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ABSTRACT

This paper investigates the performance of machine learning

methods for classifying rock types from hyperspectral data.

The main objective is to test the impact on classification er-

ror rate of calibrating the model’s output into class proba-

bility estimates. The base classifiers included in this study

are: boosted decision trees, support vector machines and lo-

gistic regression. The standard algorithm for some of these

methods provides a non-probabilistic, hard decision as out-

put. For those methods, posterior class probability estimates

were approximated by fitting a sigmoid function to the classi-

fier predictions. To perform multi-class classification, a one-

versus-all approach was used. The different methods were

compared using hyperspectral data acquired from ore-bearing

rocks under different environmental conditions. The calibra-

tion of class probabilities improved the overall performance

for almost all algorithms tested; an improvement of over 10%

was observed in some cases.

1. INTRODUCTION

Hyperspectral sensors acquire data in hundreds of nar-

row, contiguous bands at visible, near-infrared (NIR) and

shortwave-infrared (SWIR) wavelengths providing a pow-

erful tool for non-destructive analysis of remote samples.

Spectral signature analysis of hyperspectral data can be ap-

plied to classify samples into categories and produce land

cover maps [1]. The hyperspectral classification problem is

characterized by having a large number of spectral bands

(high-dimensional features, high correlation), various rock

categories (multiple classes), and small number of ground-

truth samples (limited training labels). Conventional land

cover classification methods allow easy distinction among

different materials, e.g., bare soil, vegetation and miner-

als [2]. However, there are still challenges in providing

robust and flexible hyperspectral classification algorithms,
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especially when targets present high degree of spectral sim-

ilarity and poor signal-to-noise ratio. Such targets pose a

difficult problem causing conventional spectral unmixing or

statistical analysis methods to perform poorly.

The timely characterization of geology using hyperspec-

tral sensors can be of enormous value for the mining industry,

despite the constraint that it only provides information from

the rock surface [3]. An accurate understanding of the geol-

ogy is important during several phases of the mining process,

from exploration to processing and reconciliation. Hyper-

spectral analysis can be particularly useful in open-pit mine

operations where the rocks of interest are exposed. It has the

potential to provide fast assessment of the identity and distri-

bution of minerals of interest on a mine bench, resulting in

more efficient mining and improving the end-product quality

and value.

In this paper, we investigate the effectiveness of calibrat-

ing class probability estimates from the output of machine

learning algorithms in improving the classification of hyper-

spectral data into multiple discrete categories. We investi-

gate three algorithms for supervised classification and some

of their variants: boosting (with decision trees), support vec-

tor machines (SVMs) and logistic regression. Experimental

results are presented using hyperspectral data of ore samples

collected from an open pit mine in Western Australia. The

hyperspectral data sets were acquired under different obser-

vational conditions to test the performance of the algorithms.

2. PROBABILISTIC HYPERSPECTRAL
CLASSIFICATION

Let us consider that the hyperspectral data is represented by

a vector xi ∈ �d comprising d spectral bands. The train-

ing set is composed of pairs 〈(x1, y1) , . . . , (xn, yn)〉 of n la-

belled examples, in which each instance i = {1, . . . , n} can

be assigned to a label y. The target label set can be defined

as yi ∈ {−1,+1}, for the binary classification problem, or,

in the multi-class case, by assigning each label to an integer

yi ∈ {1, 2, · · · , C} with the number of classes C ≥ 3.

In a probabilistic framework, the probability of a class C
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occurring is defined simply as P (y = C). The class prob-

abilities for all classes sum to one P (y = 1) + P (y =
2) + ... + P (y = C) = 1. If ahead of making any

measurements the classes are equally likely to occur, the

prior probabilities of class membership are equal P (y =
1) = P (y = C) = 1/C. The posterior probability

of class membership is then obtained from Bayes rule:

P (y = C |x ) = p(x |y = C)P (y = C)/p(x). We focus

our attention to discriminant approaches, i.e. methods that

assign classes based on posterior probabilities with no con-

sideration for the class conditional densities (or distributions)

which generate the measurement features.

Most classification algorithms give a hard decision as

output. Typically, a set decision threshold is applied on

the classifier response, neglecting the relative confidence

in the classification. Nevertheless, it is possible to esti-

mate posterior probabilities by using a sigmoid function to

map the classifier’s output f(x), before the hard decision is

made, into P (y = C |x ) [4]. The sigmoid model is calcu-

lated in a parametric form as follows: P̂ (y = C |f(x) ) =
1/(1 + exp (Af(x) +B)). The parameters A and B can be

calculated by minimizing the negative log likelihood using

Newton’s method with backtracking [5].

There are several schemes for coding and combining

the outputs of binary classifiers to solve the multi-class

problem [6]. The two most widely used strategies are the

one-versus-all and the one-versus-one approaches [7]. The

present study uses a one-versus-all approach which learns

a set of binary classifiers {f1, f2, · · · , fC}, where the c-
th class is assigned to the positive class, while the others

are assigned to the negative class. The prediction of the

set of binary classifiers is given by majority voting y∗i =
argmaxc=1,2,··· ,C {fc(xi)}. In the case of class probabilities

being estimated, a similar method using a winner-takes-all

scheme can be applied y∗i = argmaxc=1,2,··· ,C
{
P̂ (y = c|xi)

}
.

2.1. Boosting

Boosting is a machine learning technique for supervised clas-

sification that has become very popular due to its sound the-

oretical foundation, and also due to many empirical studies

showing that it tends to yield smaller classification error rates

and be more robust to overfitting than competing methods [8].

The idea of boosting is to train many “weak” learners on var-

ious distributions (or set of weights) of the input data and

then combine the resulting classifiers into a single “commit-

tee” [9]. A weak learner can be any classifier whose perfor-

mance is guaranteed to be better than a random guess. There

are many different variants of boosting algorithms. In this

study, we investigate Logitboost and GentleBoost [10]. Gen-

tleBoost is binary classifier that was designed to be more nu-

merically stable than the standard AdaBoost algorithm. Log-

itBoost provides multi-class classification by using a symmet-

ric multiple logistic transformation. Two types of weak learn-

ers were tested: single node decision trees (also called deci-

sion stumps), and 4-node decision trees.

2.2. Support Vector Machines

SVMs have been shown to be effective for nonlinear classifi-

cation, regression and density estimation problems. Particu-

larly for hyperspectral classification, several studies have re-

ported accurate, robust models using SVMs, which also bene-

fit from the sparseness of the solutions, e.g. [11]. SVMs were

introduced for the binary classification problem by fitting an

optimal separating hyperplane between the positive and neg-

ative classes with the maximal margin. The classical SVM

algorithm is based on convex optimization theory, typically

quadratic programming involving inequality constraints. An

alternative solution for this problem is the sequential mini-

mal optimization (SMO) algorithm [12]. SMO is an effi-

cient approximation method that scales better than the orig-

inal quadratic programming formulation. It has been reported

to perform well in a number of different data sets. Two dif-

ferent types of kernel functions were tested: Gaussian radial

basis function (RBF) and d-th degree polynomial.

2.3. Logistic Regression

Logistic regression is a discriminative method for classifica-

tion, despite its name. It is a linear model that can naturally

provide posterior probability estimates. In theory, logistic

regression is more numerically robust than linear discrimi-

nant analysis since it relies on fewer assumptions [13]. For

multiclass classification, posterior probabilities are calculated

through a multiple logistic transformation using a softmax

function, much in a similar fashion as used by LogitBoost.

Despite their limitations, linear models like logistic regres-

sion are surprisingly competitive with far more sophisticated

methods and are particularly appropriate for high dimensional

feature spaces such as hyperspectral data sets.

3. EXPERIMENTS

For the empirical analysis of the algorithms, we collected rep-

resentative rock samples from an iron ore mine located in the

Pilbara region of Western Australia. This study includes both

whole-rock samples and cores acquired using a diamond drill.

The samples comprise several rock types and ore minerals

typically found in that region, specifically: banded iron for-

mation (BIF), martite, goethite, kaolinite (clay), and mixtures

of these.

Data were acquired using an ASD (Analytical Spec-

tral Devices Inc.) field spectrometer. The sensor acquires

hyperspectral data from the visible (350 nm) to the SWIR

(2500 nm) regions of the spectrum at nominal 1 nm intervals.

The data sets were downsampled to 2 nm intervals on the vis-

ible region and to 6.5 nm in the SWIR in order to approximate

the typical spectral resolution of commercially available hy-

perspectral imaging systems; thus, the total number of bands

was reduced to 429.
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Table 1. Results of out-of-sample experiment

LogisticReg LogitBoost-S LogitBoost-DT GentleBoost-S GentleBoost-DT SVM-Poly SVM-RBF

Acc 0.1846 0.4782 0.4709 0.3721 0.3823 0.5581 0.5945
Standard F1 0.1340 0.4778 0.4844 0.3621 0.3698 0.4936 0.5519

AUC 0.4587 0.7956 0.7849 0.6608 0.6697 0.7609 0.7844

Acc – 0.4477 0.4666 0.4244 0.4273 0.6541 0.7369
Probabilistic F1 – 0.4560 0.4810 0.4064 0.4350 0.6102 0.7001

AUC – 0.8127 0.8065 0.7783 0.7789 0.8777 0.9016

Table 2. Results of k-fold cross-validation experiment

LogisticReg LogitBoost-S LogitBoost-DT GentleBoost-S GentleBoost-DT SVM-Poly SVM-RBF

Acc 0.7162 0.8461 0.8417 0.7500 0.8013 0.7882 0.8832
Standard F1 0.6427 0.8319 0.8246 0.7154 0.7585 0.6976 0.8455

AUC 0.8579 0.9685 0.9708 0.8527 0.8831 0.8471 0.9423

Acc – 0.8133 0.8515 0.8264 0.8592 0.8286 0.9301
Probabilistic F1 – 0.8025 0.8482 0.8189 0.8485 0.8029 0.9389

AUC – 0.9653 0.9643 0.9662 0.9710 0.9853 0.9928

The hyperspectral data sets were collected under different

illumination and physical conditions, in an attempt to repro-

duce in a controlled manner some of the environmental char-

acteristics of a mine site [14]. Specifically, five sets of hy-

perspectral data were compiled: a) core samples in artificial

illumination (halogen lamp); b) core samples in full sunlight;

c) core samples in full sunlight from different angles; d) core

samples in shade; e) whole-rocks in artificial illumination.

The experiments were divided in two parts. The first was

an out-of-sample analysis. Classification models were trained

using hyperspectral data only from core samples under artifi-

cial illumination and then evaluated on the other data sets,

cases (b)–(e) above. In the second part, the classification al-

gorithms were evaluated using k-fold cross-validation, with

k = 8. The data sets for cross-validation were selected using

stratified random sampling. For each algorithm, the model

parameters were optimized to maximize the overall perfor-

mance on each case. The metrics chosen for the analysis are

accuracy, F1-measure (a weighted combination of precision

and recall) and area under the ROC curve (AUC).

A summary of the results is presented in Table 1 and Ta-

ble 2, for the out-of-sample and cross-validation experiments

respectively. The results presented are averages of all indi-

vidual classes and the top scores for each metric (rows) are

highlighted in bold. In the tables, ”standard” versions of the

algorithms are the ones without calibration to probabilistic

outputs. Note that the logistic regression output is a prob-

ability estimate by nature. Decision stumps (S) and 4-node

decision trees (DT) were used as weak learners for boosting.

The SVMs used n-degree polynomials (Poly) and Gaussian

radial basis functions (RBF) as kernels.

To illustrate the variation in AUC performance, ROC

curves for two of the most representative rock types (shale

and BIF) using GentleBoost (GB) and its probabilistic cali-

brated version (pGB) are shown in Fig. 1. Both out-of-sample

(OS) and cross-validation (CV) analysis are plotted. It is no-

ticeable that the hard-decisions (non-probabilistic outputs)

produce poor ROC curves since they can only produce a sin-

gle point in the space. The probabilistic approach, on the

other hand, is more amenable to ROC analysis by allowing

for several decision thresholds and, thus, more points in the

curve.

Apart from LogitBoost, all the other algorithms benefited

from the calibration of their predicted output. Especially for

the AUC metric, the performance of the algorithms was im-

proved significantly, by more than 10% in some cases. This

indicates not only an improvement on the binary classifica-

tion for individual classes, but also on the final decision of

the multi-class classifier; the winner-takes-all approach us-

ing probabilities was far superior to the voting scheme us-

ing hard decisions. The LogitBoost with decision stumps did

not improve but had its performance slightly degraded. This

seems to be due to the the fact that LogitBoost already uses

the winner-takes-all approach and probability estimations in-

ternally in its standard training algorithm.

4. CONCLUSIONS

This paper compared seven different variants of machine

learning algorithms for hyperspectral classification of rocks.

The encouraging results demonstrate the importance of cal-

ibrating class probability estimates from the classifiers’ out-

puts. In the hyperspectral data set tested, logistic regression

did not achieve the same performance level as the other more

sophisticated algorithms. It seems the learning of the models

was hindered by the high-dimensional feature space and the

limited number of samples; the latter was evident especially

in the out-of-sample experiment. Despite producing the best

performance overall, SVMs using Gaussian RBFs require ex-
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(a) Shale
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(b) Banded iron formation

Fig. 1. ROC curves for GentleBoost classification using decision stumps on two representative rock types

tensive parameter tuning for each case to achieve the levels of

performance reported. On the other hand, SVMs using first-

order polynomials and the standard multi-class LogitBoost

can be trained very efficiently (orders of magnitude faster on

the same data set), and both are not nearly as sensitive to the

sole parameter they require to be tuned.

Future work includes investigating methods to integrate

spatial information to the spectral analysis in order to improve

the accuracy of maps showing the spatial distribution of min-

erals. Further tasks, such as fusion with different sensors,

should benefit from the calibrated class probabilities adopted

for hyperspectral classification.
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