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Abstract 

 

A stability analysis of conductance based equations of neurons using rate equations is preformed to 

develop phase diagrams that outline boundaries between neuronal behaviour types of resting, 

spiking and bursting.  This was done using eigenvalue analysis of Jacobian stability matrixes of four 

conductance variables of the ��� , �� , ��  and ��	
 ion currents to examine the effect of the after-

hyperpolarizing conductance and depolarizing transient-inward conductance in the modulation of 

bursting behaviour.  For bursting behaviour these conductances are shown to determine the 

duration of the burst when a minimum external current is present in a neuron.  The benefits of basic 

behavioural analysis through phase diagrams circumvents the need for individual neuron simulation 

in large scale simulations of neuronal networks involving many cross connections between neurons 

rendering these large simulations computationally feasible. 

 

I. Introduction 

 

Neuronal behaviour is based on the electrical interaction of various ion currents that can give rise to 

complex and wide ranging behaviours.  Approximating these systems into simpler models of 

capacitors that produce ion flows, one can investigate the underlying dynamical principals and 

biophysics. 

 

In 1952 Hodgkin and Huxley began investigation on the biophysics of action potentials of the squid 

giant axon, specifically the activation and inactivation of sodium and potassium channels.  Since then 

12 currents have been shown to contribute to spiking and bursting of neocortical neurons (Wilson 

1999).  Ion channels are the drivers behind changing voltage levels in neurons, and their dynamics 

are used in models such as Wilson’s capacitance based model, 

 � �
�� � ���� � ��� � �� � �����  .                                                                                                         �1� 
 

Models of neural networks can be formed on such individual neuron models, where the output 

signal from one neuron can propagate via axon terminals to be an input signal to many thousands of 

other adjacent neurons (Kandel et al.).  Large scale simulations have been conducted to investigate 

network behaviours (Izhikevich 2004), however this soon becomes computationally prohibitive with 

the addition of neurons that are highly connected and thus highly interdependent. 

A key reason for this is that the neuron models based on ion-channel dynamics themselves  

comprise of non-linear equations, Wilson’s 4D model for example (Wilson 1999) used four main ion 

channels of Na+, K+ and Ca2+ to model spiking and bursting behaviour.  As such, explicit answers 
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cannot be solved for this model, the only method to solving the voltage signals over time is from 

numerical simulations. 

Much of the behaviour of neural networks can largely be discovered from the spiking and 

bursting rates of neurons and the voltage levels in which they do so.  All other details gained from 

modelling of neurons can be discarded, and hence the computational task of simulating neural 

networks is not so prohibitive.  This is one of the practical implications behind this research, to 

correlate basic neuronal behaviour with respect to some specific ion-channel parameters using 

stability analysis of the ion-channel current levels.  For definitive relations to be found that link 

model parameters (including an externally applied current) to behaviours such as resting, bursting 

spiking of individual neurons, and the rates in which they do so, then these computationally-heavy 

simulations of neurons can largely be avoided in large scale neural network simulations. 

Neurons show a few typical behaviour types.  Resting behaviour describes a neuron that is 

not in an excited state but stable with an unchanging voltage.  The neocortical neuron’s voltage here 

is called the resting potential, typically -70mV.  Bursting is the rapid succession of voltage spiking in 

neurons, a bistable process which is followed by a quiescent period of relative inaction.  This 

interesting behaviour is the result of 12 distinct ion channels that, as Wilson (1999) suggests, fall into 

2 fundamental categories.  Axonal channels, such as Na+ currents (���) and K+ currents (��), are 

directly responsible for the rapid spiking response of a neuron, and other channels in the soma and 

dendrites which can effectively modulate this fast spiking activity.  Bursting modulation is achieved 

with the building up of slow currents that eventually hyperpolarize the neuron and ceases the 

repetitive spiking activity, which is followed by a longer ‘quiescent’ period of relative inaction (see 

Fig. 1) as the built-up charge leaks away, depolarizing the cell.  Wilson’s 4D model pays particular 

attention to the depolarizing transient-inward Ca2+ current (��) and an after-hyperpolarizing Ca2+ 

current (��	
) Robinson et al. (2007). 

 

Figure 1 – Dynamics of Bursting shown over time for several bursts (using Wilson’s 4D model where gH � 130A/m!V, I$ � 0.23nA�   
 

Significance of Bursting Phenomena 

 

Bursting plays a vital role in the communication and synchronisation between neurons.  Bursting as a 

repeated spiking process is more reliable than single spikes in reducing the likelihood of synaptic 

transmission failure.  If a synapse located at the axon terminal of one neuron repeatedly releases 

neurotransmitters in short but continuous bursts, directed by fast-acting ion-channels, the action 

potential of a postsynaptic target neuron is more likely to be triggered (Lisman 1997).  This 

ultimately enables less-probabilistic signal propagation between neurons, and more deterministic 

outcomes essential for structured signal relay in the brain. 



PHYS3961 Report Investigation of Neuronal Dynamics  Rowan McAllister 

3 

 

This behaviour also allows for selective communication.  Postsynaptic targets often contain 

cells that behave differently depending how a potential voltage difference is placed over the 

membrane, i.e. the frequency in which a signal is applied to it.  If a bursting signal, which has a 

frequency (determined by the inter-spike period, in turn determined by Na+ K+ channel biophysics), 

is close enough to a postsynaptic ‘resonant’ frequency, an action potential may occur that would not 

occur otherwise.  Effectively many postsynaptic receptors are implemented with these band-pass 

filters, which reduces signal-to-noise ratios required for the transmission of a signal and is selective 

of what sort of bursting signal it receives (Izhikevich et al. 2003). 

 

 

Figure 2 – Neocortical Neuron showing major features and areas of ion channels. 

(http://en.wikipedia.org/wiki/Neurons) 

 

II. Model 

 

Wilson (1999) showed that a neocortical neuron can be modelled by just 4 separate currents, and 

still be able to reproduce all observed responses of neurons.  This includes the fast acting ��� and �� 

currents and the modulating �� and ��	
 currents discussed above which combine in the following 

relation for membrane potential: 

 � �
�� � �$ � ��� � �� � �� � ��	
 .                                                                                                    �2� 
 

Wilson’s model assumes a neocortical neuron’s lipid membrane as a capacitor ‘C’, of which each ion 

current can transfer charge from changing the internal soma voltage ‘V’.  Furthermore, each ionic 

current is represented as a modification of Ohm’s law, where the conductance value is not linear but 

is comprised of a constant term ‘'’ and as nonlinear function of voltage called a remembrance value 

(Wilson 1999). 

 �( � '()
 � *(+.                                                                                                                                      �3� 
 

Where '( is conductance per unit area, *(  is equilibrium potential or reversal potential.  Using this 

form from Hodgkin and Huxley (1952), the Wilson model breaks each ion current type as follows: 
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��� � ',�
��
 � 
-�,                                                                                                          �4� ',�
� � /$ 0 /-
 0 /!
!,                                                                                                      �5� �� � '23�
 � 
2�,                       �6� �� � '56�
 � 
5�,                       �7� ��	
 � '	8�
 � 
	�.                       �8� 
 

with 
- � 48mV the Na+ equilibrium potential, 
2 � �95mV the K+ equilibrium potential, 
5 � 140mV,
	 � �70mV , '2 � 260Am;!, '5 � 20Am;!, '	 � 130Am;! and C = 0.010Fm;! 

(Robinson et al. 2007).  The Na+ conductance value ',�
� which changes with voltage is often 

referred by Wilson (1999) as the ‘Na+ activation function’.  Values /$, /- and /! were that which 

best fitted Rinzel’s (1985) approximation of Hodgkin & Huxley’s (1952) model isoclines of 
=,=� � 0, 

limited as a quadratic Taylor approximation such that the Wilson model is only third order 

polynomial and not more complex.  Their respective values of 178.1Am;!, 4758Am;! and 3.38 > 10?Am;! (Robinson et al. 2007) are such that gV�
� is positive for all values V, and thus the 

polarity of �
 � 
-� always directs ��� the same direction.  However 
=,=� A ���� � �',�
��
 � 
-�, 

where nominal spiking voltages are within the range 
2 B 
 B 
-.  Hence 
=,=� A� ',�
��
- � 
� 

and the voltage would increase exponentially. 

This is not the case however for neurons; Na+ ion currents that cause voltage changes will 

gate K+ channels.  The K+ ion current’s activation function is a constant conductance '2 multiplied 

by a dimensionless quantity 3, the remembrance value, which has a time constant of C2  as shown in: 

 �3�� � �3 � 3DEF�
�C2 ,                                                                                                                            �9� 
3DEF�
� � G$ 0 G-
 0 G!�
 � 
!�!.                                                                                                 �10� 

 

with 
! � �38mV, G$ � 0.79Am;!, G- � 12.9Am;! and G! � 330Am;! (Robinson et al. 2007).  As ��� causes the neuron voltage increases, the 3DEF�
� will increase due to its positive dependence on 

voltage, surpassing 3 and thus causing  
=2=�  to take a positive value.  Thus the remembrance 3 begins 

to increase which increases H'23�
 � 
2�I (NB: the '2 and �
 � 
2� values are both positive) which 

is equal to ��.  As �� increases and surpasses the negative current ��� which originally caused the 

voltage spike, the voltage rate 
=,=� A ���� � �� is driven negative, and the spike subsides.  This limit 

cycle between the Na+ and K+ ion currents is what gives rise to spiking behaviour. 

As it is, using these two ion currents, neuron spiking can be modelled.  However the extra 

terms �� and ��	
 are needed to model bursting: 

 �6�� � �6 � 6DEF�
�C5 ,                                                                                                                         �11� 
6DEF�
� � J!�
 � 
K��
 � 
?�,                                                                                                       �12� �8�� � �8 � 36C	 .                                                                                                                                  �13� 
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with J! � 900V;!,  
K � �75.4mV and  
? � �70mV (Robinson et al. 2007).  The time period of 

quiescence is much longer than the spiking duration in bursting neurons.  As such the time constants 

responsible for depolarizing and after-hyperpolarizing the cell (which destroy the limit cycle 

behaviour) are much longer than the remembrance time constant: 

 C2 L C5 B C	                                                                                                                                         �14� 
 

with C2 � 2.1ms, C5 � 15ms and C	 � 56ms (Robinson et al. 2007).  The conductance relation 6 

(the conductance of depolarizing current ��) is analogous to 3 in that it models a conductance which 

decays exponentially over time.  The evolution equation (Eq. 13) of conductance 8 of the after-

hyperpolarizing current ��	
 however does not directly depend on the neuron voltage potential 
 

but 8 and 6 only due to its biophysically dependent on Ca2+ ion concentration through the neuron 

membrane (Wilson 1999).  

 

III. Stability Analysis 

 

From Eqs (2) – (13), rate equations can be expressed as functions of conductance variables V, R, X 

and H, 

 �
�� � N-�
, 3, 6, 8� � H�$ � ',�
��
 � 
-� � '23�
 � 
2� � '56�
 � 
5� � '	8�
 � 
	�I� , �15� 
�3�� � N!�
, 3, 6, 8� � �3 � 3DEF�
�C2 ,                                                                                                         �16� 
�6�� � NK�
, 3, 6, 8� � �6 � 6DEF�
�C5 ,                                                                                                         �17� 
�8�� � N?�
, 3, 6, 8� � �8 � 36C	 .                                                                                                                  �18� 

 

Fixed points are obtained by setting the derivatives of the left hand side to zero, and Eqs. (16) - (18) 

become 3O � 3DEF�
�, 6O � 6DEF�
� and 8P � 36DEF�
�.  Thus, fixed points are roots of the following 

third order polynomial of V, 

 ',�
��
 � 
-� 0 '23O�
 � 
2� 0 '56O�
 � 
5� 0 '	8P�
 � 
	� � �$ � 0.                       �19� 
 

We now apply the linear stability analysis to determine the stability of the fixed point.  For small 

deviations from the fixed point (
O, 3O, 6O, 8P), 

 
 � 
O 0 /,3 � 3O 0 G,6 � 6O 0 J,8 � 8P 0 Q.                                                                                                                                            �20� 
 

And we have a first order approximation of the deviation rate from the fixed point with 
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R/SGSJSQS T � U?>? > V
/GJQW �

XYY
YYY
YYZ
[N-[
 [N-[3 [N-[6 [N-[8[N![
 [N![3 [N![6 [N![8[NK[
[N?[


[NK[3[N?[3
[NK[6[N?[6

[NK[8[N?[8\]
]]]
]]]̂ > V/GJQW,                                                                    �21� 

 

where U?>? is the Jacobian matrix constructed of Wilson’s conductance variables V, R, X and H.  

These 4 equations can be decoupled by using a change of coordinates to the eigenvectors of the 

Jacobian matrix, which (when solved for) have a magnitude term of _D`ab�, where _D  is a constant, cD 
is the respective eigenvalue and � is time.  The properties of these eigenvalues are related to 

neuronal behaviour.  Their sign and real/complex nature of the amplitude function `ab� determines 

how the variables v, r, x and h evolve over time. For example if all eigenvalues are negative, 

deviations v, r, x, h will approach zero as time progresses by the decreasing amplitude function `ab� 
of each eigenvector and this would be a stable system.  More generally: 

 

• (4)   Negative Real cD    : Stable System 

• (1+) Positive Real cD    : Unstable System (local max. or saddle node) 

• (1+) Negative Imaginary cD  : System has a rotational component between 2+  

variables 

• (1+) Positive Imaginary cD  : System has a rotational component between 2+  

variables in the other direction 

 

(where the bracketed number indicates how many eigenvalues are required to be classified as such 

for that corresponding stability outcome to be true) 

 

IV. Results 

 

The bulk of the stability analysis for neuron voltage states was done using MATLAB.  The eigenvalues 

are calculated about the fixed point for voltage as calculated as per Eq. (19).  As Wilson limited this 

to a cubic equation, there can be up to 3 fixed points for the cell voltage, being the roots of that 

equation.  However for most of the range of ‘normal’ values of '	 (around 130A/m!V) and  '5 

(around 20A/m!V) there is only one real root, the others being imaginary.  Wilson’s model was 

mapped for different values of '	 vs. �$ and '5 vs.  �$ to yield phase diagrams (of which show where 

any of the 4 eigenvalues change state from positive to negative or real to complex) and surf-plots to 

indicate the amplitude of the real & imaginary eigenvalues.  Parameters '	 and '5 were chosen for 

this project due to their significant and interesting effects on the after-hyperpolarizing current (��	
) 

and the depolarizing transient-inward current (��) which govern bursting behaviour.  Other 

parameters related to these currents such as time constants C5 and C	 only changed the time periods of 

bursting and quiescence upon inspection and not pursued. 
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Behaviour in the de - fg plane 

 

Using the normal values of '	 and '5 supplied in Wilson’s model, the real-components of 

eigenvalues are shown in Fig. 3 (forth eigenvalue not shown as very negative and off scale) for 

ranging external current �$. 

 

Figure 3 – Real-part Eigenvalues of Wilson’s 4D model for '	 � 130A/m!V,  '5 � 20A/m!V 

 

The simulation results below show the effect the external input current �$ has on the bursting 

behaviour.  As �$ increasing from below a threshold of 0.19h_to above this threshold, the real-

component’s sign of the eigenvalues changes from being all negative, to 2 positive and 2 negative 

eigenvalues. 

A simulation with �$ � 0.18nA shown in Fig. 4 shows an oscillating yet stable soma voltage 

level in the neuron.  However just a slight change of �$ to 0.20nA pushes the system into positive-

eigenvalue territory, albeit very small positive eigenvalues, however as shown in Fig. 5, a sudden 

change in the neuron’s behaviour occurs to well defined periodic bursting.  This fine distinction 

between neuronal behaviours for very small eigenvalues shows the high dependence of their sign 

defining the stability of the four dimensional system. 

Fig 6. Is a further simulation at �$ � 0.60nA, which where the complex conjugate pairs of 

eigenvalues that crossed into the positive zone at �$ � 0.19nA and have separated into 2 real 

eigenvalues.   It is clear from this simulation that it still agrees with eigenvalue signs of Fig. 3, and our 

stability criterion holds, yet there seems to be no big difference between Fig. 6 and Fig. 5, except for 

a change in the quiescent period between bursts.  This shows that there is no immediately obvious 

change in behaviour of neurons if their eigenvalues contain an imaginary component or not (the 

addition of a ‘rotational component’ as discussed page 6). 
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Resting and Bursting simulations: 

 

 

Figure 4 –Wilson’s 4D model simulation of Resting where '	 � 130A/m!V,   �$ � 0.18nA 

 

 

Figure 5 –Wilson’s 4D model simulation of Bursting where '	 � 130A/m!V,   �$ � 0.20nA 

 

 

Figure 6 –Wilson’s 4D model simulation of Bursting where '	 � 130A/m!V,   �$ � 0.60nA 

 

It is worth mentioning bifurcations of fixed points can appear for some values of '	.  Cross-sections 

of constant-'	 in Fig. 12, such as the 130A/m!V line has stable fixed points across the whole length 

of �$.  This is found using the sign of 
i �
O�; if positive indicates an unstable fixed point, and stable if 

negative.  By reducing '	 to 30A/m!V, the contour shown in Fig. 12 is sliced into an S-shape with 

stable arms encompassing an unstable fixed-point arm.  Note this does not lead to any limit cycles, 

the values I$ and gH are assumed invariant in general neuron behaviour. 

 

 

Figure 7 –Voltage Bifurcation of fixed point 
O /j.  �$ where '	 � 130A/m!V, '5 � 20A/m!V 
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As seen in the simulation of Fig. 8 below, normal bursting behaviour is observed at the  �$ � 0.23nA 

point of the bifurcation diagram of Fig. 7. 

 

Figure 8 –Wilson’s 4D model simulation of Bursting where '	 � 130A/m!V,   �$ � 0.23nA 

 

Fig. 9 shows an ‘S-shape’ bifurcation when '	 is low enough. 

 

Figure 9 –Saddle Node Bifurcation of fixed point 
O /j.  �$ where '	 � 30A/m!V, '5 � 20A/m!V 

 

Fig. 10 shows a simulation again at �$ � 0.23nA, but for a different '	 value of 30A/m!V.  Note 

however rehular bursting is observed as the 0.23nA vertical line intersects only one of the fixed 

points in Fig. 9. 

 

 

Figure 10 –Wilson’s 4D model simulation of Bursting where '	 � 30A/m!V,   �$ � 0.23nA 

 

However in Fig. 11, this simulation again commenced at the resting potential -70mV, like the 

simulation of Fig. 10 did, but straight away moves away from the unstable S-branch (located at -

62mV when �$ � 0.00h_) of Fig. 9  and permanently sticks to the lower stable branch at roughly -

75mV.  This is shown later in Fig. 12 that areas of three fixed points within an S-shape bifurcation do 

not exhibit bursting behaviour, yet they can exhibit sporadic spiking. 
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Figure 11 –Wilson’s 4D model simulation of Bursting where '	 � 30_/k!
,   �$ � 0.00h_ 

 

 

As discussed, the after-hyperpolarizing conductance '	 represents Ca2+ channels which serve to 

regulate bursting behaviour.  The phase plot of eigenvalues over a range of '	 can be seen in Fig. 12.  

The eigenvalue colour scheme is listed below the diagram.  Superimposed on the Figure is a series of 

dots indicating the response-type of Wilson’s neuron simulated with the '	 - �$ values used at that 

location on the phase plot.   

              Additionally, the thick black contour shows the amount of real roots at each '	 - �$ location.  

Most of this area just has the one root, but as can be seen at the top and bottom centre of Fig. 3, 

three roots exist in some locations as well (note there is only ever 1 real root or 3 real roots because 

if any one root goes imaginary it much be accompanied by another conjugate pair-root) 

 

 

Figure 12 – '	 - �$ phase plot of Eigenvalue-types where '5 �  20A/m!V 

 

Eigenvalue-phase colour code    

Dark Blue:  -Real    

Cyan:   -Real +Imag -Imag  

Orange  +Real -Real    

Brown:  +Real -Real +Imag -Imag  
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They response-type dots colour code is: 

White:   Resting 

Grey:   Oscillating 

Yellow - Dark Green: Spiking (slow frequency (lighter) – high frequency (darker), 1 – 8 spikes 

within 500ms) 

Light Red – Dark Red Bursting (darkness by number of spikes per burst, 2 – 8 spikes) 

 

As Fig. 12 shows, a �$ current of roughly 0.19nA is needed for any spiking or bursting behaviour to 

occur at all, across all the values of '	.  The after-hyperpolarizing current’s (��	
) modulating effect 

is apparent here, as its conductance '	is increased, the amount of spiking per burst decreases and 

at a point �l 250A/m!V) the bursting ceases.  From here only spiking occurs which happens less 

frequently as  '	 is increased further still.  It is worth noting that the transition from bursting to 

spiking is a smooth process, from bursts with 7 spikes in the first row of '	 � 60A/m!V, to 6, to 3, 

to 2 spikes per burst in the forth for of '	 � 240A/m!V and then by the fifth row of '	 �300A/m!V, the period has not changed a great deal but the number of spikes per burst again 

decreases, to 1 this time, and suddenly this is not classified as a burst but a spike.  This clean 

transition between bursting and spiking behaviours makes it very hard to predict by using phase 

plots of eigenvalues or maximum-real component maps such as in Fig. 13.  This transition is 

definitely not as clear cut in stability analysis as from resting to bursting as discussing in light of       

Fig. 3. 

 

 

Figure 13 –Max. (Real-part) of 4 Eigenvalues map over '	 - �$  plane where '5 �  20A/m!V 

 

The imaginary component of eigenvalues initially appears to have some correlation with behaviour 

type.  Within the rough boundaries defined by the simulation points shown in Fig. 12, resting 

behaviour has no imaginary parts as all.  Points within the spiking zone do have a small imaginary 
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component (but as post discussion of Fig. 3, the magnitude of an eigenvalue is not necessarily 

important).  The bursting zero does have a region of large imaginary components for '	 B30A/m!V  above the �$ threshold 0.19nA  but between values of '	 � 70A/m!V and '	 �120A/m!V the eigenvalues are completely real, and yet simulations show (Fig. 12) that bursting still 

occurs there, and so the bursting behaviour must not be dependent on the imaginary components of 

those eigenvalues. 

 

 

Figure 14 –Max. (Imaginary-part) of 4 Eigenvalues map over '	 - �$  plane where '5 �  20A/m!V 

 

Behaviour in the dm - fg plane 

 

The depolarizing transient conductance '5 acts analogously to '	.  The phase diagram of 

eigenvalues (Fig. 15) appears different but the bursting dependence of this parameter is very much 

the same.  As before no spiking or bursting occurs below �$ threshold of 0.19nA and the spiking / 

bursting divide is defined by a horizontal threshold of the ' value.  This threshold of '5in this case is 

approximately 12A/m!V.  The reason bursting occurs for values of '5 greater than this threshold 

(rather than ‘less than’ as for '	) is due to the equations: 

 �� = '56�
 � 
5�,                                                                                                          �22� ��	
 = '	8�
 � 
	�,                                                                                                         �23� ��FF = �$ � �� � ��	
.                                                                                                         �24� 
 

where 
5 � 140mV, 
	 � �95mV and resting potential 
O  for the neuron is approximately -70mV.  

Hence �
O � 
5� is normally negative, �
O � 
	� is normally positive, and therefore '5 and '	 need 
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to increase and decrease respectively in order to increase ��FF which drives neocortical neuron 

behaviour from bursting from spiking. 

 

Figure 15 – '5 - �$ phase plot of Eigenvalue-types where '	 �  130A/m!V 

(Note: Colour codes of Fig. 15 as per those listed under Fig. 12) 

 

As in Fig. 12, the conductance coefficient ' determines whether a neuron is able to spike or burst as 

long as the external threshold current of 0.19nm is met.  It controls the ‘duty cycle’ of active periods 

of bursting compared to the period between bursts.  The external current �$ however has a direct 

control over the period between bursts, and reduces this period for an increase in current.  Two 

simulations below, Fig. 16 and Fig. 17, show this.  At this low '� value where spiking occurs, there 

are 4 spikes within a 500ms period when �$ � 0.30nA, and when the current  �$ is raised to 0.70nA, 

there is 8 spikes within a 500ms period. 

 

 

Figure 16 –Wilson’s 4D model simulation of Bursting where '� � 4A/m!V,   �$ � 0.30nA 

 

 

Figure 17 –Wilson’s 4D model simulation of Bursting where '5 � 4A/m!V,   �$ � 0.70nA 
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Figure 18 –Max. (Real-part) of 4 Eigenvalues map over '5 - �$  plane where '	 �  130A/m!V 

 

As in the equivalent length figures Fig. 13 and Fig. 14 for parameter '	, the hypothesis hold here as 

well that real component eigenvalues determine the behaviours of how a neuron behaves, or at 

least boundaries between resting and spiking / bursting.  The imaginary component t shown in Fig. 

19 does not appear to correlate with behaviour boundaries.    

 

 

Figure 19 –Max. (Imaginary-part) of 4 Eigenvalues map over '5 - �$  plane where '	 �  130A/m!V 
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V. Conclusions 

 

In conclusion the after-hyperpolarizing conductance '	 and the depolarizing transient-inward 

conductance '5 have shown to provide defined boundaries between spiking and bursting (as seen 

Fig. 12 and Fig. 15 respectively).  It is not however clear as to where these boundaries are if not for 

many simulations of the neuron for different parameter values of '	, '5 and �$.  There is however a 

clear distinction between resting and spiking / bursting behaviour.  It is found from linear algebra 

theory and confirmed with simulations (Fig. 12 and Fig. 15) that if all Jacobian eigenvalues are 

negative, the system is stable and limit cycling cannot occur, however if at least one has a positive 

real component, the system will exhibit some form of spiking or bursting.  No relationship was found 

to link the imaginary part of Jacobian eigenvalues to the behaviour of a neuron though, but that may 

be a task for future work. 

 

For planes of '	 � �$ and '5 � �$, a threshold value of  �$ � 0.19nA was required for any spiking or 

bursting behaviour to occur, and if above this threshold, the period between spikes/bursts is 

reduced with an increase in external current �$, speeding up of the system dynamics. 
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Appendix 

 

MATLAB CODE “bifurcation.m”  (used for bifurcations & eigenvalue-map figures) 

 

 
clear all 

close all 

clc 

  

%% Parameters: code taken from;  function ts=wilson4(dt,Tmax)  

 para(1)=1.0;       C = para(1);     %C   %Capacitance   %% 

1.0uF/(cm^2)....10mF/(m^2) 

 para(2)=26.0;      gr= para(2);     %gr  %Conductance 'R'  (eqn10) 

 para(3)=2.0;       gx= para(3);     %gx  %........... 'X'  (eqn11)   

!RowanChanged!! 

 para(4)=13;      gh= para(4);     %gh  %........... 'H'  (eqn11)   

!RowanChanged!!  %%13.0 

 para(5)=2.1;       tr= para(5) ;    %tr  %time const R 

 para(6)=15.0;      tx= para(6);     %tx  %.......... X 

 para(7)=56.0;      th= para(7);     %th  %.......... H 

 para(8)=17.81;     v0= para(8);     %v0  %Conductivity_Base (='g' when 

V=0)  (eqn5) 

 para(9)=47.58;     v1= para(9);     %v1  %............_Linear                

(eqn5)                     #  48 mV 

 para(10)=33.8;     v2= para(10);    %v2  %............_Quad                  

(eqn5)                     ###  3.38*10^4 A.m^-2.V^-2 

 para(11)=-0.95;    vr= para(11);    %vr  %K+  reversal potential (eqn3)  = 

-95mV       NB = 'vh'        ###  -95 mV 

 para(12)=1.4;      vx= para(12);    %vx 

 para(13)=-0.95;    vh= para(13);    %vh  %K+  reversal potential (eqn3)  = 

-95mV       NB = 'vr'        ###  -95 mV 

 para(14)=0.48;     V1= para(14);    %V1  %Na+ reversal potential (eqn3)  = 

+48mV 

 para(15)=-0.38;    V2= para(15);    %V2    %used in Rinf                                                

###  -38   mV 

 para(16)=-0.754;   V3= para(16);    %V3    %used in Xinf                                                

###  -75.4 mV (?) 

 para(17)=-0.7;     V4= para(17);    %V4    %used in Xinf                                                

###  -70   mV 

 para(18)=0.79;     r0= para(18);    %r0 

 para(19)=1.29;     r1= para(19);    %r1 

 para(20)=3.3;      r2= para(20);    %r2 

 para(21)=9.0;      x2= para(21);    %x2 

 %para(22)=0.23;     I0= para(22);    %I0 

  

  

%% Find Fixed Points: 

 %--- Changables ----% 

 I0 = -1:0.01:1; 

 V  = -2:0.04:2; 

 %--------------% 

 length_I0 = length(I0); 

 YES = 1;      %enum 

 NO = 0;       %enum 

 STABLE   = 5; %enum 

 UNSTABLE = 6; %enum 

 ONE = 1;   %used for heuristic contour 

 TWO = 2;   %used for heuristic contour 

 THREE = 3; % no. of roots 
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 FOUR  = 4; % side length jacobian (4 elements V,R,X,H) 

  

 VdotM = zeros(4,4); %allocation 

  

 R_inf = [0 r1 r0] + r2*conv([1 -V2],[1 -V2]); 

 X_inf = x2*conv([1 -V3],[1 -V4]); 

 gv = [v2 v1 v0]; 

  

 R_fix = R_inf; 

 X_fix = X_inf; 

 H_fix = 3*X_fix; 

  

 VdotM(1,:) =    conv(gv,   [1 -V1]); 

 VdotM(2,:) = gr*conv(R_fix,[1 -vr]); 

 VdotM(3,:) = gx*conv(X_fix,[1 -vx]); 

 VdotM(4,:) = gh*conv(H_fix,[1 -vh]); 

 VdotTmp = -VdotM(1,:)-VdotM(2,:)-VdotM(3,:)-VdotM(4,:); 

  

 dVdotDV = polyder(VdotTmp)/C;  %note the I0 added on later would get 

cancelled out in differentiation so ok to disregard here. 

  

 % %Display Vdot function when I0 = zero; 

 figure(1) 

 plot(V,polyval(VdotTmp,V)/C); 

 title('Plot of Vdot(I0=0)') 

 ylabel('Vdot (Volts/10)') 

 xlabel('Voltage (Volts/10)') 

 grid on 

  

 % %Find the Voltage roots for each I0 value 

 roots_Vdot = zeros(length_I0,THREE); %allocation 

 for i = 1:length_I0 

     Vdot = ([0,0,0,I0(i)]+VdotTmp)/C; 

     roots_Vdot(i,:) = roots(Vdot); 

 end 

  

  

 % %Find the Real roots & compile 

 realRoots_Vdot      = NO * ones(length_I0,THREE); %init & allocation 

 realRoots_Vdot_stab = NO * ones(length_I0,THREE); %init & allocation 

 for i=1:length_I0 

     for j = 1:THREE 

         if isreal(roots_Vdot(i,j)); 

             if polyval(dVdotDV,roots_Vdot(i,j)) <= 0 

                 %test = polyval(dVdotDV_fix,I0(i)); 

                 stability = STABLE; 

             else 

                 stability = UNSTABLE; 

             end 

             realRoots_Vdot(i,j)            = roots_Vdot(i,j); 

             realRoots_Vdot_stab(i,j)       = stability; 

         end 

     end 

 end 

  

 figure(2) 

 hold on 

 for j = 1:THREE  %numReals = [0,3] 

 prev_i = 1;         %init 

 prevStability = NO; %init 

     for i = 1:length_I0   
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         stability = realRoots_Vdot_stab(i,j); 

         if ((stability ~= prevStability) && (i > 1)) || i==length_I0 

             if prevStability == STABLE 

                plot(I0(prev_i:i-1),realRoots_Vdot(prev_i:i-1,j)) 

             elseif prevStability == UNSTABLE 

                plot(I0(prev_i:i-1),realRoots_Vdot(prev_i:i-1,j),'--') 

             end    

             prev_i = i; 

         end 

         prevStability = stability; 

     end 

 end 

 hold off 

 title(['Voltage Bifurcation:  gh = ',num2str(gh),' (10.A/m^2V), gx = 

',num2str(gx),' (10.A/m^2V)',]) %"C*dV/dt = I_0 - I(leak) - I_R - I_X - 

I_H" (Wilson 92)') 

 ylabel('Voltage (100mV)') 

 xlabel('Current I_0 (nA)') 

 set(get(gca,'XLabel'),'FontSize',14); 

 set(get(gca,'YLabel'),'FontSize',14); 

 set(get(gca,'title'),'FontSize',16); 

 grid on 

  

  

%% Jacobian stuff 25th September 

 %NB INIT VALUES: 

 %------------- 

 %para(6)=15.0;  tx 

 %para(7)=56.0;  th 

 %para(3)=2.0;   gx 

 %para(4)=13.0;  gh 

 %---changeables: 

 lengthJ = 60; 

 txJ = linspace(tx,tx,lengthJ); 

 thJ = linspace(th,th,lengthJ); 

 gxJ = linspace(gx,gx,lengthJ); 

 %ghJ = linspace(gh,gh,lengthJ); 

  

 ghJ = linspace(1,60,lengthJ); 

 %gxJ = linspace(0.025,4,lengthJ); 

 %txJ = linspace(2,120,lengthJ); 

 %thJ = linspace(2,300,lengthJ); 

 paraJ = ghJ;       %!this is the change variable !!! 

 stringJ = 'gh';    %!this is the change variable !!! 

  

 %%% NOTE THIS ONLY WORKS WITH THE FIRST ROOT 

      

 j=0; %inint 

 signEigenJacM = zeros(length_I0,lengthJ,FOUR);   %allocation 

 eig_Jacobian = zeros(length_I0,lengthJ,FOUR);    %allocation 

 record_realRoot1 = zeros(length_I0,lengthJ);     %allocation 

 test_roots_Vdot = zeros(length_I0,lengthJ,3);    %allocation 

 totalRealRoots = zeros(length_I0,lengthJ);       %allocation 

 biggestRealEigenJacM = zeros(length_I0,lengthJ); %allocation 

 biggestImagEigenJacM = zeros(length_I0,lengthJ); %allocation 

 realEigenvalues = zeros(length_I0,lengthJ,FOUR); %allocation 

 for j = 1:lengthJ 

     tx = txJ(j); 

     th = thJ(j); 

     gx = gxJ(j); 

     gh = ghJ(j); 
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     %% copied in from above: 

     %% %------------------------------------------------------------------ 

     R_inf = [0 r1 r0] + r2*conv([1 -V2],[1 -V2]); 

     X_inf = x2*conv([1 -V3],[1 -V4]); 

     gv = [v2 v1 v0]; 

     R_fix = R_inf; 

     X_fix = X_inf; 

     H_fix = 3*X_fix; 

     VdotM(1,:) = conv(gv,[1 -V1]); 

     VdotM(2,:) = gr*conv(R_fix,[1 -vr]); 

     VdotM(3,:) = gx*conv(X_fix,[1 -vx]); 

     VdotM(4,:) = gh*conv(H_fix,[1 -vh]); 

     VdotTmp = -VdotM(1,:)-VdotM(2,:)-VdotM(3,:)-VdotM(4,:); 

     dVdotDV = polyder(VdotTmp)/C;  %note the I0 added on later would get 

cancelled out in differentiation so ok to disregard here. 

  

     %%% (not cpoied in, an interum) 

     DVdotDV=-polyder(conv(gv,[1 -V1])) - gr*R_fix - gx*X_fix - gh*H_fix; 

DVdotDR=-gr*[1 -vr]/C;   DVdotDX=-gx*[1 -vx]/C;    DVdotDH=-gh*[1 -vh]/C; 
     DRdotDV=polyder(R_inf)/tr;     DRdotDR = -1/tr;         DRdotDX = 0;              

DRdotDH = 0; 

     DXdotDV = polyder(X_inf)/tx;   DXdotDR = 0;             DXdotDX = -

1/tx;          DXdotDH = 0; 

     DHdotDV = 0;                   DHdotDR = 0;             DHdotDX = 

3/th;           DHdotDH = -1/th; 

      

     roots_Vdot = zeros(length_I0,THREE); %allocation 

     for i = 1:length_I0 

         Vdot = ([0,0,0,I0(i)]+VdotTmp)/C; 

         roots_Vdot(i,:) = roots(Vdot); 

         for k = 1:THREE 

            totalRealRoots(i,j) = totalRealRoots(i,j) + 

isreal(roots_Vdot(i,k));  %count up #fixed-pts at locations 

         end 

     end 

     % %Find the Real roots & compile 

     numReals=zeros(1,THREE);      %allocation 

     countI0withReals = 0;         %init 

     realRoots_Vdot = NO * ones(length_I0,THREE,3); %init & allocation 

     for i=1:length_I0 

         numReals = 0;             %init  %num reals in the one i'th value 

of I0 

         flag_atLeastOneRoot = NO; %init 

         for k = 1:THREE 

             if isreal(roots_Vdot(i,k)); 

                 if flag_atLeastOneRoot == NO 

                     flag_atLeastOneRoot = YES; 

                     countI0withReals=countI0withReals+1; 

                 end 

                 if polyval(dVdotDV,roots_Vdot(i,k)) <= 0 

                     stability = STABLE; 

                 else 

                     stability = UNSTABLE; 

                 end 

                 numReals=numReals+1; % count real roots every i'th I0 

                 realRoots_Vdot(countI0withReals,numReals,:) = 

[I0(i),roots_Vdot(i,k),stability]; 

             end 

         end 

     end 
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     size1_realRoots_Vdot = size(realRoots_Vdot,1);  %%size of: 

countI0withReals 

     size2_realRoots_Vdot = size(realRoots_Vdot,2);  %%size of: numReals 

  

     %%%% 

     %end code copied in from above 

     %% %------------------------------------------------------------------ 

  

     for i = 1:length_I0 

     realRoot1   =realRoots_Vdot(i,1,2);    

%%realRoots_Vdot(countI0withReals,numReals,:) = 

[I0(i),roots_Vdot(i,j),stability]; 

     record_realRoot1(i,j) = realRoot1; 

  

     Jacobian = [polyval(DVdotDV,realRoot1), polyval(DVdotDR,realRoot1), 

polyval(DVdotDX,realRoot1), polyval(DVdotDH,realRoot1);... 

                 polyval(DRdotDV,realRoot1), polyval(DRdotDR,realRoot1), 

polyval(DRdotDX,realRoot1), polyval(DRdotDH,realRoot1);... 

                 polyval(DXdotDV,realRoot1), polyval(DXdotDR,realRoot1), 

polyval(DXdotDX,realRoot1), polyval(DXdotDH,realRoot1);... 

                 polyval(DHdotDV,realRoot1), polyval(DHdotDR,realRoot1), 

polyval(DHdotDX,realRoot1), polyval(DHdotDH,realRoot1)]; 

  

     eig_Jacobian(i,j,:) = eig(Jacobian); 

     signEigenJacM(i,j,:) = sort(real(sign(eig_Jacobian(i,j,:))));  %NB 

'Sign': negReal = -1, posReal = 1, zero = 0, 0<imagPosReal<1,-

1<imagNegReal<0 

     biggestRealEigenJacM(i,j) = max(real(eig_Jacobian(i,j,:))); 

     biggestImagEigenJacM(i,j) = max(imag(eig_Jacobian(i,j,:))); 

     realEigenvalues(i,j,:) = sort(real(eig_Jacobian(i,j,:))); 

     end 

 end 

  

  

  

if YES 

    figure(3) 

    hold on 

    plotData = zeros(length_I0,FOUR); %allocation 

    for i=1:length_I0 

       for k = 1:FOUR  

           plotData(i,k) = realEigenvalues(i,13,k);  %13 if gh is going 1-

60, will be it's default value. 

       end 

    end 

    plot(I0,plotData) 

    title('Jacobian Eigenvales of Fixed Points V,R,X,H') 

    ylabel('Eigenvalue') 

    xlabel('current I_0') 

    plot(I0,0*I0,'k')  % construct a reference line along zero 

    hold off  

end 

  

  

  

  

 testheur_signEigenJacM = NO*ones(1,15); %allocation 

 Total_flag = YES*ones(1,FOUR); 

 heur_signEigenJacM = zeros(size1_realRoots_Vdot,lengthJ); %allocation 

 ONE_CLOSE = 0.999999; % close to one to avoid float/integer errors 

 ZERO_CLOSE = 0.0000001; 
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 for i = 1:size1_realRoots_Vdot 

    for j = 1:lengthJ 

       flags = [0,0,0,0];   %ENCODE flags:  1)NegImag  2)PosReal  3)PosImag  

4)BothImag 

       for k=1:FOUR 

            %%%eig_Jacobian 

           test66 = eig_Jacobian(i,j,k); 

           if imag(eig_Jacobian(i,j,k)) < -ZERO_CLOSE                             

% 1)NegImag 

               flags(1) = YES; 

           else 

               Total_flag(1) = NO; 

           end 

           if imag(eig_Jacobian(i,j,k)) > ZERO_CLOSE                              

% 2)PosImag 

               flags(2) = YES; 

           else 

               Total_flag(2) = NO; 

           end 

           if real(eig_Jacobian(i,j,k)) < -ZERO_CLOSE                             

% 3)NegReal 

               flags(3) = YES; 

           else 

               Total_flag(3) = NO; 

           end 

           if real(eig_Jacobian(i,j,k)) > ZERO_CLOSE                              

% 4)PosReal 

               flags(4) = YES; 

           else 

               Total_flag(4) = NO; 

           end 

       end 

  

       heur_signEigenJacM(i,j) = 1*flags(1) +2*flags(2) +4*flags(3) 

+8*flags(4); 

       testheur_signEigenJacM(heur_signEigenJacM(i,j)) = YES; 

       %% only the heuristic-values of 4,7,12,15 occurred, so change to 

1,2,3,4 so not a heaps of grouped contours to look at: 

       if heur_signEigenJacM(i,j) == 4     %flags(3) = NegReal eigens 

           heur_signEigenJacM(i,j) = 1; 

       elseif heur_signEigenJacM(i,j) ==7  %flags(1) & flags(2) & flags(3) 

= NegImag & PosImag & NegReal eigens 

           heur_signEigenJacM(i,j) = 2; 

       elseif heur_signEigenJacM(i,j) ==12 %flags(3) & flags(4) = NegReal & 

PosReal eigens 

           heur_signEigenJacM(i,j) = 3; 

       elseif heur_signEigenJacM(i,j) ==15 %flags(1) & flags(2) & flags(3) 

& flags(4) = NegImag & PosImag & NegReal & PosReal eigens 

           heur_signEigenJacM(i,j) = 4; 

       else 

           disp('heur_signEigenJacM(i,j) error') 

       end 

    end 

 end 

  

  

  

 disp(Total_flag) 

 figure(5) 

 hold on 

 [C,h] = contourf(I0,paraJ,heur_signEigenJacM','LevelStep',1); 
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 set(gca, 'CLim', [1, 4]); 

 title(['Eigenvalue-Type map:  ',stringJ,' vs. I_0']) 

 ylabel([stringJ,' (10.A/m^2.V)']) 

 xlabel('Current: I_0 (nA)') 

 [CC,hh] = 

contour(I0,paraJ,totalRealRoots','LevelStep',1,'LineWidth',3,'LineColor','k

'); 

 text_handle = clabel(CC,hh); 

 set(text_handle,'BackgroundColor',[1 1 .6],'Edgecolor',[.7 .7 .7]); 

 spots(); 

 set(get(gca,'XLabel'),'FontSize',18); 

 set(get(gca,'YLabel'),'FontSize',18); 

 set(get(gca,'title'),'FontSize',20); 

 hold off 

  

  

  

 figure(8) 

 H_surf1 = surf(I0,paraJ,biggestRealEigenJacM'); 

 %colormap(winter); 

 set(H_surf1, 'linestyle', 'none'); 

 colorbar 

 shading interp 

 hold on  

 spots(); 

 hold off 

 title(['Eigenvalue map, Max. Real-part of 4 Eigenvalues:  ',stringJ,' vs. 

I_0']) 

 ylabel([stringJ,' (10.A/m^2.V)']) 

 xlabel('Current: I_0 (nA)') 

 set(get(gca,'XLabel'),'FontSize',18); 

 set(get(gca,'YLabel'),'FontSize',18); 

 set(get(gca,'title'),'FontSize',20); 

 grid off 

  

 figure(9) 

 H_surf2 = surf(I0,paraJ,biggestImagEigenJacM'); 

 set(H_surf2, 'linestyle', 'none'); 

 colorbar 

 shading interp 

 hold on  

 spots(); 

 hold off 

 title(['Eigenvalue map, Max. Imag-part of 4 Eigenvalues:  ',stringJ,' vs. 

I_0']) 

 ylabel([stringJ,' (10.A/m^2.V)']) 

 xlabel('Current: I_0 (nA)') 

 set(get(gca,'XLabel'),'FontSize',18); 

 set(get(gca,'YLabel'),'FontSize',18); 

 set(get(gca,'title'),'FontSize',20); 

  

  

 


