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Abstract

Analysis of drill performance data provides a power-
ful method for estimating subsurface geology. While there
have been studies relating such measurement-while-drilling
(MWD) parameters to rock properties, none of them has at-
tempted to model context, that is, to associate local mea-
surements with measurements obtained in neighbouring re-
gions. This paper proposes a novel approach to infer geol-
ogy from drill measurements by incorporating spatial re-
lationships through a Conditional Random Field (CRF)
framework. A boosting algorithm is used as a local classi-
fier mapping drill measurements to corresponding geologi-
cal categories. The CRF then uses this local information in
conjunction with neighbouring measurements to jointly rea-
son about their categories. Model parameters are learned
from training data by maximizing the pseudo-likelihood.
The probability distribution of classified borehole sections
is calculated using belief propagation. We present exper-
imental results of applying the method to MWD data col-
lected from a semi-autonomous drill rig at an iron ore mine
in Western Australia.

1. Introduction

This paper presents work that is part of a larger project
aimed at developing a fully autonomous, remotely operated
mine. A main challenge of an autonomous mine is to build
representations of the in-ground geology to determine the
quantity and quality of the minerals of interest. The large
semi-autonomous drill rigs used for drilling blast holes in
mining are equipped with sensors which provide measure-
ments while drilling (MWD) of drill performance and op-
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eration. These are used to control and monitor the drilling
process. However, MWD data can also be used to relate
drill performance to the physical properties of the rocks be-
ing drilled. The idea of relating drilling measurements to
geotechnical properties of rocks has been considered be-
fore. Previous works focused on determining empirical in-
dices for rock strength based on drilling parameters [1, 2].
Statistical methods and machine learning techniques have
also been applied to relate MWD data and lithology [3-5].
However, previous methods do not model spatial dependen-
cies of nearby geology. With an accurate assessment of
lithology and rock strength, it is possible to determine op-
timal explosive load and distribution and to maximise the
recovery of the desired rock types.

This paper aims to address the problem of jointly esti-
mating the geology of neighbouring regions by exploiting
spatial dependencies. A classification method that takes
into account spatial relationships is proposed in the frame-
work of Conditional Random Fields (CRFs). CRFs are
undirected graphical models that are very powerful for mod-
elling relational information; spatial relationships and other
types of contextual information [6]. By directly modelling
the conditional probability of the hidden states given the ob-
servations rather than the joint probability, CRFs avoid the
difficult task of specifying a generative model for observa-
tions, as necessary in techniques such as Hidden Markov
Models or Markov Random Fields. As a result, CRFs can
handle arbitrary dependencies between observations, which
give them substantial flexibility in modelling complex de-
pendencies.

The proposed method applies the CRF framework in
conjunction with boosting algorithms to provide classifica-
tion. Boosting is a machine learning technique for super-
vised classification which has a sound theoretical founda-
tion and provides probability estimates for each class [7].
It has become very popular due to many empirical stud-
ies showing that it tends to yield smaller classification er-
ror rates and be more robust to overfitting than competing
methods such as Support Vector Machines or Neural Net-



works [8]. Boosting is used in this work to non-linearly
map drill measurements to the estimated geology. The set
of boosting classified labels are used by the CRF framework
to learn model parameters discriminatively. The resulting
CRF model specifies the spatial relationship between MWD
data.

2. Conditional Random Fields

CRFs were originally proposed for labelling relational
data [9]. CRFs directly model p(x|z); the conditional dis-
tribution over the hidden variables x given observations z,
where x = (X1,X2,...,Xp), and z = (21,29,...,2y).
The nodes x;, along with the connectivity structure repre-
sented by the undirected edges define a conditional distribu-
tion p(x|z) over the hidden states x. The edges in the graph
represent potential functions which map sensor measure-
ments to non-negative numbers. By using log-linear com-
binations of potential functions where local potentials are
denoted as h(x;,z;) and pairwise potentials as g(x;, x;),
the conditional probability distribution is written as:

K1
p(x|z) = %exp {ZZw,’jhk(zi,xi)Jr

i k=1 |
. (1)
Zzwggk(xiaxj) )
4,5 k=1
where w” is a vector with K| dimensions representing the

weights for local potentials, w7 is a vector with K5 dimen-
sions representing the weights for the pairwise potentials
and Z(z) is a normalising partition function. The computa-
tion of the partition function can be exponential in the size
of x, therefore exact solutions might be unfeasible. How-
ever, for the particular graphical model used in this paper
(linear chain), inference can be computed exactly in poly-
nomial time.

2.1. Model Learning

The goal of CRF parameter learning is to determine the
weights of the feature functions used in the conditional like-
lihood (1). CRFs learn these weights discriminatively by
maximizing the conditional likelihood of labelled training
data. While there is no closed-form solution for optimizing
(1), it can be shown that (1) is convex relative to the weights
w = {w",w9}. Thus, the global optimum of (1) can be
found using a numerical gradient algorithm. Unfortunately,
this optimisation runs an inference procedure at each itera-
tion, which can be intractably inefficient in our case.

We therefore resort to maximizing the pseudo-likelihood
of the training data, which is given by the sum of local
likelihoods p(x; | MB(x;)), where MB(x;) is the Markov
blanket of variable x;: the set of the immediate neighbours

of x; in the CRF graph [10]. Optimisation of this pseudo-
likelihood is performed by minimizing the negative of its
log, resulting in the following objective function:
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Here, the terms in the summation correspond to the neg-
ative pseudo log-likelihood and the right term represents a
Gaussian shrinkage prior with variance o2. Without addi-
tional information, the prior mean is typically set to zero.
In our approach, we use unconstrained L-BFGS [11], an ef-
ficient gradient descent method, to optimise (2). The key
advantage of maximizing pseudo-likelihood rather than the
likelihood (1) is that the gradient of (2) can be computed ex-
tremely efficiently, without running an inference algorithm.
Learning by maximizing pseudo-likelihood has been shown
to perform very well in different domains; see [12—14].

2.2. Inference

Once the parameters are learned, the model can be used
to estimate the labels of new unlabelled data. This step
is referred to as inference. Inference in CRFs can esti-
mate either the marginal distribution of each hidden vari-
able x; or the most likely configuration of all hidden vari-
ables x (i.e., MAP estimation), as defined in (1). Both tasks
can be solved using belief propagation (BP), which works
by sending local messages through the graph structure of
the model [15]. Each node sends messages to its neigh-
bours based on messages it receives and the clique poten-
tials, which are defined via the observations and the neigh-
bourhood relation in the CRF. BP generates exact results in
graphs with no loops, such as chains or trees.

3. CRFs for rock classification

The CRF model can be applied to jointly reason about
drilling measurements and neighbouring sections in the ax-
ial direction of a borehole by using a chain-like structure as
illustrated in Fig. 1. The i*" section of a borehole composed
of n sections is modelled as two interconnected nodes z;
and x; representing, respectively, the set of drill measure-
ments and the rock category. Drill measurements are con-
sidered observed variables and are represented by shadowed
nodes. Borehole section categories, which are not observed,
correspond to latent (hidden) variables and are represented
by clear nodes. The relationships between nearby borehole
sections are represented by edges connecting them.

The CRF model can employ arbitrary features functions
to describe any particular property of the data. The next
subsections describe the potential functions used in this
study.
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Figure 1. Graphical representation of the
CRF framework modelling the spatial asso-
ciation between neighbouring borehole sec-
tions. The observations z; correspond to drill
measurements and the latent variables z,, in-
dicate the corresponding classes.
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Borehole sections

3.1. Local features

In complex multimodal problems, instead of learning
the CRF model directly from the raw observations (MWD
data), it is advantageous to extract features from the data us-
ing a classification algorithm [14]. We used a boosting clas-
sifier to provide rock categories for each borehole section
from the drill measurements. Boosting provides a nonlinear
mapping from continuous variables to binary categories.

The most common version of boosting is AdaBoost [7].
The concept of AdaBoost is to train many weak learners on
various distributions of the input data and then combine the
classifiers produced into a single committee. We used a sin-
gle node decision tree, also known as a decision stump, as
weak learner [16]. Initially, the weights of all training ex-
amples are set equally, but after each round of the algorithm,
the weights of incorrectly classified examples increase. The
final committee or ensemble is a weighted majority combi-
nation of M weak classifiers and can be expressed as

M
hi(z) = sign (Z aiCﬁ%(z)) , 3)
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where «,,, quantifies the contribution of each respective
weak classifier C),. In order to extend AdaBoost to mul-
ticlass problems, a one-against-all approach was imple-
mented for each class k.

In addition, we implemented another boosting algorithm
called LogitBoost, which fits additive logistic regression
models by stagewise optimisation of the maximum likeli-
hood [17]. LogitBoost can handle the multiclass problem
directly.

Three ways of combining boosting and CRFs were in-
vestigated:

e The first uses the multiclass output of LogitBoost as
continuous features in a CRF;

e In the second, the AdaBoost’s weak learners for all
classes are used as features. The weak learners’ weight
vector « is reset and the CRF learns corresponding
weights instead;

e The third uses the AdaBoost’s binary output & for each
class k as features.

3.2. Pairwise features

A pairwise feature is used to associate measurements
from neighbouring sections. The function associating a
node z; to a neighbouring node z; is defined as

a if x; =x;
g(x~,x')—{ . / “)
8 b if x; # x;
where a and b are parameters learned from the data set.

4. Experimental Results

The effectiveness of the proposed method is evaluated
using MWD data collected from an iron ore mine located in
the Pilbara region of Western Australia. To provide train-
ing data for the algorithms, the drilled holes were tested us-
ing geophysical sensors: calliper, natural gamma, magnetic
susceptibility and density (gamma gamma) logging tools.
The detailed geology, as shown in Fig. 3(a) was determined
by mine geologists using a combination of geological, geo-
physical, chip and core logs. Determining the detailed ge-
ology in terms of lithology, mineralogy and rock strength
is a complex task and requires interpretation of the avail-
able data. This subjective process creates uncertainty in the
training labels.

The algorithms were tested using k-fold cross-
validation. In each round of training, instead of taking a ran-
dom sample, all sections from one of the boreholes were left
out for validation while a model was learned using the re-
maining data. The average of the classification performance
over all validation holes was then calculated. This cross-
validation approach was devised to simulate the real-world
scenario of trying to estimate the geology of newly drilled
boreholes using a model learned from previous holes.

The performance of the models was evaluated by calcu-
lating accuracy and F-measure. Accuracy, for an individ-
ual class, is the ratio of correct predictions in the popula-
tion. F-measure is based on the harmonic mean of precision
and recall. Precision indicates how many classified samples
are correct and gives a measure of exactness. Recall, also
called sensitivity, indicates how many of existing class sam-
ples the model returns and gives a measure of completeness.
For multiple class problems, the overall performance can be
calculated by two different types of average: micro-average



and macro-average. Micro-average gives equal weight to
each sample whereas macro-average gives equal weight to
each category. Micro-averaged accuracy is equivalent to the
ratio of the number of correctly classified sections over the
total number of samples.

The number of weak learners of the boosting algorithms
can be determined experimentally. For comparison pur-
poses, in all experiments the boosting algorithms were com-
posed of 50 weak learners. Nevertheless, the boosting algo-
rithm is quite resilient to overfitting and we observed that
using more weak learners does not degrade performance
severely.

4.1. Estimating detailed geology from percussion
drilling

Drilling was conducted with a drill rig, shown in Fig. 2,
operating in percussion mode and using a vibration shock
absorber. In this experiment, a total of 12 drill mea-
surements were recorded for analysis: bit air pressure,
pull-down pressure, rotation pressure, pull-down rate, head
speed, feed down pressure, feed up pressure, reverse rota-
tion, forward rotation, rotation relief pressure, feed relief
pressure, and hold back pressure. The data set consists of 28
boreholes drilled in a straight line 3 m apart and to a depth
of 12m. The boreholes’ data are divided into 10cm sec-
tions. The measurements, taken at different sampling fre-
quencies, were re-sampled according to time stamp. Then,
the average was calculated from measurements of each cor-
responding section. The geology of the target area can be
categorised in four classes: banded iron formation (BIF),
shale, and iron ore zones A and B. The corresponding label
set is shown in Fig. 3(b).

Figure 4 shows an illustration of the geological sections
for all boreholes comparing the reference labels used for
model learning with the predictions of LogitBoost and the
CRF methods. A quantitative analysis of the algorithms’
performance is presented in Table 1, all the results are in
percentages. All algorithms are able to learn a model from
the available training area and to generalise the results to the
whole data set. The CRF approach presents a “‘smoothing”
effect which correlates better with the expected geology of
the area. All methods seem to have some difficulty in learn-
ing the sloped boundary between different mineral zones,
which might be a side effect of the way cross-validation was
performed and nature of the training data set.

4.2. Estimating simple lithology from rotary and
percussion drilling

For this experiment, 132 holes were drilled, 88 in ro-
tary and 44 in percussion mode, and 5 drill measurements
were recorded: bit air pressure, pull-down pressure, rotation
pressure, pull-down rate, and rotation speed. In this site,
detailed down-hole geophysical logs were not available, the
geological interpretation was performed by mine geologists

Figure 2. Terex Reedrill SKSS-15 drill rig, used
to collect data for the experiments.

based on assays and previous geological models. A sim-
ple labelling scheme was adopted assigning one label for an
entire hole. The geology of the drilled area presented three
classes of interest: shale, ore, and BIF. Table 2 presents the
numerical results of this experiment.

In our experiments, the CRFs using Logitboost outper-
formed the other approaches, providing better classification
performance than LogitBoost alone. The algorithms per-
formed well independent of the drilling mode. In the case
of LogitBoost, the inputs are multiclass and the CRF has to
simply associate neighbouring class labels. In the case of
AdaBoost, the CRF also has to combine the several binary
classifications provided by AdaBoost.

5. Conclusions

This work addresses the problem of incorporating spatial
information into rock classification from MWD data. We
have demonstrated the application of a CRF framework to
estimate geology using drill sensor measurements. Exper-
iments were conducted using real data collected by a pro-
duction drill rig from an open pit iron ore mine. The CRF
approach can provide an improvement in classification ac-
curacy and F-measure—of more than 10% in some cases—
compared to a simple boosting classifier. Drill performance
measurements were classified into multiple classes accord-
ing to the drilled rock characteristics.

Modelling spatial relationships is useful to exploit the
fact that local lithology can be highly homogeneous. The
proposed method associates data of nearby sections within
individual boreholes. Future work will consider relation-
ships between neighbouring boreholes.
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Figure 3. Geological interpretation of target region provided by mine geologists. Legend for (b) is
shown in Fig. 4(c). BIF and shale units are waste rocks. Zone A and B are ore zones.

Table 1. Results for 28 boreholes classified
into 4 categories

Table 2. Results for 132 boreholes classified
into 3 categories

Overall? Overall?

BIF ZoneA ZoneB Shale Micro Macro Shale Ore BIF Micro Macro

LB A 9451 87.70 89.14 81.95  76.65 88.32 LB A 88.84 82.99 88.55 80.19 86.79
F 86.97 76.50 67.78 7486  76.65 76.53 F 89.30 70.37 70.11 80.19 76.59

CRF@ A 94.66 89.05 90.52 82.58 7841 89.20 CRF@ A 94.47 96.83 95.38 93.34 95.56
F 87.63 79.29 71.72 7528  78.41 78.48 F 94.70 94.40 88.20 93.34 92.43

CRF A 96.36 83.99 90.40 78.84  74.80 87.40 CRF A 86.27 81.82 88.85 78.47 85.65
F 9128 66.67 69.64 73.08  74.80 75.17 F 87.19 68.31 68.59 78.47 74.70

CRE® A 96.20 86.41 91.21 83.49  78.66 89.33 CRF® A 91.23 88.85 93.73 86.90 91.27
F 9094 74.90 73.48 76.68  78.66 79.00 F 92.04 79.28 82.59 86.90 84.64

@ CRF with LogitBoost

b CRF with AdaBoost (reset decision stumps)

¢ CRF with AdaBoost

@ Qverall performance was calculated by micro-averaging and macro-
averaging for accuracy(A) and F-measure(F)
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