Available online at www.sciencedirect.com
-

‘::' ScienceDirect PHOTOGRAMMETRY

& REMOTE SENSING

ELSEVIER ISPRS Journal of Photogrammetry & Remote Sensing 62 (2007) 2—12

www.elsevier.com/locate/isprsjprs

Prediction of sweetness and amino acid content in soybean
crops from hyperspectral imagery

Sildomar Takahashi Monteiro **, Yohei Minekawa ®, Yukio Kosugi?,
b .
Tsuneya Akazawa °, Kunio Oda®
* Department of Mechano-Micro Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8502, Japan

® University Farm, Faculty of Agriculture, Yamagata University, 5-3 Takasaka, Tsuruoka-shi, Yamagata, 997-0369, Japan
¢ Yamagata General Agricultural Research Center, 25, Yamanomae, Fujishima, Tsuruoka-shi, Yamagata, 999-7601, Japan

Received 22 May 2006; received in revised form 6 December 2006; accepted 6 December 2006
Available online 23 January 2007

Abstract

Hyperspectral image data provides a powerful tool for non-destructive crop analysis. This paper investigates a hyperspectral
image data-processing method to predict the sweetness and amino acid content of soybean crops. Regression models based on
artificial neural networks were developed in order to calculate the level of sucrose, glucose, fructose, and nitrogen concentrations,
which can be related to the sweetness and amino acid content of vegetables. A performance analysis was conducted comparing
regression models obtained using different preprocessing methods, namely, raw reflectance, second derivative, and principal
components analysis. This method is demonstrated using high-resolution hyperspectral data of wavelengths ranging from the
visible to the near infrared acquired from an experimental field of green vegetable soybeans. The best predictions were achieved
using a nonlinear regression model of the second derivative transformed dataset. Glucose could be predicted with greater accuracy,
followed by sucrose, fructose and nitrogen. The proposed method provides the possibility to provide relatively accurate maps
predicting the chemical content of soybean crop fields.
© 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

Keywords: Agriculture; Hyperspectral image; Modeling; Neural networks; Spatial prediction

1. Introduction estimated according to sucrose, glucose and fructose

concentrations. Amino acids taste sweet or delicious

Green vegetable soybeans (or edamame, in Japanese)
are a popular crop throughout East Asia and Japan. They
differ from ordinary green vegetable soybeans by their
larger seed, and sweet and nutty flavor (Liu, 1997).
Studies have demonstrated that the taste of vegetables
can be attributed to, among other factors, their sweetness
and amino acid contents (Toko, 1998). Sweetness can be

* Corresponding author. Tel.: +8145 924 5484; fax: +8145 924 5172.
E-mail address: monteiro@pms.titech.ac.jp (S.T. Monteiro).

(umami) to humans. The concentration of nitrogen pro-
vides an estimation of the amino acid content, as well as
the plant stress status. The non-destructive and timely
prediction of sucrose, glucose, fructose and nitrogen
content would therefore provide farmers and producers
with useful information, facilitating the selection of
which crops to harvest and determining the appropriate
harvest time.

Spectroscopy in the near infrared region has been
used for performing analytical measurements in a
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variety of applications, providing both qualitative and
quantitative results non-destructively for solids and
liquids (Koehler et al., 2002). However, conventional
methods usually rely on fiber-optic spectrometers
that utilize only a few wavelengths in order to perform
calculations of chemical contents in vegetables (e.g.,
Slaughter et al., 1996; Zude, 2003). Calibration methods
are commonly based on multivariate mathematics that
result in a calibration equation, which is a linear com-
bination of spectral data (Osborne and Fearn, 1986).
Furthermore, the spectral measurement methods that
have been developed thus far need to be performed
destructively on a fruit-by-fruit basis (Tsuta et al., 2002).
The prediction of sweetness and nitrogen content in
green vegetable soybean crops has not been addressed
by these conventional methods.

Hyperspectral imagery has advantages over conven-
tional spectroscopy such as providing simultaneous data
acquisition over a large sample area (Richards and Jia,
1999). Recent advances in both sensor and lens tech-
nologies for hyperspectral imaging have improved their
spatial and spectral resolution, while reducing the
size and cost of the equipment. Hyperspectral sensors
have been utilized primarily for land cover classification
(Cihlar, 2000). Despite much research, applications for
material estimation are still challenging, mainly due to
the limitations of conventional airborne devices for
hyperspectral data acquisition that make the analysis of
the “pure spectra” of vegetables difficult (Schowen-
gerdt, 1997).

This paper investigates the potential of high-
resolution hyperspectral imagery, in the visible to near
infrared region, to predict the sweetness and amino acid
content of green vegetable soybeans. The objective is to
forecast the concentration of sucrose, glucose, fructose
and nitrogen in soybean crops by using hyperspectral
data acquired locally without physical contact with the
plants, thus not interfering with their growth process. An
artificial neural network (ANN)-based method to pro-
cess the hyperspectral data is proposed. We conducted a
performance analysis of regression models using data-
sets preprocessed by different transformation methods,
namely, raw reflectance, second derivative and principal
component analysis.

2. Materials and methods

The problem of predicting a dependent variable (e.g.,
sucrose, glucose, fructose and nitrogen concentrations)
by combining a number of independent variables (re-
flectance spectral bands) can be defined in statistics as a
regression problem (Fukunaga, 1990). In spectroscopy,

this problem can also be referred to as a calibration
problem. Spectrum calibration involves searching for
predictive relationships between spectral data and ref-
erence values, using either laboratory standards, field
standards, or modeling (Siesler et al., 2002). ANNs have
been widely applied as regression models (Bishop,
1995), which are one of the main tools used in spectrum
calibration.

Fig. 1 shows the data analysis scheme proposed in
this study. The hyperspectral image data was initially
preprocessed and prepared to serve as input data for the
regression analysis. Only vegetated areas were used in
the calculations and the remainder of the study area was
masked out. ANN-based regression models were ob-
tained using datasets preprocessed by different methods
of hyperspectral data transformation and reduction,
providing a basis for the comparative performance
analysis. The transformation algorithms that were
assessed are derivative analysis and principal compo-
nents analysis (PCA).

Along with the hyperspectral data, samples of green
vegetable soybeans from within the study area were
collected in order to provide an independent measure-
ment of their chemical contents to serve as “ground
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reference” data. The concentrations of sucrose, glucose,
fructose and nitrogen were measured in the laboratory
using liquid chromatography analysis of freeze-dried
soybean samples (Ardrey, 2003, chap. 2). The values
obtained by these procedures were used as target data
for the supervised training of the ANN regression
models.

2.1. Hyperspectral image data

The sample data were acquired using a hyperspectral
line sensor ImSpector. The hyperspectral line sensor was
coupled with a CCD camera and a computer controller
that were mounted on the tip of a crane. By means of
rotating the crane arm, the camera could scan over the
crop field to produce hyperspectral images. Minekawa
et al. (2004) demonstrated that this setup allows data
acquisition at a spatial resolution suitable for the ana-
lysis of agricultural data from localized crop fields. The
crane-based system presents several advantages com-
pared to satellite or airplane-based systems, e.g., higher
data accuracy and spatial resolution, and reduced at-
mospheric effects. The hyperspectral data comprised the
visible to the near-infrared range of the spectrum from
400nm to 1000nm with a 5-nm resolution, thus pro-
ducing 121 bands of spectral information. In the spatial
plane, the hyperspectral camera acquired 484 pixels in
each line, which, given the distance to the target, gen-
erated a high-resolution image of the crop field. The
swath width was about 10m and the pixel size was
approximately 20 mm.

Assume that the hyperspectral data matrix [ is
composed of N spectral images I (1), (A=1,...,N). Each
image pixel (7, j) of a given spectral band & is considered
an observation.

The hyperspectral imaging device captures the ra-
diance from the sample (Spectral Imaging Ltd., 2003).
Conversion from raw radiance to reflectance was
achieved by acquiring data from a white board used as
reference in the field being measured.

In order to reduce or attenuate the intrinsic noise of
the hyperspectral dataset, a special three-dimensional
filter was designed to simultaneously provide a mean
value of the combined spectral and spatial dimensions
(Du et al., 2005). The 3D mean filter increases signal-to-
noise level by taking advantage of the high spectral
resolution and band correlation provided by the sensor,
in contrast with traditional 2D mean filters that use only
spatial information, although the spatial resolution is
somewhat reduced after the smoothing process in both
cases. The filter was applied as a 3D cubic window in
which each pixel was assigned the mean value of the

reflectance of its surrounding pixels, including neigh-
boring spectral bands. This filter can be formulated as

I[m~i,ny~j,n3=2], (1)

where [n1, n,, n3] refer to the current window position at
the hyperspectral dataset, corresponding to [row, column,
band]; D is the window size; and [ is the pixel’s
reflectance value.

After the filtering process, image regions containing
vegetation were identified using a normalized difference
vegetation index (NDVI) (Rouse et al., 1973). The portions
of the hyperspectral images corresponding to the different
varieties of soybeans (i.e. labeled regions) within the crop-
field were then separated manually. The typical spectral
signature of the soybean crop is displayed in Fig. 2. Finally,
the labeled regions’ reflectance data were normalized to the
interval [—1, 1] then used as input vectors, constituting,
along with the corresponding ground reference data used as
target vectors, the training data for the ANNs.

2.2. Derivative analysis

The derivatives provide a measure of the slope of the
spectral curve at every point allowing for the resolution
of overlapping peaks and correction of baseline effects
(Hruschka, 2001). Derivative analysis of reflectance
spectra has been used in hyperspectral remote sensing
and in analytical chemistry to increase the estimation
accuracy of target information (Petisco et al., 2005).
Derivatives are relatively less susceptible to variations in
illumination intensity in remote sensing applications.
Nevertheless, a secondary effect of the derivative pro-
cess is that, after each successive derivative is performed,
the signal-to-noise ratio decreases and sometimes the
noise present in the data might be intensified. Thus, there
is the necessity of inserting a carefully designed pre-
processing phase to reduce this noise.

Myneni et al. (1995) analyzed lower-order spectral
derivatives as a generalization of vegetation indexes and
demonstrated that, in the case of optically dense veg-
etation, they are indicative of the abundance and activity
of the absorbers in the plant’s leaves. Additionally, the
second derivative of the near-infrared region has been
reported to have a high correlation with the sugar con-
tent in melons (Tsuta et al., 2002). In the preliminary
investigation on the first and second derivatives used as
input vectors for the ANNs (Monteiro et al., 2006), the
second derivative produced slightly more accurate pre-
dictions with a correlation increase of roughly 3%. Since
higher-order derivatives would be affected by noise that
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Fig. 2. Spectral profile of the soybean field, mean values calculated from a 10 x 10-pixel window for each wavelength band.

could jeopardize the ANN training, it was decided to
focus the analysis on the second derivative.

The derivative of hyperspectral data can be calculat-
ed by finite approximation using suitable difference
schemes in accordance with a definite band resolution
(Tsai and Philpot, 1998). Given a finite separation
between adjacent bands A/, the second derivative at
wavelength 4, can be estimated as

_d ja
. di\di
where the constraints for the calculation are Al =

A=Ay =A,— A, and A,,> A, >A,,. The derivation interval
A2 was determined experimentally to be about 20 nm.

d’1

d?

() =20 (3) + 1 ()
v (A2)?

, (2)

2.3. Principal components analysis

Principal components analysis (PCA) is a widely
used technique to reduce the dimension of hyperspectral
datasets. PCA is used to identify and extract interesting
features from the input dataset by retaining only those
features that account for a greater part of the dataset
variation (Jolliffe, 1988).

PCA was implemented by performing singular value
decomposition on the co-variance matrix of the data.
The principal components were ordered according to the
magnitude of their variance. A threshold parameter was
utilized to discard those components that provide only
small contributions to the total variance in the dataset.
Particularly on hyperspectral datasets of agricultural
crop fields, the size of the dataset can be drastically
reduced, thus demonstrating the highly correlated nature

of this kind of dataset. The objective was to evaluate the
ability of the PCA-reduced dataset in providing a pre-
diction of chemical contents when applied as input for
the regression model.

2.4. Artificial neural networks

One of the most common kinds of ANN is the mul-
tilayer perceptron (MLP) network. The basic MLP net-
work architecture is composed of the input layer, one
hidden layer, and the output layer, sequentially inter-
connected in a feed-forward way (Haykin, 1999). The
output of the MLP can be expressed mathematically as

y=/(x) = Bop(Ax +a) + b, 3)

where x is the input vector; y is the output vector; 4 and
a are, respectively, the weight matrix and the bias vector
of the hidden layer; B and b are, respectively, the weight
matrix and the bias vector of the output layer; and ¢ is
the activation function. The hyperbolic tangent sigmoid
was used as an activation function for the neurons in the
hidden layer.

The training method implemented was the Leven-
berg-Marquardt backpropagation, which, experimental-
ly, has superior performance for regression problems
(Hagan and Menhaj, 1994). Early stopping was used to
prevent overfitting and to improve the generalization.
The hyperspectral dataset was split into a new training
set, a validation set and a test set. Training was stopped
when one of three conditions occurred: the validation
error rate started to grow, the maximum value of
the damping factor 1 was exceeded or the maximum
number of epochs was reached.



6 S.T. Monteiro et al. / ISPRS Journal of Photogrammetry & Remote Sensing 62 (2007) 2—12

Table 1
Parameters for the training of the MLP networks

Table 2
Sizes of the experimental datasets

Parameter Value Dataset Number of dimensions
Neurons in the hidden layer 10 Whole 121

Learning rate 0.01 Derivative 113

Momentum 0.9 PCA whole 3

Initial 1? 0.001 PCA derivative 23

) Decrease factor 0.1

A Increase factor 10

Maximum 1.OE+10 steepest descent procedure, also known as least means
Maximum validation failures 5 squares algorithm (Widrow and Winter, 1988).
Maximum number of epochs 1000 The output layer, in both MLP and SLP architectures,

? Here A is a scalar utilized by the training algorithm, not the
wavelength.

Funahashi (1989) and Cybenko (1989) proved that an
ANN with one hidden layer is capable of approximating
any mapping to arbitrary accuracy as long as there is a
sufficient number of hidden units, although considering
more hidden layers can be useful in some cases (Bishop,
1995). The use of more than one hidden layer was re-
ported by Kavzoglu and Mather (2003) to provide no
significant improvement in the performance of classifiers
and many empirical methods have been proposed to
determine the optimal number of neurons. [fthe ANN has
too many degrees of freedom, the generalization ability
of the model may be compromised. The experimental
approach used in this paper searched for the minimum
size of the hidden layer, while also retaining performance.
Table 1 shows a summary of the parameters utilized for
the training of the MLP networks throughout this paper.

Despite the powerful modeling capability of the
MLP, the relationship between the intricate problem at
hand and how the network solves the problem is very
difficult to understand. In order to obtain some insight
about the underlying mechanism of the ANN regression
model, a simpler architecture was also investigated,
namely, a single-layer perceptron (SLP) network. The
SLP network produces finite values as output enabling
the construction of a linear regression model. The SLP
output can be written as

y=f(x)=Wx+b, (4)

where, again, x and y are the input and output vectors,
respectively; W is the weight vector; and the parameter
b is the bias.

Considering the simplicity of the SLP architecture,
the networks’ weight values may be analyzed in order to
indicate how each input node, corresponding to a
wavelength band, contributes to the formation of the
output, i.e. a chemical content prediction. The training
method implemented for the SLP was the Widrow-Hoff
learning algorithm that is based on an approximate

was composed of only one neuron utilizing a linear
transfer function. The number of neurons in the input
layer was equal to the number of spectral bands or the
number of components of the reduced dataset, after
preprocessing by the second derivative and PCA. The
ANNSs were trained to minimize the mean squared error.

2.5. Performance evaluation metrics
The performance of the regression models built using

ANNs was evaluated using two metrics, following the
work of Murphy and Daan (1985).

Table 3
Performance of the MLP regression models

Chemical® Dataset Training® Best models

u(MSE) o(MSE) u(R) o(@R) MSE R

Glucose  Deriv. 0.122  0.047 0.766 0.118 0.039 0.934
Whole 0.093 0.016 0.832 0.032 0.062 0.893
PCA 0517  0.095 0.695 0.071 0.337 0.815
deriv.
PCA  0.601 0.031 0.632 0.025 0.548 0.672
whole

Sucrose Deriv.  0.108  0.030 0.771 0.078 0.055 0.901
Whole 0.104  0.017 0.782 0.041 0.075 0.849
PCA 0488  0.056 0.717 0.039 0.355 0.804
deriv.
PCA 0572  0.010 0.654 0.007 0.550 0.671
whole

Fructose  Deriv. 0.247  0.052 0.649 0.102 0.113 0.859
Whole 0.232  0.028 0.678 0.051 0.181 0.772
PCA  0.640  0.071 0.600 0.061 0.492 0.714
deriv.
PCA  0.752  0.036 0.496 0.037 0.692 0.554
whole

Nitrogen ~ Deriv.  0.291 0.053 0.641 0.082 0.158 0.825
Whole 0.270  0.027 0.670 0.040 0.224 0.736
PCA  0.711 0.072 0.538 0.071 0.560 0.668
deriv.
PCA  0.728  0.011 0.522 0.010 0.708 0.541
whole

? The results were sorted in descending order according to the best
models’ R-value.
° 1 refers to the mean and o refers to the standard deviation.
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Fig. 3. Linear regression analysis between the predictions given by the MLP network and the ground reference measurements. The cross markers
show the corresponding observations and the straight lines indicate the best linear fit of the data, as expressed by the linear equations. (a) Sucrose.

(b) Glucose. (c) Fructose. (d) Nitrogen.

2.5.1. Mean of squared errors

One measure of network performance is the mean of
squared errors (MSE) between corresponding elements
of the network response (prediction) and the target
(ground reference measurements). The MSE is defined
by

MSE(y) = ]ivz Py, (5)

where N is the total number of prediction comparisons,
and p and m indicate, respectively, the predicted and
measured values.

2.5.2. Correlation coefficient

Another way of evaluating network performance is
to calculate the correlation coefficient (R-value) be-
tween the network response and the actual measure-
ments. As the strength of the relationship between
the predicted and measured values increases, so does
the correlation coefficient value. A perfect predic-
tion would give a coefficient of 1. The R-value is
calculated by

C(yp7ym)
VC(y?,yP).C(y™,y™)

R(y) =
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Fig. 4. Example of prediction maps of chemical contents by using ANN regression. The chemical’s concentrations are expressed in mg/g-F.W. An
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(a) Sucrose. (b) Glucose. (c) Fructose. (d) Nitrogen. (¢) Ground reference.

where, C is the covariance matrix, and p and m indi-
cate the predicted and measured values.

3. Results

The data sample used in this study consists of diverse
varieties of soybeans cultivated in an experimental field
at Yamagata University, Japan. The hyperspectral image
data and ground reference were acquired in the middle
of summer on a sunny day from noon to early afternoon.
Thirteen varieties of green vegetable soybeans were

Table 4
Measured values of chemical concentrations in the test case

Row® Cultivar Sucrose Glucose Fructose Nitrogen

analyzed. From each labeled area (i.e., variety of
soybean), 128 pixels in the images were randomly
chosen creating 1664 observations, which when multi-
plied by the spectral dimension of 121 bands produced a
training dataset composed of 201 344 points in total.

A performance analysis was carried out by compar-
ing regression models obtained using input datasets that
had passed through different preprocessing steps. Four
variations of input datasets were tested:

(1) Whole: all spectral bands available were applied
directly to the network.

1 Kanro B 45.18 1.99 1.26 13.38

2 Shonai 4 29.93 2.12 1.56 8.87

3 Ina 29.19 1.60 0.30 11.69

4 Bansei-Sirayama-  30.89 2.00 1.48 9.17
dadacha

5 Dadachamame 38.62 1.58 0.52 19.90

6 Wase-dadacha B 40.20 1.73 0.49 19.24

# Row numbers correspond to consecutive crop rows, from top to

bottom, of the prediction maps in Fig. 4.

Table 5

Performance of the SLP regression models

Chemical Dataset MSE R

Sucrose Whole 0.121 0.737
Derivative 0.125 0.727

Glucose Whole 0.136 0.739
Derivative 0.138 0.735

Fructose Whole 0.266 0.615
Derivative 0.272 0.604

Nitrogen Whole 0.289 0.637
Derivative 0.305 0.611
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(2) Derivative: the second derivative was calculated (4) PCA derivative: PCA was calculated on the
from the whole set of spectral bands and applied second derivative dataset and the retained com-
to the network. ponents were then applied to the network.

(3) PCA whole: PCA was calculated on the whole
dataset and the retained components were then In order to retain a reasonable number of principal
applied to the network. components for both of the base datasets analyzed by this
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Fig. 5. SLP networks’ weight vector. The plots on the left were calculated using the raw reflectance of all spectral bands and those on the right were
calculated using the second derivatives. (a) Sucrose. (b) Glucose. (c) Fructose. (d) Nitrogen.
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study, raw reflectance and second derivative, a variance
threshold of 99.5% was selected for the PCA. The actual
size of each type of dataset is shown in Table 2, which
corresponds to the number of nodes in the input of the
ANNS.

To account for the stochastic nature of the ANN
training, each regression model was tested over 50
independent runs, each time starting the weights of the
network with random values generated by a different
random seed. The results of the MLP learning process of
regression models for each chemical substance are
summarized in Table 3.

Only the best models were kept, i.e. the ANNs that
presented lower MSE and higher R-values. A linear
regression analysis was then performed between the
MLP networks’ predicted output and the ground
reference measurements obtained by laboratory analy-
sis. The results are shown in Fig. 3 for the second
derivative of each chemical substance. For a perfect
prediction, each model’s best linear fit should have an
inclination of 45° (gradient m=1).

Once the ANN regression model is successfully
trained, it can be used to predict the chemical content of
each pixel on the spatial plane of a hyperspectral image
of'the crop field in order to produce a prediction map. As
a test case, a portion of the experimental field having
different varieties of soybeans in adjacent rows was
processed. The prediction maps were calculated using
the best models, which were obtained by the second
derivatives. These are presented in Fig. 4. For display
purposes, non-vegetative regions were assigned the
lowest concentration values. The separation between the
plant rows is indicated by the white labels in Fig 4(e).
The mean value of the actual chemical concentrations
measured in the laboratory for each respective row is
displayed in Table 4.

The SLP network was tested to model all spectral
bands and the second derivative dataset. The SLP
network’s weight vector gives an indication of each
input entry’s contribution to the output calculation. If
the input data is physically meaningful, then it may offer
an insight about which wavelengths are more important
to the chemical content prediction. The complexity of
calculating Eq. (3) denies the possibility of such analysis
using the MLP. Since PCA transforms the spectral data
into uncorrelated components without explicit physical
meaning, it was not included in this analysis. The SLP
models’ performances are displayed in Table 5. The
weight vectors W from Eq. (4) for each case of dataset
and chemical substance are plotted in Fig. 5. The
weights were matched to the wavelengths of the
respective input spectral bands.

4. Discussion

In the range of wavelengths investigated, greater
accuracy was obtained for the calculation of glucose,
followed by sucrose, fructose, and nitrogen. The de-
rivatives contributed a slight and gradual improvement
to the prediction accuracy of the MLP models. The
performance of the second derivative analysis may have
been affected by errors present in the experimental
dataset (low signal-to-noise ratio) in wavelengths
greater than 900nm. Some of these wavelength bands
may be correlated with the chemical substance being
targeted and thus necessary to improve the prediction
accuracy. Nevertheless, the calculation of the second
derivative could also contribute to improving the
generalization of the regression model for diverse
weather conditions other than those observed during
the acquisition of the training data. This is due to its
alleged robustness in accounting for variations in
illumination intensity in the sample. Furthermore, the
second derivative provided a more selective use of the
spectrum as can be observed in Fig. 5.

The models based on the standard PCA generally
presented inferior performances. This result may be due
to the principal components’ characteristic of retaining
the main features of the dataset, but not necessarily those
correlating with the chemical contents. Furthermore, the
accuracy of the PCA-based models may have been
affected by accumulation of errors in the calculation of
the covariance matrix from the hyperspectral data
(Chitroub et al., 2001). Ustin et al. (2004) also suggest
that the measurement of a broader spectral range may
possibly provide a better basis for predicting chemical
concentrations.

The weight vector of the SLP model may indicate
the significance of wave-length bands on the prediction
calculation. In the case of all bands of the raw re-
flectance, i.e., the left plots in Fig. 5, a coincident
spectral region ranging from 720nm to 1000nm
presented higher weight values for sucrose, glucose
and fructose. For nitrogen, the same region was also
important, except for a trough of low weights around
820 nm. On the second derivative models, i.¢., the right
plots in Fig. 5, the coinciding regions were even more
pronounced, presenting two distinctive regions in the
range 675nm to 775nm and 915nm to 960nm. The
former corresponds approximately to the “red edge”
point, which is frequently used to characterize the
water stress of vegetation (Filella and Penuelas, 1994).
This analysis indicates that, although one chemical
substance was predicted more accurately than others,
they could all be calculated using wavelengths in a
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narrow spectral range. Another interesting outcome
was that the derivative-based models presented the
best performance overall for the MLP networks,
which are nonlinear by nature. This suggests that the
second derivative of the spectral bands may present
some nonlinear relationship correlating to sweetness
and amino acid content. However, the MLP weights,
which constitute a matrix processed by the activation
function, could not provide an analysis of the input
vector’s physical importance as the SLP weights were
capable of doing.

The graphical representation of chemical contents
calculated from the hyperspectral image data provides a
valuable visualization of the spatial distribution of vari-
ations in the state of the crop field. To achieve greater
accuracy of the prediction maps, the training data could
be improved by increasing the number of ground ref-
erence measurements. Another approach could be to
stratify the training data by soybean variety, which
would possibly produce ANN models that are more
accurate. However, due to the limited sample size and
poor diversity of such stratified training datasets, the
ANN models would probably have difficulty in gen-
eralizing the results under different conditions (Niyogi
and Girosi, 1996), thus limiting the models’ usefulness.
On the other hand, since the diversity of the training
dataset is also important, not only larger, but also more
reliable prediction maps could be generated if specific
experiments were conducted to acquire data from the
soybean field under different environmental and tem-
poral conditions.

5. Conclusions

The ANN-based approach provides a reasonably
accurate regression model for the estimation of the
sweetness and amino acid concentrations in green veg-
etable soybeans from hyperspectral image data. The
nonlinear regression model of the second derivative
produces the best predictions for glucose, sucrose,
fructose, and nitrogen concentrations using wavelength
bands from the visible to the near infrared. The re-
gression models obtained from the hyperspectral
dataset reduced by PCA present the worst correlations.
The results of the linear regression model suggest
that spectral regions around the red edge are espe-
cially significant for the prediction of the chemical
concentrations.

The proposed method permits one to exploit the
capabilities of high-resolution hyperspectral imagery for
estimating the chemical contents of soybean crops. The
system could be used to monitor the conditions of

localized crop fields before harvesting and without
interfering in the growth process. The method could also
be applied for predicting the chemical contents of large
soybean fields by acquiring hyperspectral data from
higher altitudes, perhaps airborne or spaceborne.
Nevertheless, if the data contain mixed pixels, careful
preprocessing would be required to estimate the pure
spectra before generating the prediction maps.

Acknowledgment

This research was partly supported by the Grant-in-
Aid for Scientific Research number 30108237 of the
Japan Society for the Promotion of Science.

References

Ardrey, R.E., 2003. Liquid chromatography. In: Ando, D.J. (Ed.),
Liquid Chromatography Mass Spectrometry: An Introduction.
John Wiley & Sons, Inc., New York, pp. 7-31.

Bishop, C.M., 1995. Neural Networks for Pattern Recognition. Oxford
University Press, New York.

Chitroub, S., Houacine, A., Sansal, B., 2001. Principal component
analysis of multispectral images using neural network. Proc. ACS/
IEEE Intl. Conf. Computer Systems and Application, pp. 89-95.

Cihlar, J., 2000. Land cover mapping of large areas from satellites:
status and research priorities. International Journal of Remote
Sensing 21 (6-7), 1093-1114.

Cybenko, G., 1989. Approximation by superpositions of a sigmoid
function. Mathematics of Control, Signals and Systems 2, 303—-314.

Du, P, Chen, Y., Yang, Y., Zhang, H., 2005. On the filtering of
hyperspectral remote sensing image. In: Li, D., Ma, H. (Eds.),
Proc. of the SPIE, MIPPR 2005: Image Analysis Techniques,
vol. 6044, pp. 347-353.

Filella, 1., Penuelas, J., 1994. The red edge position and shape as
indicators of plant chlorophyll content, biomass and hydric status.
International Journal of Remote Sensing 15 (7), 1459-1470.

Fukunaga, K., 1990. Introduction to Statistical Pattern Recognition,
2nd Edition. Academic Press, San Diego, CA.

Funahashi, K., 1989. On the approximate realization of continuous
mappings by neural networks. Neural Networks 2, 183-192.
Hagan, M.T., Menhaj, M.B., 1994. Training feedforward networks
with the Marquardt algorithm. TEEE Transactions on Neural

Networks 5 (6), 989-993.

Haykin, S., 1999. Neural Networks: A Comprehensive Foundation,
2nd Edition. Prentice Hall, Englewood Cliffs, NJ.

Hruschka, W.R., 2001. Spectral reconstruction, In: Burns, D.A.,
Ciurczak, E.W. (Eds.), Handbook of Near-infrared Analysis, 2nd
Edition. Marcel Dekker Inc., New York, pp. 401-419.

Jolliffe, I.T., 1988. Principal Component Analysis. Springer-Verlag,
New York.

Kavzoglu, T., Mather, PM., 2003. The use of backpropagating
artificial neural networks in land cover classification. International
Journal of Remote Sensing 24 (23), 4907—4938.

Koehler 1V, FW., Lee, E., Kidder, L.H., Lewis, E.N., 2002. Near
infrared spectroscopy: the practical chemical imaging solution.
Spectroscopy Europe 14 (3), 12—19.

Liu, K., 1997. Soybeans: Chemistry, Technology, and Utilization.
Chapman and Hall, New York.



12 S.T. Monteiro et al. / ISPRS Journal of Photogrammetry & Remote Sensing 62 (2007) 2—12

Minekawa, Y., Uto, K., Kosugi, Y., Oda, K., 2004. Development of
crane-mounted hyperspectral imagery system for stable analysis of
paddy field. Proc. International Symposium on Remote Sensing,
Jeju, Korea.

Monteiro, S.T., Minekawa, Y., Kosugi, Y., Akazawa, T., Oda, K.,
2006. Prediction of sweetness and nitrogen content in soybean
crops from high resolution hyperspectral imagery. Proc. 2006
IEEE International Geoscience and Remote Sensing Symposium,
Denver, Colorado, vol. 5, pp. 2263-2266.

Murphy, A.H., Daan, H., 1985. Probability, statistics, and decision
making in the atmospheric sciences. In: Murphy, A., Katz, R.
(Eds.), Forecast Evaluation. Westview Press, Boulder, Colorado,
pp. 379-437.

Myneni, R.B., Hall, F.G., Sellers, P.J., Marshak, A.L., 1995. The
interpretation of spectral vegetation indexes. IEEE Transactions on
Geoscience Remote Sensing 33 (2), 481-486.

Niyogi, P., Girosi, F., 1996. On the relationship between generalization
error, hypothesis complexity, and sample complexity for radial
basis functions. Neural Computation 8 (4), 819-842.

Osborne, B.G., Fearn, T., 1986. Near infrared spectroscopy in food
analysis. In: Meyers, R.A. (Ed.), Encyclopedia of Analytical
Chemistry. John Wiley & Sons, New York, pp. 86—103.

Petisco, C., Garcia-Criado, B., Vazquez de Aldana, B.R., Zabalgo-
geazcoal, 1., Mediavilla, S., Garcia-Ciudad, A., 2005. Use of near-
infrared reflectance spectroscopy in predicting nitrogen, phospho-
rus and calcium contents in heterogeneous woody plant species.
Analytical and Bioanalytical Chemistry 382 (2), 458—-465.

Richards, J.A., Jia, X., 1999. Remote Sensing Digital Image Analysis,
An Introduction, 3rd Edition. Springer-Verlag, New York.

Rouse, J.W., Hass, R.H., Schell, J.A., Deering, D.W., 1973.
Monitoring vegetation systems in the great plains with ERTS.
Third ERTS Symposium, NASA SP-351, vol. 1, pp. 309-317.

Schowengerdt, R.A., 1997. Remote Sensing: Models and Methods for
Image Processing, 2nd Edition. Academic Press, San Diego, CA.

Siesler, H.W., Ozaki, Y., Kawata, S., Heise, H.M., 2002. Near-Infrared
Spectroscopy Principles, Instruments, Applications. Wiley-VCH,
Weinheim, Germany.

Slaughter, D.C., Barrett, D., Boersig, M., 1996. Nondestructive
determination of soluble solids in tomatoes using near infrared
spectroscopy. Journal of Food Science 61 (4), 695-697.

Spectral Imaging Ltd., 2003. ImSpector Imaging Spectrograph User
Manual, 2nd Edition.

Toko, K., 1998. A taste sensor. Measurement Science & Technology 9,
1919-1936.

Tsai, F., Philpot, W., 1998. Derivative analysis of hyperspectral data.
Remote Sensing of Environment 66, 41-51.

Tsuta, M., Sugiyama, J., Sagara, Y., 2002. Near-infrared imaging
spectroscopy based on sugar absorption band for melons. Journal
of Agricultural and Food Chemistry 50 (1), 48—52.

Ustin, S.L., Roberts, D.A., Gamon, J.A., Asner, G.P., Green, R.O.,
2004. Using imaging spectroscopy to study ecosystem processes
and properties. Bioscience 54 (6), 523-534.

Widrow, B., Winter, R., 1988. Neural nets for adaptive filtering and
adaptive pattern recognition. IEEE Computer 21 (3), 25-39.

Zude, M., 2003. Comparison of indices and multivariate models
to non-destructively predict the fruit chlorophyll by means of
visible spectrometry in apples. Analytica Chimica Acta 481,
119-126.



	Prediction of sweetness and amino acid content in soybean crops from hyperspectral imagery
	Introduction
	Materials and methods
	Hyperspectral image data
	Derivative analysis
	Principal components analysis
	Artificial neural networks
	Performance evaluation metrics
	Mean of squared errors
	Correlation coefficient


	Results
	Discussion
	Conclusions
	Acknowledgment
	References


