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Abstract 
During a surgical procedure, blood covering the surgical field hinders the surgeon’s visual inspection. We 

propose a novel application of hyperspectral imagery in the biomedical field. We conceived a method to exploit 
the capabilities of hyperspectral imaging systems in order to provide clearer images of areas covered by blood to 
the surgeon. We developed a neural network approach to generate a nonlinear combination of spectral reflectance 
bands in the near infrared region revealing images that could not be seeing in unprocessed images. The ex-
perimental results are compared with conventional image processing techniques. We present in vitro experiments 
using human blood and in situ experiments using guinea pigs to attest the validity of the proposed method.  
Key words 

Image-guided surgery, Infrared medical imaging, Hyperspectral imagery, Neural networks, Spectral ma-
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��� Introduction 
Visual inspection is the most important guide to the 

microsurgery. Blood covering the surgical field is the 
largest obstacle to a proper surgical manipulation. 
The surgeon devotes a lot of time to keep the surgical 
field clean of blood. In addition, during especial 

procedures like minimally invasive surgery it is rather 
difficult to remove blood obstructing the surgeon’s 
view. Successful surgery might come from bloodless 
operating field. If we could see through the blood 
layer, surgical time might decrease and the result 
would be better.  

Imaging spectrometers have been developed to 
remotely measure and analyze the electromagnetic 
radiation of materials, at each wavelength and over a 
broad spectral band. By processing and combining 
spectral reflectance information from various 
non-visible wavelengths, we envision the possibility 
of revealing images under a superficial layer of blood 
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that could not be seeing with the naked eye.  
A previous work by W.-C. Lin, et al. 1) presents a 

different methodology aiming at reducing the effect 
of superficial blood contamination for in vivo tissue 
differentiation. They have employed the direct ratio 
of fluorescence and diffuse reflectance as the dif-
ferential criteria for tissue discrimination. They 
demonstrated that this ratio, instead of solely the 
fluorescence spectrum, is less affected by superficial 
blood contamination for optical spectroscopy, in the 
range 300 ~ 600nm� � . However, their method has a 
major limitation of relying on the assumption that the 
blood layer is extremely thin (less than 100 µm) and 
homogenous. This can only be satisfied using contact 
fiber-optic probes to acquire the data, and the validity 
of their assumption for non-contact spectral imaging 
modality (like ours) is not determined yet.  

We developed a method using an artificial neural 
network (ANN) approach to provide a nonlinear 
combination of hyperspectral imagery data in order to 
produce a better visualization of the blood-covered 
area. Our method relies on the spectral reflectance in 
the near infrared region to generate an enhanced 
visualization of areas obstructed by a blood layer of 
up to 3mm of thickness. 

���Background 
����Hyperspectral Imagery 
Imaging spectrometers are able to sample the re-

flectance spectrum extending from the visible region 
( 400 ~ 700nm� � ) through the near infrared 
( 0.7 ~ 1.3 m� �� ) to the mid infrared ( 1.3 ~ 3.0 m� �� ).
The class of sensors capable of acquiring hundreds of 
narrow contiguous bands of information for spectral 
signature analysis is usually referred to as hyper-
spectral sensors 2). In the field of remote sensing, 
many algorithms have been developed to extract 
scene information from spectral images, mainly 
aimed at pixels classification, material presence 
estimation, target detection and change detection 3).

In the biomedical field, optical spectrometers have 
been used for pathology sample analysis, live cell 
microscopy, non-invasive blood and other fluids 
analysis 4) 5). Fiber-optical reflectometers have been 
the main spectroscopy equipment utilized. Never-
theless, performing the spectral measurement in an 

imaging format has appealing advantages. For in-
stance, the measurement can be done without physical 
contact, many points can be measured simultaneously, 
and it can be performed with minimal disturbance, i.e., 
without interfering with the surgeon’s field of view. 

����Blood Spectral Characteristics 
The optical absorption properties of tissue in the 

ultraviolet, visible and near infrared regions are 
dominated by the absorptions of proteins, DNA, 
melanin, hemoglobin and water 6).

In the case of blood, hemoglobin and water are the 
basic components and main chromophores. While 
hemoglobin dominates the absorption properties in 
the visible spectrum, as we go to the near and mid 
infrared, water becomes the principal responsible for 
absorption. Fig. 1 shows the optical absorption pro-
file of hemoglobin and water in the spectrum. Note 
that the precise absorbance value of the blood-water 
solution at a given wavelength is inherently de-
pendent on the layer thickness and on the hemoglobin 
concentration.

We considered that the determination of significant 
wavelengths and the optimum data combination to 
permit visualization under a layer of blood is a non-
trivial problem that may require a nonlinear solution. 

���Methodology 
����Image Processing Procedure 
Fig. 2 shows the experimental data acquisition 

setup. It consists of light sources (a pair of 500W 
halogen lamps) a computer-controlled moving table, 
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and the hyperspectral line sensor.
In order to remove the spectral non-uniformity of 

the illumination device and influence of the dark 
current, we have normalized the radiance data to yield 
the radiance of the specimen. For this pre-processing, 
two auxiliary data were acquired during the experi-
ments: the radiance of a standard reference white 
board placed in the scene, and the dark current 
measured by keeping the camera shutter closed. The 
raw data was then corrected to reflectance using the 
following equation: 
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where )(�R  is the calculated reflectance value, for 

each wavelength; )(�rawI  is the raw data radiance 

value of a given pixel; and )(�darkI  and )(�whiteI
are, respectively, the dark current and the white board 

radiance acquired for each line and spectral band of 

the sensor. 

����Neural Network 
ANNs provide a general and practical method for 

approximating complex nonlinear functions from 
examples 8). ANNs have been successfully applied to 
a wide range of applications in remote sensing, 
medical data analysis and image processing 9).

We initially developed an image processing method 
using a single-layer perceptron (SLP) 11). Each pixel 
value of the output image, can be expressed as 
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where  represents the synaptic weights of the 

perceptron;

mw

)( mR �  is the reflectance of the specimen 
at )1( Mmm ��� ��  to be applied to the percep-
tron; and b is the bias.  
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Another ANN architecture proposed was a 
multi-layer perceptron (MLP) feed-forward network 
trained by the back-propagation algorithm with mo-
mentum12).

We codified the image using the discrete ther-
mometer encoding, as described by T. O. Jackson 14),
due to the difficulty presented by the neural network 
in providing a good output generalization when 
dealing with continuous data such as the pixel image 
information. The thermometer code can be expressed 
in the following manner: 

Fig. 2 Diagram of the experimental setup for the hyperspectral data
acquisition.
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where n is the number of nodes;  is the output 
activation of unit n; and 

na
�  is the interval size given 

by 1/)( �� nuv .
To obtain a two-level (black or white) representa-

tion of the image, we defined the number of nodes in 
the discrete thermometer scheme n = 1 to produce a 
binary output. For this case, only one neuron in the 
output layer is sufficient. 

To generate a grey-scale representation, we defined 
the number of nodes as n = 128, thus producing 128 
halftone levels. This encoding requires 128 nodes in 
the output layer to be represented. 

Both ANN architectures need 150 input nodes, 
which is the number of effective spectral channels of 
the hyperspectral sensor utilized. The number of 
nodes in the hidden layer of the MLP was determined 
experimentally as 10. 

The hyperspectral data is processed by the ANNs as 
follows. First, we manually select the image region to 
be used for training (input and target) and testing. 
Tutorial images without blood are used as target, and 
the same scene covered by blood are the inputs. 
Second, the reflectance value is normalized and 
converted to fall in the range [-1, 1]. Thirdly, the 
target data is coded using the discrete thermometer 
scheme. Fourthly, the ANN is trained until the mean 
squared error falls to zero or the maximum epoch is 
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reached. Finally, the output generated by the ANN is 
decoded from the discrete thermometer scheme to a 
desired image format, e.g., binary or 8 bits grey-scale. 

���Experiments
We utilized a hyperspectral imaging spectrograph 

ImSpector N17(E), which produces 160 wavelength 
channels interleaved by 5 nm of distance in the range 

900 ~ 1700nm� � 15). The CCD sensor scans the scene 
in two dimensions, one in the space (image line in-
formation) and, the other, in the electromagnetic 
spectrum (spectral information).  

                    (a)          (b)                     (c)    
Fig. 4� Human blood experiment results: comparison of binary
images of a sample area after processing: (a) binary conversion
using a threshold, image of � = 1260 nm; (b) single-layer perceptron
output; (c) multi-layer perceptron output.�

����In vitro Experiment using Human 
Blood 

For our preliminary experiments, we analyzed the 
spectral data of a solution of hepaline-added human 
blood (70%) and saline water (30%), with approxi-
mately 3 mm of thickness, poured in an uncovered 
Petri dish 10). As background scene, we utilized a 
calendar print with black characters, as shown in 
Fig. 3.

A sample area, around the calendar’s number five 
submerged in the blood, was processed. In order to 
compare the results, we manually picked the single 
band presenting the clearest visualization of the 
blood-affected area, � = 1260 nm. Then, we processed 
the image with the conventional technique of binary 
conversion using a threshold. The results of the 
conventional image processing method, SLP, and 
MLP, for the binary output case, are shown in Fig. 4.
For all cases, the training set consisted of the image 
area in the upper part of the number five without 
blood, as highlighted by the rectangle in Fig. 5(a).

Next, we processed the picked image with the tra-

ditional technique of contrast stretching. The results 
of the conventional image processing method and the 
MLP, for the grey-scale image, are presented in 
Fig. 5(b) and Fig. 5(c).

����In situ Experiment using Guinea Pig 
The following experiments were performed using a 

guinea pig and its blood. The blood was diluted in 
saline water with nearly 50% of proportion. A specific 
acrylic box was designed in order to guarantee a 
uniform thickness of the blood layer. The box has 
0.3mm thick top and bottom lids, which provides a 
transparency of approximately 95%, and walls with 
uniform height of 3 mm. We present the results of the 
experiment using the guinea pig abdomen as back-
ground; the experimental setup is shown in Fig. 6.

Fig. 5  Comparison of grey-scale images: (a) Tutorial image without
blood; (a) contrast stretched image of � = 1260 nm; (b) multi-layer
perceptron output. 

Fig. 6 In situ experimental setup; acrylic box filled with blood on
top of guinea pig’s opened abdomen. 

Fig. 3 In vitro experimental setup; Petri dish with human blood on
top of a calendar as background.  
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                    (a)          (b)                     (c)    
Fig. 7 Guinea pig experiment results: comparison of grey-scale 
images: (a) Tutorial image without blood; (b) Contrast stretched
image of � = 1100nm; (c) Multi layer perceptron output.�

Fig. 8 Composite picture of sample images generated during the 
training process of the multi-layer perceptron. Training epochs are, 
from top left, respectively: 1, 67, 138, 214, 294, 383, 563 and 2000.

The training set consisted of the image area in the 
lower part of the abdominal area without blood, 
highlighted by the rectangle in Fig. 7(a). As in the in
vitro case, a comparison with a conventional image 
processing technique is presented in Fig. 7(b). Finally, 
the output of the neural network is presented in 
Fig. 7(c).

����ANN Learning Analysis 
To follow the effective learning of the ANN, we 

produced binary images processed by the MLP at 
several early epochs of the learning process. A mon-
tage with the resulting images is shown in Fig. 8. The 
stopping criterion to generate the images was 20% 
decay from the mean squared error value of the pre-
vious image. As weights are set randomly in the 
beginning, early images generated by the ANN are 
very noisy, but as the learning steps advance, output 
images become more and more definite. The final 
image was obtained after the training algorithm had 
stopped completely. 

The long-term knowledge of an ANN is stored in 

the strength of the weighted connections between 

units. The characteristics of the SLP allow the veri-

fication of its weight vector,  in equation (2), 

which is presented in a graphical format in Fig. 9.

This provides an empirical insight of how the wave-

lengths are automatically weighed by the learning 

algorithm. The figures show that spectral channels in 

the interval from � = 1000 nm to � = 1300 nm have 

received higher weight values by the SLP, thus pre-

senting more significance on the composition of the 

visualization output.  

mw

����Discussion
The contrast stretching method and threshold bi-

nary transformation presented the less distinctive 

images. The SLP was able to learn an improved 
visualization. The MLP generated the clearest visu-
alization of the background covered with blood. The 
main advantage of ANN is its ability to learn from 
example and generalize this result to other samples, 
which have not been presented to the ANN yet. 
Conventional image processing methods usually 
require an elaborate examination of the hyperspectral 
data to generate a single image. Nevertheless, ANN 
presents the difficulty of architecture design, typi-
cally a trial and error procedure, and has an intrinsic 
sensibility to the quality and diversity of the training 
data set.

To extract significant information under a layer of 
stained blood two constraints must be respected, that 
the light source is sufficiently powerful and the layer 
is thin (up to 3mm in our observations). Nevertheless, 
if the layer of blood and the region of interest are not 
in physical contact, due to optical limitations, it 
becomes difficult to obtain significant information, 
even in the wavelengths of blood’s less optical ab-
sorption. This factor may have affected the quality of 
the data acquired in the guinea pig’s experiment, 
where a small space between the bottom of the acrylic 
box and the Guinea pig’s organs was observed. 

The hyperspectral line sensor that we have been 
using may represent a shortcoming for our method. 
Since it is necessary to line-scan the image, its prac-
tical use is limited.  A visual aid tool to be used during 
surgical procedures demands a faster imaging method. 
To circumvent the problem, one possible approach is 
to limit the number of spectral-channel inputs in the 
ANN in order to allow the acquisition of 
multi-spectral bands in two spatial dimensions (im-
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ages, not lines) at real time.  
The usefulness the SLP is that the connecting 

weights can be interpreted as the significance of the 
spectral components of the input. Moreover, by ap-
proximating the weight series with an optical filter 
bank, we were able to design a multi-spectral camera  
for real-time 2-D image acquisition, without requiring 
the scanning mechanism 13).

���Conclusion 
The main contribution of this paper is to propose a 

novel biomedical application for hyperspectral im-
aging systems. The results reported indicate the pos-
sibility of exploiting a region of low optical absorp-
tion presented by the blood in order to generate an 
enhanced image of a submerged region. The proposed 
ANN-based method proved able to learn how to 
combine the reflectance data from various spectral 
bands and generate a visualization of the area ob-
structed under the layer of blood.  

The straightforward application of the proposed 
method is in the biomedical field, for surgical guid-
ance.  Other application would be to improve the 
method to look at skin and tissue surface through 
bloody gauze or bandage without the need to remove 
them, facilitating the diagnosis. Extensions of the 
technique to other substances could also be developed 
and applied to diverse fields such as arts (work of art 
analysis) and agriculture (remote crop assessment). 
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Fig. 9 Final weights configuration of the SLP, referred to each spectral channel of the hyperspectral sensor: a) case of in vitro experiment using 
human blood; b) case of in situ experiment using guinea pig.�
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