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Abstract— In this paper, a feature selection algorithm based
on particle swarm optimization for processing remotely ac-
quired hyperspectral data is presented. Since particle swarm
optimization was originally developed to search only continuous
spaces, it could not deal with the problem of spectral band
selection directly. We propose a method utilizing two swarms
of particles in order to optimize simultaneously a desired
performance criterion and the number of selected features. The
candidate feature sets were evaluated on a regression problem
using artificial neural networks to construct nonlinear models of
chemical concentration of glucose in soybean crops. Experimen-
tal results attesting the viability of the method utilizing real-
world hyperspectral data are presented. The particle swarm
optimization-based approach presented superior performance
in comparison with a conventional feature extraction method.

I. INTRODUCTION

Particle swarm optimization (PSO) is an evolutionary

computation technique that has been developed due to re-

search on bird flock simulation by Kennedy and Eberhart

[1]. PSO is able to solve most optimization problems, or

problems that can be converted to optimization problems.

PSO’s main attractiveness is its simplicity and velocity, allied

with robustness.

Hyperspectral imaging sensors are able to acquire several

hundreds of spectral information from the visible to the

infrared region. Nonetheless, neighboring spectral bands are

usually highly redundant [2]. In real-world applications, the

typical scenario of few data samples in a high-dimensional

feature space causes what was termed by Bellman [3] as

the curse of dimensionality, referring to the exponential

increase in complexity of high-dimensional spaces with the

increase in the number of measurements. To avoid the curse

of dimensionality, algorithms for feature extraction/selection

have been proposed to reduce the amount of data and, at the

same time, keep the relevant information necessary to image

interpretation or classification [4].

The application of PSO to process hyperspectral data is

appealing due to the capability to visualize the location of

particles’ positions in the search space. Since each spectral

dimension corresponds to one band wavelength, the location

of the particles’ positions may be useful to identify inter-

esting characteristics of the physical process associated with

the induction algorithm.

Different approaches for feature selection using PSO have

been reported [5], [6]. Nevertheless, the search is commonly
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limited to a pre-defined number of features, which can be

difficult to determine a priori for many problems. In addition,

the question of how to define the target functions to be

optimized may be highly dependent on the problem at hand.

In this paper, we present a new method for spectral

band selection based on PSO. A multi-criteria optimization

technique to perform feature selection using two particle

swarms is investigated. We developed a method to select

optimal spectral bands from hyperspectral data applied on

a regression problem in the remote sensing field. Neural

networks were implemented to learn models of glucose

content in soybeans. Experiments were carried out using real-

world hyperspectral datasets from soybean fields.

II. HYPERSPECTRAL BAND SELECTION ALGORITHM

Feature selection is a subtype of feature extraction where

the dimensionality reduction is achieved by selecting bands

rather than transforming the data [7]. Feature selection meth-

ods are advantageous when the user needs to make decisions

based on meaningful features of the original data, or if he

wants to exclude non-necessary data components to reduce

the cost and labor of data acquisition. Thus, feature selection

is highly suitable to hyperspectral imagery, in which the data

is intrinsically related to physical wavelengths, and not all

spectral bands are always necessary for a certain application.

Assume that the hyperspectral imagery data matrix I is

composed of n spectral images I(λ), (λ = 1, . . . , n), at each

wavelength band λ acquired by the sensor. The aim of feature

selection is to find a set of m bands, where m < n, to

minimize the evaluation criterion.

Feature selection can be implemented as an optimization

procedure of search for the optimal feature set that better

satisfy a desired measure. We propose a method, as shown

in Fig. 1, utilizing two swarms of particles to optimize

simultaneously the number of selected features and the error

of the model. Each candidate feature set is evaluated by

observing its performance on a regression problem. The

induction algorithm is a neural network utilized to construct

regression models.

A. Particle Swarm Optimization

The PSO algorithm performs optimization in continuous,

multidimensional search spaces. PSO starts with a population

of random particles, from where the name “particle swarm”

is derived. Each particle in PSO is associated with a velocity.

Particles’ velocities are adjusted according to the historical

behavior of each particle and its neighbors while they fly

through the search space. Therefore, the particles have a
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Fig. 1. Diagram of the hyperspectral band selection algorithm based on two particle swarms.

tendency to fly towards the better and better search area over

the search process course.

The basic PSO algorithm [8] can be described mathemat-

ically by the following equations:

vt+1

id = wvt
id + c1r

t
1(p

t
id − xt

id) + c2r
t
2(p

t
gd − xt

gd) (1)

and

xt+1

id = xt
id + vt+1

id , (2)

where c1 and c2 are positive constants, called learning rates;

r1 and r2 are random functions in the range [0, 1]; w is

a inertia weight; Xi = (xi1, xi2, . . . , xiD) represents the

position of the ith particle in a problem space with D
dimensions; Vi = (vi1, vi2, . . . , viD) represents the rate

of change of position (velocity); Pi = (pi1, pi2, . . . , piD)
represents the best previous position of the swarm; the index

g indicates the best particle among all the particles in the

population; and t indicates the iteration number. If the sum

of the factors in the right side of Eq. (1) exceeds a specified

constant value, particles’ velocities on each dimension are

clamped to a maximum velocity Vmax.

Although other approaches for the PSO algorithm have

been proposed [9], [10], [11], which may provide faster or

even more accurate convergence on specific testbed functions

or classes of problems, the PSO version above presents a

general competitive performance that is satisfactory for the

band selection problem. The first swarm of particles in our

method is a “continuous” PSO configured to search for the

optimal number of features being selected. The search space

of this particle swarm is limited by the number of dimensions

of the original dataset. In the case of hyperspectral imagery

data, it corresponds to the maximum number of spectral

bands available.

B. Binary PSO

To perform the selection of feature sets, the PSO concept

needs to be extended in order to deal with binary data. We

utilize a binary scheme for feature selection in which each

feature is represented by one bit of the particle [12]. If the

feature is selected its value is set to 1, if it is not used, it is

set to 0.

The candidate feature set is determined using a roulette

wheel selection. At each spin of the roulette, the wheel’s

marker will point to a feature to be selected. The roulette is

played until a defined number of selected features is reached.

Each feature is assigned with a probability pid proportional

to the real value calculated in Eq. (2) limited to the interval

[0, 1], according to the equation

pid =
xα

id
n∑

d=1

xα
id

, (3)

where α is the selection pressure, which controls the proba-

bility of selecting highly fit or less fit features.

The second particle swarm in our method is a “binary”

PSO, as described above. Its particles are encoded in n bits,

according to the number of dimensions of the dataset.

The feature selection process is carried out in cycles called

epochs. In our method, each epoch consists of two phases.

Firstly, the continuous particle swarm is evolved, letting the

particles update their positions. Then, the second swarm is

evolved, each step selecting up to the number of features
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defined by the particles of the first swarm. The second

swarm may be updated several times at each epoch, for the

different positions of the first swarm. However, if two or

more particles of the fist swarm are in the same position,

only the first occurrence will result in the evolution of the

second swarm.

C. Evaluation Function

By simply minimizing the error rate of the induction

algorithm, it cannot be expected that the feature selection

algorithm will also minimize the number of selected features.

We want to search for the smallest feature set that satisfies

a desired level of performance of the induction algorithm.

For this purpose, the feature selection must be treated as

a constrained optimization problem, in which the search is

constrained by the size of the feature set and by the specified

satisfactory error rate [13].

However, even the binary version of PSO cannot handle

this kind of problem directly. We developed a formulation in

order to provide control on the balance between the two con-

straints, necessary when dealing with hyperspectral datasets

on regression problems. Otherwise, very small feature sets

may be preferred by the algorithm in detriment of possible

better performing feature sets with more features.

A performance evaluation function is introduced to accom-

modate the two constraints, assessing the evolution of the

two particle swarms. It can be expressed by the following

equation

PEF(x) = k ∗ l(x) + f(e(x)) , (4)

where x is the candidate feature set selected by the binary

particle swarm; l is the cost associated with the size of the

feature set, measured by the number of selected features

scaled by a constant factor k; and f(e) is a penalty function

for the error e(x) of the induction algorithm.

The penalty function defines a region of feasibility of

possible solutions in the error space. It can be expressed

as

f(e(x)) =
exp((e(x) − u)/s) − 1

exp(1) − 1
, (5)

where u is a feasibility threshold, and s is a small scaling

constant.

A feature set is considered feasible if the error in the model

output is below the feasibility threshold. For other feature

sets presenting higher error, the value of the penalty function

grows rapidly.

D. Artificial Neural Networks

We implemented artificial neural networks as the induction

algorithm to provide nonlinear models of the regression

problem. The nonlinear model was constructed using a mul-

tilayer perceptron network, composed of input layer, hidden

layer, and output layer, sequentially interconnected in a feed-

forward way [14].

The output of the multilayer network can be expressed as

y = f(x) = Bϕ(Ax+a)+b, where x and y are, respectively,

the input and output vectors; A and a are, respectively, the

weight matrix and the bias vector of the hidden layer; B and b
are, respectively, the weight matrix and the bias vector of the

output layer; and ϕ is the activation function. The activation

function for the hidden layer neurons was the hyperbolic

tangent sigmoid. The training method was the Levenberg-

Marquardt backpropagation [15]. Early stopping was used to

improve generalization and avoid overfitting.

The number of neurons in the input layer is proportional

to the number of features of the reduced dataset. The neural

networks were trained to minimize the mean of squared

errors, MSE(y) = 1

N

N∑
i=1

(yo
− yt)2, between the test dataset

measured values t, and the network outputs o.

III. RESULTS

A. Hyperspectral Dataset

To attest the validity of the proposed method in real-world

datasets, experiments were conducted with hyperspectral

imagery data from soybean fields. The experimental data

was obtained using a hyperspectral sensor, coupled with

CCD camera and computer controller. The sensor acquires

data in two dimensions, one containing spatial information

and, the other, spectral information. In the spatial plane,

the hyperspectral camera produces 484 pixels per line. The

spectral range comprises the visible to the near-infrared, from

400 nm to 1000 nm, each band interleaved by approximately

5 nm, thus producing 121 spectral bands.

The hyperspectral data was acquired in middle summer on

a sunny day, around noontime. The data sample consisted of

13 different varieties of green vegetable soybeans cultivated

in an experimental field. In addition, to provide target data

for the supervised training of the neural networks, freeze-

dried samples from the soybean fields were analyzed in the

laboratory using liquid chromatography. The neural networks

were trained to model the chemical concentration of glucose

in soybeans; the purpose is to predict the sweetness of the

soybean crops non-invasively [16].

B. Experiments

The parameters of the particle swarms, shown in Table I,

were chosen through experimentation. To define the constants

of the penalty function Eq. (5), the error rate of the induc-

tion algorithm must be taken into account. The feasibility

threshold u must be a value at least slightly greater than

the minimum error expected by the best feature set. After

preliminary experiments, u was defined as u = 0.07. The

scaling factor was s = 5%.

The determination of the constant k, in the performance

evaluation function Eq. (4), must consider the dimensionality

of the problem and the desired performance. If k = 0,

the PEF value would be equivalent of that of the penalty

function alone. When k = 1, the PEF value would give a

very heavy punishment for acquiring the spectral bands. A

more reasonable search space for the hyperspectral dataset

problem was obtained by using k = 0.05.

The training of the multilayer networks is dependent on

the weights’ starting values and can be trapped in local
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TABLE I

PARAMETERS OF THE PARTICLE SWARMS.

Parameter Value

Population size continuous swarm 20

Population size binary swarm 40

Learning rate c1 = c2 2

Maximum particle velocity Vmax 4

Maximum number of epochs 200

Maximum epochs with constant error 30

Initial inertia wi 0.9

Final inertia wf 0.2

Epoch of final inertia 190

Selection pressure α
a 1

aUtilized by the roulette wheel scheme to turn the second swarm into binary.

minima. To minimize this problem, each combination of

inputs (candidate feature set) was tested over 3 independent

runs and only the best performing networks were retained.

To account for the stochastic nature of the PSO algorithm,

the experiments were performed over 10 independent runs

for each algorithm, every time initializing the swarms with a

different random seed. The evolution of the particle swarms

is computationally inexpensive, but the overhead of the

feature selection process is in the evaluation of the induction

algorithm.

The performance of the particle swarms is presented in

Fig. 2. The final particles’ positions, assigned to the corre-

spondent spectral band wavelengths, of the 10 runs of the

algorithm are shown in Fig. 3. In practice, however, only the

best performing feature set selected by the particle swarms

is retained, i.e., the feature set presenting the lowest error

and highest correlation on the regression problem.

C. Comparison with Principal Components Analysis

Principal components analysis (PCA) is a widely used

technique to reduce the dimension of hyperspectral datasets.

The PCA algorithm identifies and extracts interesting features

by retaining only those components that account for a greater

part of the variation in the dataset [17]. The principal

components were ordered according to the magnitude of their

variance. The variability of the principal components from

our soybean dataset is shown in Fig. 4. We set the variance

threshold to 99.98%, retaining 11 principal components,

same number of features obtained by the particle swarms.

In order to more comprehensibly compare the results

between the different methods, the correlation coefficient was

calculated as R(y) = C(yo, yt)
/√

C(yo, yo).C(yt, yt) ,

where C is the covariance matrix, and o and t indicate the

neural network output and the test dataset measurement, re-

spectively. A summary of the results comparing the proposed

method, the best feature set selected by the particle swarms,

and the PCA is presented in Table II.

TABLE II

COMPARISON OF PARTICLE SWARMS FEATURE SELECTION (PSO-FS)

AND PCA, APPLIED TO MODEL GLUCOSE CONTENT IN SOYBEAN CROPS

FROM HYPERSPECTRAL DATA USING NEURAL NETWORKS.

Algorithm PEFa MSEb Rc

PSO-FS 0.6382 0.0130 0.8620

PCA 0.0149 0.8425

aPerformance evaluation function
bMean squared error
cPearson’s correlation coefficient

IV. CONCLUSIONS

This paper proposes a feature selection method based on

two particle swarms, a continuous and a binary, to search

not only for the optimal feature set, but also for the optimal

number of features, at the same time. Furthermore, the

applicability of the method to extract information from hy-

perspectral imagery data was demonstrated. The method was

successfully validated with experiments utilizing real-world

datasets of soybean fields applied on a regression problem.

The particle swarms were implemented in conjunction with

neural networks to model the sweetness in soybean crops, a

non-trivial problem.

The particle swarms were able to optimize the combined

criteria efficiently. In spite of the limited size of the particle

swarms’ populations, the proposed algorithm was capable of

fast convergence towards the optimal region of the search

space. The particle swarms outperformed the PCA in our

experiments. However, despite the deceiving impression that

just 4 principal components hold most of the variability in

the soybeans dataset, the rather close results presented by

PCA were only achieved using a higher number of principal

components, 11.

We developed a performance evaluation function adapting

the PSO algorithm to search for the optimal feature set

while constrained by two criteria, the error rate of the

induction algorithm and the size of the feature set. The

performance evaluation function punishes feature sets with

high dimensionality. This function may produce excessive

punishment, particularly on real-world hyperspectral imagery

data, causing the selection of small feature sets presenting

undue error. Thus, in order to determine a better compromise

between the number of selected features and the induction

algorithm’s error rate, a constant factor k in Eq. (4) was

introduced in this paper.

The particle swarms also possess the advantage of per-

mitting the visualization of the selected features in contrast

with their spectral locations, providing an appealing analysis

tool for the field of remote sensing. The selected band wave-

lengths tended to be spatially distributed over the spectra,

resulting in an efficient use of the available information.

However, some spectral regions are consistently preferred by

most of the particle swarms, specifically in the range between

500 nm and 820 nm. We propose the method not only for
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Fig. 2. Curves of the evolution of the particle swarms showing mean value and standard deviation over 10 runs.
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Fig. 3. Spectral location of the feature sets selected by the particle swarms over 10 runs. The best performing feature set is indicated in dark black.

dimensionality reduction, but also as a valuable tool for the

spectral analysis of remotely sensed hyperspectral imagery.

Future works will involve improving the performance and

accuracy of the proposed method. Different architectures for

the PSO algorithm could be evaluated to identify which

version may produce better results on the band selection

problem. Since the fitness evaluation based on the neural

network is the main time consuming component of the

search process, a more efficient training method could be

implemented, perhaps using a fast PSO approach.
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