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Abstract

Feature selection is necessary to reduce the dimensional-
ity of spectral image data. Particle swarm optimization was
originally developed to search only continuous spaces and,
although many applications on discrete spaces had been
proposed, it could not tackle the problem of feature selec-
tion directly. We developed a formulation utilizing two par-
ticles swarms in order to optimize a desired performance
criterion and the number of selected features, simultane-
ously. Candidate feature sets were evaluated on a regres-
sion problem modeled using neural networks, which were
trained to construct models of chemical concentration of
glucose in soybeans. We present experimental results uti-
lizing real-world spectral image data to attest the viability
of the method. The particle swarms approach presented su-
perior performance for linear modeling of chemical con-
tents when compared to a conventional feature extraction
method.

1. Introduction

Spectral imaging devices capable of acquiring several
hundreds of spectral images from the visible to the infrared
region of the spectrum are commonly referred to as hyper-
spectral sensors. Nonetheless, neighboring spectral bands
are usually highly redundant [11]. In real-world applica-
tions, the typical scenario of few data samples in a high-
dimensional feature space causes what was termed by Bell-
man [2] as the curse of dimensionality, referring to the expo-
nential increase in complexity of high-dimensional spaces
with the increase in the number of measurements. To avoid
the curse of dimensionality, algorithms for feature extrac-
tion/selection have been proposed to reduce the amount of
data and, at the same time, keep the relevant information
necessary to image interpretation or classification [6].

Particle swarm optimization (PSO) is an evolutionary
computation technique that has been developed due to re-

search on bird flock simulation by Kennedy and Eberhart
[8]. The PSO algorithm is able to solve most optimization
problems, or problems that can be converted to optimiza-
tion problems. PSO’s main attractiveness is its simplicity
and velocity, allied with robustness. The application of PSO
to process hyperspectral data is appealing due to the capa-
bility to visualize the location of particles’ positions in the
search space. Since each spectral dimension corresponds to
one band wavelength, the location of the particles’ positions
may be useful to identify interesting characteristics of the
physical process associated with the induction algorithm.

Different approaches for feature selection using PSO
have been reported [5, 10]. Nevertheless, the search is com-
monly limited to a pre-defined number of features, which
can be difficult to determine a priori for many problems. In
addition, the question of how to define the target functions
to be optimized may be highly dependent on the problem at
hand.

In this paper, we present a method for spectral band se-
lection based on PSO. A method using two particle swarms
and an aggregated function is proposed to solve a two-
criterion optimization problem. We developed a method to
select optimal spectral bands from hyperspectral data ap-
plied on a regression problem in the remote sensing field.
Neural networks were implemented to learn models of glu-
cose content in soybeans. Experiments were carried out us-
ing real-world hyperspectral datasets from soybean fields.

2. Feature Selection Algorithm

Feature selection is a subtype of feature extraction where
the dimensionality reduction is achieved by selecting bands
rather than transforming the data [9]. Feature selection
methods are advantageous when the user needs to make de-
cisions based on meaningful features of the original data,
or if he or she wants to exclude non-necessary data compo-
nents to reduce the cost and labor of data acquisition. Thus,
feature selection is highly suitable to hyperspectral imagery
analysis, in which the data is intrinsically related to physi-



cal wavelengths, and not all spectral bands are always nec-
essary for a certain application.

Assume that the hyperspectral imagery data matrix I is
composed of n spectral images I(λ), (λ = 1, . . . , n), at
each wavelength band λ acquired by the sensor. The aim of
feature selection is to find a set of m bands, where m < n,
to minimize the evaluation criterion.

Feature selection can be implemented as an optimization
procedure of search for the optimal feature set that better
satisfy a desired measure. We propose a method, as shown
in Fig. 1, utilizing two swarms of particles to optimize si-
multaneously the number of selected features and the error
of the model. Each candidate feature set is evaluated by
observing its performance on a regression problem. The in-
duction algorithm is a neural network utilized to construct
regression models.

2.1. Particle Swarm Optimization

The PSO algorithm performs optimization in continuous,
multidimensional search spaces. PSO starts with a popu-
lation of random particles, from where the name “particle
swarm” is derived. Each particle in PSO is associated with
a velocity. Particles’ velocities are adjusted according to the
historical behavior of each particle and its neighbors while
they fly through the search space. Therefore, the particles
have a tendency to fly towards the better and better search
area over the search process course.

The basic PSO algorithm [13] can be described mathe-
matically by the following equations:
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where c1 and c2 are positive constants, called learning rates;
r1 and r2 are random functions in the range [0, 1]; w is an
inertia weight; Xi = (xi1, xi2, . . . , xiD) represents the po-
sition of the ith particle in a problem space with D dimen-
sions; Vi = (vi1, vi2, . . . , viD) represents the rate of change
of position (velocity); Pi = (pi1, pi2, . . . , piD) represents
the best previous position of the swarm; the index g indi-
cates the best particle among all the particles in the popu-
lation; and t indicates the iteration number. If the sum of
the factors in the right side of Eq. (1) exceeds a specified
constant value, particles’ velocities on each dimension are
clamped to a maximum velocity Vmax.

The first swarm of particles in our method is a “contin-
uous” PSO configured to search for the optimal number of
features being selected. The search space of this particle
swarm is limited by the number of dimensions of the origi-
nal dataset. In the case of hyperspectral imagery data, it cor-
responds to the maximum number of spectral bands avail-
able.

2.2. Binary PSO

To perform the selection of feature sets, the PSO concept
needs to be extended in order to deal with binary data. We
utilize a binary scheme for feature selection in which each
feature is represented by one bit of the particle [1]. If the
feature is selected its value is set to 1, if it is not used, it is
set to 0.

The candidate feature set is determined using a roulette
wheel selection. At each spin of the roulette, the wheel’s
marker will point to a feature to be selected. The roulette
is played until a defined number of selected features is
reached. Each feature is assigned with a probability pid

proportional to the real value calculated in Eq. (2) limited
to the interval [0, 1], according to the equation
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where α is the selection pressure, which controls the prob-
ability of selecting highly fit or less fit features.

The second particle swarm in our method is a “binary”
PSO, as described above. Its particles are encoded in n bits,
according to the number of dimensions of the dataset.

The feature selection process is carried out in cycles
called epochs. In our method, each epoch consists of two
phases. Firstly, the continuous particle swarm is evolved,
letting the particles update their positions. Then, the second
swarm is evolved, each step selecting up to the number of
features defined by the particles of the first swarm. The sec-
ond swarm may be updated several times at each epoch, for
the different positions of the first swarm. However, if two
or more particles of the fist swarm are in the same position,
only the first occurrence will result in the evolution of the
second swarm.

2.3. Evaluation Function

By simply minimizing the error rate of the induction al-
gorithm, it cannot be expected that the feature selection al-
gorithm will also minimize the number of selected features.
We want to search for the smallest feature set that satisfies
a desired level of performance of the induction algorithm.
For this purpose, the feature selection must be treated as
a constrained optimization problem, in which the search is
constrained by the size of the feature set and by the specified
satisfactory error rate [14].

However, even the binary version of PSO cannot han-
dle this kind of problem directly. We developed a formula-
tion in order to provide control on the balance between the
two constraints, necessary when dealing with hyperspectral
datasets on regression problems. Otherwise, very small fea-
ture sets may be preferred by the algorithm in detriment of
possible better performing feature sets with more features.
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Figure 1. Diagram of the algorithm for feature selection of spectral imagery based on two particle
swarms.

A performance evaluation function is introduced to ac-
commodate the two constraints, assessing the evolution of
the two particle swarms. It can be expressed by the follow-
ing equation

PEF(x) = k ∗ l(x) + f(e(x)) , (4)

where x is the candidate feature set selected by the binary
particle swarm; l is the cost associated with the size of the
feature set, measured by the number of selected features
scaled by a constant factor k; and f(e) is a penalty func-
tion for the error e(x) of the induction algorithm.

The penalty function defines a region of feasibility of
possible solutions in the error space. It can be expressed as

f(e(x)) =
exp((e(x) − u)/s) − 1

exp(1) − 1
, (5)

where u is a feasibility threshold, and s is a small scaling
constant.

A feature set is considered feasible if the error in the
model output is below the feasibility threshold. For other
feature sets presenting higher error, the value of the penalty
function grows rapidly.

2.4. Artificial Neural Networks

We implemented artificial neural networks as the induc-
tion algorithm to provide linear models of the regression

problem. The linear model was obtained using a single-
layer perceptron network [3]. The output of the linear net-
work is calculated as y = f(x) = Wx + b, where x is the
input vector; y is the output vector; W is the weight vector;
and the parameter b is the bias. The number of neurons in
the input layer is proportional to the number of features of
the reduced dataset. The linear networks were trained using
the least means squares algorithm [15].

3. Experiments

3.1. Spectral Image Dataset

To attest the validity of the proposed method in real-
world datasets, experiments were conducted with spectral
image data from soybean fields. The experimental data was
obtained using a hyperspectral sensor, coupled with CCD
camera and computer controller. The sensor acquires data
in two dimensions, one containing spatial information and,
the other, spectral information. In the spatial plane, the
hyperspectral camera produces 484 pixels per line. The
spectral range comprises the visible to the near-infrared,
from 400 nm to 1000 nm, each band interleaved by approx-
imately 5 nm, thus producing 121 spectral bands.

The hyperspectral data was acquired in middle summer
on a sunny day, around noontime. The data sample con-
sisted of 13 different varieties of green vegetable soybeans



cultivated in an experimental field. In addition, to provide
target data for the supervised training of the neural net-
works, freeze-dried samples from the soybean fields were
analyzed in the laboratory using liquid chromatography.
The neural networks were trained to model the chemical
concentration of glucose in soybeans; the purpose is to pre-
dict the sweetness of the soybean crops non-invasively [12].

3.2. Results

The parameters of the particle swarms, shown in Table 1,
were chosen through experimentation. To define the con-
stants of the penalty function Eq. (5), the error rate of the
induction algorithm must be taken into account. The fea-
sibility threshold u must be a value at least slightly greater
than the minimum error expected by the best feature set.
After preliminary experiments, u was defined as u = 0.17.
The scaling factor was s = 5%.

The determination of the constant k, in the performance
evaluation function Eq. (4), must consider the dimensional-
ity of the problem and the desired performance. If k = 0,
the PEF value would be equivalent of that of the penalty
function alone. When k = 1, the PEF value would give a
very heavy punishment for acquiring the spectral bands. A
more reasonable search space for the hyperspectral dataset
problem was obtained by using k = 0.05.

To account for the stochastic nature of the PSO algo-
rithm, the experiments were performed over 20 independent
runs for each algorithm, every time initializing the swarms
with a different random seed. The performance of the best
performing particle swarms is presented in Fig. 2, along
with the averages of all 20 runs. Note that the best parti-
cle swarms finished the training at epoch 41; the last value
was repeated in the plot for comparison purposes with the
overall average. The final particles’ positions, assigned to
the correspondent spectral band wavelengths, of the 20 runs
of the algorithm are shown in Fig. 3.

In practice, however, only the best performing feature set
selected by the particle swarms is retained, i.e., the feature
set presenting the lowest error and highest correlation on
the regression problem. In order to verify the accuracy of
the method, a linear regression analysis was performed be-
tween the best feature set modeled by the neural networks
and the ground reference measurements obtained by labora-
tory analysis. Figure 4 shows the resulting analysis for the
best prediction of glucose content using a reduced feature
set modeled by the neural network.

3.3. Comparison with Principal Compo-
nents Analysis

Principal components analysis (PCA) is a widely used
technique to reduce the dimension of hyperspectral datasets.

Table 1. Parameters of the particle swarms.

Parameter Value
Population size continuous swarm 20

Population size binary swarm 40

Learning rate c1 = c2 2

Maximum particle velocity Vmax 4

Maximum number of epochs 200

Maximum epochs with constant error 30

Initial inertia wi 0.9

Final inertia wf 0.2

Epoch of final inertia 190

Selection pressure α a 1

aUtilized by the roulette wheel scheme to turn the second swarm into bi-
nary.

The PCA algorithm identifies and extracts interesting fea-
tures by retaining only those components that account for a
greater part of the variation in the dataset [7]. The princi-
pal components were ordered according to the magnitude of
their variance. We set the variance threshold to 99.98%, re-
taining 11 principal components, same number of features
obtained by the particle swarms.

In order to more comprehensibly compare the results be-
tween the different methods, the correlation coefficient was
calculated as R(y) = C(yo, yt)

/√
C(yo, yo) · C(yt, yt) ,

where C is the covariance matrix, and o and t indicate the
neural network output and the test dataset measurement, re-
spectively. A summary of the results comparing the pro-
posed method, the best feature set selected by the particle
swarms, and the PCA is presented in Table 2.

Table 2. Comparison of particle swarms fea-
ture selection (PSO-FS) and PCA, applied
to model glucose content in soybean crops
from hyperspectral data using neural net-
works.

Algorithm PEFa MSEb Rc

PSO-FS 0.7542 0.0311 0.6187

PCA 0.0401 0.4524

aPerformance evaluation function
bMean squared error
cPearson’s correlation coefficient
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Figure 2. Learning curves showing the mean of all particle swarms over 20 runs and the performance
of the best particle swarm.

4. Conclusions

This paper proposes a feature selection method based on
two particle swarms, a continuous and a binary, to search
not only for the optimal feature set, but also for the optimal
number of features, at the same time. Furthermore, the ap-
plicability of the method to extract information from hyper-
spectral imagery data was demonstrated. The method was
successfully validated with experiments utilizing real-world
datasets of soybean fields applied to a regression problem,
Fig. 4.

The particle swarms were implemented in conjunction
with neural networks to model the sweetness in soybean
crops, a non-trivial problem. The particle swarms were able
to optimize the combined criteria efficiently. In spite of the
limited size of the particle swarms’ populations, the pro-
posed algorithm was capable of fast convergence towards
the optimal region of the search space, Fig. 2. The particle
swarms outperformed the PCA in our experiments.

We developed a performance evaluation function adapt-
ing the PSO algorithm to search for the optimal feature set
while constrained by two criteria, the error rate of the induc-
tion algorithm and the size of the feature set. The perfor-
mance evaluation function punishes feature sets with high
dimensionality. This function may produce excessive pun-
ishment, particularly on real-world hyperspectral imagery
data, causing the selection of small feature sets presenting
undue error. Thus, in order to determine a better compro-
mise between the number of selected features and the in-
duction algorithm’s error rate, a constant factor k in Eq. (4)

was introduced.
The particle swarms also possess the advantage of per-

mitting the visualization of the selected features in contrast
with their spectral locations, providing an appealing analy-
sis tool for the field of remote sensing. The linear models
tended to induce the selection of feature sets in which most
of the selected features lied in the range between 700 and
900 nm, Fig. 3, adjacent to the region known as “red-edge,”
which is reportedly important for vegetation processes [4].
We propose the method not only for dimensionality reduc-
tion, but also as a valuable tool for the spectral analysis of
remotely sensed hyperspectral imagery.

5. Acknowledgment

We would like to thank Mr. Yohei Minekawa of the
Tokyo Institute of Technology for his help with the experi-
mental data. We also thank Dr. Keisuke Kameyama of the
University of Tsukuba for the discussions about the PSO al-
gorithm. This research is part of a joint collaboration with
Prof. Tsuneya Akazawa of Yamagata University and Mr.
Kunio Oda of the Yamagata General Agricultural Research
Center.

6. References

[1] D. K. Agrafiotis and W. Cedeño. Feature selection for
structure-activity correlation using binary particle swarms. Jour-
nal of Medicinal Chemistry, 45:1098–1107, 2002.



400 500 600 700 800 900 1000
0

5

10

15

20

Selected features (band wavelength in nm)

R
u

n
 n

u
m

b
er

Figure 3. Spectral location of the feature sets selected by the particle swarms over 20 runs. The best
performing feature set is indicated in dark black.

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

Measured Content (mg/g−F.W. )

P
re

d
ic

te
d
 C

o
n

te
n
t 

(m
g
/g

−
F

.W
.

)

Best Linear Fit:  A = (0.383) T + (1.11)

Figure 4. Linear regression analysis between
the ground reference measurements and the
predictions given by the best feature set.

[2] R. E. Bellman. Adaptive Control Processes: A Guided Tour.
Princeton University Press, 1961.

[3] C. M. Bishop. Neural Networks for Pattern Recognition.
Oxford University Press, New York, USA, 1995.

[4] I. Filella and J. Penuelas. The red edge position and shape as
indicators of plant chlorophyll content, biomass and hydric status.
International Journal of Remote Sensing, 15(7):1459–1470, 1994.

[5] H. A. Firpi and E. Goodman. Swarmed feature selection. In
Proc. 33rd Applied Imagery Pattern Recognition Workshop, pages
112–118, 2004.

[6] I. Guyon and A. Elisseeff. An introduction to variable and
feature selection. Journal of Machine Learning Research, Special
Issue on Variable and Feature Selection, 3:1157–1182, 2003.

[7] I. T. Jolliffe. Principal Component Analysis. Springer-
Verlag, New York, 1988.

[8] J. Kennedy and R. C. Eberhart. Swarm Intelligence. Morgan
Kaufmann Publishers, San Francisco, 2001.

[9] H. Liu and H. Motoda. Feature transformation and subset se-
lection. IEEE Intelligent Systems, Special Issue on Feature Trans-
formation and Subset Selection, 13(2):26–28, 1998.

[10] Y. Liu, Z. Qin, Z. Xu, and X. He. Feature selection with
particle swarms. In Proc. Computational and Information Science,
volume 3314, pages 425–430, 2004.

[11] P. M. Mather. Computer Processing of Remotely-Sensed Im-
ages, An Introduction. John Wiley & Sons, Chichester, 2004.

[12] S. T. Monteiro, Y. Minekawa, Y. Kosugi, T. Akazawa, and
K. Oda. Prediction of sweetness and nitrogen content in soybean
crops from high resolution hyperspectral imagery. In Proc. 2006
IEEE International Geoscience and Remote Sensing Symposium,
volume 5, pages 2263–2266, Denver, Colorado, 2006.

[13] Y. Shi and R. C. Eberhart. A modified particle swarm op-
timizer. In Proc. IEEE Congress on Evolutionary Computation,
pages 69–73, 1998.

[14] W. Siedlecki and J. Sklansky. A note on genetic algo-
rithms for large-scale feature selection. Pattern Recognition Let-
ters, 10(5):335–347, 1989.

[15] B. Widrow and R. Winter. Neural nets for adaptive filtering
and adaptive pattern recognition. IEEE Computer, 21(3):25–39,
1988.


