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ABSTRACT

This paper investigates the application of artificial neu-

ral networks for classifying grass species from hyperspec-

tral image data. High-resolution spatial and spectral data of

localized fields were collected using a hyperspectral sensor

mounted on the tip of a crane. The hyperspectral datasets are

processed using normalization and second derivative in order

to reduce the effect of variations in the intensity level of re-

flectance and to improve the classification accuracy and gen-

eralization performance of the neural network-based model.

An experimental comparison of the pre-processing methods

shows that the best classification accuracy is obtained by the

second derivative transformed dataset. Normalization, and a

combination of both methods, did not improve accuracy of

the neural network models of our experimental datasets more

than simple raw reflectance.

Index Terms— Hyperspectral, image classification, neu-

ral networks, normalization, second derivative

1. INTRODUCTION

Spectral signature analysis of hyperspectral image data has

been applied mainly for land cover classification [1]. Nev-

ertheless, applications for material identification are still

difficult to be realized, especially when targets present high

spectral similarity [2]. Conventional land cover classification

methods allow easy distinction among different materials,

e.g., bare soil, vegetation and minerals, however the identi-

fication of different varieties of the same class of material,

e.g., identifying grass vegetation species, is still a challenging

task. In the case of high-resolution hyperspectral data of lo-

calized areas, variations in intensity level of reflectance due to

light scattering characteristics of leaves and noise introduced

during data acquisition make the classification particularly

difficult.
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Japan is an island country composed predominantly of

mountains. With limited land and grass, farmers commonly

rear animals in barns and feed them forage and grain that are

imported. Grass is an important nourishment source for the

animals, and rearing and feeding methods have a direct im-

pact on cattle’s health and on meat quality. While the de-

velopment of strong, fast-growing, nutritious grass species is

being pursued by agricultural researchers, e.g. [3], the man-

agement of grass pastures and land use could benefit from

developments in remote sensing sensor technology.

In this paper, we investigate the application of artifi-

cial neural network (ANN) models to classify hyperspectral

image data of different grass species in northeast Japan.

Two data pre-processing methods, normalization and second

derivative, were implemented aimed at reducing the effect of

variations in reflectance’s intensity level and improving the

performance of the ANN-based model. A comparison of the

pre-processing methods, including a combination of both, is

presented.

2. METHODOLOGY

Firstly, the raw data captured by the hyperspectral sensor is

converted to reflectance using a “white” standard reference.

Then, a three-dimensional low-pass filter is applied to atten-

uate the dataset’s spatial and spectral noise. As an example,

the resulting spectral curves of four different grass samples

are shown in Fig. 1 (a).

Spatial location of vegetation in the hyperspectral images

is identified using the normalized difference vegetation index

(NDVI) [4]. Next, the hyperspectral data is transformed using

normalization and derivative analysis.

2.1. Normalization

Normalization has been proposed to reduce the effect of vari-

ations in absolute reflectance values and highlight the spectral

shape information [5].

Assuming that the hyperspectral data can be expressed as
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(a) Raw reflectance (b) Normalization

(c) Second derivative (d) Normalization and second derivative

Fig. 1. Spectral curves of samples from four different species of grass.

a matrix of reflectance values R, composed of n spectral im-

ages R(λ), (λ = 1, . . . , n). The normalization equation is

defined as

R̄(λ) =
R(λ)

μ
, (1)

where μ =
1
n

n∑
λ=1

R(λ). The normalized spectra of four grass

samples are shown in Fig. 1 (b).

2.2. Second Derivative

Derivatives are considered to be theoretically less suscepti-

ble to variations in illumination intensity in the remote sens-

ing field. The second derivative has been used in hyperspec-

tral data analysis to increase the estimation accuracy of ANN

models [6]. Nevertheless, the derivative process may also ac-

centuate the noise, thus the necessity of using filters to reduce

the noise in the datasets.

The derivative of hyperspectral data can be calculated by

finite approximation [7]. Given a band resolution Δλ for the

derivatives centered at wavelength λv , i.e., a finite separa-

tion between adjacent bands, the second derivative is approx-

imated using the following equation

d2R

dλ2

∣∣∣∣
v

=
d

dλ

(
dR

dλ

)∣∣∣∣
v

≈ R(λu) − 2R(λv) + R(λw)
(Δλ)2

. (2)

Furthermore, this formulation of the second derivative

must obey the constraints that Δλ = λw − λv = λv − λu

and λu < λv < λw. The derivation interval was set to 20 nm,

which is a reasonable value determined after preliminary ex-

periments. The second derivative transformed spectra of the

four grass samples are shown in Fig. 2 (c).

Another dataset is generated by combining both methods,

normalization and second derivatives. The raw reflectance

data is normalized first, and, after that, the second derivative is

applied. This is achieved by replacing R(λ) values in Eq. (2)

by R̄(λ) calculated from Eq. (1). The resulting spectra for the

four grass samples are shown in Fig. 1 (d).

Dark pixels and outliers are typically noisy and may af-

fect both the normalization and derivatives. We defined dark
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(a) RGB visualization (b) NDVI image (c) ANN classification

Fig. 2. Sample area containing four different grass species, as indicated by the small white labels in (a). The training data for

the ANN were randomly taken from selected areas of each grass species, as highlighted by the rectangles in (a).

pixels as spatial points with mean reflectance less than 15%

of the maximum possible reflectance. Outliers are calculated

from the NDVI value using Chebyshev’s inequality. To pre-

vent negative effects on the subsequent ANN training, pixels

that fall in either case were excluded from the training data.

2.3. Artificial Neural Network

The ANN implemented is a multilayer perceptron (MLP) net-

work. The proposed architecture is a feed-forward network

composed of three layers: one input layer, one hidden layer,

and one output layer. The method employed to train the MLP

is the scaled conjugate gradient algorithm [8].

The training data is composed of pixels randomly se-

lected from regions where the variety of grass is known. A

“mask” is also utilized to mask out undesirable pixels—non-

vegetation, as determined by a NDVI threshold, dark pixels

and outliers—preventing them from being selected as training

data.

The input data is then normalized to fall in the interval

[−1, 1]. In order to provide better generalization performance,

an early stopping method is used. As preparation for the ANN

training, the sample dataset is divided into training, validation

and test datasets, 50%, 25%, 25%, respectively.

3. EXPERIMENTAL RESULTS

Hyperspectral data was collected using a crane-mounted hy-

perspectral imaging sensor, which acquires high-resolution

spatial and spectral data. Sample data of 11 different grass

species were collected during the summer of 2007, around

noontime, at Tohoku University’s Field Science Center lo-

cated in Miyagi Prefecture, Japan. The hyperspectral data

comprises the visible (400 nm) to the near-infrared (1000 nm)

range of the spectrum with pixel resolution of approximately

5 mm per pixel. Figure 2 shows part of the experimental grass

field from which samples were taken. An RGB visualization

is shown in Fig. 2 (a). Additionally, A visualization of NDVI

levels, as gray scale image, is shown in Fig. 2 (b).

The hyperspectral data was processed using a Pentium 4,

3.8 GHz computer with 2 GBytes of RAM. The algorithms

were implemented in Matlab. Each MLP network was tested

over several independent runs, each starting with random neu-

ral network weights. The network presenting the best per-

formance was retained, i.e., model with lower error (mean

squared error) and higher classification accuracy (percentage

of correctly classified pixels overall). Table 1 shows the nu-

merical results of the best trained ANN, and a summary of the

training.

Figure 2 (c) shows an example of the application of the
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Table 1. Experimental results—comparison of pre-processing methods for neural network classification.

Best Trainingc

Dataset Accuracya Errorb Accuracy Error Epochs Time(s)

Raw reflectance 92.66 0.037 90.93 (1.4) 0.045 (0.007) 1026 (40) 403 (106)

Normalized 92.53 0.037 90.39 (2.0) 0.048 (0.01) 837 (172) 338 (104)

2nd Derivate 93.46 0.033 91.43 (3.5) 0.043 (0.018) 523 (54) 190 (50)

Norm. & 2nd Deriv. 91.9 0.041 90.68 (0.99) 0.047 (0.005) 591 (60) 204 (48)

cValues shown are the averages over several runs; standard deviation is shown in parentheses.
aGeneral classification accuracy of the best ANN model.
bMean squared error.

Table 2. Classification accuracy of the best ANN model, for

each class of the sample area shown in Fig. 2 (c).

Class Accuracy (%)

1 99.66

2 89.58

3 91.68

4 92.92

trained ANN to classify hyperspectral image data. The result-

ing classification accuracy per class of the best ANN model

is shown in Table 2.

4. CONCLUSION

The ANN-based models provided an acceptable accuracy

performance to classify hyperspectral image data of the grass

samples in our experiments. A comparison of four different

datasets—raw reflectance, normalization, second derivative,

and normalization followed by second derivative—is pre-

sented.

In our experiments, the dataset transformed by second

derivative resulted in higher classification accuracy and, in

general, normalization did not improve classification perfor-

mance. Interestingly enough, the combination of the two

methods presented the worst performance of all datasets.

This may be due to noise introduced by the normalization

process that is being amplified by the second derivative, thus

offsetting the advantages of the latter.

Normalization is particularly interesting to facilitate

human-based assessment of spectral curves of plant sam-

ples. On the other hand, the second derivative is less intuitive

when used to manually compare spectra. Notwithstanding,

the second derivatives generally produce more accurate pre-

diction models based on ANNs. The proposed method per-

mits the application of high-resolution hyperspectral imaging

for identifying different grass species in the field without

interfering in the growth process.
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