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ABSTRACT

Hyperspectral sensors provide a powerful tool for non-
destructive analysis of rocks. While classification of spec-
trally distinct materials can be performed by traditional meth-
ods, identification of different rock types or grades com-
posed of similar materials remains a challenge because spec-
tra are in many cases similar. In this paper, we investi-
gate the application of boosting algorithms to classify hy-
perspectral data of ore rock samples into multiple discrete
categories. Two variants of boosting, GentleBoost and Log-
itBoost, were implemented and compared with Support Vec-
tor Machines as benchmark. Two pre-processing transfor-
mations that may improve classification accuracy were in-
vestigated: derivative analysis and smoothing, both calcu-
lated by the Savitzky-Golay method. To assess the perfor-
mance of the algorithms over noisy data, white Gaussian
noise was added at various levels to the data set. We present
experimental results using hyperspectral data collected from
rock samples from an iron ore mine.

1. INTRODUCTION

Characterizing surface geology from hyperspectral data can
be of enormous value for the mining industry. The accurate
assessment of lithology can be used during several phases of
the mining process, from exploration to processing and rec-
onciliation. Despite the constraint that hyperspectral data
only provides information from the surface of rocks [1], it
can be useful in open pit mine operations where the rocks of
interest are exposed. It has the potential to provide fast as-
sessment of the location and distribution of waste and ore on
the bench, resulting in more efficient mining and providing
a higher-value product.
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Hyperspectral sensors acquire data in hundreds of nar-
row, contiguous bands and provide a powerful tool for non-
destructive analysis of remote samples [2]. Spectral signa-
ture analysis of hyperspectral data can be applied to classify
samples into categories and produce land cover maps [3].
Conventional land cover classification methods allow easy
distinction among different materials, e.g., bare soil, vege-
tation and minerals. However, there are still challenges in
providing robust hyperspectral classification algorithms [4].
There are issues caused by the high dimensionality of hy-
perspectral data and the correlation between spectral bands.
It is difficult and laborious to produce labeled samples for
ground-truth, which may lead to correlation between train-
ing and validation data sets. There may also be significant
amount of noise in the data due to the narrow bandpasses
which are sampled, decreasing solar irradiance, particularly
towards longer wavelengths, sensor induced effects and er-
rors in calibration. Therefore, robust material identifica-
tion is still a significant challenge, especially when targets
present a high degree of spectral similarity [5].

In this paper, we investigate the performance of machine
learning techniques to classify hyperspectral data of ore-
bearing samples into discrete rock categories. The hyper-
spectral classification problem is characterized by having
multiple categories (rock types), high-dimensional features
(hyperspectral bands), and limited number of labelled sam-
ples (ground-truth). Boosting is a machine learning tech-
nique for supervised classification that has become very pop-
ular due to its sound theoretical foundation, and also due to
many empirical studies showing that it tends to yield smaller
classification error rates and be more robust to overfitting
than competing methods, e.g., Neural Networks or Support
Vector Machines (SVMs) [6]. We propose to apply a ver-
sion of Boosting called LogitBoost, which can efficiently
classify multiple categories directly. We present experimen-
tal results comparing LogitBoost with two benchmark algo-
rithms: another Boosting variant called GentleBoost and an
extension to SVMs called least squares-SVMs. The effect
on the classifiers’ performance of pre-processing the data
using Savitzky-Golay smoothing and derivatives is also in-



vestigated. The algorithms were assessed using hyperspec-
tral data sets of ore-bearing samples collected from an open
pit mine in Western Australia.

2. METHODOLOGY

Let us consider that the hyperspectral data is given as a vec-
tor z; € N4 comprising d spectral bands. The training set is
composed of pairs ((z1,y1) ;- - - , (Tn, Yn)) of n labelled ex-
amples, where each sample ¢ = {1,...,n} can be assigned
to a label y. For the binary classification problem, the target
label set is defined as y; € {—1,+1}. In the multi-class
case, each label is assigned an integer y; € {1,2,--- ,C}
with the number of classes C' > 3.

Given a binary classifier, there are several schemes for
coding the outputs to solve the multi-class problem [7]. The
two most widely used strategies are the one-versus-all and
the one-versus-one approaches [8]. The present study em-
ploys the one-versus-all approach which learns a set of bi-
nary classifiers { f1, f2,- -+ , fc'}, where the c-th class is as-
signed to the positive class, while the others are assigned to
the negative class. The prediction of the set of classifiers is
given by majority voting y = argmaxc—12.....c {fe(x:)}.
The one-versus-one approach did not perform as well on
this problem, probably due to the high number of classes in
relation to the small number of samples.

2.1. Boosting

The idea of Boosting is to train many “weak” learners on
various distributions (or set of weights) of the input data and
then combine the resulting classifiers into a single “commit-
tee” [9]. A weak learner can be any classifier whose perfor-
mance is guaranteed to be better than a random guess. There
are many different variants of boosting algorithms. In this
study, we investigate two versions called GentleBoost and
Logitboost [10].

2.1.1. GentleBoost

GentleBoost is a “gentle” version of the popular AdaBoost
algorithm, which is more robust numerically and has shown
to outperform the latter in experiment tests [10]. Gentle-
Boost is a binary classifier and can be extended to handle
multi-class problems using the one-versus-all scheme. Gen-
tleBoost uses adaptive Newton steps to optimize the cost
function of the classifier following an iterative procedure.
Let us assume a set of weighting coefficients w initial-
ized as w; = 1/n, fori = 1,...,n, and a classification
function F'(x) = 0. Let M be the number of weak learners.
Repeatform =1,..., M:
a) fit the regression function f,,, by minimizing the weighted
least squares

Z;l (wilyi — fm(2:)))?;
b) update F(z) « F(x) + fm(x);

¢) update weights w; «— w; exp(—y; fm(z;));

m
w;

Z?:l wi® '

Finally, return predictions of the final ensemble

sign [P = sign [S_ f(@] .

d) re-normalize weights w;* =

M

m=1

2.1.2. LogitBoost

LogitBoost is a Boosting variant that can directly classify
multiple classes. Logitboost, similarly to GentleBoost, uses
stagewise optimization of the maximum likelihood through
adaptive Newton steps to fit additive logistic regression mod-
els [10].

To solve the multi-class problem, the LogitBoost algo-
rithm defines a symmetric multiple logistic transformation

o(x) = , (x)=0, (2
)= Ry 2@

where p. is the probability of assigning class ¢ among C'
classes.

Let y* = {—1,1} be the indicator response vector. For
all classes ¢ = 1,...,C and training samples ¢ = 1,...,n,
we initialize the weighting coefficients w as w;. = 1/n, the
classification function as Fi.(z) = 0, and the class probabil-
ities as p.(x) = 1/C. For a given number of weak learners
m=1,..., M, repeat:

a) repeat for all classesc=1,...,C':
i) compute working responses
Yie — (i)
Pe(@i) (1 = pe(wi))

ii) compute weights w;. = p.(x;) (1 — pe(x;));

Zic =

iii) fit the regression function f,,. by minimizing the
weighted least squares
Zi:l (wic(zic - fmc(xi)))2 )
-1 1
b) set fmc(z) — CT (fm('(x) - 5 Z(C:;l fmc(x)) 5
¢) update F,(x) — F.(z) + fme(x);

d) update p.(z) using Eq.( 2).

The prediction of the classifier is given by
F(z) = argmax F.(z) . 3)
c

2.1.3. Regression stumps

As for the weak learners, the present study utilizes regres-
sion stumps, which can be viewed as binary decision trees
with only one node. A regression stump learns an optimal



threshold 6 that takes a feature ¢ such that the minimum
number of examples x is misclassifed. It can be defined as

f(z,0,0,a,b) = ad [p(x) > 0] + b, 4)

where d is an indicator function, and a and b are regression
parameters. The parameters {¢, 0, a,b} are optimized by
minimizing the weighted squared error w.r.t. f. This can be
performed efficiently by best-first search and forward selec-
tion [11].

2.2. Support Vector Machines

SVMs have been shown to be effective for nonlinear clas-
sification, regression and density estimation problems [12].
SVMs were introduced for the binary classification prob-
lem by fitting an optimal separating hyperplane between
the positive and negative classes with the maximal mar-
gin [13]. The classical SVM algorithm is based on con-
vex optimization theory, typically quadratic programming
involving inequality constraints. We focus on a different
formulation called Least Squares Support Vector Machines
(LS-SVMs) [14], which present lower computational com-
plexity and may scale better for high-dimensional problems.
In a LS-SVM classifier the problem is simplified because of
the use of equality constraints instead of inequalities. The
solution can then be obtained in a finite number of steps by
solving a set of linear equations.

In a LS-SVM classifier, its primal weight space is de-
fined as

j(z) = w'o(z) +b, )

where ¢ is a non linear function which maps the input space
into a higher dimensional space, the weight vector w and
bias b are parameters of the hyperplane. The LS-SVM opti-
mization problem can be formulated as the minimization of
a function J defined as

1 1 —
J(w, b, e) = inw +75 > el (6)
=1

where 7y is the regularization factor. The optimization is
subject to the constraints y; = ngo(xi) + b + e;, where
e; = y; — ¥;. Solving this optimization problem in dual
space using the kernel trick leads to finding the coefficients
of the function

f@) = aiK(x,z;) +b, (7)
=1

where the kernel function K (z,x;) is the dot product be-
tween the o(x)” and ¢(x) mappings. The present study
employs a radial basis function (RBF) as the kernel func-
tion, which can be defined as

K(w,y) = expo (=0 2 —yl) ®)

where o is a free model selection parameter that controls
the widths of the Gaussian or RBF functions.

2.3. Savitzky-Golay Filtering and Derivatives

Empirical studies have shown that derivative analysis in-
crease classification accuracy of Artificial Neural Networks
in some cases [15, 16]. However, due to increased amount
of noise at each higher derivative, a careful noise reduction
pre-processing step is required. A common approach to cal-
culate spectrum derivatives is to first apply a smoothing fil-
ter to reduce the noise and then perform the derivatives us-
ing a finite differentiation scheme [17]. The Savitzky-Golay
filter, also known as least-squares smoothing filter, is a more
elaborate approach that fits polynomials and differentiates
them analytically [18]. Savitzky-Golay filters are attractive
for spectropy because they are effective at preserving the
relative widths and heights of spectral signatures in noisy
spectrometric data [19].

In the Savitzky-Golay method, a frame of data points
surrounding the current point (spectral band) is fit to a poly-
nomial using local least-squares regression. The function
value of the current band is retained, while the function val-
ues of the others in the frame are discarded. The simplified
least square convolution can be used to calculate the qth-
order derivative u of a band A according to

q5 s
dd;fj = Y PPusa(o), ©)
where P is the set of filter coefficients, and r is the half-
width of the filter size, which correspond to a smoothing
window of 21 + 1. Note that A = {r +1,--- ,n —r 4+ 1},
where n is the number of bands. Equation (9) allows calcu-
lation of the smoothed signal from zeroth order to the sixth
order of derivatives [20]. The present study implements
Savitzky-Golay smoothing using cubic (order 3) polynomi-
als, for a moderate level of smoothing and capable of pro-
viding up to the third derivative.

3. RESULTS

The hyperspectral data was collected using a portable field
spectrometer manufactured by Analytical Spectral Devices
(ASD) Inc. (Boulder, Colorado). The sensor acquires hyper-
spectral data from the visible (350 nm) to the short-wave-
infrared (SWIR) (2500 nm) region of the spectrum at 1 nm
intervals. The data were downsampled to 2nm intervals
on the visible region and to 6.5nm in the SWIR in order
to match the resolution of bandpasses which are consistent
with many commercially available hyperspectral imaging
systems; the total number of bands used was 429.

For this study, 14 rock samples from an iron ore mine
located in the Pilbara region of Western Australia were col-
lected. The samples comprise several rock types represen-
tative of the mineralogy commonly found in that region:
banded ironstone formation (BIF), martite, goethite, kaolin-
ite, and mixtures of those. The classification of the samples
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Fig. 1: Spectral signatures of three typical ore rocks: BIF
(in blue), goethite (in green) and kaolinite (in red). The
effect of light absorption from water vapour present in the
atmosphere can be observed at wavelengths around 1450,
1950 and 2500 nm

was provided by an experienced geologist. A total of 10
spectral measurements were taken from each rock type. As
an example, the spectral reflectance signatures of three ore
rocks are shown in Fig. 1. The resulting curves of the first
and second derivatives are illustrated in Fig. 2a and Fig. 2b,
respectively. We decided to keep the noisy bands due to
water vapour absorption to provide a rigorous test for the
machine learning algorithms.

In order to evaluate the performance of the algorithms
over different conditions, artificial noise at various levels
was added to the reflectance data. White Gaussian noise
was added to produce spectra with different signal-to-noise
ratios (SNRs) ranging from 60dB to 10dB, at 10dB inter-
vals. Figure 3 shows an example of the resulting spectral
signatures after this procedure.

For LogitBoost and GentleBoost using decision stumps
as weak learners, the only parameter that needs to be defined
is the number of weak learners. We have chosen the num-
ber of weak learners that provided the better classification
for the unprocessed reflectance data set, 35 for the Logit-
Boost and 33 for the GentleBoost. For LS-SVMs using a
radial basis function kernel, we have to adjust the kernel
scale factor. Using the same criterion as used in Boosting,
the scale factor was set to 3 for all experiments.

The algorithms were tested using k-fold cross-validation.

For the present data set, a 5-fold approach was implemented.
At each turn, 2 spectral samples of each class are taken out
of the training set. The model is then tested on this valida-
tion set. The results of all turns are grouped together and the
final results are calculated based on the confusion matrix of
the whole validation set. The model accuracy is the percent-
age of correctly classified samples over the total number of
samples.

The experimental results for LogitBoost, GentleBoost
and LS-SVMs are presented in Table 1. The rows corre-
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Fig. 2: Derivative spectra of three rock samples: BIF (in
blue), goethite (in green) and kaolinite (in red)

spond to the different pre-processing techniques, smoothing
and derivatives, applied to the data set; the indices 20, 40,
80 indicate the width of the smoothing window in nanome-
ters. The columns correspond to the different levels of noise
added to the data, and the last column shows the no-noise-
added data set; the best results for each SNR level are high-
lighted in bold letters. We have also separated the results
into three groups based on the type of the data set: raw
reflectance, first and second derivatives. These results are
presented in Fig. 4 as box-and-whisker diagrams.

In the experiments, LogitBoost presented better perfor-
mance than GentleBoost overall, although with slightly more
variance on the derivatives data. The LS-SVMs achieved
higher accuracy for the raw reflectance data, but presented
higher variance and performed very poorly on the deriva-
tives and noisy data. This agrees with a previous compara-
tive study of SVMs and also AdaBoost [21], which indicate
that the cost function for hyperspectral classification leads
to sparser solutions by the Boosting algorithm. Neverthe-
less, LS-SVMs could yield better results on all cases if its
parameters were fine tuned for each case, a procedure that
is not required for Boosting, which performs well with fixed
parameters. Another advantage of LogitBoost is that it can
provide class probability estimates, which can be useful for



Table 1: Comparison of results of algorithms for ore classification using hyperspectral data

Method Preprocessing 10dB 20dB 30dB 40dB 50dB 60dB No-noise
Raw Reflectance  0.1643  0.3857 0.7214 0.8714 0.9071 0.9214 0.9214
Smoothing 20  0.3571  0.7643  0.9071 0.9286 0.9214 0.9214 0.9143
Smoothing 40  0.4429  0.7857  0.9357 09286 0.9357 0.9143 0.9214
Smoothing 80  0.4286  0.8500 0.9071 0.9286 0.9143  0.9286 0.9214
LogitBoost Ist Derivative 20 0.0214  0.0571  0.1214  0.2786  0.6929  0.8357 0.9571
Ist Derivative 40 0.0643  0.1643  0.3357  0.6357  0.8929  0.9000 0.9429
Ist Derivative 80  0.0857  0.2357  0.6714  0.8500 0.9071  0.9571 0.9643
2nd Derivative 20  0.0786  0.1143  0.0786 0.1714  0.2857  0.5571 0.9571
2nd Derivative 40  0.0500  0.1357  0.1857  0.4500 0.6000 0.8786 0.9643
2nd Derivative 80 0.0929  0.1714  0.4429 0.6929 0.8714  0.9643 0.9714
Raw Reflectance  0.1500 0.3643  0.6500 0.7929 0.8786  0.9071 0.9071
Smoothing 20  0.3143  0.6643  0.8500 0.8786  0.9143  0.8929 0.8929
Smoothing 40  0.3857  0.7714  0.8571 09214 0.9286 0.9143 0.9143
Smoothing 80  0.4071  0.8000 0.8786 09214 0.9143  0.9000 0.9071
GentleBoost Ist Derivative 20 0.0500  0.0500  0.0643  0.3500 0.5786  0.8286 0.8929
Ist Derivative 40  0.0929  0.1429  0.3929  0.6000 0.8286  0.8571 0.9071
Ist Derivative 80 0.1429  0.2429  0.6143  0.8000 0.8714 0.9143 0.9429
2nd Derivative 20  0.0857  0.0286  0.1500 0.2071  0.3071  0.4643 0.8929
2nd Derivative 40 0.0643  0.0857  0.1571  0.3286  0.5857  0.8643 0.9071
2nd Derivative 80  0.1214  0.2000  0.4357  0.6357  0.8000  0.8929 0.9357
Raw Reflectance  0.0500  0.0786  0.0429  0.7571  0.9429  0.9500 0.9429
Smoothing 20  0.0286  0.0500  0.7571  0.9429  0.9429  0.9429 0.9429
Smoothing40  0.1071  0.0500 0.9143  0.9429  0.9500  0.9429 0.9500
Smoothing 80  0.0643  0.1714  0.9429 0.9429 0.9500 0.9571 0.9429
LS-SVMs Ist Derivative 20 0.0857  0.0500  0.1000 0.0643  0.0643  0.0571 0.0714
Ist Derivative 40~ 0.0500  0.0929  0.0714 0.0500 0.0643  0.0643 0.0857
Ist Derivative 80  0.1000  0.0429  0.0929  0.1000 0.0714  0.0571 0.1000
2nd Derivative 20  0.0429  0.0714  0.0786  0.0857  0.1071  0.0643 0.0714
2nd Derivative 40~ 0.0857  0.1071  0.0571  0.0571 0.0857 0.0714 0.0571
2nd Derivative 80 0.0357  0.0643  0.0643  0.0714  0.0714  0.0357 0.0500

eventual post-processing phases; in case its results need to
be combined with other sensors for example.

4. CONCLUSIONS

In this paper, we evaluated three machine learning approaches
for hyperspectral classification of rock types. LogitBoost,
GentleBoost and LS-SVMs are able to classify rocks with
a high degree of accuracy even when dealing with sam-
ples that present high spectral similarity, which can be chal-
lenging for conventional remote sensing methods based on
spectral similarity measures. The classification problem is
rendered difficult by the high dimensionality (429 features)
and small number of labeled samples (10 per class). In
our experiments considering noisy, filtered and derivative
transformed data sets, LogitBoost presented better perfor-
mance overall. Smoothing the data improved accuracy for
all algorithms. Derivative analysis improved accuracy of the
Boosting methods on high signal-to-noise ratio data sets,
but the results deteriorate as noise increases. Therefore,
while smoothing and derivatives can improve classification
accuracy of the Boosting algorithm, the derivative transfor-
mation should only be applied to spectra presenting a high
SNR.

Despite the fact that the LS-SVM approach provided

higher accuracies for unprocessed reflectance data and for
data with low noise, both Boosting algorithms yielded bet-
ter results on the noisiest data sets and on the derivatives
using a fixed number of weak learners. While the LS-SVM
parameters require fine tuning for each case, Boosting is
more flexible to classify different transformations of hyper-
spectral data.
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