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Abstract— In this paper, we investigate a hyperspectral im-
agery data processing method to predict the sweetness and amino
acid content of green vegetal soybean crops. Regression models
based on neural networks were developed in order to calculate
the level of sucrose, glucose, and nitrogen concentration, which
can be related to sweetness and amino acid concentration of
vegetables. We demonstrate the method using hyperspectral data
of wavelengths ranging from the visible to the near infrared
acquired from an experimental field of green vegetal soybeans.
A performance analysis is reported comparing regression models
built using datasets pre-processed using the first and second
derivative analysis. The second derivative transformed dataset
presented the best performance overall. Glucose could be pre-
dicted with greater accuracy.

I. INTRODUCTION

Green vegetable soybeans (edamame, in Japanese) are a
popular appetizer or side-dish cultivated throughout East Asia
and Japan, where they are harvested while in the green
stage, and cooked and served in the pods [1]. The taste
of vegetables can be related to their sweetness and amino
acid contents [2]. Sweetness varies according to, among other
factors, sucrose and glucose concentration. Amino acids taste
sweet or delicious (umami) to humans, and its content can
be estimated by measuring nitrogen concentration. The non-
destructive and immediate prediction of sweetness and amino
acid content would provide useful information for farmers and
producers, facilitating crop selection and the determination of
the proper harvest time.

Spectroscopy of the near infrared region of the spectrum has
been used for performing analytical measurements in a variety
of applications, providing both qualitative and quantitative re-
sults on solids and liquids [3]. The determination of the flavor
quality of vegetables has been studied using near infrared
spectroscopy [4]. Conventional methods usually rely on fiber
optic spectrometers and utilize few wavelengths to perform
calculations of chemical contents in vegetables [5]. Calibration
methods commonly utilize multivariate mathematics and result
in a calibration equation, which is a linear combination of

spectral data [6]. Furthermore, sugar content measurement
methods that have been developed need to be performed
destructively on a fruit-by-fruit basis [7]. Considering those
limitations, conventional methods are not directly suitable for
sweetness and nitrogen prediction in leguminous crops, such
as green vegetable soybeans.

In the remote sensing field, sensors capable of acquiring
hundreds of narrow contiguous bands of information for
spectral signature analysis are referred to as hyperspectral
sensors [8]. Recent advances in sensor and lens technology for
hyperspectral imaging have improved their spatial and spectral
resolution while reducing the size and cost of the equipment,
adding up to the conventional spectroscopy the advantage of
simultaneous and accurate data acquisition of a wide sample
area. Hyperspectral sensors have been applied mainly for land
cover classification [9]. Nevertheless, applications for material
estimation are still challenging due to the low resolution of
conventional airborne hyperspectral data acquisition devices
which limit the amount of sample data [10].

In this paper, we investigate an artificial neural network
(ANN) based approach to model high-resolution hyperspectral
imagery data in order to non-destructively predict the sweet-
ness and nitrogen content in soybean crops. We conducted an
experimental performance analysis comparing regression mod-
els obtained using raw reflectance, first, and second derivatives
of reflectance spectra.

II. MATERIALS AND METHODS

The problem in which one tries to predict a dependent
variable (sucrose, glucose and nitrogen) by combining a
number of independent variables (reflectance spectral bands)
can be defined in statistics as a regression problem [11].
In spectroscopy, this problem can also be referred to as a
calibration problem. The calibration involves searching for
predictive relationships between spectral data and reference
values, using either laboratory standards, field standards, or
modeling [12]. Regression models are main tools used in
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spectrum calibration. ANNs have been widely applied as
regression models [13].

A data analysis scheme as shown in Fig. 1 is proposed.
The hyperspectral imagery data is initially preprocessed and
prepared to serve as input data for the regression analysis.
ANN regression models were obtained using input datasets
processed with different methods of hyperspectral data trans-
formation, providing a comparative performance analysis. The
algorithms assessed were the first and second derivative anal-
ysis.

Ground truth data was collected to provide the actual
concentration of interesting chemical substances in labeled
regions of the crop field, each one corresponding to a different
variety of soybean. For each labeled region, the concentration
values of sucrose, glucose, and nitrogen were measured in
the laboratory using liquid chromatography of freeze-dried
soybean samples. The actual contents measurements were used
as target data for the supervised training of ANN regression
models.

A. Hyperspectral Imagery Data

We utilized a hyperspectral sensor coupled with a CCD
camera and a computer controller mounted on the tip of a crane
in order to allow data acquisition at a suitable spatial resolution
[14]. The crane based system presents several advantages for
agricultural data analysis of localized crop fields compared to
satellite or airplane based systems, e.g., higher data accuracy
and spatial resolution, and reduced atmospheric effects. The
hyperspectral data comprises the visible to the near-infrared
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Fig. 1. Diagram for the ANN-based Hyperspectral data processing

range of the spectrum (400nm-1000nm) with 5nm of resolu-
tion, producing 121 bands as output [15].

The hyperspectral imaging device captures the radiance
from the sample. The raw radiance data needs to be converted
to reflectance by using a standard reference white board.
Another auxiliary data is the dark current, measured by
keeping the camera shutter closed at the moment of the data
acquisition. The conversion observes the following equation

Iref =
Iraw − Idark(λ)

Iwhite(λ) − Idark(λ)
, (1)

where Iref is the calculated reflectance value; Iraw is the raw
data radiance value of a given pixel; and Idark and Iwhite are,
respectively, the dark current and the white board radiance for
each spectral band λ.

In order to reduce or attenuate not only the spatial but the
spectral noise of the dataset, a special averaging filter cube was
designed. The filter is applied on the hyperspectral dataset as
a 3D cubic window, in which each pixel is assigned the mean
value of its surrounded pixels, including neighboring spectral
bands. This filter can be formulated as

y[n1, n2, n3] =
1

D3

D−1∑
i=0

D−1∑
j=0

D−1∑
λ=0

I[n1−i, n2−j, n3−λ], (2)

where [n1, n2, n3] refer to the current window position at the
hyperspectral dataset, corresponding to [row, column, band];
D is the window size; and I is the raw pixel value.

After the reflectance correction, the areas in the hyperspec-
tral images of the crop field corresponding to the labeled
regions of different varieties of green vegetable soybeans
were then identified and separated manually.Image regions
containing vegetation were then identified using the normal-
ized difference vegetation index (NDVI), which is alleged less
affected by variations on the absolute value of the raw dataset
[16]. The NDVI index is calculated for each pixel of the
spatial plane of the hyperspectral dataset, and the vegetation
corresponds to regions that present NDVI value greater than
a specified threshold. The NDVI equation is defined as

NDVI =
NIR − R

NIR + R
, (3)

where NIR and R are selected bands from the near infrared
NIR = I(λ ∼= 830nm) and red region R = I(λ ∼= 650nm)
of the spectra, respectively.

Additionally, the vegetation region of the hyperspectral
dataset was scanned for the presence of extreme or discrepant
NDVI values (outliers), calculated according to Chebyshev
theorem. Mathematically, outliers are regions presenting value
outside the interval [x̄− 3s, x̄ + 3s] where x̄ is the mean, and
s is the standard deviation.

B. Derivative Analysis

Derivative analysis of reflectance spectra has been used
in hyperspectral remote sensing and in analytical chemistry
to increase the estimation accuracy of target information
[17]. Derivatives are relatively less susceptible to variations
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in illumination intensity in the remote sensing field [18].
Nevertheless, a secondary effect of the derivative process is
that it accentuates the noise present in the data, thus the
necessity of a careful preprocessing phase to reduce the noise.

The derivative of hyperspectral data can be calculated by
finite approximation using suitable difference schemes. Given
a finite band separation ∆λ, the first derivative at wavelength
λv can be estimated as

dI

dλ

∣∣∣∣
v

≈ I(λu) − I(λv)
∆λ

, (4)

where ∆λ is a constant gap, constrained by ∆λ = λv − λu

and λv > λu.
The second derivative can be calculated from the first

derivative as follows

d2I

dλ2

∣∣∣∣
v

=
d

dλ

(
dI

dλ

)∣∣∣∣
v

≈ I(λu) − 2I(λv) + I(λw)
(∆λ)2

, (5)

where ∆λ is the same constant gap, and the constraints for the
calculation are ∆λ = λw −λv = λv −λu and λw > λv > λu.
The derivation interval was determined experimentally to stand
around 20nm.

C. Artificial Neural Networks

One of the most common kinds of ANN is the multilayer
perceptron (MLP) network, which provides a nonlinear model
that can, in principle, represent almost any function. The basic
MLP network architecture is composed of the input layer, one
hidden layer, and the output layer, sequentially interconnected
in a feed-forward way [19]. The outputs of one layer are fed
forward to the next layer through the network. The output of
the MLP can be expressed mathematically as

y = f(x) = Bϕ(Ax + a) + b, (6)

where x is the input vector; y is the output vector; A and
a are, respectively, the weight matrix and the bias vector of
the hidden layer; B and b are, respectively, the weight matrix
and the bias vector of the output layer; and ϕ is the activation
function.

A network architecture composed of 10 neurons in the
hidden layer is proposed, using the hyperbolic tangent sigmoid
as transfer function. The output layer is composed by only
one neuron, using a linear transfer function. The number of
neurons in the input layer is proportional to the number of
spectral bands, thus 121.

The training method implemented was the Levenberg-
Marquardt backpropagation, which experimentally has supe-
rior performance for regression problems [20]. Early stopping
is used to improve generalization. The training set is split into
a new training set, a validation set and a test set. The network
is evaluated on the validation set periodically during training.
Training is stopped when the validation error rate starts to
grow. The test set is not used during training. It serves only
to compare the models. For example, if the error of the test
set has a configuration different than that of the validation
set through a number of iterations, this may indicate a poor
division of the datasets.

D. Performance Evaluation Metrics

The performance of the regression models built using ANNs
was evaluated using two metrics [21].

1) Mean of Squared Errors (MSE): One measure of net-
work performance is the MSE between corresponding ele-
ments of the network response (prediction) and the target
(ground truth measurements). The MSE is defined by

MSE(y) =
1
N

N∑
i=1

(yp − ym)2, (7)

where N is the total number of prediction comparisons, and
p and m indicate, respectively, the predicted and measured
values.

2) Correlation Coefficient (R-value): (2) Another way of
evaluating network performance is to calculate R-value be-
tween the network response and the target. As the strength of
the relationship between the predicted values and measured
values increases, so does the correlation coefficient value. A
perfect prediction would give a coefficient of 1. The R-value
is calculated by

R(y) =
C(yp, ym)√

C(yp, yp).C(ym, ym)
, (8)

where, C is the covariance matrix.

III. RESULTS

The hyperspectral imagery dataset sample consisted of di-
verse varieties of green vegetable soybeans of an experimental
crop field at Yamagata University, Japan. The hyperspectral
data was acquired in the middle of the summer on a sunny day,
from noon to early afternoon. A total of 13 different varieties
of green vegetable soybeans were analyzed.

To account for the stochastic nature of the MLP network
training, each regression model was tested over 50 independent
runs, each time starting the weights of the network with
random values generated by a different random seed. Only
the best networks were kept, i.e., the networks that present
lower MSE value and higher R value. Table I summarizes
the results of the best regression models for each chemical
substance based on each different dataset: the whole of raw
reflectance wavelength bands, the first derivative transformed
data and the second derivative transformed data.

A linear regression analysis was performed between the
network predicted output and the ground truth measurements
for the best regression model of each chemical substance.
The results are shown in Fig. 2 for the second derivative
transformed datasets of sucrose, glucose, and nitrogen.

IV. CONCLUSION

The ANN-base approach provided a reasonably accurate
regression model for the prediction of sucrose, glucose and
nitrogen content using hyperspectral imagery data. In the range
of wavelengths investigated, greater accuracy was obtained for
the calculation of glucose, followed by sucrose and nitrogen.
The derivatives contributed to a slight and gradual improve-
ment on the ANN model prediction accuracy. Therefore, the
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Fig. 2. Regression analysis between the ANN prediction and the measured ground truth. The cross markers indicate the corresponding observations, and the
best linear fit of the data given by the network model is shown by the solid line.

TABLE I

ANN REGRESSION MODEL RESULTS

Chemical Dataset MSE R

Whole 0.075 0.849

Sucrose 1st Deriv. 0.069 0.866

2nd Deriv. 0.055 0.901

Whole 0.062 0.893

Glucose 1st Deriv. 0.045 0.924

2nd Deriv. 0.039 0.934

Whole 0.224 0.736

Nitrogen 1st Deriv. 0.179 0.799

2nd Deriv. 0.158 0.825

use of the second derivative transformed dataset is rather
recommended instead of the raw dataset. The ability of the
ANN-based regression model to provide an accurate prediction
to other seasonal conditions needs to be verified in further
experiments.

The proposed method permits to exploit the capabilities of
high-resolution hyperspectral imagery data for estimating the
sweetness and amino acid concentration of leguminous crops
before harvesting and without interfere in the growth process.
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