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Rock Recognition from MWD Data:
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and Fuzzy Logic
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Abstract—Measurement-while-drilling (MWD) data recorded
from drill rigs can provide a valuable estimation of the type
and strength of the rocks being drilled. Typical MWD sensors
include bit pressure, rotation pressure, pull-down pressure, pull-
down rate and head speed. This paper presents an empirical
comparison of the statistical performance, ease of implementation
and computational efficiency associated with three machine
learning techniques. A recently proposed method, Boosting, is
compared with two well-established methods, Neural Networks
and Fuzzy Logic, used as benchmarks. MWD data were acquired
from blast holes at an iron ore mine in Western Australia.
The boreholes intersected a number of rock types including
shale, iron ore and banded iron formation. Boosting and neural
networks presented the best performance overall. However, from
the viewpoint of implementation simplicity and computational
load, Boosting outperformed the other two methods.

Index Terms—Pattern recognition, boosting, neural networks,
fuzzy logic, measurement-while-drilling, geological modeling.

I. INTRODUCTION

DRILL parameters recorded while drilling have the poten-
tial to provide information regarding the lithology and

the strength properties of the rock formations being drilled.
Some studies have tried to find relationships between drilling
data and rock types [1]. However, few works have addressed
the application of machine learning techniques to estimate
geology from measurement-while-drilling (MWD) data. If the
geology can be characterized reliably from MWD data this
information can be used in many applications, from mining
operations to tunnel excavation and petroleum exploration.

There has been considerable interest over the past decade in
applying machine learning, artificial neural networks and fuzzy
systems in the areas of geology and petrophysics. Techniques
for petrophysical predictions and porosity estimation have
been proposed using neural networks, e.g. [2]. Fuzzy neural
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networks have also been applied for permeability estimation
from wireline logs, lithology discrimination from well logs
and lithology identification [3]. A new and powerful tech-
nique which could be used for the estimation and analysis
of geoscience data is the boosting algorithm [4]. We have
investigated LogitBoost, a Boosting variant, which can han-
dle multiclass problems and also provides class probability
estimates as output. To the best of our knowledge, this is the
first study reporting the applicability of LogitBoost for rock
recognition from MWD data. This study also investigates two
other methods: neural networks and fuzzy systems. Neural
networks have been investigated for providing state-of-the-art
solutions for many problems. Fuzzy systems present a coherent
framework to handle uncertainty and noisy inputs which are
appealing for the rock recognition problem. There are many
factors that influence the classification accuracy based on
sensor measurements. Since machine learning algorithms may
behave differently on specific kinds of data, a comparative
study of different approaches is necessary to provide a better
understanding of the problem.

This paper investigates the application of boosting, neural
network and fuzzy logic to analyze drill performance data ac-
quired from blast holes in an iron ore mine located in Western
Australia. The MWD data used as input was composed of 12
measurements which include: bit pressure, rotation pressure,
pull-down pressure, pull-down rate, head speed; along with
seven pressure transducers recording: feed down, feed up,
reverse rotation, forward rotation, rotation relief, feed relief
and hold back. Four rock types were considered as the target
labels of the machine learning classifiers including: iron ore
zones A and B, banded iron formation (BIF), and shale. The
main objectives and contributions of this study are:

• To classify MWD data into rock categories autonomously,
• To investigate a recently proposed algorithm, LogitBoost,
• To evaluate the performance of different machine learning

techniques.

II. METHODOLOGY

In this study, machine learning techniques are used for
supervised learning of classifiers. The goal is to construct a
classifier that can correctly predict a label sequence given
a new input sequence. Here, the output classes are rock
labels and inputs are drilling plant conditions. This section
summarises the basic concepts of the classification algorithms
tested.
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A. Boosting

Boosting has become popular because many empirical stud-
ies show that it tends to yield lower classification error rates
and is more robust than competing methods when it comes
to overfitting [10]. Boosting is a machine learning technique
for supervised classification that employs a combination of
“weak” simple classifiers to produce a powerful “commit-
tee” [5]. A weak learner is defined to be a classifier which
is slightly better than random guess. The method consists of
iteratively learning weak classifiers to produce a final strong
classifier. Each weak classifier receives a weight representing
its relative importance to the overall ensemble. The learning
procedure is performed in a greedy manner by adding one
weak classifier at the time, trained on misclassified data points
from the previous iteration.

The resulting committee is a classifier that provides a non-
linear combination of input features. Boosting is thus more
powerful than conventional linear classifiers, e.g. linear dis-
criminant analysis, and competitive with state-of-the-art non-
linear classifiers, e.g. neural networks. In addition, boosting
optimizes a criterion equivalent to the binomial log-likelihood
instead of the more commonly used mean squared error.

The most commonly used version of boosting is AdaBoost
(from adaptive boosting). AdaBoost is well suited to solve
binary class problems. In this study, however, there are more
than two rock classes. While there are several methods to ex-
tend AdaBoost to handle the multiclass case, we implemented
a version of boosting named LogitBoost which can handle
multiclass problems directly. LogitBoost fits additive logistic
regression models by stagewise optimization of the maximum
likelihood [6]. It optimizes the maximum likelihood through
adaptive Newton steps.

B. Artificial Neural Networks

Among the several architectures of neural networks, the
multilayer perceptron (MLP) network is the most popular due
to the fact that it is capable of approximating any function
to arbitrary accuracy, given a sufficient number of hidden
units [7]. The MLP network can be trained using the back-
propagation algorithm, which propagates the error backwards
through the network and adjusts the weights during a number
of epochs. Adding more hidden layers and neurons increases
the non-linearity and complexity of the model and may lead
to the overfitting, i.e., the model performs well on the training
samples and poorly on the test samples.

The MLP training may be trapped in local minima depend-
ing on the weights’ initialization conditions. Several MLP
networks were trained and the one presenting best perfor-
mance was retained. Unfortunately, the MLP network does
not provide class probability estimates as LogitBoost does.
The alternative architecture Probabilistic Neural Networks did
not perform well in our experimental data set.

C. Fuzzy logic systems

The nature of geological data is not precise and there is
always uncertainty and error. Fuzzy systems are well suited to
deal with the uncertainty in data analysis. A fuzzy inference

TABLE I
DEFINITIONS OF ACCURACY, PRECISION AND RECALL

Metric Formula

Accuracy (TP + TN) / (TP + TN + FP + FN)
Precision TP / (TP + FP)

Recall TP / (TP + FN)

TP (True Positive); FN (False Negative); FP (False Positive); True Negative (TN)

system (FIS) provides a formulation between input and output
data using fuzzy logic. The Takagi-Sugeno and Mamdani
methods are the two main types of FIS [8].

The formulation between inputs and outputs is performed
through a set of fuzzy if-then rules. Normally, fuzzy rules
are extracted through a fuzzy clustering process. Subtractive
clustering is one of the effective methods for constructing a
fuzzy model. The effectiveness of a fuzzy model is related
to the search for the optimal clustering radius which is a
controlling parameter for determining the number of fuzzy if-
then rules. Fewer clusters might not cover the entire domain,
and more clusters (resulting in more rules) can complicate
the system behavior and may lead to lower performance. It is
necessary to optimize this parameter for construction of fuzzy
model.

Depending on the case study and nature of the data set
some of these techniques may present better performance than
others. FIS and ANN have been applied successfully to solve
many problems in geology and petrophysics. Nevertheless,
their performance needs to be compared to more recently
proposed algorithms, such as boosting, in order to decide
which method produce the best model for specific data types,
such as MWD data. Boosting has less parameters to tune and
is thus faster to optimize, however its performance has not
been tested as widely on real data sets. Moreover, boosting
is designed for solving classification problems (outputs are
discrete classes), whereas FIS and ANN can be easily applied
for both classification and regression (outputs are continuous
data) problems.

III. EXPERIMENTAL RESULTS

For measuring the performance of the algorithms on unseen
data, the k-fold cross-validation method was applied using a
“leave-one-borehole-out” approach, i.e., all sections from one
borehole are left out during training. Evaluation metrics for
the classifier performance were carried out through calculation
of the accuracy, precision and recall (also called sensitivity).
As described in Table I, precision is the percentage of positive
predictions that are correct. Recall is the percentage of positive
labeled instances that were predicted as positive. Accuracy is
the percentage of predictions that are correctly classified.

In this study, we have used binary decision trees as weak
learners. The only parameter of the LogitBoost algorithm
that needs to be specified is the number of weak learners.
The LogistBoost algorithm was run 300 times, progressively
increasing the number of weak learners from 1 to 300. The
variation of accuracy, recall and precision versus the number
of weak learners for the first 100 trials is shown in Fig. 1.
According to this experiment, running LogitBoost with 25
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Fig. 1. Accuracy, recall and precision versus number of weak learners,
optimizing LogitBoost model parameter. After adding more than 68 weak
learners similar results are obtained

weak learners provides the highest overall accuracy (78.4%).
It is noticeable that the overall accuracy of the estimation after
68 trials is similar and increasing the number of weak learners
would result in a similar accuracy. This shows the resistance
of boosting to overfitting. 25 weak learners were therefore
considered to be the best solution. The running time is fast
and the accuracy is the highest among 1 to 300 weak learners.

For the MLP, the parameters that need to be specified are
the number of hidden layers, the number of neurons in the
hidden layers, the transfer functions, the training function and
the training epochs. Input data was normalized between -1
and 1. As with LogitBoost, cross-validation was employed
to measure the performance. In order to prevent overfitting,
the data (after omitting the cross-validation test hole) was
divided into two parts including 80% for training and 20%
for validation. This procedure is known as early stopping,
because the training is stopped when the performance on
the validation data set starts to deteriorate. This validation
data set used for training should not be confused with the
cross-validation data used to generate the statistical results.
Constructing several MLP network models using trial and
error showed that increasing the number of hidden layers and
hidden layer neurons, increases the complexity of the model
and affects its predictive performance. Moreover, there is a
significant increase in computational time that does not occur
with boosting. Thus, we used a network architecture with one
hidden layer. Accuracy, recall and precision metrics versus
number of neurons in the hidden layer is shown in Fig. 2.

For TS-FIS model a subtractive clustering method was used
for extraction of clusters and fuzzy if-then rules [9]. Searching
for the optimal clustering radius was done by performing the
clustering process several times and gradually increasing the
clustering radius from 0.005 to 1 (with 0.005 intervals). Thus,
200 fuzzy models with different numbers of if-then rules were
established. The accuracy, precision and recall of the fuzzy
models versus clustering radius are shown in Fig. 3. This
shows that choosing the value of 0.155 for the clustering
radius is associated with the highest accuracy (74.1%) and
that this generates 13 fuzzy clusters for each of the 12 input
drilling data types. The TS-FIS model’s membership functions
(clusters) constituted a 12 by 13 matrix, i.e., for each of the 12
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Fig. 2. Accuracy, precision and recall versus number of hidden layer neurons,
optimizing neural network model parameter. Using 11 neurons in the hidden
layer provides the highest accuracy
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Fig. 3. Accuracy, recall and precision versus clustering radius, optimizing
clustering radius of fuzzy logic system

MWD input data, 13 clusters were generated, resulting in 156
rules. Each cluster represents a fuzzy if-then rule and each
rule has a partial impact on the output (rock classes). The
closer a given input is to the “if” part of the rule the more the
“then” part will be influenced. This implies that some ranges
of the input MWD data have greater importance for the output
rock class. By passing a row of the inputs MWD matrix from
the FIS, its related MFs are affected by each rule. Because
a rule’s antecedent has more than one part, the fuzzy “and”
operator is applied to obtain a rule that represents the result of
the antecedent for that rule. Applying fuzzy operators gives a
value to the antecedent of each rule and the output membership
function is then truncated by this value. Then, outputs of each
rule that fit into a fuzzy set are combined into a single fuzzy
set (aggregation). Finally, FIS uses a weighted average method
(defuzzify) for the resulting rock label which is discrete.

This study utilized data from blast holes in a Western
Australian iron ore mine, Fig. 4. The site was chosen because
down-hole geological conditions were expected to vary. 28
holes 12 m deep were drilled at 3 m spacings with the drill
in percussion mode. The holes intersected a number of rock
types including shale, zones of enriched iron ore and banded
iron formation (BIF). A geological model through the holes
1 to 28 used to train the algorithms is shown in Fig. 5. The
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Fig. 4. Map showing location of the blast holes in the study area (brown
round dots)
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Fig. 5. A geological section through holes 1 to 28

geological interpretation is a challenging procedure involving
geophysical, chip and core logging. The inherently subjective
nature of this interpretation adds to the complexity of training
a model to estimate the geology from MWD data.

Estimated rock types for the 28 blast holes using Logit-
Boost, MLP network and FIS are shown in Fig. 6, 7 and 8,
respectively. The performance calculations for the estimated
rock types using the three techniques are shown in Table II.
In this experiment, the overall accuracy of LogitBoost model
(78.4%) is better than that of the MLP network (77.8%) and
the FIS (74.1%). Precision of the MLP network (78.7%) is
higher than the LogitBoost (78.0%) and the FIS (74.8%). From
the recall point of view, the LogitBoost model performs better
than the MLP network and FIS models (79.3%, 78.5% and
74.9%, respectively).

IV. DISCUSSION

The analysis of MWD parameters using machine learning
techniques indicates that the mechanical measurements pro-
duce a response corresponding to changes in rock strength
which can reveal changes in lithology. For example, the
strength of the banded iron formation is greater than for the
iron ore zones which in turn is greater than for the shales. It
is also important to understand the relationship between a set
of inputs and the resulting outputs of the machine learning
algorithm. One approach is to rank the inputs in order of
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Fig. 6. Estimated rock types for 28 blast holes using LogitBoost
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Fig. 7. Estimated rock types for 28 blast holes using neural network

relevance to the classification; depending of the algorithm, a
rank can be obtained directly from its parameters (weights).
A different approach is provided by Boosting, which naturally
perform feature selection as part of the learning procedure. It
is also clear that drilling performance may not be the same
for all holes, due to changes in drill characteristics and bit
wear. These variations can add complexity to the analysis.
However, the algorithms should be able to overcome those
minor changes.

Neural networks are affected by overfitting. In our experi-
ments, overfitting was avoided in the MLP network by using
early stopping with a validation data set. In Boosting, this was
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Fig. 8. Estimated rock types for 28 blast holes using fuzzy logic
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TABLE II
COMPARISON OF RESULTS OF ROCK RECOGNITION USING LOGITBOOST,
MULTILAYER PERCEPTRON NETWORK AND FUZZY INFERENCE SYSTEM

Method Metric BIF Iron Ore Iron Ore Shale
(Zone A) (Zone B) Total†

Accuracy 0.932 0.875 0.890 0.825 0.784
LogitBoost Precision 0.836 0.733 0.730 0.821 0.780

Recall 0.898 0.846 0.717 0.712 0.793

Acuracy 0.936 0.850 0.905 0.820 0.778
MLP Precision 0.842 0.682 0.824 0.800 0.787

Recall 0.912 0.816 0.678 0.724 0.785

Accuracy 0.928 0.809 0.862 0.815 0.741
FIS Precision 0.817 0.600 0.704 0.869 0.748

Recall 0.926 0.849 0.571 0.649 0.749

† Best total accuracy, and best precision and recall for each class are highlighted in
bold

not necessary, even models using a higher number of weak
learners did not degrade performance severely.

FIS results comparing to MLP and Logitboost show more
noise in the estimations, see Fig. 6–8. There is a layer of
shale in the boundary between BIF and iron ore Zone B in the
ground reference. MLP network and LogitBoost have detected
this layer even with over or under-estimations whereas the FIS
method misses this layer especially at the depths below 2 m.
The estimation results show maps of rock types having near-
vertical boundaries with each other, whereas in the geological
section the dip of the interfaces are between 45 and 70 degrees.
This apparent “trend” affecting all methods is a consequence
of the cross-validation approach and the characteristics of the
data set utilized in this study. Instead of separating the cross-
validation data randomly, we systematically selected one entire
hole and left it out for validation. The process was repeated
for each of the available holes. This approach was designed to
simulate the real scenario of having to estimate the geology of
new holes using models trained with previous holes. However,
when performing cross-validation, the training data had few
other holes for the algorithms to learn a correct model of the
boundaries. This issue might be minimized by the acquisition
of more training data involving boundaries.

The LogitBoost algorithm provided the highest statistical
accuracy overall, as can be seen in the results summarized in
Table 2. In addition, LogitBoost’s predicted rock classes in
contrast with the ground reference (Fig. 5) shows better qual-
itative results geologically compared to the other techniques.
There is more noise in the MLP and FIS predictions which
make it difficult to interpret the estimated lithology, especially
in the iron ore Zones A and B. Moreover, some techniques
are better than others for a particular rock type. This might
be related to the statistical relationship between the input and
output data and the nature of the specific method. In general,
the model parameters for each technique are very sensitive
to type and distribution of the input and output data sets.
Again, the results are also deeply affected by the selection of
cross-validation data. Validation data selected randomly from
areas with similar distribution as used for training may show
higher classification accuracies but might not have the same
generalization performance on newly acquired data. In the case
of MWD, the data will always be collected one borehole at

a time, thus the proposed cross-validation analysis provide
statistical results closer to what is expected of a deployed
classification system.

V. CONCLUSION

We have demonstrated the applicability of Boosting, Neural
Networks and Fuzzy Systems to predict rock types from MWD
data. The methods were compared using blast-hole data from
an iron mine in Western Australia. The different methods
were analyzed on the basis of their accuracy, simplicity of
implementation and computation time. In our experiments, all
methods were able to classify all rock types with over 80%
accuracy and the difference between the methods’ performance
was statistically small. Nevertheless, Boosting and neural net-
works presented slightly better overall performance followed
by fuzzy logic. Boosting was the easiest method to implement
and had the greatest computational efficiency.

Even though the implications of this study are specific to
the type of data used in the experiments, a similar behav-
ior can be expected when applying these methods to other
data sets with similar characteristics, e.g., multiple sensor
measurements from the same geology, noisy readings, and
varying sampling rates. The use of MWD data provides a
good estimate of the true physical parameters and has the
potential to significantly improve subsurface characterization.
The main requirement will be for training sets consisting of
MWD data and corresponding labels. The method will also
need to accommodate the use of different drills and changes
in the geological conditions.
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