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ABSTRACT

Feature selection is an important step in hyperspectral analy-
sis using machine learning for many applications, in particu-
lar to avoid the curse of dimensionality when there is limited
available ground truth. This paper presents an approach to
select hyperspectral bands using boosting. Boosting decision
trees is an efficient and accurate classification technique that
has been applied successfully to process hyperspectral data.
The learned structure of the trees can provide insight about
which bands are more relevant for the classification. We de-
velop a method that takes into account the improvement ob-
tained by each split of the tree ensemble and calculates a rel-
ative importance measure of the input features. The method
was evaluated using hyperspectral data of rock samples from
an iron ore mine in Australia. We show that by retaining only
the most relevant features it is possible to reduce the compu-
tational load while retaining classification performance.

Index Terms— Boosting, decision trees, feature selec-
tion, hyperspectral data

1. INTRODUCTION

Land cover classification methods exist allowing the identi-
fication of different materials from hyperspectral data, e.g.,
soil, vegetation and minerals [1]. Hyperspectral data is char-
acterized by presenting a high number of spectral bands
(high-dimensional features, some highly correlated). In most
practical applications, the number of ground-truth samples is
small (few number of training labels). Although the problem
of selecting relevant features from hyperspectral data sets has
received much attention recently, e.g. [2], the most suitable
feature selection method to automatically identify spectral
features is still not well defined in the literature.

The selection of an a priori optimal set of bands would
greatly facilitate classification of hyperspectral data, by
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avoiding the curse of dimensionality and band-to-band cor-
relation [3]. However, the selection of fewer features is im-
portant not only for computational issues. If a small number
of input features is sufficient to robustly identify materials of
interest, it might be possible to optimize the data acquisition
process for the relevant wavelengths. Potential applications
are in robotics navigation and mining, in which the use of
hyperspectral technology has been restricted due to the com-
plexity and cost of data acquisition. The ultimate goal is to
identify narrow regions in the spectrum relevant for specific
applications, which would allow for the design and construc-
tion of imaging systems based on optical filters specifically
tuned to these wavelengths. The optimized system would al-
low timely and efficient spectral data acquisition by avoiding
the burden of acquiring irrelevant bands. Emerging sensor
technologies, e.g. [4], provide such a tunable system of mul-
tispectral bands.

In this paper, we propose to apply a method using boosted
decision trees to rank the input features based on their rele-
vance to the task. Boosting has proved to be a robust method
to classify hyperspectral data of rock types [5]. Boosting trees
inherits the favourable characteristics of single trees, such as
robustness and interpretability. At the same, it mitigates some
of the disadvantages of trees, such as low accuracy and high
variance. Although decision trees are interpretable, i.e. the
internal structure of the learned tree can identify the relevant
features, boosted trees require a different analysis. A naive
implementation based on feature count has been used for hy-
perspectral analysis in [6]. However, our approach takes into
account the improvement associated with the features being
selected by the trees, and extends the analysis to boosted trees.
This leads to an improved feature ranking which is embedded
in the classification procedure of boosted decision trees.

2. BACKGROUND

Let us consider that the hyperspectral data is represented by
a vector xi ∈ <p comprising p spectral bands (features). The
training set is composed of pairs 〈(x1, y1) , . . . , (xn, yn)〉 of



n labelled examples, in which each instance i = {1, . . . , n}
can be assigned to a label y. In the multi-class case, the target
label set can be defined by assigning each class label to an
integer yi ∈ {1, 2, · · · , C}with the number of classes C ≥ 3.

Typically, the number of ground-truth samples n is small
compared to number of features p, p > n. Moreover, the
intrinsic dimensionality of hyperspectral data is often much
smaller than its nominal dimensionality. Feature selection
methods are categorized as filter, wrapper or embedded [7].
The feature relevance method proposed here is an embedded
method. It assigns a score S(i) to each input feature indi-
cating the relevance or importance of that feature for classi-
fication. The scores can then be ranked and features can be
selected based on a threshold; features with score below the
threshold are eliminated.

3. BOOSTING DECISION TREES

The idea of Boosting is to train many “weak” learners on var-
ious distributions (or set of weights) of the input data and
then combine the resulting classifiers into a single “commit-
tee” [8]. A weak learner can be any classifier whose perfor-
mance is guaranteed to be better than a random guess. There
are many different variants of boosting algorithms. In this
study, we investigate a version called LogitBoost, which can
be used to directly classify multiple classes. Logitboost, uses
stagewise optimization of the maximum likelihood through
adaptive Newton steps to fit additive logistic regression mod-
els [9]. For weak learners, the present study utilizes regres-
sion stumps, which can be viewed as binary decision trees
with only one node [10].

3.1. Relative importance of features
It is useful to learn the relative importance of individual in-
put variables in predicting the response of the tree ensemble.
Assuming that the model learned by the tree is a reasonable
approximation of the true function, this interpretation of the
tree can give an insight about the underlying relationship be-
tween the input variables and the output. For a single tree, a
measure of the relevance, as proposed by [11], is

I2l (T ) =

J−1∑
t=1

î2t δ(v(t) = l) (1)

where the sum is over the nonterminal nodes of the tree T
and v(t) is the splitting variable associated with node t. The
empirical improvement î2t for choosing that variable is the
squared error risk associated with the split [12].

The linear combination of trees must be interpreted dif-
ferently than a single decision tree. For the ensemble of deci-
sion trees obtained by boosting, the relative importance mea-
sure can be generalized by simply averaging over the trees
[13]. Similarly, for the multiclass case, the importance mea-
sure of the separate models for each class can be obtained by
averaging over all the classes. Finally, the relevance measure

for each input variable is given by the square root of the re-
spective relevant measure averaged out over all trees and all
classes. Since the relevance measure of the inputs are rela-
tive to each other, their values can then be normalized to fall
between 0 and 1 or 100.

4. EXPERIMENTS

The algorithms were evaluated using hyperspectral data of
rock samples collected from an iron ore mine located in the
Pilbara region of Western Australia. The samples comprise
several types of rocks typically found in that region, includ-
ing rocks rich in martite, goethite and kaolinite. The hyper-
spectral data was acquired using an ASD (Analytical Spec-
tral Devices Inc.) field spectrometer comprising wavelengths
from the visible (350 nm) to the SWIR (2500 nm) regions of
the spectrum at nominal 1 nm intervals. The number of bands
was reduced to 429 (wavelengths from 404 nm to 2334 nm) to
approximate the typical spectral range of commercially avail-
able hyperspectral imaging systems. This was done by down-
sampling the data to 2 nm intervals on the visible region and
to 6.5 nm in the SWIR. Bands with very low signal-to-noise
ratio, such as those affected by water-vapour absorption, were
removed. The hyperspectral data was collected under several
different illumination and physical conditions, in an attempt
to simulate some of the environmental conditions expected in
a mine site, i.e. under conditionss of direct sunlight, shadow
and different vieweing angles.

Boosting decision trees require two parameters to be de-
fined, the depth (number of nodes) of the trees and the num-
ber of weak learners (trees). In this study, the number of
weak learners was kept constant in all experiments to 100.
The number of nodes in the trees can vary from one to a full
pruned tree. This study was done using trees with a single
node, also called regression stumps. The experiments were
performed using stratified 4-fold cross-validation.

A simplistic approach to interpret the tree classification is
to count the number of times a given feature is being used to
split the data; the result of this analysis is shown in Fig. 1(a)
for the simultaneous classification of 9 classes of rocks. The
relative importance method based on empirical risk was com-
pared with the simple feature count approach. An illustration
of the relative importance of features is shown in Fig. 1(b).
It is noticeable that the same tree ensemble interpreted by
the two different methods can produce very different feature
rankings. The selection criterion used was to keep the features
that have over 50% normalized count/importance.

Several statistical metrics were calculated to assess the
performance of the models: accuracy, precision, recall,
F-score, kappa coefficient, and area under the ROC curve
(AUC); for more details, see [14]. Each metric can capture a
different aspect of the performance of the model. The perfor-
mance was calculated by combining the results of all folds in
the cross-validation and comparing them with ground-truth
labels that were analysed by mine geologists. After the most
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(a) Normalized count of features used by the trees
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(b) Relative importance of features used in the trees

Fig. 1. Comparison of relative importance of features against simple feature count. The most important bands based on a
threshold of 50% are highlighted in red.

relevant features were selected based on the 50% threshold,
the reduced feature set was used to learn a new boosted de-
cision tree. A summary of the performance using the most
relevant features is presented in Tables 1 and 2 , for all 9
classes. The results of the relative importance method are
comparable, averages within approximately 10% overall, to
the obtained by boosted trees with the same parameters but
using all input bands. Note that lowering the threshold to
include more features tends to improve the performance of
both methods, with the penalty of increased computational
load.

5. CONCLUSIONS

This paper presents a method to select relevant features from
hyperspectral data by using the internal learned structure of
an ensemble of decision trees trained by boosting. To our
knowledge, this is the first paper to report on the feature se-
lection of hyperspectral data using the relative importance of
features as indicated by boosted trees. Note that the procedure
is not restricted to classification problems and can be applied
to regression trees as well.

The results are encouraging. The boosted decision trees
are able to identify the relevant features while learning a clas-
sification model. Therefore, the procedure is very efficient by

nature. The most relevant features can be selected from the
ranked list of features generated by the method. The reduced
number of hyperspectral bands was sufficient to distinguish
the 9 classes of rocks. The reduced feature set also allows
much faster training than required when using all available
bands, which can be advantageous if further fine-tuning of
the classifier parameters is desired.

In this study, the relevance threshold indicating the num-
ber of features to be retained was predetermined ad hoc. Re-
search is ongoing to allow the method to automatically iden-
tify the most suitable number of features for the task; an alter-
native approach using statistical tests was proposed in [15].
Nevertheless, due to instability in the models, especially in
small trees, the feature selection results might also be unsta-
ble. Extended experiments are planned to assess this issue;
note that the statistical tests method may alleviate this prob-
lem.
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