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Abstract Reconfiguration allows a self-reconfiguring modular robot to adapt to its
environment. The reconfiguration planning problem is one of the key algorithmic
challenges in realizing self-reconfiguration. Many existing successful approaches
rely on grouping modules together to act as meta-modules. However, we are in-
terested in reconfiguration planning that does not impose fixed meta-module rela-
tionships but instead forms cooperative relationships between modules dynamically.
This approach avoids the need to hand-code meta-module motions and potentially
allows reconfiguration with fewer modules. In this paper we present a general two-
level reconfiguration framework. The top level plans in module-connector space
using distributed dynamic programming. The lower level accepts a transition func-
tion for the kinematic model of the chosen module type as input. As an example, we
implement such a transition function for the 3R, SuperBot-style module. Although
not explored in this paper, this general approach is naturally extended to consider
power use, clock time, or other quantities of interest.

1 Introduction

Self-reconfiguring modular robots use module disconnections and reconnections to
change their overall shape. In so doing, these robots can adapt to the environment or
task at hand. Performing such adaptation requires solving the algorithmic problem
of computing a sequence of module moves that transforms an initial shape into a
goal shape. This problem, known as the reconfiguration problem, remains one of
the key algorithmic challenges in self-reconfiguring robotics.

There are several dimensions by which to categorize specific instances of the re-
configuration problem. Algorithms have been proposed for specific module types,
such as unit-compressible modules [4, 25], and abstract cube modules with simple
motion primitives [7]. The idea in planning for an abstract module is to compile
down an abstract move into a sequence of native moves. A possible technique to
accomplish this is to simplify the problem by treating a group of modules as a sin-
gle meta-module with fewer kinematic constraints. Two other important issues are
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parallelism – how many modules can move at one time – and decentralized versus
centralized control. We are interested in the question of autonomous reconfiguration
planning that acts directly in the native kinematic action space of the module, and
does not use meta-modules. In this paper, we study the problem of general parallel
decentralized reconfiguration planning for given module kinematics.

There are several reasons to address this specific variation of the reconfiguration
problem. It is useful to consider pairs or small groups of modules working together,
but planning for individual modules allows these groupings to be dynamic. Avoid-
ing static meta-modules reduces the minimum number of modules required for re-
configuration. This is especially useful for hardware prototypes with few modules.
Furthermore, planning in the native kinematic space of the module opens the pos-
sibility of optimizing reconfiguration for various quantities of interest. We are in-
terested in a planner that can consider power use, time cost, and (heterogeneous)
modules with differing capabilities. A general planning framework that easily ad-
mits changes to its underlying kinematic model also opens the possibility of using
reconfiguration simulation as a tool for design optimization. The effects of simpli-
fying a given module design by removing a degree of freedom, for example, could
be readily evaluated.

The fundamental challenge in solving the reconfiguration problem is that the
number of degrees of freedom in a self-reconfiguring robot increases with the num-
ber of modules. The number of possible configurations thus increases exponentially.
These combinatorial issues have been understood for many years [18]. Searching
this huge space directly is not possible; some structure must be imposed on the
problem. The success of meta-module and cube-module planners relies on such a
structuring.

Our approach is to build on our earlier planner for abstract cube-shaped mod-
ules [9] hierarchically by adding a lower level. The low-level planner computes a
sequence of moves, in the joint space of the module, that results connection/ discon-
nection. This approach decomposes the full problem into many local subproblems.
Each subproblem is a kinematic motion planning problem small enough to be solved
quickly. Chained together, these solutions move a single module from one point in
the robot to another along a sequence of intermediate connections. Point-to-point
paths are then computed, as in our abstract cube planner, by formulating a Markov-
decision problem (MDP) and solving it using distributed dynamic programming.
The value function acts as a navigation function over all connectors that indicates
the next step towards an open goal position. Many modules share this navigation
function. As modules move, the navigation function is updated.

We present our reconfiguration algorithm as a general framework that accepts a
module’s kinematic model in the form of a transition function. We present a specific
transition function for SuperBot-style modules [21] as an example, and illustrate its
behavior with simple examples in simulation. Our intention is for this example to
provide sufficient information such that other researchers can implement this algo-
rithm on various module types.

The paper is organized as follows. We discuss related work in Sect. 2. In Sect. 3,
we present details of our cube-style planner as background information and then
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present our general reconfiguration algorithm. We define a sample transition func-
tion for SuperBot-style modules in Sect. 4 along with implementation examples in
simulation. Sect. 5 concludes the paper with discussion and future work.

2 Related Work

Reconfiguration planning is a well-studied problem. A survey of accomplishments
can be found in [26]. Another survey paper is [20]. We briefly discuss a selection of
relevant results in this section.

The root of this paper lies in cellular automata-based locomotion [3]. The MIL-
LION MODULE MARCH algorithm [9] can be viewed as a generalization of this
idea. The present paper can be viewed as a further generalization along two fronts:
goal shape representation and module kinematics.

A number of planners leverage the concept of meta-modules. Important examples
include planners for MTRAN [27], ATRON [6] and I-Cubes [19]. The key differ-
ence between this work and ours is that we are interested in the question of how to
reconfigure without meta-modules.

Complete planners have been developed for unit-compressible modules [4, 25].
Other early work in reconfiguration planning includes [5, 14]. The idea of gradient-
based planning is explored in [22] and [23]. A graph-signature method is presented
in [1].

A planner for SuperBot modules viewed in a chain-based manner is presented
in [11]. Optimal reconfiguration for chain-based robots was recently proven to be
NP-complete [12].

3 Hierarchical MDP Planning with Dynamic Programming

The reconfiguration algorithm we propose in this paper builds on our earlier MIL-
LION MODULE MARCH algorithm for scalable locomotion through reconfigura-
tion [9]. In this section we summarize MILLION MODULE MARCH for convenience,
focusing on the MDP formulation and dynamic programming solution method. We
then present a new MDP formulation that, unlike MILLION MODULE MARCH,
models native module kinematics. We define a general reconfiguration algorithm
based on this new MDP formulation. Like MILLION MODULE MARCH, this new
algorithm is fully decentralized and scalable.
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Fig. 1: Reconfiguration example using Algo. 1 and the Sliding Cube module ab-
straction. Simultaneously executing single module paths results in global reconfig-
uration. Subfigs. (a) through (d) show four stages of a reconfiguration sequence that
assembles a chair shape from an initial cube shape. Simple assembly order heuristics
are used that guide modules to the bottom center of the goal shape as it is formed.

3.1 Background: MDP Planning with Abstract Modules

The MILLION MODULE MARCH algorithm was originally presented as a scalable
algorithm for locomotion-through-reconfiguration for the Sliding Cube [7] module
abstraction. The algorithm produces locomotion by first specifying a goal bound-
ing box at an offset to the current location. Modules move to fill the box, the box
is shifted in a receding-horizon fashion, and locomotion results. Providing a dif-
ferent shape for the goal results in reconfiguration into that shape, for convex goal
shapes. Non-convex goal shapes are also possible with the addition of local as-
sembly rules that prevent internal holes from forming [13]. Fig. 1 shows an exam-
ple of reconfiguration into a chair shape. The algorithm is fully decentralized and
has been implemented in simulation with million-module systems [9]. It has also
been implemented on embedded processors with wireless radio communication in
hardware-in-the-loop simulation [10, 15], and extended to control a team of nine
mobile robots [8].

The algorithm is composed of two main components: (1) planning via a global
navigation function; and (2) control of parallel module movements (connectivity
checking) via local graph search and shared locks. The essence of the second com-
ponent is that each module, in parallel, searches for a local module substructure
sufficient to guarantee that it is a non-articulation point in the module connectivity
graph. This search is performed using message-passing. If successful, modules in
the substructure are temporarily locked (prevented from moving) until the locking
module has completed its move. Locks can be shared by multiple moving modules.
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Many modules can thus safely move in parallel while preserving global connectiv-
ity. This component of the algorithm is used unmodified in the present work. Full
implementation details are provided in [10].

The planning component of MILLION MODULE MARCH computes a value func-
tion that acts as a global navigation function. Modules use this function as a one-step
planner to choose the next move. By sequentially choosing such moves, each mod-
ule is guided towards an available destination in the goal shape. As many modules
move in parallel, the topology of the robot structure also changes. The value func-
tion is updated online to reflect these topology changes (continuous replanning).

The planning problem is formulated as a distributed MDP. An MDP is a sequen-
tial decision-making problem defined by a 4− tuple < S,A,T,R >, where S is the
set of states, A is the set of actions, T is the transition function that maps state-action
pairs to resulting states, and R is a one-step reward function [24]. A decision-making
agent repeatedly takes actions and earns rewards. Its objective (commonly) is to
maximize the sum of future rewards. If the transition function is known, dynamic
programming can be used to solve the MDP. A solution is a policy mapping states
to actions. This policy can be encoded as a value function over states. The transition
function can be either deterministic or stochastic.

The set of states in MILLION MODULE MARCH is the set of module faces. In the
Sliding Cube abstraction, a module is a cube that lives in a cubic lattice. Therefore
the set of allowable states can be thought of as open lattice positions adjacent to
at least one other module. The Sliding Cube model provides two motion primitives
- a sliding move and a convex transition. These primitives define the action set.
A module can either make an axis-aligned (lateral) move, or move “diagonally”
around another module. The transition function is also defined by these two motion
primitives. The reward function is -1 per move.

6 connectors
(3 shown)

(a)

6 connectors
(3 shown)

(b)

10 connectors
(5 shown)

(c)

Fig. 2: M−C space is a generalization of the Sliding Cube representation to any
module type. The Sliding Cube abstraction, (a), has a connection on every face.
Other module types, such as SuperBot-style modules, (b), and Roombot-style mod-
ules [1], (c), do not. M−C space is simply defined as the set of all module-connector
pairs.
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The value function is stored in a distributed fashion. Each module stores the value
of states corresponding to its connectors. The MDP is solved using asynchronous
distributed dynamic programming implemented with message passing. An update is
performed when a module receives a message with a value for a nearby state. Using
the transition function, the module updates its local value function and sends these
new values to its neighbors. This process is guaranteed to converge in polynomial
time in the number of states [17]. A moving module queries the value function by
sending a request to its connected neighbors. After a move, changed values are again
sent to neighbors and the value function is updated.

3.2 MDP Planning with Native Module Kinematics

Building on the Sliding Cube MDP formulation, we now introduce a new MDP
formulation that replaces the Sliding Cube and instead assumes the availability of
a kinematic model for a physical module. Instead of abstract motion primitives,
motion primitives now correspond to changes in module joint angle and connector
state. Because actions are no longer unit-time, this is technically a semi-markov
decision problem (SMDP) [2]. However, for the purposes of this paper we assume
unit-time actions. The SMDP formulation allows more sophisticated optimization
(time, power, etc.) but we will leave this for future work.

To define the state space, we first define the set of module-connector pairs, or M-
C space. Fig. 2 illustrates sample M−C states for three different module types. The

M

C

s0

s1

s2

s3

s0:

s1:

s2:

s3:

Fig. 3: Path of a single 3R module moving through M−C space. States si are M−C
states. A state transition in M−C space corresponds to a module attaching to a new
connector in the robot workspace. Corresponding module movements are illustrated
in the right half of the figure.
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entire set is not necessarily reachable. One obvious example of a non-reachable state
is a connector that is occupied (connected to another module). In general, reacha-
bility is determined by the transition function. The transition function, in turn, is
partially determined by the robot configuration topology. Therefore, connectivity of
M−C space changes with reconfiguration. A module with k connectors can poten-
tially occupy k M-C states simultaneously. Our state space S is therefore defined as
the set of all k-tuples of M−C states, including a null M−C state that models a free
connector. Fig. 3 shows an example of a single module making state transitions in
M−C space and the corresponding module movements in a sample configuration.

The set of actions is defined by the kinematic model. We assume that an action
consists of a set of joint angle increments and connection/disconnection actions. An
action can involve a single module, or a module plus one or more helper modules.

Actions result in changing state. This means that the set of occupied M−C states
will change following a successful action. An action that fails or otherwise does not
result in a state change is a null action. The transition model defines this change,
mapping a state-action pair to a resulting state: T (s,a) = s′, where s ∈ S, s′ ∈ S,
and a ∈ A. The transition function must take into account surrounding modules.
The potential for collision means that not all actions are available at all times. The
transition function can be stochastic.

The reward function is -1 for every action. This attempts to minimize the total
number of actions. A more sophisticated reward function can be used to minimize
other quantities, such as time, power use, heterogeneous modules, etc. Further, the
reward function can be modified during reconfiguration to allow the robot to adapt
to changes. However, we do not consider these possibilities in this paper.

3.3 Hierarchical Reconfiguration Algorithm

Having formulated the MDP, we solve using dynamic programming. To allow
modules to move in parallel, we integrate the parallel movement control approach
from MILLION MODULE MARCH. To prevent collisions, we lock all modules
within the workspace of a moving module. The algorithm is listed in pseudocode as

Algorithm 1 General framework for reconfiguration.
T : a transition function
G: a goal shape
c: the current robot configuration

Generate value function V for c given T and G using dynamic programming
repeat

Find mobile modules
Move mobile modules one step according to V
Recompute V using new configuration c′

until all modules in goal
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Algo. 1. Transition function T , goal configuration G, and start configuration c are
assumed as input. In parallel, modules follow a path to the goal by chaining together
a sequence of state transitions. Within the goal, modules are guided by local assem-
bly order heuristics as above. The algorithm terminates when all modules are in the
goal.

The value function is recomputed as the robot configuration changes, as de-
scribed in Sect. 3.1. The MDP will converge in polynomial time [17]. Convergence
of the robot to the goal shape depends on the transition function supplied.

4 A Local Kinematic Planner for 3R Modules

In this section, we flesh out Algo. 1 by defining a transition function based on
module kinematics. There are many ways to do this in general. We have chosen to
view the problem as motion planning for an n−link kinematic chain among regular
orthohedral obstacles. Motion planning in high-dimensional spaces is computation-
ally intensive. By imposing this strict structure, we can use a simple grid search
method for motion planning. We illustrate this technique with the 3R (SuperBot-
style) module.

Algorithm 2 A local kinematic planner. This planner dynamically computes the
transition function for the reconfiguration MDP.

sstart : starting configuration
N: local neighborhood of modules around sstart
M: list of moves for output, initially empty
A: set of actions (joint angle increments)
T : search tree, initially empty
S: search queue, initialized with sstart

while S not empty do
pop search node s from S
if s not in T then

add s to T
if s is a goal configuration in N then

add new move to M
end if
for all actions a ∈ A do

generate new state s′ by integrating forward from s
if path from s to s′ is collision-free then

add s′ to S
end if

end for
end if

end while

output M
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4: Workspace reachability. Subfigs. (a) through (d) show sample configurations
reachable with a helper module attached in an end-to-end configuration. Likewise,
Subfigs. (e) through (h) show samples reachable from an end-to-side configuration.
Subfigs. (i) through (l) correspond to a side-to-side configuration.

M−C−O−Θ space is M−C space augmented by adding two extra dimensions,
O ∈ {e,s} and Θ ∈ {0,90,180,270}, that represent how a module is connected to
the M−C pair. Due to connector symmetry, we can encode which connector is
connected by specifying and end (e) or a side (s). The Θ dimension encodes rotation
represented discretely in 90-degree increments.

We consider two cases for planning. The first is single module motion. Given a
starting (m,c,o,θ) state, lattice (workspace) position, and vector of joint angles x,
we use the forward kinematics of the 3R module to determine the position of its
connectors in the workspace. We then consider the set of actions formed by all per-
mutations of discrete 90-degree increments/decrements of joint angles. We iterate
through this set of actions. At each iteration, we add the joint angle increments to
the initial position, resulting in a new joint angle vector x′. We again use the for-
ward kinematics to compute the new position of connectors in workspace. If no
connectors are in a position to connect to some other connector in the neighbor-
hood, this configuration is discarded. Otherwise we perform collision checking in
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5: Sample configurations generated by successive random module movements
in a robot with 108 modules.

the workspace. We check intermediate configurations between x and x′ in small in-
crements, as described in [16]. If there is a collision, this configuration is discarded.
Else we place x′ on a queue and continue. We then pop the queue and repeat. When
the queue is empty, the algorithm terminates.

The second case involves a helper module. A helper module is a (connected)
neighbor. In this case, the joint angle vector includes joints of both modules. We
search as described above.

The algorithm is listed in pseudocode as Algo. 2. Fig. 4 shows examples of dif-
ferent O−Θ configurations. In the helper case, a module can reach positions up to
a radius of manhattan distance four from its end connector. Fig. 5 shows examples
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drawn from a sequence of configurations generated by successive random module
movements.

Because we search all joint angle positions, the running time of this algorithm
is exponential in the number of joint angles. For constant-length chains of helper
modules, time is constant (albeit with a potentially large constant factor). For two 3R
modules, the size of the search space is 3∗4∗3∗3∗4∗3 = 1296. This is reasonable
to implement with modest embedded computational resources, even considering
that in computing the value function, each module must perform this computation
for each possible (o,θ) pair (2∗4 = 8) and each of its open connectors.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6: Nine modules reconfiguring from a line shape into a box shape.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7: Eight modules reconfiguring from an initial cuboid configuration into a goal
configuration specified by the wire-frame bounding box shown.

4.1 Implementation

We implemented the reconfiguration algorithm in the SRSim simulation environ-
ment [7], with SuperBot graphics rendered by a simulation developed at ISI. Col-
lision checking is implemented by testing for intersections between the bounding
box surrounding each module part and those surrounding modules in its neighbor-
hood. Configuration space is represented as a 6D grid corresponding to module joint
angles. The grid can represent one helper module in addition to the main module.
Fig. 6 shows an example of nine modules reconfiguring from a line shape into a box.
Fig. 7 shows an example reconfiguration between two cuboid configurations.
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5 Discussion and Future Work

We have presented a general framework for reconfiguration and an example im-
plementation for SuperBot-style modules. Because this simple implementation is
exponential in the degrees of freedom of the kinematic chain, this planner is suited
mainly to lattice-based and hybrid robot types. A planner for chain-based robots
(with short chains) could possibly be developed. We have not yet explored the po-
tential in optimizing for quantities other than number of connection/disconnection
cycles, but this should be a promising avenue. So far we have been concerned only
with finding a feasible reconfiguration plan, but another interesting problem would
be to attempt to prove an approximation to optimal reconfiguration. One idea is to
build on the lower-bound construction for reconfiguration [18] and attempt to prove
an upper-bound on the maximum deviation from shortest path taken by any module
in travelling to the goal.

We are currently implementing our algorithm in a decentralized fashion in
hardware-in-the-loop simulation [15]. Computation and communication run on em-
bedded processors but actuation is simulated on a desktop computer. It is also our
intention to test the algorithm on real robots. One possible platform is a new mod-
ule we are currently constructing. This module has SuperBot-style kinematics com-
bined with a novel connection mechanism based on grippers or pincers. We would
also like to implement and test our algorithm on other module types.
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