite in degenerate

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 62

cases.

The augmented system form is indefinite since the observation and state terms are

entered with opposite signs (R versus −Y). These opposing signs are required so

that the observation information HTR−1H adds onto the prior information Y when

the observations are marginalised out. This difference in signs causes the overall A

augmented form matrix to be indefinite.

Systems for which the information form would have zero-valued eigenvalues also

have zero-valued eigenvalues in the augmented system form. These indicate lack of

observability in the estimates of the states. Furthermore, the augmented system form

can also have zero eigenvalues as a result of conflicting or duplicated constraints.

Example 3.2.

The case of zero eigenvalues due to over-defined constraints

For example, a system with two identical constraints is shown below. The resulting A

has a zero eigenvalue relating to the difference between the two Lagrange multipliers

of the two (duplicated) constraints.

R =

0 0

0 0

 (3.46)

H =
(

1 1
)T

(3.47)

Y = 0 (3.48)

A =


0 0 1

0 0 1

1 1 0

 (3.49)

�

The solution of systems with zero eigenvalues can be approached by introducing

regularisation as described in the next section.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 63

3.2.9 Regularisation of the Augmented System Form

For a system, A∆x = b, regularisation is the addition of a small multiple of the

identity, λI onto the left-hand-side system, resulting in (A+λI)∆x = b. Regularisation

is discussed in [48, 54] in the context of damped (regularised) Newton optimisation

methods.

In the positive definite case, regularisation puts a minimum bound on the smallest

eigenvalue (since any direction with small or zero eigenvalue will have λ added on).

As a result, a positive-semi definite system can be regularised into a positive definite

system and hence solved using a positive-definite solution algorithm.

Regularisation of A∆x = b into (A + λI)∆x = b causes some attenuation of the

resulting direction ∆x towards zero, and brings it closer to the steepest-descent

direction [48, 54].

In this thesis, the solutions are obtained in the incremental or step-based form as

discussed in section 2.4.1. In the step-based form, no permanent bias is introduced

into the final solution since the regularisation does not affect the computation of the

right-hand-side. The right-hand-side (relating to the gradient of an objective function)

must still be zero at the solution. Instead only the steps towards the solution are

moderately attenuated.

The remainder of this section contributes the method for the regularisation of the

augmented system form. In the positive definite case above, regularisation changes

A∆x = b into (A + λI)∆x = b. However, the augmented system form presented in

this chapter is indefinite. This indefinite property arises from the dual effects of the

observations and states acting in opposing signs. Therefore in order to regularise the

augmented system form, it is necessary to use the appropriate opposing signs in the

regularisation:

The regularised augmented system form is therefore:R + λI H

HT −Y − λI

∆ν

∆x

 = −

 Rν0 + (h(x0)− z)

HTν0 −Y(x0 − xp)

 (3.50)

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 64

Equation 3.50 has the same right-hand-side as the non-regularised augmented system

form in equation 3.17 this means that the regularisation does not permanently weaken

constraints or move the solution.

Example 3.3.

The regularisation of over-defined constraints

Referring to the example 3.2, the system A in equation 3.49 can be regularised into:

Areg =


+λ 0 1

0 +λ 1

1 1 −λ

 (3.51)

Areg is now symmetric quasi-definite (SQD) with positive-definite R+λI and negative-

definite −Y − λI.

�

• The regularisation of the augmented system form acts as a prior term, which

tends the solution and Lagrange multipliers towards staying at their current

values.

• In this indefinite case arising from the augmented system form, regularisation

puts a minimum bound on the smallest absolute value of the eigenvalues. Both

the positive and negative eigenvalues are pushed away from zero.

Regularisation and Constraints

• If a system with R = 0 constraints, the regularisation adds onto R in the

right-hand-side system. This effectively relaxes the constraint. Fortunately,

when using the step-based approach (see section 2.4.1) this only relaxes the

constraint for a particular step and does not introduce a permanent relaxation

of the constraint. The regularisation also does not affect the right-hand-side.

(By comparison, re-writing the constraint as a tight observation affects the

right-hand-side term and therefore does have a permanent relaxation effect on

the constraint).

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 65

• This regularisation of constraints is useful when the constraints are in conflict

with each other, or over constrained because the regularisation resolves the zero

eigenvalue associated with the over-constraint, allowing the system to be solved.

4

3.3 Augmenting Trajectory States

Trajectory state augmentation is an approach to formulating and solving estimation

problems consisting of dynamic states. The trajectory state method formulates the

problem as a large sparse network consisting of the sequence of dynamic states linked

together by observation or dynamic model links. Having formulated this sparse

trajectory state model, the system then solves this model using sparse solvers.

By contrast, the alternative filtering approach binds the dynamic state aspects into

the solving method such that the two form a prediction step for moving the dynamic

state forward at each time step. Both the trajectory state and filtering approaches

involve the use of process or dynamic models to describe the relationship between the

dynamic state at successive time steps. Trajectory state models were introduced in

section 2.1 due to their importance in the localisation and mapping literature.

The trajectory state approach is complementary to the augmented system form of this

chapter. Both have similar goals and challenges. Both the trajectory state approach

and observation augmentation approach aim to present a full structured, accessible

representation of the problem (the formulation) by augmenting additional variables,

followed by suitable solving methods operating on that structure. Both the trajectory

state approach and observation augmentation approach have the challenge of dealing

with the increased dimensionality of the system. However, in both cases they improve

the detail and sparsity of the representation of the problem structure and allow a

wider range of possible elimination orderings in the extra augmented variables, to aid

the solving process.

4Systems with conflicting constraints are fundamentally inconsistent; Regularisation re-interprets
such conflicting constraints, relaxing them into small R observations

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 66

The trajectory state approach complements the observation augmented approach

in another important manner. The observation augmentation approach operates

by maintaining the existence of distinct observation variables separately from state

variables, thereby aiding the formulation of nonlinear observations and allowing original

nonlinear observation terms to be retained. In a dynamic context, the trajectory

state augmentation enables the observation augmentation by keeping the actual past

states which the observations need to refer to. The augmented system form of this

chapter requires the existence of trajectory states, such that the observations have the

appropriate states to link to.

(By contrast, in both the filtering approach (marginalisation of past states) or the

information form approach (marginalisation of observations), the marginalisation of

either the observations or the states makes it difficult (or impossible) to perform key

operations such as altering the observation structure, re-linearising observations and

obtaining observation residuals).

This thesis describes the trajectory state approach because it is a key foundation of the

estimation formulation and solving approach presented in this thesis. The contributions

of this thesis, the augmented system method, the graph structure representation and

the graph solving algorithm are all designed in context of the trajectory state approach

and these contributions offer extensions to the methods presently available.

3.3.1 Formation of the Trajectory States

The trajectory state method will be explained in the following analytical introduction.

The trajectory state method will be explained by referring to a single pair of states

relating to successive time steps of a dynamic state. The trajectory state method

forms expressions jointly over the two timestep states.

1. Consider the joint state vector of a state x at times k and k + 1. The state x

at time k is assumed to have prior information matrix Y and prior estimate

xp. The state at time k + 1 has no prior information, since it is the state in the

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 67

future and the only information is obtained via the process model linking time

k + 1 to time k.

2. Consider a discrete-time, linear, dynamic model between the two successive x

states:

Linear dynamic model xk+1 = Fxk + Bu + Gv (3.52a)

Rearranging terms Bu = Ixk+1 − Fxk −Gv (3.52b)

Bu =
[
I −F

] [
xk+1 xk

]T
+ Gv (3.52c)

• F is a linear model which maps the successive states deterministically.

• G is a linear model which maps in the noise v.

• v is zero mean noise with covariance E[vvT] = Q.

• B is a linear model mapping in the control u.

• Equation (3.52a) expresses the dynamic model in the standard form, ex-

pressing the later state as a function of the previous state, inputs and

noises.

• Equation (3.52c) expresses the dynamic model as an observation operator

on the joint state of the two successive states.

3. Identifying components of equation 3.52c with observation notation (3.53),

results in the following:

Z = HX + w R = E[wwT] (3.53)

Z→ Bu H→
[
I −F

]
(3.54a)

X→
[
xk+1 xk

]T
(3.54b)

w→ Gv R→ GQGT (3.54c)

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 68

4. Applying the dynamic model as an observation update, using the replacements

from equation (3.54) and the augmented observation form from equation (3.17)

results in the following system:
GQGT I −F

I 0 0

−FT 0 −Y




∆ν

∆xk+1

∆xk

 = −


(xk+1 − Fxk −Bu) + GQGTν0

ν0

−FTν0 −Y(xk − xp)


(3.55)

• x0
k and x0

k+1 on the right-hand-side are initial values. The final values are

adjusted by the results of ∆xk and ∆xk+1. Similarly, ν0 is an initial value

to be adjusted by ∆ν. The reasons for using this incremental approach

were discussed in section 2.4.1.

• For this simple two-step case, the solution gives the obvious values for both

xk and xk+1, equal to the conventional prediction, and ν = 0.

• The system in equation (3.55) above, shows the pair of states and their

linking dynamic model step as a joint system.

5. In general, this process of linking successive pairs of dynamic states is continued

indefinitely. The overall effect of the dynamic models is to form a continuous

chained sequence of states linked together by the dynamic model instances. The

estimates are linked together and hence smoothed as a result.

3.3.2 Discussion

The resulting system, shown in equation 3.55 shows the pair of states formed together

jointly, along with an observation variable relating to their dynamic model.

The trajectory state approach unifies observations and predictions, since predictions

are written as an observation linking successive dynamic states. Therefore predictions

are considered as a subset of observations generally. This thesis will not explicitly refer

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 69

to “observations and predictions” unless specifically required to distinguish predictions

from other observations.

The trajectory state approach allows the original nonlinear observations to be retained.

Retaining the past vehicle states enables the system to maintain the original nonlinear

observations, since these link to the past vehicle states. This, in effect, forms a

representation for the estimation problem. Rather than attempting to amortise all the

past observations into a present state marginal (and correspondingly attempting to find

reasonable functional forms which capture the nonlinear shape of the observations),

the trajectory state approach allows the system to simply use the original nonlinear

observation models as the representation of the log-PDF of the estimation problem.

Keeping the actual nonlinear observation terms means that final estimates can be

checked by re-projecting the estimates into the observations again and checking the

residuals against the actual obtained observations. These aspects of the trajectory

state approach lead to the development of the augmented system form described in

this chapter.

The trajectory state approach frames the prediction models as a general mesh among

the states. The classical method of filtering, with its single-directional predict and

observe cycle exploits the chain-like structure of the predict-observe cycle. This

chain-like nature of the algorithms is appropriate for systems such as inertial-GPS,

which genuinely have a chain-like structure of their models. However, for systems in

localisation and mapping in which the overall structure of the models is not a chain,

but a general mesh, the more general trajectory state approach is more appropriate.

Such non-chain topologies of the system are obtained, for example, when static features

are linked by observations to the vehicle states at various different times. The overall

structure of the system can transition from chain-like into looped topologies as a result

of new observations. This is known as loop closure.

The trajectory state approach is more appropriate for general mesh structured systems

because it aims only to describe the structure of the system, not to introduce a

particular solving algorithm. (By comparison, the filtering approach is a solving

algorithm.) For general mesh systems the solving problem is considerably more

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 70

difficult than for chain-like systems. Therefore it is worthwhile describing the full

structure first and considering the operation of the solution algorithm separately.

In general the dynamic model observation noise (GQGT) may be singular, indicating

a constraint component to the model. In general the exact direction of the constraint

will vary depending on the particular linearisation. The augmented system form is

able to operate with the constraint without decomposing GQGT into constraint and

observation components.

Note that mathematically, the GQGT observation uncertainty comes from the

marginalisation of hidden states representing the instantaneous value of noise or

control inputs into the dynamic model. In theory these could be augmented too

(which would extend the augmented system form to cover states, observations, noises

and controls). This might be useful for highly nonlinear dynamic systems. Also, the

structure of noises and controls usually link with small degree into specific observations.

This means that there is no sparsity reason to augment noises and controls. Any noise

or control parameter which links into a larger range of observations, or is known to be

of interest should be treated as a parameter state and accordingly augmented and

estimated.

3.3.3 Equivalence

This section will show the equivalence between a single timestep recursive formulation

and the multi-timestep trajectory state formulation.

The recursive formulation is obtained by marginalising out the first timestep, resulting

in expressions only in the second timestep.

1. This step considers the reduction obtained by eliminating the ν variable and

the resulting joint system in the pair of states. Eliminating the variable ν from

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 71

equation 3.55 results in the following system:

Ã

∆xk+1

∆xk

 = b̃ (3.56)

Where:

Ã = HTR−1H +

0 0

0 Y

 (3.57)

=

FTR−1F −FTR−1

−R−1F R−1 + Y

 (3.58)

b̃ = −

 0

Y(xk − xp)

−HTR−1(xk+1 − Fxk −Bu) (3.59)

= −

 R−1(xk+1 − Fxk −Bu)

Y(xk − xp)− FTR−1(xk+1 − Fxk −Bu)

 (3.60)

2. Eliminating the variable ν requires an invertible GQGT . This is not assumed in

this section in general, only for the purposes of demonstrating this intermediate

step in the explanation. In fact, having a singular GQGT is one of the primary

applications of constraints: The ability to express deterministic components of

dynamic models.

Eliminating the variable ν adds an structure Ip = HTR−1H on top of the pair of

states. This Ip expresses the marginalised dynamic model in information form.

Ip =

FTR−1F −FTR−1

−R−1F R−1

 (3.61)

All Ip terms for dynamic models have the property:

det(Ip) = 0 (3.62)

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 72

The reason for this is that a “prediction” model has the property that applying

(adding) the prediction model Ip to predict forward into an unknown (zero

information) future state, followed by marginalisation back to the present only

does not alter the present state marginal. In other words there is no gain or loss

of information to the present obtained by predicting forward in time into a new

unknown future state. det(Ip) = 0 is a necessary condition for Ip to represent a

dynamic model.

3. This step considers the reduction obtained by eliminating both ν and xk from

equation 3.55, resulting in a posterior system in xk+1.

The marginal for the state xk+1 of equation 3.55 is given by:

Ã = 0−

I

0

T GQGT −F

−FT −Y

−1I

0

 (3.63)

This is expanded using a block-matrix inverse formula [59]:

A11 A12

A21 A22

−1

=

 F−1
11 −A−1

11 A12F
−1
22

−F−1
22 A21A

−1
11 F−1

22

 (3.64)

F11 = A11 −A12A
−1
22 A21 (3.65)

F22 = A22 −A21A
−1
11 A12 (3.66)

Resulting in the following for Ã and similarly b̃:

Ã = −(GQGT + FY−1FT)−1 (3.67)

= −(GQGT + FPFT)−1 (3.68)

b̃ = −(GQGT + FPFT)−1(Fxk + Bu− xk+1) (3.69)

In the inverse-covariance, incremental form:

(GQGT + FPFT)−1 ∆xk+1 = (GQGT + FPFT)−1(Fxk + Bu− x0
k+1) (3.70)

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 73

Where xk+1 = x0
k+1 + ∆xk+1.

Equation 3.70 simplifies to:

xk+1 = Fxk + Bu (3.71)

Pk+1 = FPFT + GQGT (3.72)

These are the conventional recursive formulae for the prediction stage of a

Kalman (covariance form) filter. The requirement for invertible GQGT does

not apply in this covariance form expression,

The form of equation 3.72 operates directionally ; It aims to replace the prior P

with the posterior Pk+1. By contrast, the trajectory state form of equation 3.55

aims to provide observations and constraints on the joint pair of states at the

sequential timesteps, binding them to each other in a symmetrical fashion. In

other words, the aim of the trajectory state form is not to replace one prior by a

posterior but instead to link them together using the dynamic model information.

3.4 Relation To Graphical Models

The augmented system form is closely related to methods in the graphical models

literature. The augmented system form is a formulation approach, as are graphical

models. Both are intended to capture sparsity and decoupling properties of the

formulation and permit a variety of solving methods subject to the initial formulation.

Section 3.4.1 discusses the relation of the augmented system form to factor graphs,

section 3.4.2 discusses the form of the augmented system form before the system

is conditioned on the obtained observations. See also section 5.6.1 in relation to

junction-tree algorithms.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 74

3.4.1 Relation to Factor Graphs

The augmented system form relates closely to the factor graph theory described in

[20, 44]. The factor graph represents the set of state variables of the estimation

problem formulation, together with the set of observation nodes. Each observation

node links to various states and defines a potential function over those states. The

total probability density function is proportional to the product of those potentials.

Hence the observation potentials are referred to as factors, and the overall graph as the

factor graph. The factor graph representation applies equally well for any Bayesian

representation of states (for example, continuous, discrete states) and factors. The

factor graph is bipartite, meaning that states never link directly to other states and

factors never link directly to other factors (this follows naturally from the definition of

the factors as the models which affect any related states). For Gaussian systems, the

edges in a factor graph provide a natural representation for the sparse measurement

Jacobian, H.

In the discussion in [20] the measurement Jacobian, H, is described as equivalent

to the factor graph, and the information matrix is described as equivalent to the

undirected Markov random field. The Markov random field is obtained by elimination

of the factor nodes. The Markov random field representation consists of undirected

links between state variables. The state variables, which were previously linked

to a factor in the factor graph, form a clique in the Markov graph as a result of

eliminating the factor. The Markov graph is undirected and operates over the state

variables. The Gaussian equivalent of the Markov graph is the information form,

which is correspondingly also symmetric and operates over the state variables. The

information matrix represents an undirected representation of the total interactions

within and between the state variables, resulting in a fundamentally square matrix.

The observation Jacobian matrix, by contrast, is a fundamentally rectangular matrix

associated with the fundamentally bipartite links between observations and states.

In order to define the Markov graph as a result of eliminating (marginalising) the

observation factors or nodes, it is necessary to define such an augmented system

containing the state and observation nodes. Informally, it is possible to state that

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 75

this elimination is obtained by transforming H and R alone into HTR−1H. However

such a trasformation (bipartite rectangular → symmetric) is not as well defined as

marginalisation in symmetric systems. Therefore it is necessary to consider some

symmetric system containing the states, some variable in the size of the observations,

linked together by H in the off-diagonals between them.

Such a system is exactly the augmented system form presented in this chapter.

Therefore this thesis proposes the following categorisation of the equivalences, in

figure 3.4. The factor graph [20] can be considered equivalent to the measurement

Jacobian, H if the factor graph is taken to be directed bipartite. The Markov network

(or information form) is equivalent to a symmetric set of edges between the states.

Then the augmented system form is equivalent to the graph of figure 3.4 (c), containing

the observation Lagrange multipliers and states.

For Gaussian random variables, the factor graph effectively encodes a representation

of the quadratic in equation 3.2 with each block diagonal term in R and Y being a

separate factor.

By comparison, the augmented system form uses the same state nodes and the same

number of observation nodes as the factor graph, but the observation nodes for the

augmented system form contain the observation Lagrange multiplier variables. Then

the augmented system form, as a graphical model, encodes the Lagrangian of equation

3.10.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 76

Graph concept: Category: Linear system:

(a)
directed

bipartite

Measurement Jacobian H

(observations × states)

(b) symmetric

Information form

Y + HTR−1H

(states × states)

(c) symmetric

Augmented System

A =

 R H

HT −Y


([obs,states] × [obs,states])

Figure 3.4: A set of equivalences between graph concepts and linear systems in esti-

mation. The directed bipartite graph containing the observations and states is effectively

equivalent to the measurement Jacobian, H. The symmetric Markov random field graph

is equivalent to the information form. A symmetric graph containing the observations and

states is equivalent to the augmented system form.

In conclusion, the augmented system form provides the same graph structure and

capabilities as the factor graph. The augmented system form provides a mathematically

consistent model which justifies the extension of the dimension of the variables to

allow the representation of the observation nodes. Such extended, observation-sized

variables turn out to be the observation Lagrange multipliers.

3.4.2 What are the systems before conditioning on the ob-

servations?

The information form and augmented system form described above both assume that

observations occur with a known observation z.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 77

If the system is modelled with an unknown z, then these effectively become further

(unknown) states. Such a system can be represented in the forms: “augmented system

form & z” and “information form & z” shown below. When these are conditioned

on the obtained, known z, the resulting conditioned systems are expressed in either

the information form or augmented system form shown below. These systems with

z included would be useful for reasoning about expected values of z before they are

obtained. However, in most regards, these systems including z have similar properties

as their counterparts without z.

ν z x R I H
I 0

HT −Y

ν x(
R H

)
HT −Y

condition on z

z x(
R−1 R−1H

)
HTR−1 Y + HTR−1H

marginalise out ν

x(
Y + HTR−1H

)condition on z

marginalise out ν

augmented system form

information form

augmented system form & z

information form & z

Figure 3.5: The augmented system form and information form, together with their
counterparts including z (before conditioning on z). The variables involved in each system
are shown in red above the systems.

Figure 3.5 shows the augmented system form and the information form together with

their counterparts containing z before conditioning on z. Four variations are shown

containing both, either and neither of nu and z in addition to the state x. The most

general system (“augmented system form & z”) contains the state x, observations

z and observation Lagrange multipliers ν (top left). Conditioning on z leads to the

augmented system form (x & ν). Marginalising out ν leads to the “information form

& z”.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 78

3.5 Insights for Data Fusion

The augmented system form brings an alternative insight into the nature of data

fusion.

The augmented system form shows explicitly how the state estimates are perturbed

by gradient effects which flow through from the observations, via the ν Lagrange

multiplier and via the state-to-observation conversion operator H.

This forms a Lagrange-multiplier vector interpretation of data fusion, in which indi-

vidual terms (observations or prior estimates) operate individually but are forced to

interact via the sharing of Lagrange-multiplier vectors.

To explain this more specifically, consider an example consisting of two observations

and a prior term for a single one dimensional state.

This explanation will expand equation 3.17 to show the two observations. The complete

observation noise covariance R will consist of the noise covariance matrices for each

of the two observations acting independently and the complete observation Jacobian

H will consist of the entries from each observation:

R =

Ra 0

0 Rb

 H =

Ha

Hb

 z =

za

zb

 (3.73)

From equation (3.17): R H

HT −Y

∆ν

∆x

 = −

 (Hx0 − z) + Rν0

HTν0 −Y(x0 − xp)

 (3.74)


Ra 0 Ha

0 Rb Hb

HT
a HT

b −Y




∆νa

∆νb

∆x

 = −


(Hax0 − za) + Raνa0

(Hbx0 − zb) + Rbνb0

−Y(x0 − xp) + HT
a νa0 + HT

b νb0

 (3.75)

The right hand side of equation (3.75) consists of terms for each observation and for

the state.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 79

• For the observation terms, there is a residual expression (for example (Hax0−za)),

which expresses the residual for the observation on its own plus an expression

which brings in the effect of the rest of the system via the Lagrange multiplier

ν (for example: Raν). For each observation, the “rest of the system” is only

the state. Each observation links only to the common state, rather than to each

other directly.

Each observation on its own would bring the estimate to the maximum-likelihood

value, for example an x such that (Hax0 − za) = 0. However, the posterior

estimate arrives at a value different from the maximum-likelihood of the obser-

vation because other terms (the prior and other observation) pull the estimate

there via the Lagrange multiplier ν.

• For the state term, there is a residual expression Y(x0−xp) which expresses the

residual for the prior information on its own plus the expression HT
a νa0 + HT

b νb0

which brings in the effect of the rest of the system via the Lagrange multipliers

ν. For the state, the “rest of the system” is the two observations.

The prior term on its own would leave the estimate at xp. However, the posterior

estimate arrives at a different value because the combined effect of the sum of

the observation Lagrange multipliers pulls the estimate there.

The observation augmented form shows an alternative insight into the nature of

data fusion by showing separately the observation and state terms and showing their

interaction via Lagrange multipliers. This is in contrast to conventional approaches in

estimation. In conventional approaches the interaction is always expressed within the

states, either in an information or covariance matrix in the states, or any other form

of probabilistic model. These have the property that the observations are summarised

onto the states. In conventional approaches, observations and prior information

interact with each other in terms of the states, resulting in a posterior model.

The observation augmented form therefore shows an alternative approach, by maintain-

ing the observations and states separately and showing their interaction via Lagrange

multipliers.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 80

In this manner, the interface between an observation and its related states is not a

high-fidelity functional representation of the observation but instead simply a vector.

This Lagrange multiplier vector, ν, is defined in the observation space but translates

into the state space via HTν. The Lagrange multiplier vector is not static but instead

responds dynamically to proposed changes in the state estimate. (The augmented

system form orchestrates this simultaneous manipulation of the states and Lagrange

multipliers).

This insight could have a number of future applications:

• For nonlinear observations (including their communication in a decentralised

fashion) the interface between observations and states need only be the Lagrange

multiplier.

• For decentralised systems across multiple platforms, the interface might therefore

consist of the Lagrange multiplier vector and state estimate rather than consisting

of entire marginal posterior distributions.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 81

3.6 Residuals & Innovations

This section proposes a novel form of Mahalanobis distance, the residual distance,

which is equivalent to the innovation distance, but is more general. The main purpose

of the residual distance is to provide a distance measure for measuring consistency

under more complex situations. The proposed residual distance suits the other

estimation structures proposed in this thesis, particularly for evaluating cases with

multiple prediction and observation models, and for evaluating consistency throughout

a complex network of states and observations. The residual distance also achieves

the goal of generalising the innovation distance for cases with rank-deficient prior

and/or observation terms. As an introductory illustration, figure 3.6 shows the

conventional innovation approach, in which a distance measure is obtained from the

single innovation (νi = Hx̂− z), as a single pairwise expression. By comparison the

residual approach forms residuals for each term in the network, relative to a common

state estimate (νz = Hxe − z and νp = xe − x̂). The residual distance is obtained

from a combination of these residuals.

x̂ z
νi = Hx̂− z

(a) The innovation approach. A single innovation, νi, is produced from x̂ & z.

x̂ z
xe

νp = xe − x̂ νz = Hxe − z

(b) The residual approach. A residual is produced for each term, from x̂ & xe and from z &
xe. xe is the posterior state estimate.

Figure 3.6: Illustration of the innovation and residual terms

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 82

This section will develop expressions based on a simple example estimation problem,

consisting of the fusion of a single prior information term with a single observation.

The prior information term is described by estimate x̂ with covariance P. The prior

term can be related to the underlying state, x and error (or noise) in the prior term

wp as follows:

x̂ = Ix + wp (3.76)

E[wp] = 0 E[wpwT
p] = P (3.77)

The observation term is described by observation result z. The observation relates to

the underlying state and observation noise wz as follows:

z = Hx + wz (3.78)

E[wz] = 0 E[wzw
T
z] = R (3.79)

3.6.1 Innovations

The innovation distance is a standard tool for measuring the consistency between a

prior (or predicted) information term and an observation term, taking into account

the obtained values and their given uncertainties. The innovation is defined as the

difference between a predicted observation from the latest estimate (in this case simply

the prior x̂) and the obtained observation. Thus the innovation is a distance measure

in the observation space. The variance of the innovation, S, is obtained as a result of

the linear combination of random variables wz and wp.

νi , Hx̂− z (3.80)

= Hwp −wz (3.81)

E[νi] = 0 E[νiν
T
i] = S (3.82)

S = HPHT + R (3.83)

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 83

The innovation Mahalanobis distance, also known as the normalised innovation squared,

is given by:

Mi =
1

2
νTi S−1νi

=
1

2
(h(x̂)− z)T (HPHT + R)−1(h(x̂)− z)

(3.84)

(3.85)

The innovation Mahalanobis distance is also used as the basis for the “information

gate” or “information Mahalanobis distance” in [52]. The information Mahalanobis

distance shares many of the properties of the innovation Mahalanobis distance. In

particular, the innovation is obtained pairwise for two terms, and Y is required to

be invertible. The information Mahalanobis distance is equivalent to the innovation

Mahalanobis distance but offered in a slightly modified form suitable for use with some

information filtering expressions. Therefore, the information Mahalanobis distance

will not be discussed any further.

The next section will discuss the proposed alternative, the residual Mahalanobis

distance.

3.6.2 Residuals

The motivation behind the residual Mahalanobis distance approach is illustrated in

figure 3.6. The residual Mahalanobis distance was motivated by the following question:

How does the innovation Mahalanobis distance (of equation 3.85) relate to the following

quadratic form, evaluated at the solution x = xe:

F (x) =
1

2
(x− x̂)TP−1(x− x̂) +

1

2
(h(x)− z)TR−1(h(x)− z) (3.86)

The answer to this is that they are exactly equivalent. This section (and appendix A)

proves this equivalence. The relationships among these quadratics are also summarised

in appendix A.3.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 84

Equation 3.86 is a standard expression relating to the log-PDF of the estimation

problem of this section. It also indicates an alternative distance measure, the residual

Mahalanobis distance. The residual Mahalanobis distance is summarised as follows:

• Each term is compared against a common state estimate xe, typically the

optimal posterior (MAP) estimate. The estimate, xe, is formed from the fusion

of the prior and the observation. xe is distinct from the prior estimate x̂. xe is

correlated to both x̂ and to z since these are used to calculate xe.

• Now, instead of defining a single innovation, define two residuals representing

the difference of each term (observation and prior) away from their predicted

value given the posterior state xe.

• The residual of the observation is defined as the difference between the observa-

tion obtained and the observation predicted from the posterior state xe:

νz(x) , h(x)− z (3.87)

Mz(x) ,
1

2
(h(x)− z)TR−1(h(x)− z) (3.88)

The residual of the prior is defined as the difference between the prior x̂ and the

corresponding value predicted from the posterior state xe:

νp(x) , x− x̂ (3.89)

Mp(x) ,
1

2
(x− x̂)TY(x− x̂) (3.90)

• Note that the innovation νi and residuals νz are not to be confused with the

observation Lagrange multiplier ν. They are, however, closely related. See the

appendix section A.2.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 85

• The residual Mahalanobis distance is given by:

Mr(x) = Mz(x) +Mp(x)

Mr(x) =
1

2
νTz R−1νz +

1

2
νTp P−1νp

= F (x)

(3.91)

(3.92)

(3.93)

• The claim here is that the residual Mahalanobis distance (Equation 3.92) evalu-

ated at the solution, x = xe and the innovation Mahalanobis distance (Equation

3.85) are equal:

Mi = Mr(xe) (3.94)

This is proven in appendix A.5.

3.6.3 Discussion

The residual distance and the innovation distance are mathematically equivalent in the

two term, full rank case presented above. However, under more general circumstances

there are differing properties and benefits. These are outlined in table 3.1.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 86

Table 3.1: Residual vs. Innovation distance measures.

Residual Distance Innovation Distance

Describes a distance measure between

multiple estimation terms symmetrically.

Each term is referenced against a common

state estimate. The terms are represented

separately, without reference to each other.

Additional distance terms are added into

the residual distance (equation 3.92) for

each observation and prior. The result-

ing expression is associated with the graph

structure of the system.

Describes a distance measure between only

two estimation terms in a pair. The two

terms are referenced against each other.

Involves the terms R−1 & P−1 which al-

lows zero-information cases (non-invertible

prior information Y), but excludes con-

straint cases (non-invertible R or P). Dis-

tance measures under constraints are in-

herently difficult since any infinitesimal

deviation from the constraint has infinite

cost.

Involves the term (HPHT + R)−1, which

excludes zero-information cases (non-

invertible prior information Y).

A measure of the consistency of a particu-

lar solution, xe, rather than the intrinsic

consistency of the terms involved. The

measure of the intrinsic consistency of the

terms is obtained by simply evaluating at

a MAP solution.

Refers directly to the terms involved with-

out reference to a proposed solution point.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 87

Table 3.1: Residual vs. Innovation distance measures. (continued)

Residual Distance Innovation Distance

Suitable for operation with multiple obser-

vation and prediction terms. As a result,

the residuals approach is well suited to

the trajectory state and observation aug-

mented approaches.

Suited to operation with a pair of terms,

conventionally a prediction and an obser-

vation. This approach is therefore well

suited to a straightforward predict-observe

filtering context.

3.6.4 Multiple Observation Terms

The residual Mahalanobis distance expression is more suitable for evaluating the

consistency of scenarios with multiple terms than the innovation Mahalanobis distance

expression.

In figure 3.7, a prior information term is observed twice simultaneously. In general the

observation functions H1 and H2 will correspond to different types of observation with

different observation dimensions. The sum in equation 3.92 is easily able to extend to

the multiple observation case, for example:

Mr =
1

2
νTz1

R−1
1 νz1 +

1

2
νTz2

R−1
2 νz2 +

1

2
νTp P−1νp (3.95)

Similarly, in figure 3.8, a state linked to both past and future states by a dynamic

model has no clear “prediction” direction. In this case the residual Mahalanobis

distance operates symmetrically across all the involved terms in a clear manner.

By comparison, it is not clear how to apply the innovation distance to these multiple

observation and prediction scenarios, since the innovation approach relies on converting

the prior information term into the observation space (see section 3.6.1).

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 88

x̂

z2

z1

xe
xe − x̂

H1xe−
z1

H
2x
e − z

2

(a) Spatial Illustration showing the projection of the observations into the state space.

x

H1

H
2

z1

z2

x̂

R1

R2

P

(b) Graphical model (see section 2.6) showing the structure of the state and observation terms.

Figure 3.7: Illustration of the residual approach for multiple observations. Three

residuals are produced for the three terms. The Mahalanobis distance for the total

configuration is then obtained from the sum in equation 3.92 extended to three terms (for

the single prior and two observations).

The scenario of “multiple observations” applies to the trajectory state formulation. In

the trajectory state approach, a particular instance of a dynamic state will naturally

be linked by the dynamic model to the past and future state instances. In that case,

if one or more observations link to this state, then the state will have a set of two

prediction and one or more observation terms. The residual Mahalanobis distance is

then still applicable to these multiple observation terms (including the dynamic model

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 89

links). This is depicted in figure 3.8.

The observations and predictions are therefore treated symmetrically. Each observation

or prior model checks for residuals against the state estimate, xe, and the total

Mahalanobis distance is obtained from a sum over the individual terms’ distances.

xk xk+1xk−1

z2z1

x̂

Figure 3.8: Graphical model (see section 2.6) for a multiple-residual case arising from

a trajectory smoothing structure. Prediction models link the state xk to the past and

future, together with a plain prior term on xk. This structure would require three terms

for the residual Mahalanobis distance (one for each prediction observation plus one for the

prior). By contrast it is not clear how the conventional innovation distance would apply

to this multiple-term scenario.

Therefore the residual Mahalanobis distance expression is more suitable for evaluating

the consistency of scenarios with multiple terms, including the trajectory state case,

than the innovation Mahalanobis distance expression.

3.6.5 Chi-Squared Degrees of Freedom

Under conditions in which the noises in equations 3.76 and 3.78 are Gaussian, the

resulting distances, Mr & Mi are χ2 (chi-squared) random variables.

The shape of the χ2 distribution is affected by the number of degrees of freedom (DoF)

in the interacting squared Gaussian random variables. The number of degrees of

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 90

freedom depends on the dimension of the underlying variables, but also on the rank

and directions of the terms involved.

The residual Mahalanobis distance expression is suitable for scenarios with general

rank Y and general dimensions of the observation. By comparison, the innovation

Mahalanobis distance is suitable only for full rank prior information. Under general

rank conditions, the degrees of freedom of the χ2 distribution are slightly more

complicated than in the full rank case.

The number of degrees of freedom of the Mahalanobis distance depends on the number

of dimensions that are shared in common between the various terms, because it is

these in which disagreement (and hence residuals) can arise. Terms which contribute

information in an entirely orthogonal direction to all the others cannot give rise to

any residual, since there are no other terms to disagree in that direction, and hence

this dimension does not contribute to the number of degrees of freedom of the χ2

distribution of the Mahalanobis distance.

The dimension of the χ2 distribution is given by:

nDoF =
∑
i

rank(Yi) − rank(
∑
i

Yi) (3.96)

Where all observation and prior terms are written in the information form, Yi.

If there are only two terms, each with full rank (rank(Yi) = nstate) then equation 3.96

reduces down to nDoF = nstate.

In the innovation distance, there are only two terms and the prior covariance term

is usually assumed to be full rank nstate. Therefore the degrees of freedom of the

innovation Mahalanobis distance χ2 distribution is the dimension of the observation.

It is possible in the residual Mahalobis distance to obtain nDoF = 0. This indicates

that each of the information terms is operating in orthogonal directions to the others.

This indicates that the solution is acceptable but has no built in redundancy for error

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 91

checking. Mr will be obtained as zero at the solution. For example:

Y1 =

1 0

0 0

 Y2 =

0 0

0 1

 (3.97)

or:

Y1 =

+1 −1

−1 +1

 Y2 =

+1 +1

+1 +1

 (3.98)

3.6.6 Lagrange Multipliers for Measurement of Consistency

The observation Lagrange multipliers are useful for the analysis of the consistency of

the system.

Consider an individual observation (or constraint) term in the context of a broader

system. Measures of consistency for this term can be derived from νz and Mz(x) as

well as ν:

νz = h(x)− z (3.99)

Mz(x) =
1

2
(h(x)− z)TR−1(h(x)− z) (3.100)

ν = −R−1(h(x)− z) (3.101)

• Mz(x) is the observation Mahalanobis distance, a positive scalar.

• νz is the observation residual, a vector in observation space.

• ν is the observation Lagrange multiplier, which is a vector in inverse observation

units.

For an observation which is perfectly consistent with the rest of the system (the

solution x will be identical with or without this observation term), then Mz(x), νz

and ν are all zero.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 92

The difference between these is significant in the presence of constraints.

For constraints the residual νz and Mahalanobis distance Mz(x) will both be zero

at the solution and hence these give no indication regarding any potential conflict

between the constraint and other linked terms. By comparison the Lagrange multiplier

ν for constraints will obtain varying values according to the direction and extent of

any conflict with other terms.

In data association, entities which may be initially distinct can be identified as being

the same and forced into equality by linking them with equality constraints. The

value of the equality Lagrange multiplier indicates the “force” required to bring the

states into agreement and thus indicates the level of inherent agreement.

It becomes important later in this chapter whether the system needs the Lagrange

multiplier variables. If they are not needed in the application, then their existence in

the system must be justified by their ability to speed up the solution for the state

estimates. This can apply in some extreme cases (see example 3.4) but for localisation

and mapping it generally does not. However, if the Lagrange multipliers are needed (as

is argued in this thesis), then it does become worthwhile augmenting them jointly with

the states and solving for everything jointly. Future work will apply this mechanism

of Lagrange multipliers to the full analysis of consistency and implementation of data

association.

Force and Energy Interpretations A linear weighted estimation problem is math-

ematically equivalent to a system of interconnected linear springs. The observation

Lagrange multipliers are mathematically equivalent to forces in such a system.

The augmented system form is equivalent to a combined position and force formulation

of the linear spring system based on stiffness. The information form is equivalent to a

postion-only formulation of the system based on energy.

The solution can be equivalently described as a position with either minimum energy

or zero net force. At minimum energy, the derivative of energy with respect to position

is zero. The derivative of energy with respect to position is the net force.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 93

The force formulation explicitly includes evaluation of the forces throughout the

system, whereas the energy formulation amortises the various forces together into

energy terms.

A similar force based mechanical analogy is drawn in [35, 36] which in turn cites

matrix based methods in structural analysis for the analysis of stiffness modes and

internal stresses in the estimation network. This could be an interesting avenue for

further investigation along the lines of the data association and consistency analysis

mentioned above.

3.6.7 Conclusion

This section proposed an alternative form of Mahalanobis distance, the residual

distance, which is equivalent to the innovation distance, but is a more general expression.

The main purpose of the residual distance is to provide a distance measure for measuring

consistency under more complex situations. The proposed residual distance suits

the other estimation structures proposed in this thesis, particularly for evaluating

cases with multiple prediction and observation models, and for evaluating consistency

throughout a complex network of states and observations. The residual distance also

achieves the goal of generalising the innovation distance for cases with rank-deficient

prior and/or observation terms.

These advantages will be of benefit in future work for implementing the data association

and online verification algorithms under the trajectory state and augmented system

approaches.

3.7 Benefits for Estimation

This section will discuss the benefits to the estimation process in using the augmented

system form compared to using the information form.

The augmented system form has the following benefits which will be discussed in this

section:

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 94

• Improved sparsity for problems with large observation degree and small state

degree.

• Improved numerical stability for constraints and tight-observations.

These are achieved by having the option of factorising some states ahead of their

observations.

The main alternative solving approaches to be discussed in this section are shown in

figure 3.9. Given the input R, H and Y systems, the alternatives considered here

consist of forming either the augmented system form or the information form first.

The augmented system form may then be solved by factorising the observations first

or factorising among the observations and states in a mixed order. The approach of

solving the augmented system form by factorising the observations first is equivalent

to using the information form and therefore will not be discussed separately. The two

basic alternatives discussed here therefore consist of:

• Factorising the observations first and states second. This is equivalent to the

information form.

• Factorising in a mixed order among the observations and states. This is only

possible if the augmented system form is used. (The approach of factorising the

states first is another possibility, but that is a subset of the mixed approach).

3.7.1 Factorisation Ordering for Sparsity

This section discusses the benefits of the augmented form in relation to factorisation

orderings for sparsity by comparison to the information form.

Choosing a factorisation ordering for minimum fill in is an NP-complete problem [30].

For small examples it is possible to explicitly evaluate all orderings. For larger examples

the algorithm colamd [18] is used. This thesis does not propose new factorisation

ordering algorithms. Instead, this thesis claims that the augmented system form gives

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 95

R, H, Y

inputs

(
R H
HT −Y

)Augmented form

Y + HTR−1H

Information form

Factor among obs. & states
in mixed order

Factor among
states

Factor or eliminate obs.

Figure 3.9: Alternative system forms and solving approaches. Given the system’s R,
H and Y formulation, the paths considered in the discussion consist of forming either the
augmented system form or the information form first. The augmented system form may
then be solved either by factorising the observations first, which effectively constructs the
information form, or by factorising among the observations and states in a mixed order.
However, if the information form is formed first, it can then only be solved by factorising
among the states.

a wider range of factorisation ordering possibilities than the information form, since it

is able to choose a factorisation ordering from both the observations and constraints.

The factorisation orderings for particular examples are compared by evaluating the

number of nonzeros in the L factor of the LDL factorisation of the augmented system

form or information form. The number of nonzeros of L is an appropriate measure

because:

• It is a mathematical property of the system and the factorisation order, rather

than a measure specific to the computational environment or implementation

(unlike, for example, the time taken for factorisation).

• Nonzeros in L each correspond to numerical operations required in the solution.

This section discusses some cases in which it is better for sparsity reasons to eliminate

some states first, ahead of their observations. These cases motivate the use of the

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 96

augmented system form, since performing the factorisation in this order is not possible

in the information form.

This section will present a number of examples in order to show the sparsity properties

of the augmented system form versus the information form.

Large observation degree example

Example 3.4 below shows a case of large observation degree and small state

degree. In this case the augmented system form is more compact than the

information form, and the factorisation of states first is more compact than the

alternative observations first.

Large state degree example

On the other hand, example 3.5 shows one particular case of superior performance

of the information form. This demonstrates that the relative performance of

the augmented system form and the information form depends on the graph

structure properties between the observations and states.

A Dynamic vehicle and map example

Example 3.6 introduces an example containing a sequence of vehicle states and

some features. These are linked by models of typical sizes for localisation and

mapping problems. The resulting sparsity and factorisation patterns consist

of a mix of observations and states and the augmented system form becomes

advantageous when the system actually needs the values for both the states and

Lagrange multipliers.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 97

Example 3.4.

Sparsity factorisation ordering in a large observation degree case

In this example each observation links to many states (large observation degree) but

each state is only linked to a few observations (small state degree). For this example

the observation is defined as measuring the sum of the states as shown in figure 3.12.

H =
(

1 1 · · · 1 1
)

R = 1 Y = I (3.102)

The number of nonzeros in the augmented system matrix (A) will be compared against

that of the information matrix (Y+ = Y + HTR−1H). This example will also

compare the number of nonzeros in the triangular factors (L) under the permutations:

(observation,states), (states,observation) and (states only). The case of considering

only the states (as in the information form) is a subset of the (observation,states)

ordering obtained by discarding the eliminated observations.

Results

Figure 3.10 and table 3.2 show the number of nonzeros in the augmented form and

the information form. For Nstate ≥ 4 the augmented form has fewer nonzeros than

the corresponding information form as it scales linearly. Figure 3.11 and table 3.3

show the number of nonzeros in L. The augmented system form allows the use of the

ordering (states, observations) which is sparser than the alternatives for Nstate ≥ 4.

Discussion

Figures 3.12 and 3.13 illustrate A, Y+ and L for the case Nstate = 6. Figure 3.12a

shows the augmented system form. The number of nonzero entries is 1 + 3n = 19. By

comparison the information form, shown in figure 3.12b, has the full n2 = 36 entries,

due to the dense single observation of the sum of all states in this example. Therefore

the augmented form is a more compact representation in this case. Similarly, figure

3.13a shows the L factor of the system when factorised in the (states,observation)

ordering. This preserves the sparsity found in the augmented form. By comparison,

figure 3.13b shows the L factor of the system under the (observation,states) ordering,

which results in dense fill in similarly to the information form.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 98

100 101 102 103

100

101

102

103

104

105

106

n = Nstate

N
u
m

b
er

n
on

ze
ro

s
co

u
n
t

nnz(InfoY) = n2

nnz(A) = 1 + 3n

Figure 3.10: Number of nonzeros in the augmented form and the information form for
various Nstate, in the case of a large observation degree & small state degree.

Table 3.2: Number of nonzeros in the augmented form and the information form, in
the case of a large observation degree & small state degree.

Nstate nnz(A) nnz(Y+)

1 4 1
2 7 4
4 13 16
8 25 64

16 49 256
32 97 1,024
64 193 4,096

128 385 16,384
256 769 65,536
512 1,537 262,144

1,024 3,073 1,048,576

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 99

100 101 102 103

100

101

102

103

104

105

106

n = Nstate

N
u
m

b
er

n
on

ze
ro

s
co

u
n
t

nnz(L) (obs,states) O(n2)

nnz(L) (states) O(n2)
nnz(L) (states,obs) O(n)

Figure 3.11: Number of nonzeros in the L factor for various ordering approaches, in
the case of a large observation degree & small state degree..

Table 3.3: Number of nonzeros in the L factor for various ordering approaches, in the
case of a large observation degree & small state degree.

Nstate (states,obs) (obs,states) (states)

1 3 3 1
2 5 6 3
4 9 15 10
8 17 45 36

16 33 153 136
32 65 561 528
64 129 2,145 2,080

128 257 8,385 8,256
256 513 33,153 32,896
512 1,025 131,841 131,328

1,024 2,049 525,825 524,800

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 100

z x

xx

x

x x

A =



1 1 1 1 1 1 1
1 −1
1 −1
1 −1
1 −1
1 −1
1 −1



(a) The augmented system form, A.

x

xx

x

x x

Y+ =


2 1 1 1 1 1
1 2 1 1 1 1
1 1 2 1 1 1
1 1 1 2 1 1
1 1 1 1 2 1
1 1 1 1 1 2



(b) The information form Y+

Figure 3.12: A large observation degree, small state degree example showing the systems
A and Y+

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 101

z x

xx

x

x x

L =



1
1

1
1

1
1

−1 −1 −1 −1 −1 −1 1



(a) L under the (states,obs) ordering.

z x

xx

x

x x

L =



1
1 1
1 1/2 1
1 1/2 1/3 1
1 1/2 1/3 1/4 1
1 1/2 1/3 1/4 1/5 1
1 1/2 1/3 1/4 1/5 1/6 1



(b) L under the (obs,states) ordering.

Figure 3.13: A large observation degree, small state degree example showing the L for
the alternative orderings.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 102

This example showed an extreme case of large observation degree and small state

degree: A single dense observation across all states. This example demonstrated a case

in which the augmented system form is more compact than the information form, and

the factorisation of states first is more compact than the alternative observations first.

�

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 103

Example 3.5.

Sparsity factorisation orderings in a large state degree case

In this example each state links to many observations (large state degree) but each

observation is only linked to a one state (small observation degree). This is the opposite

scenario than that presented in example 3.4.

The large state degree, small observation degree scenario is the motivation behind the

information form. The idea is that the representation of the posterior system in the

states only is more compact than the representation in the joint (observation,state)

system.

This example is included to show how the relative advantages of the augmented system

form compared to the information form depend on the structural properties of the

system. In this example, the large state degree & small observation degree leads to a

compact information form.

This example defines a single scalar state and defines many (Nobs) scalar observations

simply observing the state value.

H =
(

1 1 · · · 1 1
)T

R = I Y = 1 (3.103)

Results

Figure 3.14 and table 3.4 show the number of nonzeros of the augmented system form

and the information form. For this example the information form has a constant size

equal to Nstate = 1 regardless of the number of observations. The augmented system

form has a number of nonzeros equal to 3Nobs + 1.

Figure 3.15 and table 3.3 show the number of nonzeros in the L factor of A for various

ordering approaches. Factorising the states first results in an O(n2) fill-in in the

observations whereas factorising the observations first maintains an O(n) sized factor.

The L factor for the (scalar) information form is simply a scalar in this single-state

example.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 104

100 101 102 103

100

101

102

103

n = Nobs

N
u
m

b
er

n
on

ze
ro

s
co

u
n
t

nnz(InfoY) = 1
nnz(A) = 1 + 3n

Figure 3.14: Number of nonzeros in the augmented form and the information form for
various Nstate, in the case of a large state degree & small observation degree.

Table 3.4: Number of nonzeros in the augmented form and the information form, in
the case of a large state degree & small observation degree.

Nobs nnz(A) nnz(Y+)

1 4 1
2 7 1
4 13 1
8 25 1

16 49 1
32 97 1
64 193 1

128 385 1
256 769 1
512 1,537 1

1,024 3,073 1

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 105

100 101 102 103

100

101

102

103

104

105

106

n = Nobs

N
u
m

b
er

n
on

ze
ro

s
co

u
n
t

nnz(L) (obs,states) O(n)
nnz(L) (states) O(1)

nnz(L) (states,obs) O(n2)

Figure 3.15: Number of nonzeros in the L factor for various ordering approaches, in
the case of a large state degree & small observation degree.

Table 3.5: Number of nonzeros in the L factor for various ordering approaches, in the
case of a large state degree & small observation degree.

Nobs (states,obs) (obs,states) (states)

1 3 3 1
2 6 5 1
4 15 9 1
8 45 17 1

16 153 33 1
32 561 65 1
64 2,145 129 1

128 8,385 257 1
256 33,153 513 1
512 131,841 1,025 1

1,024 525,825 2,049 1

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 106

x z

zz

z

z z

A =



1 1
1 1

1 1
1 1

1 1
1 1

1 1 1 1 1 1 −1



(a) The augmented system form, A.

x Y+ =
(
7
)

(b) The information form Y+

Figure 3.16: A large state degree, small observation degree example showing the systems
A and Y+

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 107

x z

zz

z

z z

L =



1
−1 1
−1 1/2 1
−1 1/2 1/3 1
−1 1/2 1/3 1/4 1
−1 1/2 1/3 1/4 1/5 1
−1 1/2 1/3 1/4 1/5 1/6 1



(a) L under the (states,obs) ordering.

x z

zz

z

z z

L =



1
1

1
1

1
1

−1 −1 −1 −1 −1 −1 1



(b) L under the (obs,states) ordering.

Figure 3.17: A large state degree, small observation degree example showing the L for
the alternative orderings.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 108

Discussion

The elimination of the observations into the information form results in a compact

(scalar) state posterior in this example (figure 3.16). The fill-in resulting from the

factorisation of states is illustrated in figure 3.17a. Therefore the information form is a

more compact representation in this particular example. Similarly, the factorisation or-

dering (observations,state) is also more efficient than the alternative (state,observation)

in this particular example. The use of the information form is motivated by the as-

sumption of large state degree and small observation degree. Under this assumption

the information form is a more compact and efficient representation and solving

ordering for the estimation problem. However, this assumption does not hold true for

all observations in all systems and is not guaranteed in general. This example showed

the opposite case than example 3.4. In this example the large number of observations

linking to a small state results in superior performance of the information form. This

demonstrates that the relative performance of the augmented system form and the

information form depends on the graph structure properties between the observations

and states.

�

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 109

Example 3.6.

Sparsity factorisation in a localisation and mapping example

Example 3.4 showed how the augmented system form allows the factorisation of states

ahead of observations, which is beneficial for scenarios with large observation degree

and small state degree. That example used the extreme case of a single observation

linking to all states.

This example considers the same properties of the augmented system form regarding the

factorisation orderings for sparsity. However, this example considers an observation

and state pattern typical of estimation problems in localisation and mapping. This

example will consider a system with a sequence of vehicle states linked by a dynamic

model and a sequence of feature states linked to the vehicle states by an external

observation model (vision observations). This structure is illustrated in figure 3.18.

The chain of states, observations and features consists of 101 vehicle states and 50

features. The dimensions of the various models and states are important because

· · ·

Figure 3.18: Structure of states and observations for this example. The vehicle states
(nodes) are linked in a chain by dynamic model observations (nodes). The vehicle
states link to feature states (nodes) via vision observations (nodes). Each feature is
linked to three vehicle states as shown. Each state and observation node shown in the
figure represents a cluster of dimension Nstate or Nobs. Each observation-state link shown
in the figure represents a cluster of Nstate ×Nobs links.

these affect the degree properties of the graph structure of the system, which affects

the sparsity effects of various factorisation approaches. This example assumes that

given an observation of size Nobs linking to a state Nstate that the full Nobs × Nstate

scalar-scalar links are used and are nonzero. The dimensions of the various models

are given on the next page. The dimensions are summarised in tables 3.6 and 3.7.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 110

Vehicle states

The vehicle state consists of the position, velocity and attitude. The vehicle

position and velocity are assumed to be 3D. The vehicle attitude parametrisation

is assumed to be a 4D quaternion. The vehicle state is therefore of dimension

10.

Feature states

The feature state is assumed to be 3D.

External observations

External observations between a vehicle and a feature may consist of range only

(1), bearing only (1-2), range & bearing (3) or Cartesian (3). Therefore the

external observation is of dimension in the range (1-3). This example will use

dimension 2, representing a vision observation in 3D. The linked states are the

feature and vehicle pose (excluding velocity) of total dimension 10.

Dynamics observations

There are various approaches to the formulation of the dynamic models. This

example assumes that the various controls, measurements and models of the

dynamics result in a predicted vehicle pose, given the previous pose. The di-

mension of the model then becomes dimensions of the residual comparing the

poses. Therefore the dimension of the dynamics observations is the dimension

of the vehicle pose residual, which is assumed to be the same as the vehicle

pose dimension, i.e.: 10. The linked states are the two vehicle poses, of total

dimension 20.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 111

In summary, the dimensions of the models are given in tables 3.6 and 3.7:

Table 3.6: Summary of dimensions of observations and their linked states

Observation type observation size linked state size

external observation 2 10

dynamics observation 10 20

Table 3.7: Summary of dimensions of states and their linked observations

State type state size linked observation size

feature state 3 6

vehicle position 3 22-24

vehicle velocity 3 20

vehicle attitude 4 22-24

Analysis

This section will consider a variety of factorisation orderings of the augmented system

form, regarding the ordering of observations and states. Existing ordering algorithms

will be used to choose the orderings for each set of variables. The ordering algorithms

listed in table 3.8 were considered. Some of these algorithms are sensitive to the initial

ordering passed into the algorithm. Therefore, the algorithms were examined over

a sequence of 10 random initial orderings. There was also a notable improvement

obtained by performing the ordering colperm after the random shuffle and before the

main algorithm. colperm sorts the variables by their vertex degree. The algorithm

chosen for analysing the remainder of this example was the sequence (colperm,colamd)

because it provides a good sparse ordering with little or no sensitivity to the initial

ordering. For brevity this sequence will be referred to as colpermamd.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 112

Table 3.8: Augmented system L factor sparsity for various ordering algorithms. This
table lists the number of nonzeros of L for the factorisation of A under different ordering
algorithms. The Matlab name of the algorithm is listed. The resulting ranges for nnz(L)
correspond to ranges obtained in 10 trials of a random shuffling ordering applied before
the algorithms (where indicated).

Sys: Order: nnz(L of sys in order) range
A shuffle, colamd 41271 - 41585 314
A shuffle, colperm, colamd 41055 - 41055 0
A colamd 41393 -
A colperm, colamd 41055 -
A shuffle, amd 43193 - 44229 1036
A shuffle, colperm, amd 43198 - 44041 843
A amd 42509 -
A colperm, amd 42221 -
A shuffle, symrcm 41113 - 41113 0
A shuffle, colperm, symrcm 41113 - 41113 0
A symrcm 41113 -
A colperm, symrcm 41113 -
A shuffle, symamd 55710 - 56134 424
A shuffle, colperm, symamd 55710 - 55922 212
A symamd 55922 -
A colperm, symamd 55922 -
A shuffle, colperm 802099 - 834965 32866
A colperm 834898 -

colamd and symamd are described in [18]
amd is described in [4]
symrcm is the symmetric reverse Cuthill-McKee ordering (Matlab)
colperm orders variables by their un-factorised degree (Matlab)

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 113

Sparsity of the initial systems

Table 3.9 lists the number of nonzeros in the augmented system form and the informa-

tion form. The number of nonzeros of the augmented system form is greater than that

of the information form: nnz(A) > nnz(Y+). However, the augmented system form

represents more of the system than the information form. On this basis, suppose that

alongside the information form that a typical implementation will also store the H

and R. Therefore, considering the information form plus the H and R systems 5:

nnz(tril(Y+)) + nnz(H) + nnz(tril(R)) > nnz(tril(A))

47955 > 31472

(3.104)

(3.105)

Thus the augmented system form is more compact under this condition where the nonze-

ros of H and R are counted onto the information form figures. The augmented system

form achieves this compactness by having no fill-in resulting from the elimination of

observations.

Table 3.9: Sparsity of the un-factorised augmented and information form systems.

Expression result

nnz(A) 60484

nnz(Y+) 36850

nnz(H) 23000

nnz(Y+) + nnz(H) + nnz(R) 70450

nnz(tril(Y+)) + nnz(H)+ nnz(tril(R)) 47955

nnz(tril(A)) 31472

nnz(tril(Y+)) 19005

5It is only necessary to count a single half “tril” of any symmetric systems.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 114

Sparsity of the factorised systems

Table 3.10 lists the sparsity of the factorisation of A obtained under different orderings.

The most preferable algorithm from table 3.8, colpermamd, is applied to the systems

A and Y+ to obtain orderings over (observations,states) and (states) respectively.

Table 3.10: Triangular Factor Sparsity

system in order: nnz(L of system in order)

A colpermamd(A) 41055

A
(
obs, colpermamd(Y+)

)
48504

A
(
colpermamd(Y+), obs

)
680248

Y+ colpermamd(Y+) 19554

Y+ & H & R 48504

The best ordering over the joint observations and states gives an L factor with 41055

nonzeros. By comparison, enforcing an ordering which has the observations factorised

first and using the best ordering on the remaining states results in 48504 nonzeros.

This shows that the augmented system form is able to achieve sparser L factors than

when enforcing an “observations first” factorisation policy.

The L factor of the information form has fewer nonzeros than those of the augmented

system form. However, if the system needs to compute the observation Lagrange

multipliers for data verification or data association purposes, then the information form

factorised system is effectively subject to further nonzeros nnz(H) + nnz(tril(R))

= 28950. This brings the information form to a total nonzero count of 48504, the

same as the augmented system form under the
(
obs, colpermamd(Y+)

)
ordering.

nnz
(
L of A in order colpermamd(A)

)
< nnz

(
L of A in order

(
obs, colpermamd(Y+)

))
(3.106)

Therefore, the augmented system form is again competitive under the assumption that

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 115

the system will need to maintain the representation of the observations and calculate

the observation Lagrange multipliers. This will be the case for data verification and

data association algorithms.

Factorisation Order Patterns

This section describes the factorisation ordering pattern of colpermamd(A). A key

benefit of the augmented system form is the ability to use factorisation orderings beyond

the observations-first approach of the information form. The complete factorisation

order of colpermamd(A) for a much smaller 9 vehicle state, 4 feature state example

is shown in figure 3.19. The important point is that the chosen ordering skips freely

between observations and states.

Figure 3.20 decomposes the factorisation ordering by showing the relative factorisation

ordering of variables immediately adjacent to a central variable. This is repeated for

each type of variable in the system.

12 20 26 4

10 17 24 3315 23 32 2

11 14 18 21 27 28 30 6 3

9 8 7 1

13 16 19 22 25 29 31 5

Figure 3.19: The specific factorisation ordering for the small (9 vehicle state) example.
Notice that the factorisation ordering changes between the observations and states fre-
quently. Vehicle states: (nodes) Feature states: (nodes)
Dynamic model observations: (nodes) Vision observations: (nodes)

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 116

1 2 3

(a) Vehicle velocity state and ad-
jacent dynamic model variables.
Factorisation typically proceeds in
chronological order along the chain.

1 2 3

(b) Dynamics Observation variable
and adjacent vehicle states. Factori-
sation proceeds along the chain in
chronological order.

1

2

3

4 5

1

2 3 4

(c) Vehicle position or attitude state and adjacent variables. The dynamic
model components are factorised in chronological order but the vision obser-
vations are factorised before the vehicle state.

1

2 3 4

(d) Feature position state. The fea-
ture state is always factorised first
followed by the adjacent vision ob-
servations in chronological order.

123

(e) Vision observation variable and
adjacent states. The feature is fac-
torised first, followed by the vision
observation, followed by the vehicle
position and attitude states.

Vision observation Dynamics observation

Feature state Vehicle state

Figure 3.20: Typical fragments of the factorisation ordering generated by
colpermamd(A). Due to the regular structure of this example, these patterns occur
very frequently. These patterns were taken from the full 101 vehicle state example and are
not directly comparable with figure 3.19. These patterns indicate that the factorisation
ordering very frequently skips between observations and states, which is a key capability
of the augmented system form.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 117

• Figure 3.20 shows that factorisation occurs in an ordering which traverses along

the chain-like segments. For example, the (vehicle state) - (dynamics observation)

sequence of 3.20a and 3.20b.

• All cases except 3.20d factorise in an order which mixes states and observations.

Only 3.20d factorises the feature state first before the observations. In this

example, the feature is factorised first because it was linked with fairly small

degree (3). Generally small-degree features should be factorised early and large-

degree features factorised late.

• Neither the observations nor the states are factorised first.

Note that the scenarios found in this example are very regular due to the regular layout

of this example. In general the system should analyse the graph structure properties

and decide the factorisation ordering among the observations and states at runtime.

This thesis does not recommend adopting the patterns shown in this example as fixed

policies.

The augmented system form is necessary in order to be able to adopt these generalised

factorisation orderings over the observations and states. The result is the improvement

in the sparsity of the factorised system as shown in table 3.10 under the assumption

that systems do need to compute the observation Lagrange multipliers. The augmented

system form allows the system to use the calculated Lagrange multipliers as intermediate

variables to help calculate the states faster in some cases, and vice versa in other cases,

depending on the structure properties of the system.

�

Conclusion

This section discussed the benefits of the augmented form in relation to factorisation

orderings for sparsity. This section argued that the augmented system form has benefits

for the sparsity. The same performance of the information form can be obtained by

eliminating the observation Lagrange multiplier variables from the augmented system.

In cases of more complex observation degree, particular states can be factored ahead

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 118

of their observations to obtain a sparser factorisation. In general the system should

analyse the graph structure properties and decide the factorisation ordering among

the observations and states at runtime.

3.7.2 Factorisation Ordering for Numerical Stability

Numerical stability is important in systems consisting of a wide range of uncertain-

ties. In particular, systems with constraints, observations and uninformative prior

information.

The augmented system form allows the factorisation or elimination to occur over both

observations and constraints. This flexibility allows numerically stable treatment of

constraints and tight observations, as well as poor or uninformative prior information.

Numerical stability is affected by the elimination of variables. This is because the

elimination of a variable i from a linear system A forms expressions in the reduced

or factorised system proportional to A−1
ii . Small Aii therefore propagate large entries

into the subsequent reduced or factorised systems. Directly eliminating a zero Aii

corresponding to a constraint is not possible due to the resulting 0−1. Refer to [37, pg

239] for additional discussion.

As a linear system, the augmented form has a different numerical conditioning than the

information (normal) equations. If ’high information’, ’low covariance’ or constraint

(zero covariance) observation terms are included in a system which is otherwise well

conditioned, then the augmented system form will have a better numerical conditioning

that the information form. This is shown in example 3.7:

The numerical stability of the factorisation of the augmented system is affected by the

factorisation ordering, allowing a choice of ordering to improve the numerical stability,

as shown in example 3.8.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 119

Example 3.7.

Numerical stability of the augmented system versus information form

near constraints

Consider a system with a near-constraint observation with R = ε. As R tends

towards zero, the numerical conditioning of the augmented form remains near 1 (well

conditioned) but the numerical conditioning of the information form tends to infinity

(poorly conditioned).

Y− =

1 0

0 1

 R = ε→ 0 H =
(

1 −1
)

(3.107)

The associated augmented system form is:

A =

 R H

HT −Y−

 =


ε +1 −1

+1 −1 0

−1 0 −1

 (3.108)

The condition number of A (the ratio of the largest over smallest singular values of

A) is 2.

The associated information form system is:

Y+ = Y− + HTR−1H =

1 0

0 1

+
1

ε

+1 −1

−1 +1

 (3.109)

The condition number of Y+ is approximately 2
ε
.

Thus when high information, low covariance or constraint (zero covariance) observation

terms are included in a system which is otherwise well conditioned, then the augmented

system form will have a better numerical conditioning that the information form.

�

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 120

Example 3.8.

Numerical stability of differing factorisation orderings near constraints

This example shows how the choice of factorisation order affects the numerical stability

of the factorisation. In the augmented system form, it is possible to factorise the states

and observations in any order and therefore possible to reorder the factorisation to

improve numerical stability. This example is an extension to that given in [37, pg

161].

Consider the augmented system from the previous example:

A =

 R H

HT −Y−

 (3.110)

=


ε 1 −1

1 −1 0

−1 0 −1

 (3.111)

The condition number of A is 2. This is an invariant of the initial system, A. The

numerical stability of the factorisation depends on the factorisation ordering. For this,

two options will be presented:

1. Factorising the observation first.

2. Factorising the states first.

Refer to section 2.4.2 for an introduction to the LDL factorisation.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 121

Factorising the Observations First

Factorising A via the ordering (observation, states) results in the factors:

L =


1 0 0

1
R

1 0

− 1
R

0 1

 (3.112)

D =


R 0 0

0 −1− 1
R

1
R

0 1
R

−1− 1
R

 (3.113)

The condition number of D is 2
R2 . Thus having factorised the observation/constraint

first, the remaining system in D is poorly conditioned. Both the L and D factors

contain large entries, which tend to infinity as R tends to zero.

Factorising the States First

Factorising A via the ordering (states,observation) results in the factors:

L =


1 0 0

0 1 0

−1 1 1

 (3.114)

D =


−1 0 0

0 −1 0

0 0 2 +R

 (3.115)

The condition number of D is 2 +R. Thus the remaining un-factorised system in D

is as well conditioned as the original system. The entries in L are also well contained

within the range [−1, 1]. These values will remain stable as R tends to 0.

�

Conclusion

This section 3.7.2 discussed some simple cases illustrating that the augmented system

form has benefits for the numerical stability, allowing the use of constraints and tight-

observations. The benefit of the augmented system form is in the ability to choose to

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 122

factorise states & observations in any ordering. The ordering has an increasing effect

on the numerical stability as R→ 0 for constraint or near constraint observations.

Numerical stability in the factorisation process is also discussed in section 5.7.2.1

in algorithmic terms under the topic of graph theoretic direct solving. Chapter 5

discusses cases which include both constraints and uninformative priors. In such cases,

neither the state nor the observation can be eliminated first, instead they must be

eliminated simultaneously (see example 5.1).

3.7.3 Handling Nonlinear Observations

The augmented system form aids the representation and treatment of nonlinear

observations. The observations are easily re linearised since their Jacobians exist

separately in A and are easily able to be individually replaced. This occurs because

the augmented system form avoids marginalising observations into the states.

In the augmented system form, A =

 R H

HT −Y

, the observation Jacobians, H,

exist separately from each other and separately from R and Y. The observation

Jacobians also exist in A without further calculations. By existing as the off-diagonal

links between the observations and the states, the observation Jacobian entries define

the link structure of the estimation problem. Therefore, in the augmented system form

the observation Jacobians are immediately available for replacing with new values of

H when relinearisation is performed.

By comparison, in the information form the observations are merged into the states

via the addition of HTR−1H onto the prior information. Thus in the information

form, the observations are mixed in together with each other, and with R and Y. Any

given observation is then represented by a clique in the information matrix. However,

without further data structures the information form offers no method to maintain or

track these cliques and link back to the observations they represent. In the information

form, performing relinearisation of a single observation involves subtracting HTR−1H,

reforming the new HTR−1H and adding it back into Y. This involves the same

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 123

operations as in the augmented system relinearisation, plus significant additional

operations to re-form the altered information form.

3.7.4 Conclusion

This section discussed the benefits to the estimation process in using the augmented

system form compared to using the information form. The augmented system form

improves the sparsity for problems with large observation degree and small state

degree and improves numerical stability for constraints and tight-observations. These

are achieved by having the option of factorising states and observations in a mixed

ordering.

3.8 Future Research

This chapter showed the benefits of the augmented system form in the ability to choose

factorisation orderings which mix between observations and states in order to offer

improved sparsity and numerical stability. For the factorisation ordering for sparsity,

the comparisons were drawn using the algorithm colpermamd (colperm followed by

colamd [18]). An algorithm for choosing a factorisation ordering for numerical stability

is given in chapter 5.

However, the factorisation ordering is still an important problem for future research.

It remains a problem to incorporate both sparsity and numerical stability concerns in

the factorisation ordering. In addition, another concern in the factorisation ordering

is the ordering for online modification. These are discussed further for future research

in section 6.2.

3.9 Chapter Conclusion

This chapter presented the augmented system form, a generalisation of the information

form consisting of augmenting observations & constraints in addition to the states.

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 124

The augmented form provides a mathematical system showing explicitly and distinctly

the states and observations & constraints together with Lagrange multipliers for their

interaction. The augmented system form was shown to be more general than the

information form, and this thesis proposed that it therefore provides a more general

starting point for the formulation and solving process. The information form is able

to be recovered by eliminating the observations first, in a manner which is required

for the formation of the information form anyway. By forming the augmented system

first, the process of forming the information form is formalised and is performed

using direct solving structures and methods. Furthermore, new alternative solving

approaches can be realised by factorising variables in a more flexible order than the

fixed observations-first approach. This is strictly required for constraints and also

improves numerical stability under small R and improves the fill-in sparsity under

high observation-degree circumstances.

For complex, large scale problems with various mixes of structural properties, the best

available orderings for sparsity perform the factorisation with an ordering that mixes

between observations and states.

It is not recommended to adopt any fixed policy of marginalisation of variables. Instead,

this thesis proposes using the augmented system form as the initial formulation of the

estimation problem, capturing the structure of the states and observations in their

full form. The system can subsequently be subject to analysis at runtime, given the

structural and numerical properties and understanding which variables are required in

the solution (as opposed to variables which are only intermediate variables required

to compute others) to determine which variables can or should be factorised and in

which order. The abilities of the augmented system form to support factorising among

observations and states complements the abilities of the trajectory state form (in the

smoothing and mapping and viewpoint SLAM frameworks), which support choosing

good factorisation orderings among the vehicle and feature states.

A novel Lagrangian was introduced and shown to generalise both the quadratic objec-

tive function over the states and a quadratic relating to the innovation Mahalanobis

distance. The related residual Mahalanobis distance was introduced and shown to

CHAPTER 3. AUGMENTED METHODS IN ESTIMATION 125

offer extensions for more complex multi-term cases than the conventional innovation

Mahalanobis distance.

This chapter derived connections between the proposed augmented system form

and a mix of analytical expressions related to estimation problems: The augmented

system Lagrangian, the objective function quadratic and the problem Mahalanobis

distance are all closely related. Given these, this chapter contributed a novel form

of Mahalanobis distance which is equivalent to the conventional innovation distance

but offers additional generality, including the ability to operate with rank deficient

information terms.

The next chapter describes a graph representation for the formulation of the estimation

problem. The augmented system form and the graph representation are complementary

to each other, since both discuss ways of representing the sparse, structured system of

variables involved. The augmented form provides the mathematical system, whereas

the the graph structure of the next chapter is a data structure for describing inter-

relations of variables generally.

Chapter 4

Graph Theoretic Representation

4.1 Introduction

This chapter contributes a novel graph based representation for the sparse structure

of variables, their graph links and their associated sparse linear systems.

The previous chapter proposed the use of the augmented system form for estimation

problems in localisation and mapping. The augmented system forms a large sparse

network of state and observation Lagrange multiplier variables for the estimation

problem formulation.

Given this graph-theoretic nature of the formulation approach, the motivation for

this chapter was to develop an entirely graph based representation for the system of

variables and their links. While this seems intuitive, the typical approach is to use a

sparse matrix representation. Unlike sparse matrix representations, the representation

proposed in this chapter is a true graph; it offers benefits such as constant time

insertion and removal of variables, and constant time access to adjacent variables.

The proposed graph based representation is illustrated in figures 4.1 and 4.2.

Beyond the proposal to use a graph based representation, this thesis contributes a

novel graph representation which is suited to sparse symmetric and directed systems,

126

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 127

and the associated linear sparse direct solver which operates in this representation

(see the next chapter).

When discussing systems of variables involved in the nonlinear localisation and mapping

problem, recall from chapter 2 how such nonlinear systems descend into linear problems.

The graph representation described in this chapter is capable of representing such a

nonlinear system. Since the system augments the observations and their necessary past

and present states, the overall nonlinear system is represented by each observation’s

type and its particular nonlinear observation function. The system does not attempt

to amortise the functional nonlinear representation into any manipulable nonlinear

representation. As described in chapter 2, this thesis uses only a local quadratic

approximation. In turn, this local quadratic is represented by the equation for

the zero-gradient solution, which has the form of a linear system. Therefore, the

representation described in this thesis focuses on storing the variables, their nonlinear

functions, the linearised functions and finally the overall sparse linear systems involved

in their solution algorithms.

This graph structure approach allows the development of graph embedded solving

methods of the next chapter. The graph structure allows the structure of the problem

to be exploited by the solution methods, since the full graph structure is available.

The conditional independence and sparsity properties exploited by some estimation

algorithms are graph-theoretic properties which are available to the system at runtime

when formulated as a graph. Such conditional independence properties include, for

example, the Markov property of dynamic systems (a dynamic state is condition-

ally independent of it’s whole past history, given the previous state). By encoding

these sparsity and conditional independence structures in the representation, solution

algorithms can exploit them where applicable.

The graph based representation of linear systems is described in section 4.3. This graph

based representation of linear systems includes the ability to store and manipulate

multiple vectors and sparse matrices and is used in both the theory and runtime

operation of the methods presented in this thesis. The graph operates as both the

data structure and framework for the solving algorithms described in the next chapter.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 128

A =

q t
t r u
u s

 B =

a d
b

d c

 X =

x1

x2

x3


(a) Example symmetric linear systems A and B over variables X in matrix form.

x1

x2 x3

a

b c

t

u

q

r s

d
B : a b c d

X : x1 x2 x3

A : q r s t u

(b) Equivalent symmetric linear systems A and B from (a) in graph form. The variables
of X are represented by graph vertices in no particular order. Linear systems A and B are
represented by graph edges and loops. Linear system A is shown in solid edges (). Linear
system B is shown in dashed edges (). An important aspect of the representation is that
multiple matrices are represented on a single graph by distinct sets of edge objects (edge-sets).

Figure 4.1: Graph representation of symmetric linear systems. Example symmetric
linear systems A and B are shown in both matrix and graph forms.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 129

L =


a

b
f c
g i k d
h j e

 X =


x1

x2

x3

x4

x5


(a) An example triangular square linear system, L over x1 to x5, in matrix form.

x1 x2

x3

x4x5

a b

c

de

f

g

i
k

h j

L : a b c d

e f g h

i j k

X : x1 · · · x5

(b) The example triangular square linear system, L over x1 to x5, in graph form. L is the set
of loops and directed edges. The directed edges are acyclic.

Figure 4.2: An example triangular square linear system L shown in both matrix and
graph forms.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 130

This chapter bridges the gap between general purpose graph structures and sparse

matrix structures. The graph representation, described in section 4.4, combines novel

elements beyond existing matrix and graph representations. The proposed graph

representation distinguishes between loops, symmetric and directed edges and has

the ability to contain multiple edge-sets representing multiple matrix systems. These

innovations are motivated by the need to represent both symmetric and triangular

linear systems for the representation and factorisation of systems arising in estimation

problems.

To give clarity to the concepts and contribution of the graph based representation, the

implementation is described in section 4.5. The graph representations are compared

to alternative methods in section 4.6. These numerical tests show the improved

efficiency of the graph based representations for insertions and traversals, highlighting

the differences of this representation against standard methods. Future directions for

research in the graph and linear system representation are described in section 4.7.

4.2 Literature

Graph based methods have had an ongoing presence in the localisation and mapping

literature. However, this thesis proposes a significantly expanded role for graph

representations of the estimation variables.

This thesis proposes the use of an explicit graph based data structure implementation.

Other references in the field propose graph based methods to explain the approach of

augmenting trajectory states and explain the elimination of variables in that context.

For example, the graphSLAM system [69, 71] describes an approach in which the

vehicle poses and feature locations exist as vertices in a graph. However, it appears

that they utilise a matrix implementation, despite the use of graph-based terminology.

For example, their description of the incorporation of a measurement refers to the

process of splitting a 5 × 5 information matrix block into blocks for the pose and

feature entries. Such issues indicate a matrix based implementation and such issues

do not exist in the graph representation proposed in this thesis. In another case, their

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 131

description of the elimination of features follows the process and terminology expected

of a matrix based implementation: maintaining the indices of variables, accessing

submatrices, and removing rows and columns after elimination of variables.

By contrast, the methods proposed in this chapter and the next constitute an entirely

graph based representation and associated solving algorithm for such sparse linear

systems. The resulting graph based representation avoids the above inconvenient

complications of matrix based representations.

In the smoothing and mapping approach (SAM) [20], the factor graph is shown as an

appropriate representation for the states and variables. However, the data structure

behind [20] appears to be the compressed-sparse-column matrix representation required

in order to utilise the library algorithms colamd [18] and LDL [16].

Other references have stated their use of an explicit graph structure, but have not

elaborated significant details. In [28], the authors describe a graph based representation

for the vehicle trajectory and map states in SLAM. As is similar to the approach

described in this thesis, [28] states that “[The graph representation] will be easier to

work with than matrices and long state vectors” and “the edges represent the non-zero

components of the information matrix”. However, [28] does not focus on the graph

representation of the variables as a true alternative to sparse matrix representations

and does not provide further details. This thesis proposes the graph representation as

a true alternative to a sparse matrix representation and extends novel graph theoretic

structures based on the requirements for use in linear algebra.

The remainder of this section considers the literature beyond the field of estimation

and considers sparse linear systems generally. The topic of connections between graphs

and linear systems has a vast literature and it is beyond the scope of this thesis to

present a full review. Graph-theoretic methods are the dominant methods applied for

the analysis of sparse matrices and direct solving algorithms [31]. Early references

apply graph theory to the analysis of Gaussian elimination [55] and matrix inversion

[39]. However, this usage of graphs in the analysis does not appear to extend into

the actual implementation and runtime operation of linear system manipulations as is

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 132

proposed in this thesis 1.

On the other hand, in the field of graph theory, matrices are applied for the analysis

of graph-theoretic problems [11]. It is common to see graph theory practitioners

describing the storage and manipulation of graphs in a matrix format (especially for

spectral analysis)[11]. This thesis adopts the opposite approach: instead of analysing

graphs using matrices, this thesis operates on linear systems using graphs.

Graph algorithms involved in sparse matrix algorithms frequently use the very same

compressed-sparse-column (CSC) matrix representation (for example: [17, 18, 43]) to

ensure in-memory compatibility. However, these dense integer index structures lack

the same complexity properties required of a graph representation, especially constant

time insertions.

The graph embedded linear system described in this chapter assigns the matrix

elements to the graph edges between the variables. Given the intuitive basis for this

and the long history of graph theory and linear algebra, it is surprising that few papers

or available software systems use a graph based linear system. A rare exception is in

[68], which comments that the matrix entry mij is stored on a graph edge i→ j, as in

the scheme proposed in this thesis. Tarjan comments that “we consider the system of

equations defined graph-theoretically in this way”.

However, at present, commonly available linear system software does not use graph

based data structures, but instead use the “compressed sparse column” (CSC) format

(or the row oriented transposed equivalent, CSR), for example: [1, 2, 4, 16, 18, 22, 33,

60]. The Bayes-net toolbox [51] represents graphical models in Matlab using integer

indexing of vertices, with the adjacency matrix in CSC sparse matrix format, as

opposed to the object-access and pointer direct graph approach as proposed in this

thesis. The proposed graph representation is compared to the CSC in section 4.6.

The distinction in data structures between matrices and graphs is important because

of the strong relationship between data structures and algorithms. When so much

1 Graphs are not typically used at runtime because it is preferable to use the CSC format for
fixed-size, pre-analysed problems.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 133

of the matrix analysis is described in a graph terminology it makes sense to have a

graph representation in software.

In conclusion, while many authors have adopted graph-theoretic analysis methods or

used graph-theoretic methods on matrix or matrix-like representations, the motivation

for this chapter was to contribute an entirely graph embedded representation and

solving system for sparse linear systems generally and for estimation in localisation

and mapping.

4.3 Graph Representation of Linear Systems

This section shows how linear systems can be represented in a graph based form. This

section describes specific constructs such as vector and matrix entries, whole vectors

and matrices, and finally sets of vectors and matrices. Each is generally intuitive

but there are subtle differences compared to conventional methods, which affects

algorithms later on. These points are contributed by this chapter as important new

capabilites that a graph based representation of linear systems fundamentally requires.

In turn, these lead to the graph structure extensions described in section 4.4.

Figures 4.1 to 4.3 are initial illustrations of the application of a graph structure to

linear systems. Figure 4.1 shows two example linear systems in both matrix and

graph representations. In figure 4.1a the systems are shown in matrix form, in which

entries are associated with row and column indices. By comparison, in figure 4.1b

entries exist as graph vertices with no particular ordering and are linked by explicit

graph edges. Two families of edges (edge-sets) represent the two linear systems. This

representation allows multiple systems to refer to the same underlying set of variables

in a separate but tightly linked manner.

Figure 4.2 shows the case of a triangular linear system in both matrix and graph

representations. The graph representation forms a directed acyclic graph.

Figure 4.3 shows a linear system, A, together with three alternative graph based

representations. The matrix representations for the three alternatives are identical,

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 134

resulting in an ambiguity. The graph representation alternatives are: (self-referencing

symmetric), (self-referencing unsymmetric) and bipartite.

The above figures (4.1 to 4.3) generally illustrate the graph representations of lin-

ear algebraic constructs. The following subsections (4.3.1 to 4.3.4) explain these

representations in greater detail.

4.3.1 Dense Vectors

• The graph-theoretic equivalent of a dense vector, v, is to store vector entries

within each vertex, (see Figure 4.4). To refer to the vector, v, requires referring

to the offset of the vector entries within each vertex. Storing the vector entries

in each vertex results in dense storage of the vector.

v =
[
va ve vz

]
va ve vz

Figure 4.4: Matrix (left) and graph (right) equivalents for a dense vector.

• For a set of vectors, va through to vc each of length n, the graph-theoretic

equivalent is to associate scalars a through to c with each of n vertices. In the

graph-theoretic arrangement, the association of vector entries to the underlying

objects is explicit. In the conventional matrix-vector scheme, the association of

vector entries to integer indices is explicit and the association of integer indices

to underlying objects is only indirectly implied by common integer indexing.

The vector-oriented scheme (of conventional matrix and vector approaches) is

more flexible for adding and removing whole vectors but less flexible for adding

& removing individual objects. The vertex oriented scheme (of the representation

proposed here2) is very flexible for adding new objects but inflexible for adding

new vectors. (See figure 4.5).

The vertex-oriented scheme is appropriate for the applications motivating this

2also known as an object-oriented approach

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 135

A =

q t
t r u
u s


(a) Example linear systems A in matrix form. The system A does not link explicitly to any
vector or objects. The symmetry and squareness of A are not guaranteed and A could be a
nonsymmetric rectangular system.

x1

x2 x3

t

u

q

r s

x1

x2 x3

t t

u

u

q

r s

(b) Equivalent linear system A from (a) in graph form, indicating that the system is self-
referencing, making A fundamentally square. (left) A is not necessarily symmetric. The edges
are reprented twice, indicating that the symmetry is not fundamental. (right) A is interpreted
as an inherently symmetric operator from the objects of the vertices back onto the same set of
objects. Having a single undirected edge for symmetrical pairs saves space but also indicates
the strong intent of the symmetric relationship.

x2

x3

x1

yA

yC

yB
t

q

s

u

t

r
s

(c) Equivalent linear system A from (a) in graph form, indicating that the system is an operator
which refers one set of objects onto another distinct set of objects, thus making A fundamentally
rectangular. Symmetry has no significance because the labelling of objects is arbitrary. The
graph representation shows a bipartite graph linking the two sets of objects.

Figure 4.3: Squareness and symmetry ambiguity of matrices resolved in the graph form.
Example linear system A is shown in matrix form together with a range of graph forms
which are different interpretations of the system A relating to squareness and symmetry.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 136

thesis. The ability to add new objects is critical in the ability to extend states

and observations in online localisation and mapping. The inflexibility in adding

new entire vectors is not significant, since the set of vectors used is usually

known when designing algorithms, or known at compile time.

a0 a1 a2 · · · aN

b0 b1 b2 · · · bN

c0 c1 c2 · · · cN

va

vb

vc

a

b

c

vtx0

· · ·
a

b

c

vtxN

Figure 4.5: (left): a vector-oriented scheme. The data are grouped by belonging

to particular vectors and the common relation to underlying objects is implicit in

the use of common integer indices. (right): An object and vertex oriented scheme.

The data are explicitly associated with particular objects, each containing the data

for several vectors.

4.3.2 Matrix Entries

Figure 4.6 illustrates the embedding of symmetric, unsymmetric and diagonal scalars

of a linear system in a graph representation.

• The graph-theoretic equivalent of a matrix entry at (i, j) relating variables i and

j is a number associated with a particular graph edge connecting the vertices

representing variables i and j.

• The graph-theoretic equivalent of a pair of symmetric matrix entries is an

undirected graph edge.

• The graph-theoretic equivalent of a single non-symmetric matrix entry at (i, j)

is a directed graph edge from vertex j to vertex i.

• The graph-theoretic equivalent of a diagonal matrix entry of a symmetric matrix

is a graph loop.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 137

M =

 · vij

vTij ·

 xi xj

vij

M =

· vij

· ·

 xi xj

vij

M =

vii ·
· vjj

 xi xjvii vjj

Figure 4.6: Matrix and graph equivalents for scalar matrix entries, for symmetric

(undirected), unsymmetric (directed) and diagonal entries.

The above points concern individual scalar matrix entries. The following points

concern whole and multiple matrices.

• The graph-theoretic equivalent of an entire matrix is a set of edges. For example,

in figure 4.1 all edges q to u represent system A.

• For multiple distinct matrices over a single set of variables, the graph-theoretic

equivalent is multiple distinct sets of edges over the single set of vertices. Figure

4.1 illustrates this, showing two distinct matrices over a single set of variables in

matrix and graph based forms.

• The existence of multiple distinct edge-sets allows the representation of layers

of edges and matrix entries, since each edge-set retains a separate identity.

• This identification of the need for multiple edge-sets is a contribution of this

thesis. It helps enable the graph representation as an alternative to a matrix

and vector approach for sparse linear systems and variables.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 138

4.3.3 Sparse Vectors

A representation of sparse vectors can be obtained from the structure used to represent

matrix rows or columns (see Figure 4.7b). In this manner, only the nonzero entries

are stored. This representation obtains the same properties as the matrix representa-

tion, for example, algorithms can access the set of nonzero entries by accessing the

appropriate in or out edges of the common vertex. This representation is used when

algorithms operate on matrix rows or columns as vectors.

v =
[
0 0 a b 0 d e 0 0

]
(a) An example sparse vector for use in the figures below

v
a

b d
e

(b) Sparse vector representation using graph edges. This representation is exactly the represen-
tation of a matrix row or column and can be used when matrix rows or columns are interpreted
as vectors. The arrow directions shown imply that the vector is equivalent to a matrix row. A
vector equivalent to a matrix column would have the reverse directions to those shown here.

x1 x2 x3 x4 x5 x6 x7 x8 x9

0 0 a b 0 d e 0 0

nonzero set =
[
x3 x4 x6 x7

]
(c) Pseudo-sparse vector representation using (dense) vector storage and a set indicating vertex
pointers to the nonzero entries.

Figure 4.7: Sparse vector representation using graph edges, analogous to a matrix row
or column.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 139

4.3.4 Matrix Categories

• For a graph edge-set to be equivalent to a triangular matrix, the graph edge-set

must consist of only directed edges and be acyclic. This is illustrated in Figure

4.2. This is also illustrated ahead in figure 5.4. This is shown by considering the

variables in topological order as defined by the directed acyclic graph edges. In

the toplogical order, each variable may have links in from any variable earlier

in the topological ordering, and each variable may have links out to any other

variable later in the topological ordering. In a matrix representation for the

linear system, for each variable i, the input coefficients from the other variables

lie on the same row as i, the output coefficients to the other variables lie on the

same column as i. The result is that triangular linear systems are equivalent

to directed acyclic graphs (providing the linear system is stored in topological

order).

• For a graph edge-set to be equivalent to a diagonal matrix, the graph edge-set

must consist only of loops, since each variable only links to itself.

• For a graph edge-set to be equivalent to a block diagonal matrix, the vertices

must form separated subgraphs in the same pattern as the matrix diagonal

blocks, as shown in figure 4.8.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 140

• • •
• • •
• • •

• •
• •
• •
• •
•



D =

Figure 4.8: Matrix and graph equivalents for a block diagonal matrix. In

the matrix approach (left), each block is represented by a contiguous block of

consecutively indexed entries in the matrix, lacking off-diagonal entries into any

of the other blocks. In the graph approach (right), each block is represented by a

separated subgraph, lacking edges into any of the other subgraph blocks.

4.3.5 Discussion

Self-Referring versus Bipartite

The proposed graph based representation has a tight binding of linear system entries

to objects. Vector entries are inherently bound to particular objects in memory, not

simply integer indexes. Similarly, the graph-edge “matrix” entries link to pairs of

objects rather than pairs of indices. This object based accessing semantics is different

from conventional matrix and vector integer indexing semantics. This difference has a

subtle but important effect on how systems are represented.

Figure 4.3 shows an example linear system, A. Suppose A is used as an operator:

B = AX. In a matrix and vector oriented scheme, B and X are separately stored

and may or may not have any inherent common relation to each other:

• For example: B and X might have different sizes, A might be rectangular and

entries B(,i) need not be a property of the same object i as entries Xi. This

interpretation can still hold even if the sizes are (coincidentally) the same. This

interpretation is referred to as the bipartite interpretation. It assumes that

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 141

X and Y are distinct objects. An example of this interpretation is a set of

observations, z, and states, x, linked by an observation Jacobian matrix, H. H

is inherently rectangular since observations are distinct from states, even if their

size is the same. Observation i need not correspond physically with state i.

• Alternatively: B and X might be exactly the same size and correspond to

different properties of some underlying vector of objects. Bi and Xi would refer

to properties of object i. In this interpretation the sizes of the vectors must

inherently be the same. This is referred to as the self-referring interpretation.

For example, given a set of states x, the information gradients y are obtained as

y = Yx. Entries yi belong to the same object i as entries xi. Y is fundamentally

square because of this.

In the graph based representation, however, there is no ambiguity about the interpre-

tation, due to the binding of entries to objects. Figure 4.3b shows the self-referencing

interpretation of A, which itself may be interpreted further as being inherently sym-

metric (right) or simply numerically symmetric (left). Figure 4.3c shows the bipartite

interpretation of A, which has a significantly different structure than 4.3b.

This section showed how linear systems can be represented in a graph based form.

This section described specific constructs such as vector and matrix entries, whole

vectors and matrices and finally sets of vectors and matrices. These are mathematical

properties noted by this chapter but independent of the specific structure proposed by

this thesis. The following structure describes the features of the graph representation

proposed in this chapter. Section 4.5 describes more specifically how this representation

is formed.

4.4 Graph Representation

This section describes the novel graph representation developed for this thesis. The

graph representation presented in this thesis distinguishes between edges and loops,

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 142

maintains multiple edge-sets and allows both symmetric and directed edges. These

innovations are specifically motivated by the requirements for representing and op-

erating with sparse linear systems, particularly symmetric linear systems and their

factorisations. These graph representation extensions are part of the contribution of

the graph based linear system representation.

4.4.1 Edges and Loops

The graph representation presented in this thesis distinguishes between edges and

loops. Loops are edges in which both ends of the edge refer to the same vertex. Loops

are the graph-theoretic equivalent of a square, symmetric matrix’s diagonal entries.

Diagonal entries are important in the context of symmetric systems since they identify

a matrix’s reference to a self matrix entry for each variable.

In matrix algorithms, loops play a different role than general edges and it is possible

for algorithms to know in advance when a given element will be a loop or a general

edge. Matrix algorithms frequently need to access the diagonals of a particular matrix,

for a particular variable. It is important for a vertex to have constant time access it’s

own loops, irrespective of other edges. It is therefore important to separately store

the loops for each vertex from the other edges of each vertex. It is also convenient

to store the overall list of loops of the graph separately from the overall list of other

edges of the graph. These claims will be described more specifically in relation to the

LDL factorisation and solve, in chapter 5.

Loops are important given the absence of row and column indexing in the graph

based representation. Usually matrix algorithms can identify diagonal elements in the

obvious way, checking row and column indices.

4.4.2 Symmetric and Directed Edges

The need for representing matrix systems in a graph representation motivates a

requirement for both symmetric (undirected) and directed edges.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 143

Figure 4.1b illustrates a symmetric linear system represented with symmetric edges

(and loops). Figure 4.2b illustrates a directed acyclic system represented with directed

edges. Figure 4.3b illustrates the distinction between using a single symmetric edge

versus using a pair of directed edges.

In figure 4.3b (left) the system A is not necessarily symmetric - only the numerical

values t and u happen to coincide for both directions of the directed edges. The

repetition of the edge values indicates that the symmetry is not fundamental to the

system. If one of the repeated directed edges were removed, the resulting structure

could not be distinguished from a directed system.

In figure 4.3b (right) the system A is inherently symmetric. The single, undirected

edges clearly indicate the intent for the system to represent a symmetric system.

Symmetric edges encode the mathematical concept of symmetry, which is significantly

important for the numerical properties of the linear system. Symmetric edges also

reduce storage size by allowing entries to be stored only once, as is the case with sym-

metric matrix representations, without introducing ambiguity with similar triangular

systems.

Directed edges arise out of factorisations representing their output as directed acyclic

graphs. Directed edges imply a directional properties such as input-output, upstream

and downstream on the vertices. Directed and acyclic edges imply a topological

ordering on the vertices. These properties are not applicable for symmetric edges.

It is important to be able to represent both directed and symmetric edges, since

both can occur simultaneously. In particular during factorisation it is important to

represent both the symmetric nature of the un-factorised part and the directed (and

acyclic) nature of the factorised part.

Existing graph representations can not simultaneously represent both symmetric and

directed edges. This thesis contributes an extended graph representation which does

allow the graph to contain both symmetric and directed edges.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 144

4.4.3 Multiple Edge Sets

The graph-theoretic equivalent of a matrix is a set of edges (see Section 4.3). The graph

system proposed in this thesis allows for the representation of multiple edge-sets thus

allowing the representation of multiple linear systems over the same set of variables.

The multiple edge-sets are used like computer data registers in order to hold various

sparse linear systems at various stages of the algorithms.

This can be interpreted as allowing multiple distinct layers of edges and loops in the

graph. Each layer can be viewed as a graph in itself. This may also be interpreted as

a series of graphs, together with a tight coupling of the vertices between the various

layers.

In a matrix and vector scheme, vectors are stored as a mapping from a single integer

index to variables. Matrices are stored as a mapping from pairs of integer indices to

matrix values. The common use of integer indices provides the linking between matrix

and vector entries. Multiple matrices are created independently and have no common

link other than identical integer indices.

In the graph representation proposed in this thesis, the matrix edges are tightly bound

to the vector variables by edge connectivity. Without any other disambiguation, a

double edge between variables would represent the summation of their edge matrix

entries. Therefore the representation of multiple matrices in the graph representation

is achieved by separately storing multiple sets of edges.

The graph contains an array of containers for the graph’s list of edges and loops.

Each vertex also contains an array of containers for it’s own edges and loops. All the

graph operations on the vertex set (such as iterating over all edges, accessing adjacent

vertices and vertex in/out degree) are therefore required to refer to a particular edge-set

number.

Figure 4.1 shows a simple example where multiple matrices refer to a single set of

variables. In graph form, as shown in Figure 4.1b, the representation of multiple

matrices is achieved via multiple edge-sets.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 145

The separate storage of multiple edge-sets allows algorithms to access the edges of a

particular edge-set independently of the number of edges in other edge-sets.

4.4.4 Discussion and Conclusion

In the design presented in the thesis, it is important that the vertices are code objects

which are only represented once. Therefore the various capabilities of the graph must

be represented on the one set of vertices. This has several consequences:

• Vertices are involved in multiple types of linear systems (eg: the original system

A, its factorisation L and D). It is therefore important to be able to represent

both directed and symmetric systems.

• Vertices are involved in multiple separate linear systems. Therefore it is important

to have multiple edge-sets per graph rather than using multiple graphs.

The intent of this is to provide a greater level of detail regarding the intent of matrix

entries. In the graph we know whether an entry is intended to be directed, symmetric

(undirected) or a loop. By contrast, in the matrix approaches we only have “entry

Aij at (i, j)” which leaves such an entry ambiguous about whether it is a directed,

symmetric or loop entry.

Arguably, one could use a pair of directed edges to represent a symmetric/undirected

relation; This is unnecessarily redundant. One could also use a single directed edge to

represent a loop but loops are special in such a way that it is helpful to know exactly

when the code is operating on loops and when on general edges.

An example showing a mixed use of symmetric and directed edges is shown in [51].

Mixed directed and symmetric edges also occur midway through LDL factorisation;

Symmetric edges are gradually moved over to directed edges while referring to the

same vertex objects.

This section has presented the novel contributions of this thesis relating to the

underlying graph structure. All of these innovations are essentially graph-theoretic,

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 146

relating generally to vertices and edges and could be applied in any graph application,

but these innovations are motivated by matrix based concepts, especially those for

symmetric linear systems.

A practical realisation of this representation is presented in the next section.

4.5 Graph Representation Implementation

This section presents the practical implementation of the graph representation from

the above sections 4.3 to 4.4. The purpose of this section is to show explicitly the

structures used in the discussion above, in order to clarify their properties, and to

present some of the design decisions and approaches undertaken in preparing this

structure.

The graph representation described in section 4.4 is designed for use in representing

multiple sparse linear systems. This requires extensions to the underlying graph

representation beyond conventional representations such as in [63, 65].

This graph representation was initially based on the interface concepts in [65]. Some

compatibility with the interface concepts of [65] could be obtained by casting a single

edge-set “view” as meeting the interface of [65]. However, even within a single edge-

set the representation here has extensions beyond the generic interface in [65]. In

particular: the distinction between loops and edges; the simultaneous presence of

directed and undirected edges;

The graph representation is defined by the representations of each of the graph, vertex

and edge types. The graph data structure fundamentally has a “multi-indexing” role.

The graph, vertices and edges all mutually refer to each other through containment

and through pointing. The graph as a whole needs to refer to its vertices and edges,

each vertex refers to & from its own adjacent edges, each edge refers to & from the

source and target vertices.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 147

4.5.1 Edges

Edge objects represent the graph connectivity, store auxiliary properties of the edges

and manage their own storage. Edge objects represent the graph connectivity by

storing pointers to their source and target vertices. Edge objects store auxiliary

properties of the edges as member data of the edge objects. The only property

necessary in the current implementation is a scalar double val, the graph-theoretic

equivalent of a matrix entry.

The storage of the edges is simplified by the use of an intrusive container design.

Edge objects have the necessary “hooks” to implement all of the containers in which

the edges are involved (in the two vertices and the graph). In this manner, when an

existing edge object is added to the list of out-edges of a “source” vertex, the edge’s

srcList prev and srcList next are manipulated to link into the other out-edges of

the source vertex.

Intrusive list hooks are defined for storing the edge in a list at each of the source and

target vertices and in a list at the graph overall. In the implementation, two hooks are

used to represent a doubly linked list. The implementation uses the Boost intrusive

container hooks and algorithms library [1].

The primary purpose of the edge is to store the actual val numerical matrix entry.

However, there is some additional storage overhead for storing the edge graph con-

nectivity and list nodes for the edge containers. The data structure overhead per

edge is 8 pointers, including its storage in both vertices’ edge lists and the graph’s

edge list. The use of intrusive list hooks means that this overhead is minimal for it’s

present capabilities. Some reductions could be made by moving to singly-linked lists or

dropping the graph’s edge lists, but at a tradeoff to capabilities. The use of intrusive

list hooks means that edge contains all the memory that the program requires to link

the edge into the vertex and graph edge lists, thereby minimising dynamic memory

allocations. Existing statically allocated edges can be added into a graph without

invoking dynamic memory.

The overhead of structure pointers dominates the storage, compared to the actual

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 148

numerical edge values. Other matrix storage schemes, such as the compressed sparse

column (CSC) form, are designed to minimise the integer and pointer overhead.

However, the goals and capabilities of these schemes are different from the graph

oriented scheme presented here.

edge

double val;

vertex *source, *target;

edge *srcList_prev, *srcList_next;

edge *trgList_prev, *trgList_next;

edge *gphList_prev, *gphList_next;

Figure 4.9: The edge data structure

4.5.2 Loops

In the implementation presented here, loops are represented separately from general

edges. Loops can be represented with smaller storage than general edges, since loops

do not need to refer twice to the same vertex. The data structure overhead per loop

is 5 pointers. Otherwise, the loops are implemented in a similar manner as for the

general edges.

loop

double val;

vertex *srctrg;

edge *vtxList_prev, *vtxList_next;

edge *gphList_prev, vgphList_next;

Figure 4.10: The loop data structure.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 149

4.5.3 Multiple Edge-Sets

As discussed in section 4.4, the graph and vertices are required to be able to represent

multiple edge-sets. That is, instead of a vertex having a single list of out-edges, it

has multiple lists of out-edges (one for each edge-set). The multiple edge-sets are

implemented as fixed size, integer indexed arrays. At present it appears sufficient to

have a small (< 10) fixed length array to store the multiple edge-sets. This requires

choosing a maximum number of allowable edge-sets. This implementation uses 7.

When designing algorithms, applications will be able to identify the number of linear

systems which are required simultaneously and choose an appropriate number of

edge-sets. This design provides constant time random-access to the contained lists

and also static storage for the array.

edgeSets<TList>

TList 0;

· · ·
TList N

4.5.4 Vertices

Vertices provide multiple edge-set lists (each via edgeSets) for the loops, and both

directed and undirected in and out edges. This design permits algorithms to access

the loops immediately and independent of the number of other edges and vice-versa.

Each of the types LoopList, SourceEdgeList and TargetEdgeList are doubly-linked

list types, matched to the intrusive list hooks (trgListHook or srcListHook) of the

edge and loop types. The root of the container stores two pointers: to the first list

entry and to the last list entry. In practice the implementation uses the Boost intrusive

container library [1].

SourceEdgeList

Each source vertex uses the hooks srcList prev and srcList next in the

edges to represent the list of out edges.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 150

TargetEdgeList

Similarly, each target vertex uses the hooks trgList prev and trgList next

in the edges to represent the list of in edges.

LoopList

As for the above, each vertex uses the hooks vtxList prev and vtxList next

in the loops to represent the list of loops on the vertex.

In the graph representation proposed in this thesis, each individual edge can be

directed or symmetric. In this implementation this is achieved by linking the edges in

either the directed list or the undirected list. Again, the loops are also separate; The

loops are basically a third case in addition to directed and undirected edges.

• The directed edges are maintained in lists outEdges and inEdges.

• The undirected edges are maintained in both lists outEdges undir and inEdges undir.

This is because the intrusive container design relies on the source and target

vertices using the appropriate different list hooks to link the edges into the

edge lists. Therefore the undirected edges must be split across nominal “out”

and “in” storage lists, even thought the direction is arbitrary. In practice, the

implementation developed for this thesis provides a mechanism to pair the

“iterators” of these two containers so that two containers appear unified.

Vertices provide list hooks gphList prev and gphList next for linking the vertices

into the graph’s vertex list.

vertex

edgeSets<LoopList> loopLists;

edgeSets<SourceEdgeList> outEdges, outEdges_undir;

edgeSets<TargetEdgeList> inEdges, inEdges_undir;

vertex *gphList_prev, *gphList_next;

double x, dx, xnew, b, bnew, ...;

Figure 4.13 shows the manner in which the vertices contain and link to the edges.

Figure 4.11 shows how the graph contains and links to the vertices.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 151

Vertices bring in additional intrusive list hooks from the user (not shown) to allow

further application specific indexing and sorting operations on the vertices. Finally,

vertices store the vector entries required for the application, for example x,dx, xnew,

b,bnew. These are presently added specifically into the implementation. In future

work, compile-time metaprogramming can be used to add such customised entries into

the static vertex, according to the application.

This inclusion of the vector entries in each vertex object makes adding new vectors

possible only at compile-time (impossible at runtime). However, this design is focused

on fast insertions of new objects rather than new vectors.

4.5.5 Graph

The graph object itself provides access to the graph’s edges, loops (via multiple edge-

sets) and vertices. The edges are discriminated into symmetric and directed storage,

since the edges themselves are not marked as being either symmetric or directed.

Each of the types LoopList, EdgeList and VertexList are doubly-linked list types,

matched to the intrusive list hooks (graphListHook) of the edge, loop and vertex

types:

EdgeList

The graph uses the hooks gphList prev and gphList next in the edges to

represent the complete list of edges of the graph. These hooks are part of the

“intrusive” container design.

LoopList

Similarly, the graph uses the hooks gphList prev and gphList next in the

loops to represent the complete list of loops of the graph.

VertexList

As for the above, the graph uses the hooks gphList prev and gphList next in

the vertices to represent the complete list of vertices of the graph.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 152

graph

edgeSets<EdgeList> symEdgeLists;

edgeSets<EdgeList> dirEdgeLists;

edgeSets<LoopList> loopLists;

VertexList vertexList;

4.5.6 Ordering Properties

Given the above implementation, consider the properties of the graph in relation to

ordering of the variables and edges:

• The vertex objects exist in memory in some order depending on when and how

they are created. This is not necessarily a dense, contiguous memory layout.

The memory ordering can affect cache performance properties.

• The vertices link together to form a linked list (the graph’s list of all the vertices)

and the loops on the vertices also link together to form a linked list (the graph’s

list of all the loops). These links each define an ordering, but not necessarily the

same as each other or the memory-ordering. Furthermore, as a linked list the

ordering can be changed very easily without moving the actual vertex objects in

memory.

• The flexibility of the linking and the existence of various different linked lists

means that there is no built-in or preferred ordering to the variables represented

by the vertices.

• The identity of the vertex, loop and edge objects is their pointer address in

memory rather than their integer index in a dense array. Therefore their identity

and ordering is decoupled from their storage.

• These properties make the creation and removal of vertices and links possible in

constant time.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 153

4.5.7 Examples

The following figures 4.11-4.13 show specifically the data structures used in representing

the graph. Figure 4.11 shows the containment of the vertices from the perspective of the

graph and figure 4.12 shows the containment of the edges of the graph. These figures

show how the vertex, edge and loop objects provide the intrusive hooks necessary to

link themselves within the various containers of the graph. Figure 4.12 also shows the

multiple edge-sets facility of the graph. Figure 4.13 shows how the edges are linked

from the perspective of their source vertex.

4.6 Comparisons

This section presents comparisons of the proposed graph representation against the

compressed-sparse-column (CSC) sparse matrix format.

The compressed-sparse-column format is a widely used standard sparse matrix format.

Most commonly available linear system software implementations use the CSC (or the

row oriented transposed equivalent, CSR), for example: [1, 2, 4, 16, 18, 22, 33, 60]

Full details of the representation and algorithms based on the CSC matrix format are

given in [2, 9, 17, 67]. The CSC matrix format is illustrated in figure 4.14.

4.6.1 Qualitative Comparison

The following table lists qualitative comparisons of the properties of the proposed

graph representation and the CSC sparse matrix representation.

Graph Approach Matrix Approach

Considers the linear system as a mapping

between specific objects in the system. The

vector values are therefore tightly bound

as attributes of the vertices.

Considers the linear system as a mapping

between integer indices. The vectors are

kept separately from the matrix and are

only interlinked by their common use of

unique integer indexes.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 154

Graph Approach Matrix Approach

The graph representation has access se-

mantics of:

“What other objects (bi) does this object

(xi) link to, and with what coefficient?”

for a given object xi, returning (pointers

to) the linked objects bi.

Matrices have access semantics of:

“Coefficient of value at (i, j)?”

with input integer indexes i and j. Sparse

matrix formats derived historically from

dense matrix formats retain these “integer

pair” indexing semantics.

There is no required integer indexing of

the state blocks. This avoids having to

re-index states when another is added or

deleted.

Unique integer indexing of the state

blocks is required.

Algorithms still have to choose an ordering

for many operations. The data structure

has various flexible orderings but there is

no preferred ordering.

The ordering is encoded into the storage

data structure such that algorithms which

require changes to the ordering must per-

mute the matrix and vector elements into

and back from that ordering.

The placement and identity of each vertex

is independent of other vertices. The state

vector can grow and/or shrink without af-

fecting the un-changed states. This allows

for state augmentation and any-sequence

deletions in O(1) (constant) time.

The matrix representation uses contigu-

ous, dense storage. Contiguous, dense stor-

age allows only amortised O(1) (constant)

time augmentation by doubling the storage

when required. Random order deletions

are O(n) time required to shift all the sub-

sequent entries.

Has insertion and erasure operations anal-

ogous to a list data structure.

Has insertion and erasure operations anal-

ogous to an array or vector data struc-

ture.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 155

Graph Approach Matrix Approach

Does not store the data in contiguous ar-

rays. Pre-computing and allocating the

matrix structure is less important.

Stores all the data and indexing in contigu-

ous arrays. Pre-computing and allocating

the matrix structure is very important.

Has symmetric and efficient operation in

both the direct (A) and transposed (AT)

directions. Repeatedly operating with the

transpose is straightforward.

Requires a choice of either column (CSC)

or row (CSR) alignment (the “major”

alignment). In the CSC alignment, the

column iteration is fast and columns are

stored densely and contiguously; Rows, on

the other hand, are scattered throughout

the storage. Algorithms therefore then

have to be careful of the difference between

row and column aspects and operations or

algorithms involving both the direct (A)

and transposed (AT) matrix are avoided.

In the CSC alignment, accessing across the

rows repeatedly is best done by reorder-

ing the entire storage into CSR alignment

before accessing the rows [17, pg 9].

Simultaneously represents the system ma-

trix and its graph representation.

The graph representation has to be recov-

ered from the matrix representation at an

early stage in planning the solving or fac-

torising process.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 156

Graph Approach Matrix Approach

An individual vertex’s degree can be eval-

uated by counting the number of edges (of

the directed or symmetric edges or loops,

in a particular edge-set). This takes time

proportional to the number of edges/loops

to be counted but is independent of the

number of vertices or edges in the overall

system.

For the CSC matrix representation, an in-

dividual column degree (count of nonzero

entries in a column) is easy to compute in

constant time: The degree in column j is

p[j+1]-p[j]-1. However, an individual

row degree requires a check on all nonzeros

in the matrix; Each entry in the appropri-

ate row increments the degree result.

Each sparse matrix nonzero entry has an

overhead beyond the numerical value itself

of 8 pointers.

Each sparse matrix nonzero entry has an

overhead (beyond the numerical value it-

self) of 1 integer plus 1 integer per column.

Designed for dynamic problems with fre-

quent alterations, insertions and online

application.

Designed for large, fixed size problems sub-

ject to batch operations.

Vector and edge objects can be allocated

randomly in memory (including in dense

layouts)

The CSC data structure has dense mem-

ory layout optimised for dense, sequential

access cache memory systems.

4.6.2 Insertion Test

The aim of this test is to compare the performance of the CSC matrix and the proposed

graph in the scenario of repeated insertion of new nonzero elements.

This test highlights the difference in the storage approaches of the CSC matrix and

the proposed graph representation.

Adding a new nonzero entry in the CSC matrix representation requires shifting some

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 157

s
y
m
E
d
g
e
L
i
s
t
s
=
[
.
.
.
]

d
i
r
E
d
g
e
L
i
s
t
s
=
[
.
.
.
]

l
o
o
p
L
i
s
t
s

=
[
.
.
.
]

v
e
r
t
e
x
L
i
s
t

=
f
i
r
s
t
=
&
v
t
x
A

l
a
s
t

=
&
v
t
x
C

g
r
a
p
h
G

l
o
o
p
L
i
s
t
s

=
[
.
.
.
]

o
u
t
E
d
g
e
s

=
[
.
.
.
]

o
u
t
E
d
g
e
s
u
n
d
i
r
=
[
.
.
.
]

i
n
E
d
g
e
s

=
[
.
.
.
]

i
n
E
d
g
e
s
u
n
d
i
r

=
[
.
.
.
]

g
p
h
L
i
s
t
p
r
e
v

=
N
U
L
L

g
p
h
L
i
s
t
n
e
x
t

=
&
v
t
x
B

v
t
x
A

l
o
o
p
L
i
s
t
s

=
[
.
.
.
]

o
u
t
E
d
g
e
s

=
[
.
.
.
]

o
u
t
E
d
g
e
s
u
n
d
i
r
=
[
.
.
.
]

i
n
E
d
g
e
s

=
[
.
.
.
]

i
n
E
d
g
e
s
u
n
d
i
r

=
[
.
.
.
]

g
p
h
L
i
s
t
p
r
e
v

=
&
v
t
x
A

g
p
h
L
i
s
t
n
e
x
t

=
&
v
t
x
C

v
t
x
B

l
o
o
p
L
i
s
t
s

=
[
.
.
.
]

o
u
t
E
d
g
e
s

=
[
.
.
.
]

o
u
t
E
d
g
e
s
u
n
d
i
r
=
[
.
.
.
]

i
n
E
d
g
e
s

=
[
.
.
.
]

i
n
E
d
g
e
s
u
n
d
i
r

=
[
.
.
.
]

g
p
h
L
i
s
t
p
r
e
v

=
&
v
t
x
B

g
p
h
L
i
s
t
n
e
x
t

=
N
U
L
L

v
t
x
C

F
ig

u
re

4
.1

1
:

T
he

g
r
a
p
h

co
nt

ai
nm

en
t

of
th

e
v
e
r
t
e
x

ob
je

ct
s.

T
he

g
r
a
p
h

ha
s

po
in

te
rs

to
th

e
fir

st
an

d
la

st
ve

rt
ex

,
w

hi
le

th
e

ve
rt

ic
es

th
em

se
lv

es
ha

ve
th

e
lis

t
po

in
te

rs
to

bu
ild

th
e

ve
rt

ex
lis

t
w

it
ho

ut
an

y
ad

di
ti

on
al

st
or

ag
e.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 158

s
y
m
E
d
g
e
L
i
s
t
s
=

f
i
r
s
t
=
&
e
d
g
e
W

l
a
s
t

=
&
e
d
g
e
Y

. . .
f
i
r
s
t
=
&
e
d
g
e
I

l
a
s
t

=
&
e
d
g
e
K

d
i
r
E
d
g
e
L
i
s
t
s
=
[
.
.
.
]

l
o
o
p
L
i
s
t
s

=
[
.
.
.
]

v
e
r
t
e
x
L
i
s
t

=
[
.
.
.
]

g
r
a
p
h
G

v
a
l

=
[
.
.
.
]

s
o
u
r
c
e

=
[
.
.
.
]

t
a
r
g
e
t

=
[
.
.
.
]

.
.
.
.
.
.
.
.
.

.
.
.
.

g
p
h
L
i
s
t
p
r
e
v

=
N
U
L
L

g
p
h
L
i
s
t
n
e
x
t

=
&
e
d
g
e
J

e
d
g
e
I

v
a
l

=
[
.
.
.
]

s
o
u
r
c
e

=
[
.
.
.
]

t
a
r
g
e
t

=
[
.
.
.
]

.
.
.
.
.
.
.
.
.

.
.
.
.

g
p
h
L
i
s
t
p
r
e
v

=
&
e
d
g
e
I

g
p
h
L
i
s
t
n
e
x
t

=
&
e
d
g
e
K

e
d
g
e
J

v
a
l

=
[
.
.
.
]

s
o
u
r
c
e

=
[
.
.
.
]

t
a
r
g
e
t

=
[
.
.
.
]

.
.
.
.
.
.
.
.
.

.
.
.
.

g
p
h
L
i
s
t
p
r
e
v

=
&
e
d
g
e
J

g
p
h
L
i
s
t
n
e
x
t

=
N
U
L
L

e
d
g
e
K

v
a
l

=
[
.
.
.
]

s
o
u
r
c
e

=
[
.
.
.
]

t
a
r
g
e
t

=
[
.
.
.
]

.
.
.
.
.
.
.
.
.

.
.
.
.

g
p
h
L
i
s
t
p
r
e
v

=
N
U
L
L

g
p
h
L
i
s
t
n
e
x
t

=
&
e
d
g
e
X

e
d
g
e
W

v
a
l

=
[
.
.
.
]

s
o
u
r
c
e

=
[
.
.
.
]

t
a
r
g
e
t

=
[
.
.
.
]

.
.
.
.
.
.
.
.
.

.
.
.
.

g
p
h
L
i
s
t
p
r
e
v

=
&
e
d
g
e
W

g
p
h
L
i
s
t
n
e
x
t

=
&
e
d
g
e
Y

e
d
g
e
X

v
a
l

=
[
.
.
.
]

s
o
u
r
c
e

=
[
.
.
.
]

t
a
r
g
e
t

=
[
.
.
.
]

.
.
.
.
.
.
.
.
.

.
.
.
.

g
p
h
L
i
s
t
p
r
e
v

=
&
e
d
g
e
X

g
p
h
L
i
s
t
n
e
x
t

=
N
U
L
L

e
d
g
e
Y

F
ig

u
re

4
.1

2
:

T
he

g
r
a
p
h

co
nt

ai
nm

en
t

of
th

e
e
d
g
e

ob
je

ct
s.

A
s

fo
r

th
e

ve
rt

ic
es

in
fig

ur
e

4.
11

,
th

e
ed

ge
s

ha
ve

th
ei

r
ow

n
lis

t
po

in
te

rs
.

T
he

g
r
a
p
h

ob
je

ct
ha

s
se

ve
ra

ll
is

ts
,o

ne
fo

r
ea

ch
ed

ge
-s

et
(t

hi
s

fig
ur

e
sh

ow
s

tw
o

ed
ge

-s
et

s:
(W

,X
,Y

)
an

d
(I

,J
,K

)
).

T
he

re
ar

e
al

so
se

pa
ra

te
lis

ts
fo

r
di

re
ct

ed
an

d
sy

m
m

et
ri

c
ed

ge
s

an
d

lo
op

s.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 159

v
t
x
A

ed
ge
A

e
d
g
e
B

ed
ge
C

l
o
o
p
L
i
s
t
s

=
[
.
.
.
]

o
u
t
E
d
g
e
s

=
f
i
r
s
t
=
&
e
d
g
e
A

l
a
s
t

=
&
e
d
g
e
C

. . .
o
u
t
E
d
g
e
s
u
n
d
i
r
=
[
.
.
.
]

i
n
E
d
g
e
s

=
[
.
.
.
]

i
n
E
d
g
e
s
u
n
d
i
r

=
[
.
.
.
]

.
.
.
.
.
.
.
.
.

.
.
.
.

v
t
x
A

v
a
l

=
[
.
.
.
]

s
o
u
r
c
e

=
&
v
t
x
A

t
a
r
g
e
t

=
[
.
.
.
]

s
r
c
L
i
s
t
p
r
e
v

=
N
U
L
L

s
r
c
L
i
s
t
n
e
x
t

=
&
e
d
g
e
B

.
.
.
.
.
.
.
.
.

.
.
.
.

e
d
g
e
A

v
a
l

=
[
.
.
.
]

s
o
u
r
c
e

=
&
v
t
x
A

t
a
r
g
e
t

=
[
.
.
.
]

s
r
c
L
i
s
t
p
r
e
v

=
&
e
d
g
e
A

s
r
c
L
i
s
t
n
e
x
t

=
&
e
d
g
e
C

.
.
.
.
.
.
.
.
.

.
.
.
.

e
d
g
e
B

v
a
l

=
[
.
.
.
]

s
o
u
r
c
e

=
&
v
t
x
A

t
a
r
g
e
t

=
[
.
.
.
]

s
r
c
L
i
s
t
p
r
e
v

=
&
e
d
g
e
B

s
r
c
L
i
s
t
n
e
x
t

=
N
U
L
L

.
.
.
.
.
.
.
.
.

.
.
.
.

e
d
g
e
C

F
ig

u
re

4
.1

3
:

T
he

v
e
r
t
e
x

co
nt

ai
nm

en
t

of
th

e
e
d
g
e

ob
je

ct
s.

E
ac

h
ve

rt
ex

ha
s

(f
or

ea
ch

ed
ge

-s
et

)
th

e
po

in
te

rs
to

th
e

st
ar

t
an

d
en

d
of

th
e

ed
ge

lis
t,

fo
r

th
e

ou
t

an
d

in
ed

ge
s,

fo
r

th
e

di
re

ct
ed

an
d

un
di

re
ct

ed
ed

ge
s.

T
he

lo
op

s
ar

e
m

an
ag

ed
si

m
ila

rl
y.

T
hi

s
di

ag
ra

m
sh

ow
s

a
si

ng
le

ve
rt

ex
w

it
h

3
ou

t-
ed

ge
s,

(s
ho

w
n

as
a

gr
ap

h
in

th
e

to
p

ri
gh

t)
.

A
ga

in
,

th
e
e
d
g
e

ob
je

ct
s

ha
ve

th
e

st
or

ag
e

fo
r

th
e

co
nt

ai
nm

en
t

of
th

em
se

lv
es

in
th

e
va

ri
ou

s
ed

ge
lis

ts
of

v
e
r
t
e
x

ob
je

ct
s.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 160

A
=

         0.
0

.
.

.
.

.
0.

6
.

1.
1

.
.

1.
4

.
.

2.
0

.
.

.
2.

4
.

.
.

.
3.

2
3.

3
3.

4
3.

5
3.

6
4.

0
.

.
.

4.
4

.
.

.
5.

1
.

.
5.

4
.

.
.

.
6.

2
.

6.
4

.
6.

6         

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

v
a
l
s

=
[0.

0
2.

0
4.

0
1.

1
5.

1
3.

2
6.

2
3.

3
1.

4
2.

4
3.

4
4.

4
5.

4
6.

4
3.

5
0.

6
3.

6
6.

6
]

r
o
w
s

=
[0

2
4

1
5

3
6

3
1

2
3

4
5

6
3

0
3

6
]

p
=

[0
3

5
7

8
14

15
18

]
0

1
2

3
4

5
6

7

F
ig

u
re

4
.1

4
:

T
he

C
SC

m
at

ri
x

fo
rm

at
.

T
he

m
at

ri
x

is
de

fin
ed

by
th

e
no

nz
er

o
va

lu
es

(v
a
l
s
),

th
e

ro
w

nu
m

be
rs

fo
r

ea
ch

no
nz

er
o

(r
o
w
s
)

an
d
p
,

w
hi

ch
ha

s
th

e
off

se
ts

fo
r

ea
ch

co
lu

m
n

st
ar

t.
A

gi
ve

n
co

lu
m

n
j

fr
om

A
is

st
or

ed
de

ns
ly

an
d

co
nt

ig
uo

us
ly

in
v
a
l
s

an
d
r
o
w
s

fr
om

v
a
l
s
[
p
[
j
]
]

to
v
a
l
s
[
p
[
j
+
1
]
-
1
]
.

T
he

st
or

ag
e

ha
s
n
n
z
(
A
)

flo
at

in
g-

po
in

t
no

nz
er

o
va

lu
es

,p
lu

s
n
n
z
(
A
)

ro
w

in
te

ge
rs

,
pl

us
N
c
o
l
s
+
1

in
te

ge
rs

in
p
.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 161

of the other nonzero entries. The shifted entries are those below the inserted entry in

the same column plus the entries in columns to the right of the inserted entry. This

will consist of shifting the entire matrix storage if the new entry is inserted at the

beginning. In the CSC format, insertion is therefore O(n) where n is the number of

nonzeros in the matrix.

By contrast, the graph representation does not use dense contiguous storage for the

entries. New vertices (nonzeros) can be created anywhere in memory and linked into

the graph in constant time. The insertion of new vertices does not cause existing

vertices or edges to be copied or moved.

4.6.2.1 Setup

The method of this test was as follows. The test times how long it takes to fill the first

column with M = 1000 nonzero entries one-by-one. The rest of the M ×M matrix

and the N other nonzero entries are present before the timing starts. Each of the

timed M first-column insertions has to shift the N other nonzeros each time. The

first M of these “other” entries are all in a column and so on, filling up columns to

reach the necessary N other entries. The matrix implementation uses the CSC matrix,

compressed matrix from the Boost ublas library [1].

Similarly, the graph insertions are measured by timing the addition of M edges one-

by-one as out-edges from a given vertex to each of the other vertices (equivalent to the

“first column” of the matrix). The M vertices and the N “other” edges are created

before the timing begins. The rest of the graph has the same N other edges in the

same pattern as for the matrix.

4.6.2.2 Results

The results are shown in figure 4.15.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 162

102 103 104 105

10−2

10−1

100

101

Number of shifted entries.

T
im

e
fo

r
N

in
se

rt
io

n
s

(s
ec

)

y = kx
CSC
graph

Figure 4.15: Insertion time versus the number of shifted entries for the CSC matrix

format and the graph format. In the CSC format the insertion requires a copying of all

entries to the left or below the inserted entry in the matrix, and the insertion is therefore

O(n) where n is the number of shifted entries. The graph approach has constant time

insertion.

• The CSC matrix shows a definite O(n) scaling, highlighted by the straight line

y = kx. This shows that the matrix insertions have to shift the N “other” matrix

entries on each insertion.

• The structure and overheads of the graph format are higher. As a result, the

CSC format is faster when there are few other entries in the matrix to shift

forward.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 163

• The graph insertions are constant time up until N = M = 1000, with occasionally

faster results. The insertions are then achieved in a faster but still constant time.

This is because beyond N = M , the M entries used to time the insertions are

linking to vertices which have already been recently accessed in the graph. This

is likely a benefit obtained by memory caching effects. This effect diminishes as

N increases to 105.

4.6.2.3 Conclusion

This test showed the improved performance of the graph based sparse system repre-

sentation over the CSC matrix representation for insertions.

The graph insertions are less dependent on the underlying storage than in the matrix

representation. This property makes the graph representation more beneficial for

online modifications and structure changes. This ability to perform fast structure

changes is exploited in chapter 5 for performing the direct solving algorithm.

4.6.3 Access Test

The aim of this test is to show the different properties of the proposed graph rep-

resentation and the CSC matrix representation relating to the access of adjacent

variables.

4.6.3.1 Setup

A prototypical scenario to enable benchmark testing of this adjacency access time is

the traversal of a linear chain. The traversal of a linear chain is not in itself interesting

but is used here as a proxy for adjacency access in general.

In the setup of this test, the order of linking in the chain is randomised relative to

the order of storage in memory of the underlying vertices in the graph. The order of

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 164

entry of the variables in the matrix is permuted in exactly the same order. Over the

successive tests plotted, the ordering is re-drawn randomly.

This randomisation simulates an unstructured or unpredictably structured problem.

This randomisation changes the matrix from L in figure 4.16b to PLPT . The permuted

system PLPT is used to emphasise that the matrix form is a complicated representation

when presented in a general permutation (even of simple chain systems as shown here).

The banded structure of L is only apparent when L is ordered in topological order.

(a) A linear chain for the traversal test in graph form.

L =




PLPT =





(b) A lower triangular matrix L equivalent to the linear chain in (a). The square entries are

the start and end points of the chain. The starting (ending) entry of the chain has no other

entries in its row (column). A permuted system, PLPT , is shown to emphasise that the matrix

form is a complicated representation when presented in a general permutation (even of simple

chain systems as shown here). The banded structure of L is only apparent when L is ordered in

topological order.

Figure 4.16: Graph and Matrix representations of a linear chain for the traversal test.

4.6.3.2 Results

Figure 4.17 shows the time for traversal of the chain graph or matrix versus the length

of the chain. For the matrix, the time depends on the direction. In one direction

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 165

the search for adjacent variables occurs within the columns and the single adjacent

variable can be found in constant time and the resulting overall traversal occurs in

linear time with the length of the chain. However, for the matrix, traversing in the

other direction involves a search for the adjacent variable in the rows. This search

in the rows itself takes linear time and hence the overall chain traversal takes O(n2)

time.

For the graph, the access of adjacent variables occurs in constant time regardless of

the direction. Hence the overall traversal takes linear time, for both directions.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 166

101 102 103 104 105 106

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

Length of chain.

T
im

e
fo

r
tr

av
er

sa
l

(s
ec

)

CSC (forward)
CSC (reverse)

y = kx2

graph (forward)
graph (reverse)

y = kx

; ;

Figure 4.17: Traversal time versus chain length. The CSC format has a clear fast

direction () and a slow direction (). By comparison the graph approach is identically fast

in both directions. The speed of the graph and CSC in the fast direction are approximately

the same.

4.6.3.3 Conclusion

The adjacency access operations on the graph occur in constant time regardless of the

direction. This is because the underlying representation stores pointers which can be

used in both directions for constant time access.

By comparison, the matrix has a preferred direction (column accesses). The properties

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 167

of operating in the matrix is more dependent on the underlying storage representation;

The speed is affected by the direction of access in relation to the storage order.

In the matrix’s preferred direction, its speed was not significantly different to the

speed of the graph representation. In the matrix’s non-preferred direction, its speed

was orders of magnitude slower and ultimately scales worse at O(n2) compared to the

graph representation’s O(n).

The ability of the graph to make constant time adjacency accesses in either direction is

generally very useful for decoupling algorithms from the peculiarities of the underlying

storage. This ability is exploited in the graph based direct solving algorithm of chapter

5.

4.7 Future Research

This section describes some possibilities for future research and development in the

graph representation.

Generic programming

The graph representation described in this chapter makes a number of extensions

beyond the generic graph concepts specified in [65]. The approach taken in [65] is

to decompose various graph representations into what capabilities they represent

via C++ generic programming with templates. The various representations then

support interfaces relating to those capabilities.

The extensions proposed in this thesis could be mapped into generic programming

concepts in order to capture the capabilities behind each of the extensions

presented here. This would be a superset of the existing generic interfaces in

[65].

Block based representation

Block based sparse matrix representations focus on systems in which variables

occur in dense clusters and where the sparsity patterns typically follow these

clustering patterns. In this way, the clusters of variables can be stored together.

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 168

Block representations exist for sparse matrices (for example: Block Sparse

Row/Column [60]).

In the development of this chapter a block approach was considered. However,

the simpler scalar based representation was deemed to be required before a block

approach could be pursued. Each graph vertex would contain a dense group of

variables. Suppose a two vertices a and b contain, respectively n and m variables.

The edge between a and b would therefore carry a dense matrix of size n×m
(or m× n).

Another complication is in the manipulation of blocks of different sizes. Ideally

a statically allocated vertex should contain enough memory for the data of the

block rather than requiring dynamic allocation of the block separately. It is easy

to achieve this for blocks of a fixed size and to use templates to generalise these

into a “family of fixed sizes”.

This representation would require the appropriate block solving algorithms.

For iterative algorithms, the matrix-vector multiply in this block based graph

representation is very convenient. Each adjacency access accesses the adjacent

block of variables and multiplies through by the edge matrix. For direct solving

algorithms, the situation would be somewhat more complicated. Block factori-

sation could be persued such that each operation in the factorisation operates

on the blocks. Dense algorithms would then be applied for each of the scalar

operations (see chapter 5).

Shared Memory Parallel Representation

The graph representation described in this chapter is well suited to a (shared

memory) parallel implementation, since the structure is embodied in linked

lists rather than dense memory. With the ongoing use of multi-core computers,

shared memory parallelism is increasingly important [58]. Libraries with parallel

containers and operations [58] could replace the linking structures used in the

implementation described here. A shared-memory implementation would allow

multiple processors to operate simultaneously within the graph structure.

Decentralised Representation

The graph representation proposed in this chapter could be extended to a

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 169

decentralised (distributed memory parallel) implementation. Some vertices

would be held locally and some held on remote platforms. Access to “adjacent”

variables on remote platforms would invoke the necessary communications to

obtain those variables.

4.8 Conclusion

This chapter described the graph based representation of linear systems, which is a

fundamental contribution of this thesis. The graph based representation of linear

systems together with the underlying graph representation contribute in a bottom-up

manner, filling a fundamental role in the formulation of an estimation system.

The advantages of this graph embedded linear system representation will be used in

the development of the direct solving algorithms. In summary, the benefits of the

graph structure are as follows:

Easy insertions

Additional edges in the graph can be created or removed in constant time in

random order.

Flexible Ordering of Variables

The access of variables is based entirely on “object access” and adjacency rather

than integer indexing. The various data structure linked lists define orderings

but these are very flexible to changes. The ordering is not fundamentally related

to the identity of the objects or their underlying storage. Symmetric systems

distinguish only between the loop entry (linear system entry for a variable with

respect to itself) and edge entries (linear system entries for a variable with

respect to other variables). There is no concept of “above or below” the diagonal

in a row or column in symmetric systems.

Fast constant time adjacency accesses

From a particular variable there is fast and constant time access to a list of the

adjacent variables of a linear system, in both directions, for both directed and

CHAPTER 4. GRAPH THEORETIC REPRESENTATION 170

symmetric systems.

Graph properties

As a graph based representation properties such as the vertex degree are easily

evaluated.

The proposed graph representation also introduces novel features as a result of its

application to linear systems:

Multiple Edgesets

The proposed graph representation adds an argument to each operation which

refers to a particular edge-set. This effectively couples multiple graphs together

in an efficient and logical manner. This extension was motivated by the need to

represent multiple linear systems over a single set of vertices.

Edges and Loops

The proposed graph representation distinguishes between edges and loops. This

was motivated by the focus in this thesis on symmetric systems. In symmetric

systems the loop entries (diagonal entries) in the linear system are distinct from

the edge (off-diagonal) entries.

Symmetric and Directed Edges

The proposed graph representation is able to operate with a mix of directed and

symmetric edges in each graph. This is motivated by cases in linear algebra

where a matrix may have both symmetric and triangular portions simultaneously.

The following chapter builds on the graph representation contributed here by proposing

direct solution methods to operate within the graph structure.

Chapter 5

Graph-Theoretic Solution Methods

5.1 Introduction

This chapter presents a graph based direct solving algorithm. This algorithm solves

linear symmetric indefinite systems which arise in the augmented system form for

estimation problems. This chapter will propose methods for the solving algorithms to

exploit the graph embedded representation of the linear systems. The proposed graph

embedded representation opens up the development of a new variety of graph based

estimation and linear algebraic tools which may be useful in future for faster, online

solving algorithms.

The previous chapter discussed the graph representation of systems of variables

generally. In this thesis, the variables consists of observation and state variables of

estimation problems, coupled together by the augmented system form of chapter 3.

Section 5.2 introduces the LDL factorisation algorithm, which is the basis for this

chapter. Section 5.3 shows the proposed graph based LDL factorisation algorithm.

The use of the LDL factorisation for the solution of linear systems is discussed in

section 5.4. The reconstruction of the original system given the LDL factorisation is

shown in section 5.5 and the construction of the full Section 5.7 describes areas for

future work in graph based solution algorithms.

171

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 172

5.2 Symmetric LDL Factorisation Introduction

This section introduces the LDL factorisation algorithm for the direct solution of

symmetric linear systems.

Direct solution methods modify the problem by successively eliminating some variables,

expressing an equivalent problem without those variables, together with back references

which allow the eliminated variables to be computed once the solution to the reduced

problem is later obtained. Once the problem is reduced to a trivially solvable problem

in one or two dimensions, the solutions can be propagated back to compute the

eliminated variables in sequence. Direct methods have a progressive pattern which is

strongly affected by the sparse graph structure of the problem.

The LDL factorisation algorithm is a direct solving method and is a specialisation

of Gaussian elimination for symmetric indefinite and positive definite systems [37].

The need for the solution of indefinite systems arises from estimation problems with

augmented observations and constraints, as used in this thesis. The solution of positive

definite systems is included within the methods described in this chapter, since positive

definite systems are a subset of indefinite systems and their solution method is a subset

of the solution method for indefinite systems. The LDL factorisation algorithm of

this chapter could be modified into the LU factorisation [37] to apply to unsymmetric

linear systems, if required for other applications.

The direct solving algorithms are strongly tied to the linear system representation

on which they operate. Changes to the linear system representation therefore have

a significant effect on the overall direct solving algorithm. In this thesis, the pro-

posed graph representation of linear systems introduces some significant changes, in

particular:

Fast constant time insertions

Additional edges in the graph can be created or removed in constant time in

random order.

This affects the solving algorithm because direct solving algorithms funda-

mentally require performing structure changes to the systems. This altered

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 173

property therefore affects how structure changes are planned and performed in

the algorithm.

Flexible Ordering of Variables

The access of variables is based entirely on “object access” and adjacency rather

than integer indexing. The various data structure linked lists define orderings

but these are very flexible to changes. The ordering is not fundamentally related

to the identity of the objects or their underlying storage. Symmetric systems

distinguish only between the loop entry and edge entries. There is no concept of

“above or below” the diagonal in a row or column for symmetric systems.

This affects the solving algorithm because it decouples the relationship between

the storage and the factorisation ordering, allowing more flexible factorisation

approaches.

Fast constant time adjacency accesses

From a particular variable there is fast and constant time access to a list of the

adjacent variables of a linear system, in both directions, for both directed and

symmetric systems.

The adjacency accesses are a core operation in the direct solving algorithm. This

property also decouples factorisation from the underlying storage.

The changes introduced by the proposed graph embedded linear system representation

affect changes in the solving algorithm in its graph embedded form, as follows:

Flexible factorisation ordering

The ability of the graph embedded linear system representation to perform

constant time sparsity pattern changes means that the requirement of pre-

planning of the factorisation sparsity pattern is relaxed in the proposed graph

based factorisation algorithm. This means that the process of computing the

factorisation ordering is not dictated by storage considerations.

Typically, direct solving algorithms pre-plan and pre-build the sparsity pattern of

the factorisation in order to avoid performing modifications, which are expensive

in the CSC sparse matrix representation.

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 174

For well conditioned positive definite systems, this pre-planned factorisation

order is sufficient, since the sparsity pattern can be pre-computed quickly and

exactly from sparsity pattern considerations alone. The algorithm does not need

to depart from the pre-planned ordering.

However, for indefinite systems and for poorly conditioned positive definite

systems, as are considered in this thesis, the factorisation ordering can also

be altered for numerical stability reasons. The need for these cannot be pre-

determined faster than performing the actual factorisation itself. The proposed

graph based factorisation algorithm can incorporate numerical factorisation-

order changes easily, since the ordering is not pre-computed and the sparsity

pattern is not pre-built.

Changing factorisation ordering for numerical reasons is also known as “pivoting”.

In the proposed graph based factorisation algorithm, changing the factorisation

ordering can be performed without needing to explicitly move the data around to

permute the system into the new ordering, since the graph based linear system

representation does not dictate the factorisation ordering. In the graph based

algorithms presented in this thesis, the flexibility of the ordering of the variables

means that no permutation or data copying is required regardless of which

variable is factorised next.

In conventional matrix terminology, “pivoting” is associated with explicit changes

to an existing ordering (implied by the integer indexing of the matrix). Since

pivoting involves changes to the matrix ordering, explicit permutation operations

are performed to move the ordering of the variables in memory. The explicit

permutation is required because the algorithms use progression through the

storage to mark the progress of the algorithm [37]. By contrast, in the graph

based scheme, the algorithm is able to mark the progress of factorisation by

clearing edges from the source.

The graph based representation has the advantage of immediate runtime access

to the graph representation of the matrix structure, in order to be able to

evaluate the next choice of factorisation variable.

Choosing a factorisation ordering is still an important and difficult topic. The

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 175

proposed graph embedded approach makes the choice easier by decoupling it

from storage, pre-planning and data re-arranging considerations. However, the

more fundamental concerns of how to order the factorisation on the basis of

sparsity structure, numerical concerns and online modifications still remain as

important and difficult topics for further research.

Algorithm form

The LDL factorisation algorithm described in this chapter uses the “outer-

product form” of the LDL factorisation. The outer-product form differs from the

LDL algorithm of Davis [16], which uses the “sparse triangular solve form”. Both

result in exactly the same factorisation L and D given the same factorisation

ordering.

The outer-product form has much in common with methods from the estimation

literature. The Schur complement formed during factorisation is the same as the

Schur complement of the marginals formed in estimation when marginalising

variables. In particular, if the observation variables are factorised first, the Schur

complement formed is the information form (See chapter 3). The outer-product

form explicitly modifies the un-factorised part of the system during factorisation,

forming the Schur complement (the marginal of the system in the un-factorised

variables). The factorised part is not accessed after factorisation. Instead,

the modifications resulting from factorisation are reflected forward onto the

un-factorised part of the system. This makes many structure changes to the

linear system: Both in the construction of the factorised system and in the

modifications to the un-factorised system.

The sparse triangular solve form, by contrast, accesses back to the factorised

part rather than forward modifying the un-factorised part. This also fits in well

with the approach of pre-planning the factorisation algorithm and pre-building

the sparsity pattern.

The outer-product form makes many temporary structure changes in the origi-

nal system during factorisation. The outer-product form is unfeasible for the

conventional CSC matrix representation because each of these structure changes

in the CSC matrix take O(n) time in the number of nonzeros. However, in the

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 176

graph based representation proposed in this thesis, the outer-product form is

feasible because each structure change can be performed in constant time.

5.2.1 LDL Factorisation, Mathematical Form

The LDL factorisation was introduced in section 2.4.2. This section further describes

the LDLT factorisation in general mathematical terms, for positive definite and

indefinite symmetric systems.

The LDL factorisation is suitable for indefinite systems (but not semi-indefinite

systems). For semi-indefinite systems, a regularised solution can be obtained by

regularisation of the system. (See section 3.2.9).

The diagonal pivoting LDLT method ([14] and [37, page 168]) factorises A as follows:

PAPT = LDLT (5.1)

• A is the input square, symmetric matrix.

• P acting on A via PAPT represents a symmetric permutation of A.

• L is a unit lower triangular matrix.

• D is a block diagonal matrix.

The diagonal pivoted LDLT factorisation is based on the following block partitioning

of A:

PAPT =

 E CT
 s

C B n− s
s n− s

(5.2)

• E is the s× s block which will be factorised out of A. This block, E, consists of

the chosen s variables from A, permuted into a block via P.

• C is the (n− s)× s off-diagonal block from A which connects E to the rest of

the system.

• B is the (n−s)×(n−s) block of those variables from A which were not included

in E.

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 177

The block factorisation is then written as:

PAPT = LDLT (5.3)

=

 Is 0(s,n−s)

CE−1 In−s

 E 0(s,n−s)

0(n−s,s) B− CE−1CT

 Is E−1CT

0(n−s,s) In−s

(5.4)

The full factorisation continues by factorising A2 = B− CE−1CT in the same manner,

using Equation 5.4, until A2 is itself easily solvable (usually when A2 is of size n ≤ 2).

The LDLT factorisation allows operation with indefinite symmetric matrices, since

the D factor can represent positive or negative entries. This cannot be achieved in

the Cholesky factorisation, which requires a positive definite input matrix.

The process of choosing an E other than the scalar A11 is referred to as pivoting and

E is the pivot.

Positive Definite Case

A positive definite A is an important special case. This section explains the positive

definite case to contrast more general cases which are considered later. In the positive

definite case:

• E is always invertible regardless of the choice of E. Therefore the choice of E

is able to be made primarily on the basis of computational performance, with

numerical stability a secondary or trivial consideration.

• E can be a scalar and D can be scalar diagonal.

Indefinite Case

In the case of indefinite A:

• To guarantee that E is invertible at each step, whenever A 6= 0, it is sufficient

to allow both scalar and 2× 2 block factorisation steps [37, page 168].

A 2 × 2 block factorisation step corresponds to simultaneously eliminating 2

variables at once. In an indefinite matrix, the diagonals may be all zero despite

the whole matrix being nonzero overall, since the off-diagonals may be nonzero.

If all the diagonals of A are zero, then any scalar E will be zero. Therefore it is

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 178

not sufficient to only allow scalar E. It is not sufficient to allow only 2× 2 E

since A may be of rank 1, which will not have an invertible 2× 2 submatrix for

which to choose E.

Using either scalar and 2× 2 E guarantees E is invertible at each step, whenever

A 6= 0: If the diagonals of A are not all zero, the algorithm could choose a

nonzero scalar E from the diagonal of A. Otherwise, the algorithm can choose

E = [0 a
a 0] from any nonzero offdiagonal, a.

• The case of indefinite A arises for the augmented system form discussed in

chapter 3. The example 5.1 below shows a numerical example of when a 2× 2

E is required.

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 179

Example 5.1.

The requirement for 2 by 2 block factorisation steps.

When the diagonals of A are all zero, as occurs in this example, the algorithm can

choose a 2× 2 E in order to guarantee an invertible E for Equation 5.4. This example

shows a numerical example of when a 2× 2 E is required.

Consider a n dimensional set of states with zero prior information Y and a full rank

(consistent) set of constraints.

To indicate perfect constraints: R = 0 (5.5)

To indicate zero prior information: Y = 0 (5.6)

then A =

 R H

HT −Y

 (5.7)

=

 0 H

HT 0

 (5.8)

In A, the diagonals will all be zero, therefore E cannot be a scalar. The algorithm can

instead choose an invertible E as:

E =

0 h

h 0


with h from any nonzero part of H.

Consider a numerical example:

A =



0 2 −2 1

0 8 3 −8

0 3 5 9

2 8 3 0

−2 3 5 0

1 −8 9 0



CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 180

The algorithm may choose an invertible 2× 2 E from indices 1 and 4, for example.

This results in:

E =

0 2

2 0

 CT =

 0 0 −2 +1

+8 +3 0 0

 B =


0 3 −8

0 5 9

3 5 0

−8 9 0


From Equation 5.4:

L =

 Is 0

CE−1 In−s

 D =

E 0

0 B− CE−1CT



L =



+1

0 +1

+4 0 +1

+1.5 0 0 +1

0 −1 0 0 +1

0 +0.5 0 0 0 +1


D =



0 +2

+2 0

0 +11 −12

0 +8 +7.5

+11 +8 0

−12 +7.5 0


with LDLT = PAPT

�

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 181

5.2.2 LDL Factorisation, Dense Matrix Form

This section presents a conventional LDL factorisation for dense matrices for reference

purposes.

Algorithm 2 performs the LDL factorisation on a dense matrix using the outer-product

approach. Algorithm 2 simply uses the factorisation order built into the matrix:

(1, ..., N) without pivoting. This algorithm relies on the index k to to implicitly

maintain track of the progress of the factorisation - which variables have already been

factorised and those yet to be factorised. Therefore changing the sequencing of the

factorisation (pivoting) requires explicit permutations of the data in memory [37].

The factorisation ordering in this algorithm in simply [1 : N], following literally the

partitioning in equation 5.2.

Algorithm 2: LDLT Factorisation, dense matrix outer-product form
Input: A symmetric matrix, A, size N ×N
Result: Lower triangular matrix L
Result: diagonal matrix D
Result: LDLT = AT

begin
L = IN
D = A
for k = 1 : N do

pivots = k

notpivots = (k+1):N

E = D(pivots,pivots)

C = D(notpivots,pivots)

B = D(notpivots,notpivots)

L(notpivots, k) = CE−1

D(notpivots, notpivots) -= CE−1CT

D(pivots,notpivots) = 0

D(notpivots,pivots) = 0

end

Another variant is algorithm 3: Algorithm 3 also uses a dense representation and

outer-product form. This algorithm explicitly maintains track of the factorised and

non-factorised variables and is able to choose the pivots arbitrarily without having to

copy the data in the pivoting process. This form of the algorithm is able to factorise

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 182

the scalar and 2× 2 blocks. Algorithm 3 was written for this thesis as a “half-way”

approach between the versions found in references such as [37, 38] and the graph

based approach of this chapter, in order to help explain the graph based factorisation

approach described in this chapter.

For further details on dense matrix LDL factorisation and variants see [37, 38]. For

dense matrices, the LDL factorisation is available in LAPACK as DSYTRF [5] using

the Bunch-Kaufman diagonal pivoting method based on [15] and in MATLAB as ldl.

Algorithm 3: LDLT Factorisation, Matrix Form (with Matlab notation)
Input: A symmetric matrix, A, size n× n
Result: Permuted triangular matrix L
Result: Permuted block diagonal matrix D
Result: Factorisation ordering vector P
Result: LDLT = AT

begin
Set the permutation ordering vector, P empty
Define a vector done = zeros(1,n)

Define a vector todo = find(not done)

L = eye(n)

D = A

while todo is not empty do
Choose pivots (length 1 or 2) from todo

Define notpivots as the rest of todo excluding pivots

Append pivots to P

Gather up the block partitioning terms C,B,E
B = D(notpivots,notpivots)

C = D(notpivots,pivots)

E = D(pivots,pivots)

if min(abs(eig(E))) < tol then
break // Error, E too small

L(notpivots,pivots) = CE−1

D(notpivots,notpivots) -= CE−1CT

D(notpivots,pivots) = 0
D(pivots,notpivots) = 0
done(pivots) = true

todo = find(not done)

end

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 183

5.3 Symmetric LDL Factorisation - Graph Form

This section describes the graph based LDL factorisation algorithm. This factorisation

algorithm is based entirely in the graph representation of the sparse linear systems.

This is one of the core contributions of this thesis.

The mathematical form of the algorithm is the same as those given in section 5.2. The

contribution of this section is the form of the algorithm based entirely in the graph

representation for the linear systems.

When a vertex (the pivot vertex) is chosen for factorisation, the algorithm finds the

set of off-diagonals C as simply the set of adjacent edges to the pivot vertex. The

LDL factorisation algorithm consists of copying this set of symmetric adjacent edges

C in to L as directed edges CE−1 and subtracting onto the remaining un-factorised

system as the outer product CE−1CT . These operations are also generalised for the

case of 2 simultaneous pivot vertices (for the indefinite factorisation). In the case of 2

pivot vertices E is a 2× 2 system and C consists of the set of the 2 vertex’s adjacent

edges. The process of obtaining the adjacent edges and their manipulation to perform

the factorisation is entirely based in the graph representation.

Section 5.3.1 describes the major factorisation functions. Section 5.3.2 describes the

underlying graph-based linear algebra procedures used in the factorisations.

5.3.1 Graph Based Factorisation Steps

The following sections define the indefinite (5.3.1.1) and positive-definite (5.3.1.2)

LDL factorisation. These, in turn, use the subfunctions for scalar (5.3.1.3) and 2× 2

factorisation (5.3.1.4).

These factorisation functions use subroutines which will be defined in section 5.3.2.

The graph based factorisation is illustrated in an example figure 5.1, which shows the

graph structure of D and L as they change through a small example factorisation

sequence. During factorisation, both L and D exist simultaneously as different

edge-sets in exactly the same set of vertex objects.

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 184

D = L =

1

2

3 4

5

1

2

3 4

5

1

2

3 4

5

1

2

3 4

5

1

2

3 4

5

1

2

3 4

5

1

2

3 4

5

1

2

3 4

5

1

2

3 4

5

1

2

3 4

5

Figure 5.1: Graph based LDL factorisation example. The original system is contained
within D at the start with L = I, the identity system (each vertex isolated with a single
unity loop). Each vertex is then factorised, in this case the ordering is [5, 2, 3, 4, 1]. Each
factorisation of a vertex isolates that vertex from the rest of the system in D and adds the
outer-product marginal onto the remaining part of D. Directed acyclic edges are added
into L corresponding to the sparsity structure and factorisation ordering.

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 185

5.3.1.1 Indefinite LDL Factorisation

Algorithm 4, LDL factorise indefinite, factorises a symmetric indefinite linear

system. The inputs are:

• Reference to the graph G

• Keys referring to the edge-sets A,L and D. Edgeset A is equivalent to a symmetric

indefinite linear system, A. Edgeset L is equivalent to the directed acyclic

(triangular) factor, L. Edgeset D is equivalent to the symmetric block diagonal

factor, D.

• References to sets of vertices roots and leaves indicating the starting and

finishing vertices of the factorisation.

• A function pivotSelect called to choose the factorisation vertices at each round.

The results are:

• The system in A is destroyed. The created systems L and D satisfy LDLT = A.

Algorithm 4: Sparse graph-theoretic indefinite LDLT factorisation
Name: LDL factorise indefinite

while symEdges(G,A) is not empty and loops(G,A) is not empty do
pivotSet = pivotSelect(G,A)
if pivotSet.num() == 1 then

LDL factorise 1x1(G, A,L,D, roots, leaves, pivotSet)

else
LDL factorise 2x2(G, A,L,D, roots, leaves, pivotSet)

5.3.1.2 Positive-Definite LDL Factorisation

Algorithm 5, LDL factorise posdefinite, factorises a symmetric positive definite

linear system. The inputs and results are as for the indefinite case above:

5.3.1.3 Single-step LDL Factorisation - Scalar

Algorithm 6, LDL factorise 1x1, performs a single step of the LDL factorisation for

a single scalar pivot vertex. The inputs to this function are the graph G, edge-sets

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 186

Algorithm 5: Sparse graph-theoretic positive definite LDLT factorisation
Name: LDL factorise posdefinite

while loops(G,A) is not empty do
pivotSet = pivotSelect(G,A)
(pivotSet must return only a scalar pivot)
LDL factorise 1x1(G, A,L,D, roots, leaves, pivotSet)

A,L and D, vertex sets roots and leaves and a single chosen pivot vertex pvtx.

The result is that the vertex is factorised out of A and into L and D, via:

L += E−1CT D += E A−= CE−1CT

Algorithm 6: Single step of LDLT factorisation for a scalar pivot
Name: LDL factorise 1x1

vertex pvtx = pivotSet.first

The pivot E comes from the sum of loop values:
double E = getLoopVal(pvtx, A)

if abs(E) < min tolerance then
// Error, E too small

Add identity loops into L:
add loop(pvtx, G, L, 1.0)

Copy E into D:
add loop(pvtx, G, D, E)

Identify pvtx as a leaf and/or root:
if undirEdges(pvtx,A) is empty then

insert pvtx in leaves set

if inEdges(pvtx,L) is empty then
insert pvtx in roots set

Add E−1CT to L:
adj edges copy 1x1(G,pvtx,A,L,1.0/E, directed,undirEdges)

Add −CE−1CT to A:
outerproduct 1x1(G,pvtx,NULL,A,A, −1.0/E, undirEdges)

Clear factorised loops and edges from A:
clear vertex(pvtx, A)

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 187

5.3.1.4 Single-step LDL Factorisation - 2 by 2

Algorithm 7, LDL factorise 2x2, performs a single step of the LDL factorisation for

a 2× 2 pair of pivot vertices. The inputs to this function are the graph G, edge-sets

A,L and D, vertex sets roots and leaves and a pivotSet containing the pair of

vertices pvtxA and pvtxB.

The result is that the two vertices are factorised out of A and into L and D, via:

L += E−1CT D += E A−= CE−1CT

This algorithm operates on the 2× 2 system E which is symmetric indefinite. It uses

analytical expressions for the determinant, inverse and eigenvalues of E as follows:

E =

E00 E01

E01 E11

 (5.9)

det E = E00E11 − E2
01 (5.10)

E−1 =
1

det (E)

 E11 −E01

−E01 E00

 (5.11)

eig E =
E00 + E11 ±

√
E2

00 + E2
11 − 2E00E11 + 4E2

01

2
(5.12)

E comes from pivotSet to 2x2Matrix from the two vertices. This function finds and

sums the loops of pvtxA and pvtxB and their cross-edges to form E00, E11 and E01

respectively.

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 188

Algorithm 7: Single step of LDLT factorisation for a 2× 2 pivot
Name: LDL factorise 2x2

pivotSet defines values for this 2× 2 pivot:
vertex [pvtxA,pvtxB] = [pivotSet.first,pivotSet.second]

double E00,E01,E11; pivotSet to 2x2Matrix(pivotSet, E00, E01,

E11)

if min(abs(eig(E))) < min abs eig E tol then
break // Error, E too small

Form E−1 analytically:
double Einv00,Einv01,Einv11 = ...

Add identity loops into L:
add loop(pvtxA, G, L, 1.0); add loop(pvtxB, G, L, 1.0)

Add E into D:
add loop(pvtxA, G, D, E00)

add edge(pvtxA, pvtxB, G, D, E01, symmetric)

add loop(pvtxB, G, D, E11)

Identify pvtxA and pvtxB as a leaf and/or root:
(if the only edges are within this 2x2 block then they form a 2x2 leaf)
if undirEdges(pvtxA,A) and undirEdges(pvtxB,A) are empty other
than each other then

insert pvtxA and pvtxB in leaves set

if inEdges(pvtxA,A) and inEdges(pvtxB,A) are empty other than each
other then

insert pvtxA and pvtxB in roots set

Add E−1CT to L:
adj edges copy 2x2

(G,pvtxA,pvtxB,A,L,Einv00,Einv01,Einv11, directed, undirEdges)

Add −CE−1CT to A:
outerproduct 2x2

(G,pvtxA,pvtxB,A,A,-Einv00,-Einv01,-Einv11, undirEdges)

Clear factorised loops and edges from A:
clear vertex(pvtxA, A)

clear vertex(pvtxB, A)

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 189

5.3.2 Graph Based Linear Algebra Procedures

This section describes various general purpose graph based linear algebraic procedures

which are used in the factorisation and solving algorithms. These functions are an

important part of the contribution of this thesis because they show how the graph

theoretic representation concept translates into practical operations in the graph for

the solution algorithm.

Adjacent edges copy - scalar

This function computes A += mCT , where C is the set of adjacent edges to the

given vertex, pvtx. See section 5.3.2.1.

Adjacent edges copy - 2× 2

This function computes A += MCT , where C is the pair of two sets of adjacent

edges to the block of two vertices, pvtxA and pvtxB. See section 5.3.2.2.

The outer product - scalar

This function computes CmCT , where a set of edges is equivalent to a sparse

vector C. See section 5.3.2.3.

The outer product - 2× 2

This function computes CMCT where C is the set of adjacent off-diagonals to

a pair of two vertices equivalent to two sparse vectors. See section 5.3.2.4.

The outer product - off-diagonal

The “off-diagonal” outer product is so called because it is used in the above 2×2

outer product to compute expressions C1M12C
T
2 and C2M12C

T
1 , which involve

the off-diagonal parts of the 2 × 2 M. This algorithm computes the general

rectangular outer product, CmDT , where C and D are the set of adjacent

off-diagonals to each of a pair of two vertices. See section 5.3.2.5.

Each of these functions involves accessing a set of one or more adjacent edge ranges,

which may be either the undirected edges or directed edges. Therefore these functions

have an input argument whichEdges which is a templated function pointer used to

obtain different types of edges for example whichEdges can be:

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 190

• undirEdges: specified when, for example, factorising a symmetric system.

• inEdges or outEdges: when re-constructing a symmetric system back from

directed L or LT .

5.3.2.1 Adjacent Edges Copy - Scalar

Algorithm 8 computes A += mCT , where C is the set of adjacent edges to the given

vertex, pvtx.

The inputs are:

• Reference to a graph, G.

• A vertex pointer vtx, which has the edges, C.

• Keys for the source edge-set of C (src) and destination edge-set of mCT (dest).

• The scalar m.

• A flag dirsym indicating if the resulting edges should be directed or symmetric.

• Function pointer whichEdges for which container to use to obtain C.

The result is:

• A += mCT .

Algorithm 8: Adjacent Edges Copy, Scalar
Name: adj edges copy 1x1

adjEdges = whichEdges(pvtx,src)

for edge Cedge in adjEdges do
adjVertex = other(Cedge, pvtx)

add edge(pvtx,adjVertex,G,dest, m * Cedge->val(), directed)

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 191

5.3.2.2 Adjacent Edges Copy - 2 by 2

Algorithm 9 computes A += MCT , where C is the pair of two sets of adjacent edges

to the block of two vertices, pvtxA and pvtxB.

C =
[
C0 C1

]
M =

M00 M01

M01 M11

 (5.13)

MCT =

M00C
T
0 +M01C

T
1

M01C
T
0 +M11C

T
1

 (5.14)

The inputs are:

• Reference to a graph, G.

• Vertex pointers vtxA and vtxB, which have the edges, CA and CB.

• Keys for the source edge-set of C (src) and destination edge-set of CMCT (dest).

• The 2× M as M00, M01, M11.

• A flag dirsym indicating if the resulting edges should be directed or symmetric.

• Function pointer whichEdges for which container to use to obtain CA and CB.

The result is:

• A += MCT .

Algorithm 9: Adjacent Edges Copy 2× 2
Name: adj edges copy 2x2

adjEdgesRangeA = whichEdges(pvtxA, src)

for edge CedgeA in adjEdgesRangeA do
adjVertex = other(CedgeA, pvtxA)

if adjVertex == pvtxB then continue

add edge(pvtxA,adjVertex,G,dest, dirsym, CedgeA->val()*M00)

add edge(pvtxB,adjVertex,G,dest, dirsym, CedgeA->val()*M01)

adjEdgesRangeB = whichEdges(pvtxB, src)

for edge CedgeB in adjEdgesRangeB do
adjVertex = other(Cedge, pvtxA)

if adjVertex == pvtxA then continue

add edge(pvtxB,adjVertex,G,dest, dirsym, CedgeB->val()*M11)

add edge(pvtxA,adjVertex,G,dest, dirsym, CedgeB->val()*M01)

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 192

5.3.2.3 Symmetric Outer Product - Scalar

The scalar outer product, algorithm 10, forms the equivalent of a sparse matrix,

CmCT where C is a set of edges, equivalent to a sparse vector. This is illustrated in

figure 5.2.

The inputs are as follows.

• Reference to a graph, G.

• A vertex pointer vtxFrom, which has the edges, C.

• A vertex pointer vtxExclude for which to exclude edges to (or NULL for none)

• Keys for the source edge-set of C (src) and destination edge-set of CmCT (dest).

• The scalar m.

• Function pointer whichEdges for which container to use to obtain C.

The result is:

• Performs A += CmCT where A is the specified edge-set of dest . The added

edges of the result are always symmetric, since this is a symmetric outer product.

Only the loops (diagonals) and a single “half-triangle” of the edges need be

computed and added, due to the symmetry.

5.3.2.4 Symmetric Outer Product - 2 by 2

The 2× 2 outer product, algorithm 11, refers to computing CMCT where C is the

set of adjacent off-diagonals to a pair of two vertices equivalent to two sparse vectors.

C =
[
C0 C1

]
(5.15)

M =

M00 M01

M01 M11

 (5.16)

CMCT = C0M00C
T
0 + C1M11C

T
1 + C0M01C

T
1 + C1M01C

T
0 (5.17)

Equation 5.17 shows how this is broken down into scalar outer products of the form

CmCT (see above, section 5.3.2.3). and off-diagonal outer products of the form

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 193

ab

c

d

a2b2

c2

d2

ab

ac

ad

bc

bd

cd

Figure 5.2: Scalar outer product, graph form. The outer product takes a set of n edges
from a given vertex, v, and forms the outer product consisting of (n2 − n)/2 edges and n
loops. Where the set of edges is equivalent to a sparse vector C, the outer product is the
equivalent of a sparse matrix, CmCT .

CmDT (see below, section 5.3.2.5).

The inputs are as follows:

• Reference to a graph, G.

• Vertex pointers vtxA and vtxB, which have the edges, CA and CB.

• Keys for the source edge-set of C (src) and destination edge-set of CMCT (dest).

• The 2× M as M00, M01, M11.

• Function pointer whichEdges for which container to use to obtain CA and CB.

The result is as follows:

• A += CMCT

5.3.2.5 Off-diagonal Outer Product

This “off-diagonal” outer product, algorithm 12, used in the above 2× 2 outer product

to compute expressions C1M12C
T
2 and C2M12C

T
1 . See figure 5.3.

This algorithm forms the more general rectangular outer product CmDT . C is the

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 194

Algorithm 10: Scalar Outer product, Graph Form
Name: outerprod 1x1

adjEdges = whichEdges(vtxFrom, key src)

for each edge-iterator itorAdj in adjEdges do
edge Cedge = *itorAdj

adjVertex = other(Cedge, vtxFrom)

if adjVertex == vtxExclude then continue

(Form the diagonal part of CmCT (loops))
double val = Cedge->val() * m * Cedge->val()

loop found = adjVertex->findLoop((dest))

if none found then
add loop (adjVertex, G, dest, val)

else
found->val() += val

(Form the single half of the off-diagonal part of CmCT (edges))
for each edge-iterator itor2 from next(itorAdj) to end of adjEdges do

edge Cedge2 = *itor2

adjVertex2 = other(Cedge2,vtxFrom)

if adjVertex2 == vtxExclude then continue

double val = Cedge->val()* m *Cedge2->val()

edge found = adjVertex->findUndirEdgeTo(adjVertex2,dest)

if none found then
add edge(adjVertex, adjVertex2, G, dest, symmetric, val)

else
found->val() += val

set of adjacent edges to one vertex vtxA and D is the set of adjacent edges to another

vertex vtxB (excluding those to each other).

The inputs are as follows:

• Reference to a graph, G.

• Vertex pointers vtxA and vtxB, which have the edges, C and D.

• Keys for the source edge-set of C (src) and destination edge-set of CMCT (dest).

• The scalar m.

• Function pointer whichEdges for which container to use to obtain C and D.

The result is as follows:

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 195

Algorithm 11: 2× 2 Symmetric Outer Product (Graph Form).
Name: outerprod 2x2

M00 outer product C0M00C
T
0 :

outerprod 1x1(grph,vtxA,vtxB,src,dest,M00)

M11 outer product C1M11C
T
1 :

outerprod 1x1(grph,vtxB,vtxA,src,dest,M11)

M01 outer products C0M01C
T
1 + C1M01C

T
0 :

outerprod offdiag(grph,pvtxA,pvtxB,src,dest,M01)

outerprod offdiag(grph,pvtxB,pvtxA,src,dest,M01)

• A += CmDT

5.4 Linear Systems Solve Using the LDL Factori-

sation

The LDL factorisation helps solve linear systems (Ax = b) by transforming A into

a product of triangular and diagonal systems, which are simpler to solve. Using the

factorisation LDLT = A, the solution involves a sequence of solves as follows:

To solve Ax = b for x,

using factorisation LDLTx = b

1. solve: Lu = b for u, where u = DLTx

2. solve: Dr = u for r, where r = LTx

3. solve: LTx = r for x

Where indicates a triangular (directed-acyclic) solve and indicates a block diagonal

solve.

The block diagonal solve is explained in Section 5.4.1 and the triangular solve is

explained in Section 5.4.2.

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 196

Algorithm 12: Off-Diagonal Outer product, Graph Form
Name: outerprod offdiag

adjEdgesRangeA = whichEdges(pvtxA, src)

adjEdgesRangeB = whichEdges(pvtxB, src)

for edge-iterator itorAdj1 in adjEdgesRangeA do
edge Cedge1 = *itorAdj1

adjVertex1 = other(Cedge1, pvtxA)

if adjVertex1 == pvtxB then continue

for edge-iterator itorAdj2 in adjEdgesRangeB do
edge Cedge2 = *itorAdj2

adjVertex2 = other(Cedge2, pvtxB)

if adjVertex2 == pvtxA then continue

if adjVertex1 > adjVertex2 then (Due to symmetry of pairs,
compute only for one half “triangle”)
continue

(Perform A += CmDT :)
double val = Cedge1->val()* M *Cedge2->val();

if adjVertex1 == adjVertex2 then
(loop part)
loop found = adjVertex1->findLoop(dest)

if none found then
add loop (adjVertex1, G, dest, val)

else
found->val() += val

else
(edges part)
edge found = adjVertex1->findUndirEdgeTo(adjVertex2, dest)
if none found then

add edge(adjVertex1,adjVertex2,G,dest,symmetric,val)
else

found->val() += val

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 197

u v
a

b

s t
x

y

at

bt

xs

ys

ax

bx ay

by

2st

Figure 5.3: The off-diagonal outer product, graph form. This figure shows the result
of CmDT + DmCT (two applications of off-diagonal outer product). C and D are two
sparse vectors. This is part of the algorithm for computing the 2 × 2 outer product as
part of the 2× 2 pivot part, of the indefinite LDL factorisation algorithm.

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 198

Overall the process can be written as:

x = A−1b (5.18)

x = L−TD−1L−1b (5.19)

Where each matrix inversion is a notation to indicate the required solve stages rather

than explicit inversion.

5.4.1 Graph Based Block Diagonal Solve

The block-diagonal solve solves a sub-problem:

Solve: Dr = u for r

Solution: r = D−1u

D is block diagonal, with either scalar or 2× 2 diagonal blocks. That is, the graph

edge-set D consists of multiple isolated components in groups of size 1 or 2 vertices.

The 2× 2 diagonal blocks can occur because the LDLT factorisation operates with

symmetric indefinite matrices, as explained in section 5.2.1.

Since D is block diagonal, the overall D solve consists simply of repeated solves in

1× 1 or 2× 2 variables.

• The scalar D solve consists of a scalar division at each scalar vertex in D.

• The 2× 2 D solve consists of analytical symmetric 2× 2 matrix inversion and

product at each 2× 2 cluster of D.

5.4.2 Graph Based Triangular Solve

The triangular-solve is used to solve systems in both L and LT , depending on the

stage of the LDLT solve, where L is a directed-acyclic edge-set, equivalent to a square

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 199

triangular matrix. The difference between solving with L and solving with LT is a

matter of interpretation of the direction of the directed edges.

Example 5.2.

L versus LT , forward versus backward directions for directed-acyclic

(triangular) solving

Solving Lx = b with L from Figure 4.2 would involve starting from x1 or x2 and

solving “forwards” following along the direction of the edges indicated, resulting with

x4 or x5 solved last.

Solving LTx = b (the transposed problem) with the same L (Figure 4.2) would involve

starting from x4 or x5 and solving “backwards” following against the direction of the

edges indicated, resulting with x1 or x2 solved last.

Since these two possibilities exist, note that neither is a preferred direction over the

other, and it is a matter of convention as to which is regarded as the “forward” and

which is regarded as the “backward” direction and which is the “direct” and which is

the “transposed” system.

�

Since L is directed each vertex has distinct input and output edges. Since L is acyclic,

the solution for each vertex is uniquely and analytically determined from the solutions

from other vertices through the input edges and is not at all affected by the solution

results for vertices through the output edges.

The input and output edges are shown by example in Figure 5.4. Each variable, xi, is

solved as follows:

Solve: Liixi +
∑

j∈ π(xi)

Lijxj = b (5.20)

Solution: xi = L−1
ii (b−

∑
j∈ π(xi)

Lijxj) (5.21)

The solution in Equation 5.21 requires that each of the input xi are solved already.

Therefore the solutions must be obtained in a topological order, ensuring that the

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 200

required input values are always computed before being required for subsequent

calculations.

Algorithm 13 solves Lx = b for x for a single vertex, assuming that its input edges (if

any) are solved. By swapping the definition for backward versus forward edges, the

algorithm is able to swap solving in LT for solving in L.

Algorithm 13: Graph based single vertex triangular solve [37]
Input: Graph G, edge-set key L
Input: Functions defining backward vs. forward edges. (Swapping these solves

in LT vs. L)
Result: Solve Lx = b for a particular vertex, vtx
vtx.x = vtx.b

for each edge in the backward edges of L in G do
other input vertex, vtx input = other(edge, vtx)

vtx.x -= edge->val() * vtx input.x

vtx.x /= getLoopVal(vtx, G, L)

Mark vtx solved

5.4.3 Graph Based Solve Implementation

5.4.3.1 Block Diagonal Solve

Algorithm 14 performs the multiple block diagonal D solve using L as a guide for the

sequence and limiting to the region specified by currents and finals. The inputs

are:

• The graph reference, G

• The edge-set keys L and D

• Member data pointers b and x to b and x to identify each entry b and x within

each vertex.

• An integer tag, solvetag, which is different for each new solving round.

• Function pointer forwardEdges specifies the direction in which to move along

L.

• The set of vertices currents, which are the start of the solving region.

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 201

�

� �

� � �

i i i c
� � � o �

� � � o � �

� � � o � � �





�

�

�

xi
�

�

�




=

�

�

�

b
�

�

�





L x = b

(a) Matrix form. The input dependencies in L exist within the same row as xi and the output
dependencies exist in the same column as xi.

x,b

c
�

�

�

i

i

i

�

�

�

o

o

o

(b) Graph form. The in edges (i) and out edges (o) model the input and output dependencies
in the directed-acyclic (triangular) linear system L.

Figure 5.4: In vs. out edges for triangular (acyclic) systems. The single current variable,
xi, is computed to solve: Liixi +

∑
j∈ π(xi)

Lijxj = b. This requires the input of preceding

variables, xj , multiplied through input edges, Lij , (marked i in the figure). j ranges
through all preceding variables, the parent variables of xi that is, j ∈ π(xi).
The current variable, xi, is used to compute other subsequent variables via the output
edges (marked o)

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 202

• The set of vertices finals, which are the end of the solving region.

Algorithm 15 is the subroutine for the solution of just a single 1× 1 or 2× 2 block of

D. The inputs are:

• The graph reference, G

• The pair or single vertex vtxs

• The edge-set key D

• Member data pointers b and x to b and x to identify each entry b and x within

each vertex.

• The integer tag, solvetag

Algorithm 15 uses the analytical 2× 2 inverse:

det D = −D2
01 +D00D11 (5.22)

D−1 =

D−1
00 D−1

01

D−1
01 D−1

11

 =
1

det D

 D11 −D01

−D01 D00

 (5.23)

x = D−1

b0
b1

 =

D−1
00 b0 +D−1

01 b1

D−1
01 b0 +D−1

11 b1

 (5.24)

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 203

Algorithm 14: Graph based multiple D solve

while currents is not empty do
vtx = *currents.begin()

if vtx->solvetag != solvetag then
(find D block obtains either the 1× 1 or 2× 2 starting from vtx)
vertex pair vtxs = find D block(G, vtx, D)

D solve single(G, vtxs, D, x, b, solvetag)

find vtx in finals

if not found then
(vtx is not on the finals boundary, continue the solving)
for each edge edesc in forwardEdges(vtx, L) do

nextVtx = other(edesc,vtx)

if nextVtx->solvetag != solvetag then
(queue-in the next vertex)
currents.insert (nextVtx)

if vtxs.num() == 1 then
currents.erase(vtx)

else
(erase both vertices in vtxs from current)
currents.erase(vtxs.first)

currents.erase(vtxs.second)

else
(already solved)
currents.erase(vtx)

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 204

Algorithm 15: Graph based single D solve

if vtxs.num()==1 then
(Solving Dx = b for scalar D x = b/D)
double D = getLoopVal(vtxs.first,G,D)

if abs(D) < abs D tol then
(no change)

else
vtx->*x = vtx->*b / D

(mark as solved)
vtx->solvetag = solvetag

else
(Solving Dx = b for 2× 2D)
double D00,D01,D11

chosen to 2x2Matrix(vtxs, D00, D01, D11)

(get D−1 explicit 2× 2 inverse)
double DetD = -D01*D01+D00*D11

if abs(DetD) ¡ abs D tol then
(no change)

else
double Dinv00 = +D11/DetD

double Dinv01 = -D01/DetD

double Dinv11 = +D00/DetD

double b0 = vtx0->*b

double b1 = vtx1->*b

vtx0->*x = Dinv00 * b0 + Dinv01 * b1

vtx1->*x = Dinv01 * b0 + Dinv11 * b1

(mark as solved)
vtx0->solvetag = solvetag

vtx1->solvetag = solvetag

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 205

5.4.3.2 Triangular Solve

Algorithm 16 solves Lx = b or LTx = b.

The inputs:

• Graph reference, G

• Edge-set key, L

• Member data pointers b and x to b and x to identify each entry b and x within

each vertex.

• An integer tag, solvetag, which is different for each new solving round.

• Function pointers forwardEdges and backwardEdges. Specifying forwardEdges

= outEdges and backwardEdges = inEdges corresponds to solving Lx = b.

Swapping these swaps the solve for L into LT .

• The set of vertices currents, which are the start of the solving region.

• The set of vertices finals, which are the end of the solving region.

The result is:

• Entries x in each vertex are filled in with the solution to Lx = b or LTx = b.

Algorithm 16 uses sets of vertices to specify the starting and ending vertices to be

solved. The starting vertices, currents is given the root vertices from the LDL

factorisation.

To compute all vertices, the argument finals can be given the leaves vertices

from the LDL factorisation (or left empty). Leaves and roots are the vertices at the

extremities of the directed-acyclic graph.

In this manner, the algorithm can retain control of which variables it back-computes.

This controls the extent of the triangular solve. Although computation must begin at

the appropriate root of the triangular system, it does not have to continue through to

all variables but can stop at any vertex and leave the downstream vertices unsolved.

The current and final sets form a boundary defining a selection of vertices. The

selection of vertices then consists of all vertices reachable “upstream” on the directed

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 206

acyclic graph from the “downstream” boundary. This is a compact way to represent

a selection of vertices, which is consistent with the fork and branch structure of the

acyclic graph, and the corresponding logic of which vertices must be solved first in

order to solve subsequent vertices.

Roots

The roots are those vertices with no in edges. In Figure 4.2 x1 and x2 are roots.

Leaves

The leaves are those vertices with no out edges. In Figure 4.2 x4 and x5 are

leaves.

A diagram of acyclic graph, showing the leaf and root boundaries is given in figure 5.5.

Figure 5.5: Acyclic graph root and leaf boundaries.
Vertices indicate root vertices, marking the start of the region to be solved.
Vertices indicate vertices which are solved, being in the selected region.
Vertices indicate leaf vertices, marking the end of the region to be solved.
Vertices indicate vertices not solved, being beyond the selected region.

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 207

5.4.3.3 Solve Sequence

The solve sequence from section 5.4 is performed as follows:

1. Solve Lu = b:

Tri solve(G, L, b, u, 1, outEdges, inEdges,roots,leaves);

2. Solve Dr = u:

D solve multi(G, L,D, r, u, 2, outEdges, roots, leaves);

3. Solve LTx = r:

Tri solve(G, L, r, x, 3, inEdges, outEdges, leaves, roots);

The specification of L versus LT involves simply swapping the arguments for forward

and backward edges and for the starting and ending vertex sets, compared to the

roots and leaves obtained from the original LDL factorisation.

5.5 Reconstruction From LDL Factorisation

This section describes how to re-compute A given the factorisation L and D. The

reconstruction of A is obtained by computing A = LDLT .

This section describes how this computation is expanded and applied to the graph

structure.

Consider a permutation and partitioning of L and D and the corresponding expansion

of LDLT :

D =

D11

D22

 L =

 I11

L12 L22

 (5.25)

LDLT =

 D11 D11L
T
12

L12D11 L12D11L
T
12 + L22D22L

T
22

 (5.26)

Equation 5.26 indicates that the expansion is obtained as follows:

• Start with empty A

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 208

Algorithm 16: Graph based triangular solve

while currents is not empty do
vtx = *currents.begin()

vtx->*x = vtx->*b

for each edge edgePrev in backwardEdges(vtx, L) do
vtxPrev = other(edgePrev,vtx)

vtx->*x -= edgePrev->val() * vtxPrev->*x

vtx->*x /= getLoopVal(vtx,G,L)
vtx->solvetag = solvetag

find vtx in finals

if found then
(queue-in the solving of the solvable dependencies)
for each edge edgeNext in forwardEdges(vtx, L) do

(vtxNext is an output dependent of vtx)
vtxNext = other(edgeNext,vtx)

bool all inputs of next are solved = true

for each edge eDepNextVtx in backwardEdges(vtxNext, L) do
(depVtxNext is an input dependency of vtxNext)
depVtxNext = other(eDepNextVtx,vtxNext)

if depVtxNext->solvetag != solvetag then
all inputs of next are solved = false

break

if all inputs of next are solved then
(queue-in vtxNext for solution soon)
currents.insert(vtxNext)

else
(ignore vtxNext, it will get considered again by one of its other
input dependencies)

else
(dependencies are beyond the region to solve)

(done with vtx)
currents.erase(vtx)

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 209

• For each block of D:

1. Collect the current D diagonal block, D11, into A. In the graph this

corresponds to accessing the immediate loops and cross edge for the scalar

or 2× 2 block of D.

2. Collect the off-diagonal structure L12. In the graph, the off-diagonal L12

corresponds to the out-edges of the vertices in the current D block.

3. Compute L12D11 into A. This also implies D11L
T
12 in A, but does not need

to be stored since it is simply the symmetrical transpose.

4. Compute the outer-product L12D11L
T
12 into A.

5.6 Discussion

5.6.1 Relation to the Junction Tree Algorithm

Junction-tree [56, 57] is a parallel direct solving approach. Junction-tree can be

considered as both an ordering algorithm and a solving algorithm:

Ordering

The junction-tree algorithm applies a tree decomposition to the graph. This

creates a tree of clusters of variables. Each node in the tree is a cluster, each

edge in the tree represents the intersection of the two clusters. The width of the

junction tree is the dimension of the largest cluster minus one. The treewidth of

the original problem is the minimum width among all possible junction trees for

the problem.

Solving

The factorisation ordering referred to above is defined implicitly by the tree

structure. The solving process is able to begin in parallel at each leaf of the tree

structure.

The junction-tree solving algorithm is a generalisation of the outer-product

marginalisation operation. It utilises the tree structure and re-uses computations

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 210

in order to arrive at the marginals for each variable-set. In effect, the marginal

for a given variable-set is computed via successive marginalisation, starting from

the outer leaf variable-sets inwards. When this process is required for all the

variable-sets, most calculations appear in common. The junction tree algorithm

organises itself such that these common calculations are not repeated but are

re-used. The process of marginalising each variable-set onto its subsequent

variable-sets (across the junction-set) is formulating in a message-passing style.

Refer to [41, 56, 57] for further details. The junction-tree ordering can also be

used in the “factorise & backsolve” manner described in this chapter [57].

The junction-tree solving algorithm requires solving multiple sub-problems, each

in the dimension of the local cluster size. The solution process takes O(n · w3)

time for n clusters, the largest of size w. Thus the key to the efficiency of the

junction tree algorithm is in finding a sufficiently thin (small width) junction

tree for the problem.

The junction tree algorithm focusses on problems which can be reduced into a suffi-

ciently thin tree structure, where the clusters within the tree then consist of small,

dense subproblems. The juncton tree algorithm focusses on partial marginal message

passing on the tree.

The approach described in this chaper is applicable to general structures, not necessarily

decomposed into a tree. The focus of this algorithm is in successive scalar factorisation

in the graph structure.

Both approaches are highly complementary. For problems which can be decomposed

into a tree, such a tree will offer efficient factorisation ordering for any exact solving

algorithm, including the algorithm of this chapter. Furthermore, the graph based

linear algebraic operations described in this chapter could be used to implement a

junction-tree based solving algorithm.

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 211

5.7 Future Research

5.7.1 Factorisation Approach

The factorisation algorithm presented in this chapter used the outer-product LDL

factorisation algorithm.

An improved implementation of the graph based factorisation algorithms will also

incorporate a sparse triangular solve based algorithm, operating in the graph structure.

This will make the graph based approach more comparable with the conventional

matrix approaches and may lead to a more competitive implementation.

The sparse triangular solve algorithm is used in typical sparse matrix implementations[16].

The outer-product algorithm shares more in common with methods in the estimation

literature.

The graph based representation and factorisation approach of this thesis achieves a

number of fundamental changes, such as decoupling of the representation and factori-

sation algorithm from storage and indexing considerations. The graph representation

is significantly different from existing sparse matrix representations. These considera-

tions make the task of adapting existing factorisation algorithms fairly difficult. The

factorisation algorithm described in this chapter achieves the goal of presenting a full,

sparse, graph-based factorisation and solving algorithm.

However, it remains for future research to adapt into the graph form some of the

more advanced state-of-the-art algorithms in sparse matrix solving. These include

multifrontal, supernodal, parallel and out-of-core approaches [17].

Since the graph approach is flexible to modifications and re-ordering it is expected, in

future research, to be well suited to online, adaptive factorisation algorithms suited

for realtime applications in localisation and mapping.

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 212

5.7.2 Factorisation Ordering Choice

This section discusses the problem of choosing a factorisation ordering in the context

of the graph based LDL factorisation algorithm. The choice of the order in which

variables are factorised is important because it affects the computation complexity

and numerical stability of the factorisation and solution process [17, 18, 37, 55].

Conventionally, ordering is performed either for improvement of sparsity [17] or for

improvement of numerical stability [37]. In the special case of positive definite linear

systems, the aspect of ordering for numerical stability can be ignored while still

guaranteeing completion of the factorisation. Therefore implementations usually focus

on factorisation ordering for sparsity. Choosing a factorisation order to optimise

sparsity is an NP-complete problem [30]. Adding the issue of considering factorisation

ordering for numerical stability makes the problem more complex.

This thesis does not propose new factorisation ordering algorithms. Instead, this

section discusses how existing methods for the ordering for sparsity and ordering for

numerical stability fit in with the graph embedded approach.

The factorisation ordering was discussed in section 3.7 in relation to the augmented

system form. Section 3.7 argued that the augmented system form is beneficial because

it allows the factorisation ordering to mix between observations and states. The mixing

of observations and states in the factorisation ordering allows improved sparsity and

numerical stability of the factorisation under certain conditions, compared to the

fixed approach of factorising (or eliminating) the observations first (equivalent to the

information form).

The factorisation ordering was also discussed in section 5.2 in relation to how the

graph based representation helps to allow more flexible factorisation ordering.

The algorithms 4 and 5 contain lines pivotSet = pivotSelect(G,A). The ap-

proaches discussed in this section provide the function pivotSelect.

The following sections describe factorisation ordering approaches for

• Numerical stability

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 213

• Sparsity

• Online modification problems

The problem for future research is to incorporate these together to give practical

algorithms applicable to online localisation and mapping, which requires a complex

mix of requirements on the algorithm: Fast and accurate performance in a realtime

context.

5.7.2.1 Factorisation Ordering for Numerical Stability

This section discusses factorisation ordering methods for numerical stability.

Numerical stability considerations of the factorisation ordering were also discussed

in section 3.7.2 in relation to the ability of the augmented system form to handle

constraints and tight-observations.

As discussed in section 3.7.2 and [37] discuss, the basic consideration in the choice of

factorisation ordering for numerical stability is to avoid or defer factorisation of small

E variables. The resulting factors involve E−1 which causes large entries in L or can

halt the progress of the factorisation, if E is zero or singular. The factorisation for

numerical stability is critical when the system contains constraints or states with zero

prior information, since these have zeros on the diagonals (loops) of the augmented

system form.

For indefinite systems, the pivotSelect function is able to choose either a 2 × 2

pivot from a pair of vertices or a single scalar pivot. This process is based on the

Bunch-Parlett algorithm [14] and [37, pg 168]).

The Bunch-Parlett algorithm aims to choose the largest E in Equations 5.4 and 5.2

such that E−1 exists and is small. The aim is to maintain the entries in L to be

less than or near unit magnitude and the entries in B− CE−1C
T

to be sufficiently

bounded. This algorithm also balances between selecting single and 2× 2 pivots.

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 214

The Bunch-Parlett algorithm requires a search for the following:

µall = max
ij
|aij| (5.27)

µdiag = max
i
|aii| (5.28)

Algorithm 17: Bunch-Parlett pivot selection strategy ([14] and [37, pg 168])
Name: pivots BunchParlett

Input: A Graph G
Input: An edge-set A for analysing numerical properties of the edges. The

chosen pivots are vertices linked to edges in A
Result: Choice of 1 (pvtx) or 2 (pvtxA and pvtxB) vertices for factorisation.
begin

Find µall as max
i,j
|aij| where aij is the edge value of any edge or loop in

edge-set A
Find µdiag as max

i
|aii| where aii is the loop value of any loop in edge-set A

α = 1+
√

17
8
≈ 0.6404

if µdiag ≥ αµall then
Choose a single vertex pvtx

pvtx is the source of any loop with value µdiag

else
Choose two vertices pvtxA and pvtxB

pvtxA is the source of any edge with value µall

pvtxB is the target of any edge with value µall

end

• When a large enough loop entry exists, the algorithm will choose it as a scalar

pivot.

• When the diagonal (loop) entries are all zero, the algorithm will choose a 2× 2

pivot which has the largest off-diagonal.

• When the system is of rank 1 (for example all entries equalling 1), the algorithm

chooses a scalar pivot. (No invertible 2× 2 E exists).

• The algorithm specfies a search and selection of the maximum µ values over all

edges and loops. In future work it will be necessary to limit such a search to

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 215

find only sufficiently large µ values or maximum values over a limited search, in

order to maintain fast performance.

While this algorithm is sufficient for the choice of factorisation for numerical stability,

it remains a problem for future research to incorporate this with the factorisation for

sparsity and online modification.

5.7.2.2 Factorisation Ordering for Sparsity

Choosing a factorisation order for minimum fill-in to optimise sparsity is an NP-

complete problem [30]. This thesis does not propose new factorisation ordering

algorithms.

The key principle in the selection of the factorisation ordering for sparsity is to avoid

or defer the factorisation of vertices with large degree.

Section 3.7.1 discussed the factorisation ordering for sparsity in terms of the flexibility

offered by the augmented system form in particular.

The typical approach of [4, 16, 67] to the factorisation of positive definite systems is

to:

1. Pre-plan the factorisation order for minimum fill-in

2. Perform a symbolic factorisation necessary to pre-plan the matrix nonzero

structure and pre-allocate the memory required during the factorisation

3. Perform the numerical factorisation.

However, for the indefinite or positive-semi-definite systems considered here, the

factorisation for numerical stability makes unpredictable changes to the factorisation

order which are difficult to pre-plan. Fortunately, the graph based representation

removes the need to pre-allocate the matrix nonzero structure and memory.

Therefore this section presents a basic minimum degree ordering approach. This is

based on the property that in the graph representation, the algorithm can evaluate

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 216

Algorithm 18: Explicit minimum-degree pivot selection
Input: A Graph G
Input: An edge-set src for analysing degree properties of the edges. The chosen

pivots are vertices linked to edges in src
Result: Choice of a vertex (pvtx) for factorisation.
minDegree = MAX INT

minDegreeVertex = NULL

int n = 0

for each loop in loops(G,src do
vertex = sourcetarget(loop)

degree = unDegree(vertex, src)
if degree < minDegree then

minDegree = degree

minDegreeVertex = vertex

if minDegree <= 2 then
break

++n

if n >= Nmax then
break

the degree counts of the vertices during factorisation and hence choose the next vertex

for factorisation.

This algorithm selects the minimum degree vertex from the next Nmax vertices in the

order existing in the graph’s list of loops.

However, this approach of finding the next immediate vertex without an overall plan

is not as efficient as a pre-planned ordering.

Future work shall consider how to mix the ordering for sparsity with the ordering

for numerical stability and how to mix a pre-planned order with mid-factorisation

changes due to numerical stability considerations.

5.7.2.3 Factorisation Ordering for Online Problems

Mahon [49] discusses online methods in relation to factorisation order. Mahon suggests

ordering the current vehicle pose states last in the factorisation ordering. During

vehicle prediction operations, this allows factorisation modification algorithms to

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 217

modify only the small number of states relating to the current and next vehicle pose

states. Ordering the current vehicle pose states last also allows these to be recovered

first in the back-solving phase.

Future research directions in online modification problems are discussed in section

6.2.1.

5.8 Chapter Conclusion

This chapter presented a new implementation of the LDL direct factorisation algorithm

operating entirely in the graph embedded representation. In the graph structure, the

factorisation operations correspond directly to operations accessing adjacent vertices

and modifying graph edges.

The fast insertion and adjacency capabilities of the graph based linear system rep-

resentation allows the direct solving algorithm greater flexibility and capabilities,

particularly regarding the factorisation ordering. This allows the factorisation method

to determine or alter the ordering during factorisation, instead of pre-planning it. This

makes the algorithms simpler and enables the factorisation of indefinite systems, as

arises in solving the augmented system form.

The operation of the solving algorithm in the graph representation demonstrates the

applicability of the graph based representation for the linear systems. The lack of

matrix and vector semantics (value of elements at integer indices) does not present

an obstacle to the solving algorithm, since every operation of the solving algorithm

translates elegantly into operations on the graph, such as iterating through lists of

loops, vertices and adjacent vertices, and adding and removing edges.

The operation of factorisation based on graph theoretic terms, such as adjacency

and topological ordering, gives further insights into the algorithms beyond that

obtained when operating only with matrix indexing, especially given the complexity

of conventional sparse matrix formats. Future algorithm development focused on the

CHAPTER 5. GRAPH-THEORETIC SOLUTION METHODS 218

capabilities of the graph representation may be able to exploit these further for faster

results.

Chapter 6

Conclusion and Future Research

This thesis proposed the use of the augmented system form, in conjunction with a

novel graph representation for the estimation problem, together with a graph based

linear direct solving algorithm. This chapter summarises the contributions of this

thesis and outlines areas for future research.

6.1 Summary of Contributions

1. Augmented Methods in Estimation

This thesis contributed extensions to the augmented system form - a generalisa-

tion of the information form, consisting of augmenting observations & constraints

in addition to the states - and proposed its use as a general formulation of the

estimation problem. The augmented form provides a mathematical system

showing explicitly and distinctly the states and observations together with

Lagrange multipliers for their interaction. This thesis showed the augmented

system form is more general than the information form, and this thesis proposed

that it therefore provides a more general starting point for the formulation and

solving process. The information form is able to be recovered by eliminating the

observations first. Alternative solving approaches can be realised by factorising

variables in a general order beyond the fixed observations-first approach. This

219

CHAPTER 6. CONCLUSION AND FUTURE RESEARCH 220

is strictly required for constraints, and also improves numerical stability under

small R and improves the fill-in sparsity by offering the ability to factorise

between the observation Lagrange multipliers and states in a mixed order.

2. A novel graph-theoretic structure for sparse estimation problems

This thesis presented a novel graph embedded representation for estimation

problems and their associated sparse linear systems. The representation focuses

on objects and the links between them rather than having a matrix and vector

representation (typified by access to entries at integer indices). It includes

estimation problem states, nonlinear observation terms and their linearisation,

and is suitable for sparse linear systems generally. The representation also

contributes a mapping of the matrix and vector concepts into graph vertices and

edges, including novel graph representations for these linear algebraic concepts.

These consist of graph loops, mixed symmetric and directed edges, and multiple

graph edgesets. The resulting graph representation has the benefit of constant

time insertion and removal of edges and vertices, constant time access to adjacent

variables, and a decoupling of the identity of variables with their storage method.

These benefits are applied to the implementation of the graph based solving

algorithm.

3. Estimation algorithms in the graph structure

This thesis presented a new implementation of the LDL direct factorisation

algorithm operating entirely in the graph embedded representation. In the

graph structure, the factorisation operations correspond directly to operations

accessing adjacent vertices and modifying graph edges. The capabilities of the

graph based linear systems representation allows the solving algorithm greater

flexibility and capabilities, particularly regarding the factorisation ordering.

This allows the factorisation method to determine or alter the ordering during

factorisation, instead of pre-planning it. This, in turn, makes the algorithms

simpler and enables the factorisation of indefinite systems, which arise in solving

the augmented system form.

The operation of the solving algorithm in the graph representation demonstrates

CHAPTER 6. CONCLUSION AND FUTURE RESEARCH 221

the applicability and novel capabilities of the graph based representation.

6.2 Future Research

The contributions of this thesis open up a range of new tools which may be applied to

new and outstanding research problems. This section outlines broad areas for such

future research, in addition to the specific areas for future research identified in each

chapter.

6.2.1 Online Methods

Online methods consist of techniques to improve the computational efficiency of the

solving methods suitable for repeated solving of the growing estimation problem during

operation of the system, i.e.: online execution as opposed to offline or batch execution.

Online methods exploit the fact that observations arrive in succession and that the

structure of old parts of the estimation problem are identical in successive timesteps.

Parts of the state estimates may be similar in successive timesteps, depending on the

structure of the changes resulting from new observations.

Particular benefit can be obtained from new observations which extend the estimation

problem rather than substantially changing existing parts of the problem. Typically

this occurs during exploration of new spatial regions.

Mahon [49] discusses online methods in relation to factorisation order. Mahon suggests

ordering the current vehicle pose states last in the factorisation ordering. During

vehicle prediction operations, this allows factorisation modification algorithms to

modify only the small number of states relating to the current and next vehicle pose

states. Ordering the current vehicle pose states last also allows these to be recovered

first in the back-solving phase.

The graph structure proposed in this thesis allows full incremental, constant time mod-

ifications to the graph structure (as opposed to matrix embedded implementations).

CHAPTER 6. CONCLUSION AND FUTURE RESEARCH 222

The implementation of direct solving methods in the graph structure opens up the

possibility of developing more advanced factorisation algorithms especially online

(re)-factorisation methods. Future research will adapt online modification algorithms

from the sparse matrix literature [19, 34] into the graph based factorisation approach

of this chapter.

The implementation of the direct solving methods in the graph structure also has the

benefit that elimination orders can be chosen arbitrarily without requiring data copying

(“pivoting”), since the elimination ordering is not implied by the implementation

(storage) ordering.

In addition, the augmented system form proposed in this thesis is expected to help

in the online solving case. The augmented system form has easier access to the

observation Jacobians than in the information form. This allows easy re-linearisation

in A, which represents a full formulation of the estimation problem.

Following additions and re-linearisations, the augmented system form is also expected

to help online problems by allowing the choice of eliminating or factorising states and

observations in any order.

For online localisation and mapping, future research will incorporate regions of variables

in the graph which are subject to the following phases :

Nonlinear variation

Variables immediately adjacent to new states or observations will vary signifi-

cantly due to nonlinear iterations towards a solution and the arrival of additional

new observations. It may not be worthwhile factorising such variables and

iterative methods may be more favourable.

Linear variation

Variables further away from new observations and states (in terms of graph

links) will be subject to lesser variations, within the range of linear variation.

Static

Variables even further away will be subject to few variations and become effec-

tively static. These may still be retained in case of future loop-closures. These

CHAPTER 6. CONCLUSION AND FUTURE RESEARCH 223

variables will have been factorised earlier on and should not need to be touched

during normal solving operations. The limited solving regions of section 5.4.3

would be used to avoid touching these static variables when solving for variations

in the above linear-variation region.

Discarded

Old variables with stable values, especially those which cannot be re-linked by

loop-closures, can be safely marginalised out and discarded.

When exploring, these phases would be defined by graph propagation back along

the chain starting from the new observations and states. Changes in structure in

loop-closure events would cause a wide-ranging re-evaluation of these regions. When

loop closing, the nonlinear region would expand out to encompass the large scale

nonlinear variations encountered in loop closure. Variables previously static would

enter nonlinear adjustment again.

Therefore, the graph representation and solving framework is expected to play an

important role in advanced implementations of online localisation and mapping in

future work.

6.2.2 Iterative Methods

Iterative methods aim to solve systems via a sequence of approximations which

converge to the solution [61]. Iterative methods are important for large scale systems

which are beyond the reach of direct solving approaches [61].

Iterative methods, especially conjugate gradients, have been applied in the estimation

and SLAM literature (for example [71, 75]). Iterative methods have also been noted in

the context of the online solution methods [75]. When the problem structure consists

of a growing chain-like structure, the solution estimates change only slowly. In these

cases, the iterative methods can be used with a bounded number of iterations per

timestep [21, 75]

CHAPTER 6. CONCLUSION AND FUTURE RESEARCH 224

For the iterative solving of indefinite linear systems, the biconjugate gradient (BCG)

method can be used [27]. The biconjugate gradient method solves indefinite prob-

lems with a monotonic reduction in the norm of the residual Ax− b, whereas the

plain conjugate gradient method applied to indefinite problems results in alternating

reduction and increases in the norm of the residual.

The direct methods developed in this thesis may be applied, in future work, to

preconditioning iterative methods. Combining elements of direct solving with iterative

solving is a vital part of modern iterative solution methods [61] and has also been

applied in the SLAM context (for example, [76]).

The graph representation proposed in this thesis is well suited to iterative methods for

various reasons: It is well suited and fast for performing the matrix-vector product,

even when only one half of symmetric systems are stored, even for both direct and

transposed matrix-vector products. The graph representation allows the matrix-vector

product to be evaluated for particular vertices individually. As such, the graph

representation proposed here can be used in future to aid the performance of iterative

methods for online estimation problems in localisation and mapping.

6.2.3 Data Association Methods

The main estimation loop outlined in algorithm 1 refers to the fact that the algorithms

of this thesis reside in an inner loop. The selection of data association is effectively an

outer-loop process that would use the methods proposed in this thesis. It has been

the intention of this thesis to support the representation and evaluation of particular

data association choices, even though this thesis has not focused in detail on data

association. In particular, the observation Lagrange multipliers will be important,

in future work, for identifying particular observation terms and paths through the

graph structure which are subject to large Lagrange multipliers. These identify “stress

pathways”, on which a data association algorithm may be able to focus.

The residual Mahalanobis distance of chapter 3 is intended to aid data association

evaluations in the trajectory state and augmented system form contexts.

CHAPTER 6. CONCLUSION AND FUTURE RESEARCH 225

The graph representation is able to encode data association choices through the use of

agreement enforcing equality constraints between separate instances of a state. Such

links would be, of course, fully reversible and would also provide a Lagrange multiplier

for evaluating the agreement.

In future research, these tools may aid the representation, evaluation and optimisation

of data association choices.

6.2.4 Decentralisation

In future research, the methods of this thesis may be applied to the problem of

decentralised estimation. In a decentralised estimation network, a state may be

estimated simultaneously on multiple platforms. The platforms are required to achieve

estimates equivalent to a centralised estimator.

This problem can be cast as a problem in which the platforms estimate independently

but are subject to equality constraints which impose a requirement for agreement [62].

Such a system with multiple instances of the states bound together with equality

constraints can be shown to be equivalent to the marginal-passing channel filtering

approach used in [52, 53], by eliminating the agreement constraints and all but one of

the multiple state instances.

Such agreement constraints can also be represented using the augmented system

form proposed in this thesis. Under these conditions, the decentralisation network

may communicate the shared states and the Lagrange multipliers of the agreement

constraints on the shared states. These are vectors in the size of the shared states.

This approach may have different or improved communication properties than the

communication of information marginal matrices in the shared states.

The Lagrange multipliers of these agreement constraints would also indicate the extent

and direction of any inconsistency between the platforms, which may help incorporate

data association and verification algorithms.

CHAPTER 6. CONCLUSION AND FUTURE RESEARCH 226

In cyclic decentralised agreement networks, the set of equality constraints violates

the full rank condition on constraints. The agreement network then becomes over-

constrained. However, by regularising the augmented system form of the network,

the constraints are infinitesimally relaxed and the system becomes solvable. Such

an over-constrained (but regularised) system is more general than the acyclic struc-

ture. In future research this may lead to better algorithms for the solution of cyclic

decentralisation networks.

6.3 Conclusion

This thesis contributed the augmented system form which augments the observation

Lagrange multipliers into a joint system with the state variables. This forms a

mathematical formulation of the estimation problem that contains all the variables of

interest and the sparse links between them. This system is then embedded in a graph

based representation. Together, the augmented system form and the graph embedded

representation form an approach in which the estimation problem is formulated in

as much detail as possible, with sparse links between the variables encoding the

conditional independence structure of the problem. This formulation is then able to

be considered by the graph based solving algorithm, which operates in the graph to

eliminate or factorise variables.

This set of the augmented system form, graph representation and solving algorithm

are fundamental tools which will lead to a new variety of online, flexible, formulation

and solving approaches for estimation in localisation and mapping.

Appendix A

Augmented System Details

A.1 Eliminating States

In section 3.2.2, we applied the condition ∇νL = 0 from equation 3.13 to the Lagrangian, L(ν,x), of equation 3.10 to

obtain the information form quadratic F (x) of equation 3.2. This was equivalent to eliminating the observations from the

augmented form, obtaining the resulting information form.

To complement this, we can eliminate the states from the augmented form, by applying the condition ∇xL = 0. In equation

3.13, we can require that ∇xL = 0 and obtain the resulting system in ν. This yields a relationship from ν to x, a function:

227

A
P

P
E

N
D

IX
A

.
A

U
G

M
E

N
T

E
D

S
Y

S
T

E
M

D
E

T
A

IL
S

228

x̃(ν). The relationship:

Y(x̃(ν)− xp)−HTν = 0 (A.1)

x̃(ν) = Y−1(HTν + Yxp) (A.2)

= P(HTν + Yxp) (A.3)

Starting from equation 3.10 and applying equation A.3:

L(ν,x) =
1

2
(x− xp)

TY(x− xp)−
1

2
νTRν − νT (h(x)− z) (A.4)

L(ν, x̃(ν)) =
1

2
(x̃(ν)− xp)

TY(x̃(ν)− xp)−
1

2
νTRν − νT (h(x̃(ν))− z) (A.5)

L(ν, x̃(ν)) = −1

2
νT (HPHT + R)ν − νT (Hxp − z) (A.6)

Equation A.6 is a reduced Lagrangian quadratic for the ν variables only. The relationships among these quadratics are

summarised in appendix A.3.

The solution is obtained by setting ∇νL(ν, x̃(ν)) = 0, which results in:

(
R + HPHT

)(
ν
)

= −(Hxp − z) (A.7)

A
P

P
E

N
D

IX
A

.
A

U
G

M
E

N
T

E
D

S
Y

S
T

E
M

D
E

T
A

IL
S

229

Similarly, in terms of increments to the exsting value ν0:(
R + HPHT

)(
∆ν
)

= −(Hxp − z)−HPHTν0 −Rν0 (A.8)

Equation A.7 is the augmented system form of equation 3.17 marginalised into only the ν variables.

• The proces of marginalising away the states requires an invertible Y. The covariance P is equal to Y−1.

• The posterior inverse-covariance for the values of ν is R + HPHT .

• Just as the information form shows the combined effect of the prior and the observation on the posterior state estimate,

this form shows the effect on the posterior observation Lagrange multipliers.

In conclusion, taking the augmented system form and eliminating the states results in a quadratic (equation A.6) in

the ν variables and associated linear system for the solution (equation A.7). This is interesting as a complement of the

information form: representing the observation Lagrange multiplier marginal rather than the state marginal. The resulting

expressions relate closely to the expressions of the innovation and innovation distance and therefore explains their origin in

another alternative way.

A
P

P
E

N
D

IX
A

.
A

U
G

M
E

N
T

E
D

S
Y

S
T

E
M

D
E

T
A

IL
S

230

A.2 Terms Relating to Residuals and Innovations

The innovation νi = h(xp)− z

The observation residual νz = h(xe)− z

The prior residual νp = xe − xp

The observation Lagrange multiplier ν = −R−1(h(xe)− z) if R−1 exists

ν = −R−1νz

A
P

P
E

N
D

IX
A

.
A

U
G

M
E

N
T

E
D

S
Y

S
T

E
M

D
E

T
A

IL
S

231

A.3 Quadratic Forms and Mahalanobis Distances

The augmented system Lagrangian L(ν,x) =
1

2
(x− xp)

TY(x− xp)−
1

2
νTRν − νT (h(x)− z)

The state objective function F (x) = L(ν̃(x),x) =
1

2
(x− xp)

TY(x− xp) +
1

2
(h(x)− z)TR−1(h(x)− z)

The ν quadratic L(ν, x̃(ν)) = −1

2
νT (HPHT + R)ν − νT (h(xp)− z)

The innovation Mahalanobis distance Mi =
1

2
(h(xp)− z)T (R + HPHT)−1(h(xp)− z)

The residual Mahalanobis distance Mr(x) =
1

2
(h(x)− z)TR−1(h(x)− z) +

1

2
(x− xp)

TP−1(x− xp)

The above functions (and constant Mi) all evaluate identically at the solution x and ν.

L(ν,x) = F (x) = L(ν̃(x),x) = L(ν, x̃(ν)) = Mi = Mr(x) at the solution x and ν

A
P

P
E

N
D

IX
A

.
A

U
G

M
E

N
T

E
D

S
Y

S
T

E
M

D
E

T
A

IL
S

232

A.4 Linear Systems

Related linear systems, in incremental form:

The augmented system form

 R H

HT −Y

∆ν

∆x

 = −

 Rν0 + (h(x0)− z)

HTν0 −Y(x0 − xp)


The information form

(
Y + HTR−1H

)(
∆x
)

= −Y(x0 − xp)−HTR−1(h(x0)− z)

The ν form
(
R + HPHT

)(
∆ν
)

= −(R + HPHT)ν0 − (h(xp)− z)

Related linear systems, non-incremental form:

The augmented system form

 R H

HT −Y

ν

x

 = −

(h(x0)− z)−Hx0

Yxp


The information form

(
Y + HTR−1H

)
x = Yxp −HTR−1

((
h(x0)− z

)
−Hx0

)
The ν form

(
R + HPHT

)
ν = −(h(xp)− z)

A
P

P
E

N
D

IX
A

.
A

U
G

M
E

N
T

E
D

S
Y

S
T

E
M

D
E

T
A

IL
S

233

A.5 Proof of Equivalence of Residual and Innovation Distances

This section proves equation 3.94, that the proposed residual Mahalanobis distance equals the conventional innovation

Mahalanobis distance.

1. The “innovation” approach terms are:

Innovation from (3.80): νi = Hx̂− z

Inserting (3.76) & (3.78) = H(x + wp)− (Hx + wz)

νi = Hwp −wz (A.9)

Innovation Distance, From (3.85): Mi = νTi S−1νi

2. The “residuals” approach terms depend on xe. The observation and prior are fused to obtain xe. The expressions are

written using Information matrix Y and vector y.

Prior information matrix & vector Yp = P−1 yp = Yx̂ = P−1x̂ (A.10)

Observation information matrix & vector Yz = HTR−1H yz = HTR−1z (A.11)

A
P

P
E

N
D

IX
A

.
A

U
G

M
E

N
T

E
D

S
Y

S
T

E
M

D
E

T
A

IL
S

234

Posterior information matrix Ypost = Yp + Yz (A.12)

Posterior estimate xe = (Ypost)
−1 (yp + yz) (A.13)

xe = (P−1 + HTR−1H)−1
(
P−1x̂ + HTR−1z

)
(A.14)

3. Expanding terms for the observation residual, νz:

Observation residual from (3.87) νz = Hxe − z

Inserting equations (3.78) and (A.14) = H (Ypost)
−1

(
P−1wp + HTR−1wz

)
−wz

Expanding = HY−1
postYpwp + HY−1

postH
TR−1wz −wz (A.15)

note: Y−1
postYp = I−Y−1

postYz (A.16)

Using (A.16) νz = H(I− (Ypost)
−1Yz)wp + HY−1

postH
TR−1wz −wz

Collecting = Hwp −HY−1
postYzwp + HY−1

postH
TR−1wz −wz

Factoring = (I−HY−1
postH

TR−1)(Hwp −wz) (A.17)

Substituting (A.9) νz = (I−HY−1
postH

TR−1)(νi) (A.18)

A
P

P
E

N
D

IX
A

.
A

U
G

M
E

N
T

E
D

S
Y

S
T

E
M

D
E

T
A

IL
S

235

4. Expanding the observation residual distance, Mz:

From (3.92) Mz = νz
TR−1νz (A.19)

From (A.18) Mz = ((I−HY−1
postH

TR−1)(νi))
TR−1((I−HY−1

postH
TR−1)(νi)) (A.20)

Expanding the Quadratic: Mz = νTi (R−1 − 2R−1HY−1
post(H

TR−1) + R−1HY−1
postYzY

−1
post(H

TR−1))νi (A.21)

Which is of the form: Mz = νTi Aνi (A.22)

5. Expanding terms for the prior residual, νp:

Prior residual from equation (3.89) νp = xe − x̂

Inserting equations (3.76) and (A.14) = −wp + Y−1
post

(
P−1wp + HTR−1wz

)
(A.23)

= −
(
Ip −Y−1

postYp

)
wp + Y−1

postH
TR−1wz (A.24)

= −
(
Y−1

postYz

)
wp + Y−1

postH
TR−1wz (A.25)

= −Y−1
postH

TR−1Hwp + Y−1
postH

TR−1wz (A.26)

= −Y−1
postH

TR−1
(
Hwp −wz

)
(A.27)

Substituting (A.9) νp = −Y−1
postH

TR−1(νi) (A.28)

A
P

P
E

N
D

IX
A

.
A

U
G

M
E

N
T

E
D

S
Y

S
T

E
M

D
E

T
A

IL
S

236

6. Expanding the prior residual distance, Mp:

From (3.92) Mp = νp
TP−1νp (A.29)

From (A.28) Mp = (Y−1
postH

TR−1(νi))
TP−1(Y−1

postH
TR−1(νi)) (A.30)

Expanding the quadratic: Mp = νTi (R−1HY−1
postP

−1Y−1
postH

TR−1)νi (A.31)

Which is of the form: Mp = νTi Bνi (A.32)

7. The main expression, distance Mr is:

Mr = Mz +Mp (A.33)

Mr = νTi Aνi + νTi Bνi (A.34)

Mr = νTi (A + B)νi (A.35)

8. To expand the expression S−1, a matrix inversion lemma is used from [59].

Matrix inversion lemma (A + XBXT)−1 = A−1 −A−1X(B−1 + XTA−1X)−1XTA−1 (A.36)

From (3.83) S−1 = (R + HPHT)−1 = (A.37)

From (A.36) S−1 = R−1 −R−1H(P−1 + HTR−1H)−1HTR−1 (A.38)

S−1 = R−1 −R−1HY−1
postH

TR−1 (A.39)

A
P

P
E

N
D

IX
A

.
A

U
G

M
E

N
T

E
D

S
Y

S
T

E
M

D
E

T
A

IL
S

237

9. The claim of the proof, from (3.94) is:

Mi = Mr (A.40)

νTi S−1νi = νTi (A + B)νi (A.41)

S−1 = (A + B) (A.42)

0 = (A + B)− S−1 (A.43)

Using (A.22) & (A.32):

0 = (R−1 − 2R−1HY−1
post(H

TR−1) + R−1HY−1
postYzY

−1
post(H

TR−1))

+ (R−1HY−1
postP

−1Y−1
postH

TR−1)− S−1 (A.44)

Using (A.39):

0 = (R−1 − 2R−1HY−1
post(H

TR−1) + R−1HY−1
postYzY

−1
post(H

TR−1)) + (R−1HY−1
postP

−1Y−1
postH

TR−1)

− (R−1 −R−1HY−1
postH

TR−1) (A.45)

0 = −R−1HY−1
post(H

TR−1) + R−1HY−1
postYzY

−1
post(H

TR−1) + R−1HY−1
postP

−1Y−1
postH

TR−1 (A.46)

0 = R−1HY−1
post

(
− (HTR−1) + YzY

−1
post(H

TR−1) + P−1Y−1
postH

TR−1
)

(A.47)

0 = −HTR−1 + (YzY
−1
post + YpY

−1
post)(H

TR−1) (A.48)

A
P

P
E

N
D

IX
A

.
A

U
G

M
E

N
T

E
D

S
Y

S
T

E
M

D
E

T
A

IL
S

238

Now,
(
YzY

−1
post + YpY

−1
post

)
= I, from (A.12)

0 =
(
− (HTR−1) + (HTR−1)

)
(A.49)

True (A.50)

10. This completes the proof that equation 3.94 holds.

Bibliography

[1] “Boost C++ libraries.” [Online]. Available: http://www.boost.org/

[2] “Intel math kernel library reference manual,” Intel, Document Number:
630813-029US, August 2008. [Online]. Available: http://www.intel.com/software/
products/mkl/docs/WebHelp/whnjs.htm

[3] M. Agrawal and K. Konolige, “FrameSLAM: From bundle adjustment to real-time
visual mapping,” IEEE Transactions on Robotics, vol. 24, no. 5, October 2008.

[4] P. R. Amestoy, T. A. Davis, and I. S. Duff, “Algorithm 837: AMD, an
approximate minimum degree ordering algorithm,” ACM Transactions on
Mathematical Software, vol. 30, no. 3, pp. 381–388, 2004. [Online]. Available:
http://dx.doi.org/10.1145/1024074.1024081

[5] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D.
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK
Users’ Guide, 3rd ed. Philadelphia: SIAM, 1999.

[6] M. Arioli, I. Duff, and P. de Rijk, “On the augmented system approach to sparse
least-squares problems,” Numerische Mathematik, vol. 55, no. 6, pp. 667–684, 1989.
[Online]. Available: http://www.springerlink.com/content/q225u701377003h2/

[7] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping
(SLAM): Part ii,” IEEE Robotics and Automation Magazine, vol. 13, no. 3, pp.
108–117, 2006. [Online]. Available: http://dx.doi.org/10.1109/MRA.2006.1678144

[8] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to
Tracking and Navigation. Wiley, 2001.

[9] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. V. der Vorst, Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, 2nd Edition. Philadelphia, PA:
SIAM, 1994.

[10] A. Bjorck, Numerical methods for Least Squares Problems. SIAM Philadelphia,
1996.

239

http://www.boost.org/
http://www.intel.com/software/products/mkl/docs/WebHelp/whnjs.htm
http://www.intel.com/software/products/mkl/docs/WebHelp/whnjs.htm
http://dx.doi.org/10.1145/1024074.1024081
http://www.springerlink.com/content/q225u701377003h2/
http://dx.doi.org/10.1109/MRA.2006.1678144

BIBLIOGRAPHY 240

[11] B. Bollobás, Modern Graph Theory. Springer, 1998.

[12] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

[13] D. Brown, “The bundle adjustment - progress and prospects,” International
Archives of Photogrammetry, vol. 21, no. 3, 1976.

[14] J. R. Bunch and B. N. Parlett, “Direct methods for solving symmetric indefinite
systems of linear equations,” SIAM Journal on Numerical Analysis, vol. 8, no. 4,
pp. 639–655, 1971. [Online]. Available: http://www.jstor.org/stable/2949596

[15] J. R. Bunch and L. Kaufman, “Some stable methods for calculating inertia and
solving symmetric linear systems,” Mathematics of Computation, vol. 31, no. 137,
pp. 163–179, 1977. [Online]. Available: http://www.jstor.org/stable/2005787

[16] T. A. Davis, “Algorithm 849: A concise sparse Cholesky factorization package,”
ACM Trans. Math. Softw., vol. 31, no. 4, pp. 587–591, 2005.

[17] ——, Direct Methods for Sparse Linear Systems, ser. Fundamentals of Algorithms.
SIAM, 2006.

[18] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng, “A column approximate
minimum degree ordering algorithm,” ACM Trans. Math. Softw., vol. 30, no. 3,
pp. 353–376, 2004.

[19] T. A. Davis and W. W. Hager, “Row modifications of a sparse cholesky
factorization,” SIAM Journal on Matrix Analysis and Applications, vol. 26,
no. 3, pp. 621–639, 2005. [Online]. Available: http://dx.doi.org/10.1137/
S089547980343641X

[20] F. Dellaert and M. Kaess, “Square root SAM: Simultaneous localization and map-
ping via square root information smoothing,” International Journal of Robotics
Research, vol. 25, no. 12, pp. 1181–1203, 2006.

[21] T. Duckett, S. Marsland, and J. Shapiro, “Learning globally consistent maps by
relaxation,” in Robotics and Automation, 2000. Proceedings. ICRA ’00. IEEE
International Conference on, vol. 4, 2000, pp. 3841–3846 vol.4.

[22] I. S. Duff, M. A. Heroux, and R. Pozo, “An overview of the sparse basic linear
algebra subprograms: The new standard from the blas technical forum,” ACM
Trans. Math. Softw., vol. 28, no. 2, pp. 239–267, 2002.

[23] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: Part
i,” IEEE Robotics and Automation Magazine, vol. 13, no. 2, pp. 99–108, 2006.

http://www.jstor.org/stable/2949596
http://www.jstor.org/stable/2005787
http://dx.doi.org/10.1137/S089547980343641X
http://dx.doi.org/10.1137/S089547980343641X

BIBLIOGRAPHY 241

[24] R. Eustice, H. Singh, and J. Leonard, “Exactly sparse delayed-state filters,”
in Proceedings of the 2005 IEEE International Conference on Robotics and
Automation, 2005.

[25] R. Eustice, “Large-area visually augmented navigation for autonomous underwater
vehicles,” Ph.D. dissertation, Massachusetts Institute of Technology / Woods
Hole Oceanographic Institution, June 2005.

[26] R. Eustice, O. Pizarro, and H. Singh, “Visually augmented navigation in an
unstructured environment using a delayed state history,” Proceedings - IEEE
International Conference on Robotics and Automation, vol. 2004, no. 1, pp. 25–32,
2004.

[27] R. Fletcher, Conjugate gradient methods for indefinite systems, ser. Lecture Notes
in Mathematics, 1976, vol. 506, pp. 73–89.

[28] J. Folkesson and H. Christensen, “Graphical SLAM - a self-correcting map,” vol.
2004, no. 1, New Orleans, LA, United states, 2004, pp. 383–390.

[29] W. N. Gansterer, J. Schneid, and C. W. Ueberhuber, “A survey of equilibrium
systems,” 2002. [Online]. Available: citeseer.ist.psu.edu/gansterer02survey.html

[30] M. R. Garey and D. S. Johnson, Computers and intractability : a guide to the
theory of NP-completeness. San Francisco: W. H. Freeman, 1979.

[31] A. George, J. Gilbert, and J. Liu, Graph theory and sparse matrix computation.
Springer-Verlag New York, 1993.

[32] A. George, K. Ikramov, and A. B. Kucherov, “Some properties of
symmetric quasi-definite matrices,” SIAM Journal on Matrix Analysis and
Applications, vol. 21, no. 4, pp. 1318–1323, 2000. [Online]. Available:
http://link.aip.org/link/?SML/21/1318/1

[33] J. R. Gilbert, C. Moler, and R. Schreiber, “Sparse matrices in matlab: Design and
implementation,” SIAM Journal on Matrix Analysis and Applications, vol. 13,
no. 1, pp. 333–356, 1992. [Online]. Available: http://link.aip.org/link/?SML/13/
333/1

[34] P. Gill, G. Golub, W. Murray, and M. Saunders, “Methods for modifying matrix
factorizations,” Mathematics of Computation, vol. 28, no. 126, pp. 505–535, 1974.

[35] M. Golfarelli, D. Maio, and S. Rizzi, “Correction of dead-reckoning errors in map
building for mobile robots,” IEEE Transactions on Robotics and Automation,
vol. 17, no. 1, pp. 37–47, 2001, dead reckoning errors;Map building;Odometry;.
[Online]. Available: http://dx.doi.org/10.1109/70.917081

citeseer.ist.psu.edu/gansterer02survey.html
http://link.aip.org/link/?SML/21/1318/1
http://link.aip.org/link/?SML/13/333/1
http://link.aip.org/link/?SML/13/333/1
http://dx.doi.org/10.1109/70.917081

BIBLIOGRAPHY 242

[36] ——, “Elastic correction of dead-reckoning errors in map building,” in in Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, 1998, pp. 905–911.

[37] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. The John
Hopkins University Press, 1996.

[38] M. S. Grewal and A. P. Andrews, Kalman Filtering - Theory and Practice, 1993.

[39] F. Harary, “A graph theoretic approach to matrix inversion by partitioning,”
Numerische Mathematik, vol. 4, no. 1, pp. 128–135, December 1962.

[40] M. Jordan, “Graphical models,” Statistical Science, vol. 19, no. 1, pp. 140–155,
2004.

[41] M. I. Jordan, An Introduction to Probabilistic Graphical Models. University of
California, Berkeley. unpublished, 2002.

[42] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental smoothing and
mapping,” IEEE Transactions on Robotics, vol. 24, no. 6, pp. 1365–1378, 2008.
[Online]. Available: http://dx.doi.org/10.1109/TRO.2008.2006706

[43] G. Karypis and V. Kumar, Metis: Unstructured Graph Partitioning and
Sparse Matrix Ordering System, Version 2.0, 1995. [Online]. Available: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.376

[44] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product
algorithm,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 498–519,
2001.

[45] J. B. Kuipers, Quaternions and Rotation Sequences. Princeton, 2002.

[46] J. J. Leonard and R. J. Rikoski, “Incorporation of delayed decision making into
stochastic mapping,” International Symposium On Experimental Robotics, 2000.

[47] M. Lourakis and A. Argyros, “The design and implementation of a generic sparse
bundle adjustment software package based on the levenberg-marquardt algorithm,”
Institute of Computer Science - FORTH, Heraklion, Crete, Greece, Tech. Rep.
340, Aug. 2004, available from http://www.ics.forth.gr/~lourakis/sba.

[48] K. Madsen, H. B. Nielsen, and O. Tingleff, “Methods for non-linear least squares
problems,” Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby, p. 56,
1999. [Online]. Available: http://www2.imm.dtu.dk/pubdb/p.php?660

[49] I. Mahon, “Vision-based navigation for autonomous underwater vehicles,” Ph.D.
dissertation, March 2007.

http://dx.doi.org/10.1109/TRO.2008.2006706
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.376
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.376
http://www2.imm.dtu.dk/pubdb/p.php?660

BIBLIOGRAPHY 243

[50] P. S. Maybeck, Stochastic models, estimation, and control, ser. Mathematics in
Science and Engineering, 1979, vol. 1.

[51] K. Murphy, “The Bayes net toolbox for Matlab,” Comput. Sci. Stat., vol. 33, pp.
1–20, 2001.

[52] E. Nettleton, “Decentralised architectures for tracking and navigation with mul-
tiple flight vehicles,” Ph.D. dissertation, Australian Centre for Field Robotics,
Department of Aerospace, Mechanical and Mechatronic Engineering, The Univer-
sity of Sydney, 2003.

[53] E. Nettleton, H. Durrant-Whyte, and S. Sukkarieh, “A robust architecture for
decentralised data fusion,” International Conference on Advanced Robotics, 2003.

[54] J. Nocedal and S. J. Wright, Numerical Optimization. Springer-Verlag, 1999.

[55] S. Parter, “The use of linear graphs in Gauss elimination,” SIAM
Review, vol. 3, no. 2, pp. 119–130, 1961. [Online]. Available: http:
//www.jstor.org/stable/2027387

[56] M. A. Paskin, “Thin junction tree filters for simultaneous localization and map-
ping,” in Proceedings of the Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI-03), G. Gottlob and T. Walsh, Eds. San Francisco, CA:
Morgan Kaufmann Publishers, 2003, pp. 1157–1164.

[57] M. A. Paskin and G. D. Lawrence, “Junction tree algorithms for solving sparse
linear systems,” University of California, Berkeley., Tech. Rep. UCB/CSD-03-1271,
2003. [Online]. Available: http://ai.stanford.edu/∼paskin/pubs/csd-03-1271.pdf

[58] J. Reinders, Intel Threading Building Blocks. O’Reilly, 2007.

[59] S. Roweis, “Matrix identities.” [Online]. Available: http://www.cs.toronto.edu/
∼roweis/notes/matrixid.pdf

[60] Y. Saad, “Sparskit: a basic tool kit for sparse matrix computations,”
University of Minnesota, Tech. Rep., 1994. [Online]. Available: http:
//www-users.cs.umn.edu/∼saad/software/SPARSKIT/paper.ps

[61] ——, Iterative Methods for Sparse Linear Systems, 2nd ed. Philadelphia: SIAM,
2003.

[62] S. Samar, S. Boyd, and D. Gorinevsky, “Distributed estimation via dual decom-
position,” in Proceedings European Control Conference (ECC), Kos, Greece, July
2007, pp. 1511–1516.

[63] R. Sedgewick, Algorithms in C++. Pearson Education, 2002.

http://www.jstor.org/stable/2027387
http://www.jstor.org/stable/2027387
http://ai.stanford.edu/~paskin/pubs/csd-03-1271.pdf
http://www.cs.toronto.edu/~roweis/notes/matrixid.pdf
http://www.cs.toronto.edu/~roweis/notes/matrixid.pdf
http://www-users.cs.umn.edu/~saad/software/SPARSKIT/paper.ps
http://www-users.cs.umn.edu/~saad/software/SPARSKIT/paper.ps

BIBLIOGRAPHY 244

[64] I. Siegel, “Deferment of Computation in the Method of Least Squares,” Mathe-
matics of Computation, vol. 19, no. 90, pp. 329–331, 1965.

[65] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The boost graph library: user guide and
reference manual. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2002.

[66] P. Smyth, “Belief networks, hidden markov models, and markov random fields: a
unifying view,” Pattern Recognition Letters, vol. 18, no. 11-13, pp. 1261–1268,
1997. [Online]. Available: http://dx.doi.org/10.1016/S0167-8655(97)01050-7

[67] G. Stewart, “Building an old-fashioned sparse solver,” University of Maryland,
Tech. Rep., 2003. [Online]. Available: http://hdl.handle.net/1903/1312

[68] R. E. Tarjan, “Graph theory and Gaussian elimination.” Stanford, CA, USA,
Tech. Rep., 1975.

[69] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents). MIT press, Cambridge, Massachusetts, USA, 2005.
[Online]. Available: http://www.probabilistic-robotics.org/

[70] S. Thrun and J. Leonard, “Simultaneous localization and mapping,” in Springer
Handbook of Robotics. Springer, 2008, pp. 871–889.

[71] S. Thrun and M. Montemerlo, “The graph SLAM algorithm with applications
to large-scale mapping of urban structures,” International Journal of Robotics
Research, vol. 25, no. 5-6, pp. 403–429, 2006.

[72] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, “Bundle adjustment -
a modern synthesis,” in Vision Algorithms: Theory and Practice, ser. LNCS,
W. Triggs, A. Zisserman, and R. Szeliski, Eds. Springer Verlag, 2000, pp.
298–375. [Online]. Available: citeseer.ist.psu.edu/triggs00bundle.html

[73] R. J. Vanderbei, “Symmetric quasi-definite matrices,” Rutgers University,
Tech. Rep., 1993. [Online]. Available: ftp://dimacs.rutgers.edu/pub/dimacs/
TechnicalReports/TechReports/1993/93-72.ps

[74] S. A. Vavasis, “Stable numerical algorithms for equilibrium systems,” SIAM
Journal on Matrix Analysis and Applications, vol. 15, no. 4, pp. 1108–1131, 1994.
[Online]. Available: citeseer.ist.psu.edu/vavasis92stable.html

[75] M. R. Walter, R. M. Eustice, and J. J. Leonard, “Exactly Sparse Extended
Information Filters for Feature-based SLAM,” The International Journal of
Robotics Research, vol. 26, no. 4, pp. 335–359, 2007. [Online]. Available:
http://ijr.sagepub.com/cgi/content/abstract/26/4/335

http://dx.doi.org/10.1016/S0167-8655(97)01050-7
http://hdl.handle.net/1903/1312
http://www.probabilistic-robotics.org/
citeseer.ist.psu.edu/triggs00bundle.html
ftp://dimacs.rutgers.edu/pub/dimacs/TechnicalReports/TechReports/1993/93-72.ps
ftp://dimacs.rutgers.edu/pub/dimacs/TechnicalReports/TechReports/1993/93-72.ps
citeseer.ist.psu.edu/vavasis92stable.html
http://ijr.sagepub.com/cgi/content/abstract/26/4/335

BIBLIOGRAPHY 245

[76] Z. Wang, S. Huang, and G. Dissanayake, “D-SLAM: A Decoupled Solution
to Simultaneous Localization and Mapping,” The International Journal of
Robotics Research, vol. 26, no. 2, pp. 187–204, 2007. [Online]. Available:
http://ijr.sagepub.com/cgi/content/abstract/26/2/187

[77] S. B. Williams, “Efficient solutions to autonomous mapping and navigation
problems,” Ph.D. dissertation, The University Of Sydney, Sep. 2001.

http://ijr.sagepub.com/cgi/content/abstract/26/2/187

	Declaration
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Examples
	Nomenclature
	Introduction
	Thesis Contributions
	Motivation for Approaches
	Motivating Problem
	Thesis Structure

	Estimation In Localisation and Mapping
	Localisation and Mapping Literature
	Smoothing and Mapping (SAM)
	Viewpoint based SLAM
	SLAM Filtering

	Graphical Models Literature
	Assumptions and Context
	Solving Overview
	Step Based Approach
	Solving Linear Systems

	Summary
	Graph Notation

	Augmented Methods in Estimation
	Introduction
	Augmenting Observations and Constraints
	Information Formulation
	Lagrangian Formulation
	Constraints
	Mixed Observations and Constraints
	Equivalence to the Information Form: Eliminating Observations
	Literature - Augmented System Form
	Nonlinear Observations
	Properties of the Augmented System Form
	Regularisation of the Augmented System Form

	Augmenting Trajectory States
	Formation of the Trajectory States
	Discussion
	Equivalence

	Relation To Graphical Models
	Relation to Factor Graphs
	What are the systems before conditioning on the observations?

	Insights for Data Fusion
	Residuals & Innovations
	Innovations
	Residuals
	Discussion
	Multiple Observation Terms
	Chi-Squared Degrees of Freedom
	Lagrange Multipliers for Measurement of Consistency
	Conclusion

	Benefits for Estimation
	Factorisation Ordering for Sparsity
	Factorisation Ordering for Numerical Stability
	Handling Nonlinear Observations
	Conclusion

	Future Research
	Chapter Conclusion

	Graph Theoretic Representation
	Introduction
	Literature
	Graph Representation of Linear Systems
	Dense Vectors
	Matrix Entries
	Sparse Vectors
	Matrix Categories
	Discussion

	Graph Representation
	Edges and Loops
	Symmetric and Directed Edges
	Multiple Edge Sets
	Discussion and Conclusion

	Graph Representation Implementation
	Edges
	Loops
	Multiple Edge-Sets
	Vertices
	Graph
	Ordering Properties
	Examples

	Comparisons
	Qualitative Comparison
	Insertion Test
	Access Test

	Future Research
	Conclusion

	Graph-Theoretic Solution Methods
	Introduction
	Symmetric LDL Factorisation Introduction
	LDL Factorisation, Mathematical Form
	LDL Factorisation, Dense Matrix Form

	Symmetric LDL Factorisation - Graph Form
	Graph Based Factorisation Steps
	Graph Based Linear Algebra Procedures

	Linear Systems Solve Using the LDL Factorisation
	Graph Based Block Diagonal Solve
	Graph Based Triangular Solve
	Graph Based Solve Implementation

	Reconstruction From LDL Factorisation
	Discussion
	Relation to the Junction Tree Algorithm

	Future Research
	Factorisation Approach
	Factorisation Ordering Choice

	Chapter Conclusion

	Conclusion and Future Research
	Summary of Contributions
	Future Research
	Online Methods
	Iterative Methods
	Data Association Methods
	Decentralisation

	Conclusion

	Augmented System Details
	Eliminating States
	Terms Relating to Residuals and Innovations
	Quadratic Forms and Mahalanobis Distances
	Linear Systems
	Proof of Equivalence of Residual and Innovation Distances

	Bibliography

