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ABSTRACT 
During a surgery, the inevitable presence of blood 
covering the surgical field demands efforts to keep the 
area as clean as possible. A new hyperspectral data 
processing method is being developed to deliver clearer 
images to the surgeon. The analysis of optical absorption 
properties of the blood and water indicates that, between 
the visible and near infrared spectral regions, some 
valuable information under the blood layer may be 
obtained using a spectral imaging system. We propose a 
neural network approach to provide a nonlinear 
combination of spectral band reflectance in order to reveal 
images that could not be seeing with unprocessed images. 
This paper describes the implementation of single-layer 
and multi-layer perceptron architectures to perform the 
hyperspectral data processing. We present experimental 
results attesting the viability of the proposed method. We 
demonstrate that hyperspectral imagery can be exploited 
as visual aid for surgical guidance. 
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1.  Introduction 
 
Visual inspection is the most important guide to the 
microsurgery. Blood covering the surgical field is the 
largest obstacle to a proper surgical manipulation. It is no 
exaggeration to say that successful surgery comes from 
blood-less operating field. The surgeon devotes a lot of 
time to keep the surgical field clean of blood. If we can 
see through the blood layer, surgical time might decrease 
and the result would be better. 
 Spectroscopy concerns with the measurement and 
analysis of the electromagnetic radiation reflected or 
emitted by materials at several wavelengths  [1]. Imaging 
spectrometers have been developed to sample the 
reflectance spectrum extending from the visible region (λ 
= 400–700 nm) through the near infrared (λ = 0.7–1.3 µm) 
to the mid infrared (λ = 1.3–3 µm) in numerous narrow 
contiguous bands about 10 nm wide. The class of image 
spectroscopy sensors that is able to acquire hundreds of 

bands of information remotely for spectral signature 
analysis are usually referred as hyperspectral sensors  [2]. 
Advances in sensor equipment technology have led to 
applications in many different areas.  
 In the biomedical field, optical spectrometers have 
been used for pathology sample analysis  [3], live cell 
microscopy  [4], non-invasive blood and other fluids 
analysis  [5]. In the field of remote sensing, many 
algorithms have been developed to extract scene 
information from spectral images  [6], mainly aimed at 
pixels classification  [7], material presence estimation [8], 
target detection  [9] and change detection  [10].  
 Recent works have presented different methodologies 
to deal with objectives that can be related to ours. W.-C. 
Lin, et al., proposed a method in  [11] to reduce the effect 
of superficial blood contamination for in vivo tissue 
diagnosis. The direct ratio of fluorescence and diffuse 
reflectance was employed as the differential criteria for 
tissue discrimination. They demonstrated that this ratio, 
instead of solely the fluorescence spectrum, is less 
affected by superficial blood contamination for optical 
spectroscopy, in the range λ = 300–600 nm. 
Notwithstanding sharing a similar purpose, we rely only 
on the spectral reflectance information and from a 
different wavelength range, generating an enhanced 
image of the area, instead of a classification index. 
Another related research was presented by S. Oka and Y. 
Takefuji in  [12]. They presented an image-clustering 
algorithm based in a self-organizing neural network to 
produce a RGB image that emphasizes features in satellite 
hyperspectral images. Their goal is also closely related to 
ours, to reveal new images that could not be seen in 
unprocessed images. The difference here lies in the fact 
that we have a target area to be enhanced, the blood 
affected area.  
 In this paper, we present a new medical field 
application of a hyperspectral imaging spectrograph in the 
near infrared region. By processing and combining 
spectral reflectance information from various wavelengths 
of the spectrum, we envision the possibility of revealing 
images under the blood that could not be seeing with the 
naked eye. However, it may be difficult or even 
impossible to determine a priori which bands should be 
emphasized over others. We propose an artificial neural 

452-240 483

melissa




network (ANN) approach to provide a nonlinear 
combination of pixel data from different wavelengths in 
order to reduce the effect of blood spilled over the scene, 
producing a clearer image of the submerged area. ANNs 
have been successfully applied to a wide range of 
applications in remote sensing, medical data analysis and 
image processing  [13]. 
 In section 2, we present the theoretical basis of our 
research. Section 3 presents a brief description of the 
methods employed for hyperspectral data acquisition and 
processing. The design of the ANN architectures is 
described. Section 4 presents experimental results of the 
ANNs implemented, along with an empirical performance 
analysis. Finally, the conclusions and future works are 
discussed in section 5. 
 
 
2.  Theoretical Background 
 
The optical properties of absorption and transmission of 
materials are controlled by the electronic, vibrational, and 
rotational characteristics of the constituent molecules. 
Basically, the percentage of light transmitted through a 
medium can be described by Beer-Lambert's law as 

))(exp( lA a λµ−=  (1) 
where A is the absorbance, aµ is the absorption 
coefficient, dependent on the wavelength λ , and l is the 
optical path length. The optical absorption properties of 
tissue in the ultraviolet, visible and near infrared regions 
are dominated by the absorptions of proteins, DNA, 
melanin, haemoglobin and water, and have been analysed 
by Vogel and Venugopalan in  [14]. In the case of the 
blood, haemoglobin and water are the basic components 
and main chromophores. While haemoglobin dominates 
the absorption properties in the visible spectrum, as the 
wavelength value increases, water becomes the principal 
responsible for absorption. The optical absorption curve 
of haemoglobin and water in the spectrum is shown in 
figure 1, based on data gathered by Prahl in  [15] and  [16].  
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Figure 1. Optical absorption curves of water and 
haemoglobin (Hb and HbO2) in the range λ = 250–2500 
nm  

 Our method derives from the assumption that there 
exists a "window", between the visible and near-infrared 
regions, where the optical absorption of haemoglobin and 
water would permit to obtain some valuable information 
under the layer of blood, with the constraint that the layer 
is thin enough or the light source is powerful enough. Our 
preliminary practical experiments pointed that this gap 
would fall approximately in the range λ = 1100–1300 nm, 
as can be verified by the spectral reflectance curve of 
blood-water in figure 6, (c). An absorption curve for 
whole blood diluted in isotonic saline with a trough in 
nearly the same spectral region was presented by J.F. 
Black, et al., in  [15].  
 The blood-water solution presents a nonlinear optical 
absorption curve and its precise absorbance value at a 
given wavelength is inherently dependent on the layer 
thickness and on the haemoglobin concentration. We 
ponder that the determination of the interesting 
wavelengths and the data combination to get the image 
under the blood layer is a nontrivial problem that may 
require a nonlinear solution. 
 
 
3.  Methodology 
 
The problem of how to find a combination of wavelength 
data acquired by a hyperspectral sensor that enhances 
features hidden under a liquid substance poses as a 
potential target for the flexibility of ANNs. ANNs are 
computational tools that were developed imitating some 
functions of the human brain, based on biological 
concepts borrowed by the artificial intelligence 
community. ANNs provide a general and practical 
method for approximating complex nonlinear functions 
from examples  [20].  
 The mathematical intractability and nonlinearity that 
characterizes hyperspectral remote sensing features adds 
up to the notion that ANNs usually provide better results 
than traditional spectral analysis techniques, besides 
lacking a comprehensive theoretical explanation relating 
its problem solving capability and the intricate problem at 
hand  [18]. 
 
3.1. Hyperspectral Data Acquisition 
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N17, with a range λ = 900–1700 nm interleaved by 5 nm 
of distance, producing 161 wavelength bands. It uses a 
prism-grating-prism dispersive element and transmission 
optics, which creates a straight optical path that can be 
combined with a normal CCD camera and lenses  [19]. 
The sensor scans the scene in two dimensions, one 
containing the spatial line information and other the 
spectral information. Thus, there is the necessity of 
moving the object, or the camera, to form the other spatial 
dimension and produce the three-dimensional data cube. 

HbO2 
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 The experimental data acquisition setup is shown in 
figure 2. It consists of a light source (halogen lamp) a 
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computer-controlled table, and the hyperspectral line 
sensor. 
 

 
Figure 2. Experimental hyperspectral imaging setup 

 To calibrate the hyperspectral imaging system, two 
auxiliary data were acquired in the moment of the 
experiments: the radiance of a reference white board 
placed in the scene and the dark current, measured by 
keeping the camera shutter closed. The raw data was then 
corrected to reflectance using the following equation: 

darkwhite

darkraw
ref II

II
I

−
−

=  (2) 

where  is the calculated reflectance value,  is the 

raw data radiance value of a given pixel, and  and 
 are, respectively, the dark current and the white 

board radiance, acquired for each line and spectral band 
of the sensor. 
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3.2. Neural Network Architectures 
 
At first, a single-layer perceptron was implemented  [23], 
as shown in figure 3. 

 
Figure 3. Single-layer perceptron network scheme 

 The output of the single-layer perceptron can be 
expressed as 
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where w represents the synaptic weights of the 
perceptron, x are inputs applied to the perceptron and b is 
an external applied bias. The activation function g for the 

output unit is a threshold function producing a binary 
output. 
 To learn acceptable weights and bias values of a 
network, a training rule procedure is defined. In 
supervised learning, training examples of desired network 
behaviour are provided to the learning rule. Perceptrons 
are trained in this way, starting with random weights and 
bias, then performing an iterative process of presenting 
the training example to the network and making 
corrections to the network based on the results. This 
process is repeated, until the misclassification is reduced 
to a target value. The perceptron training rule is described 
by the following equation 

Hyperspectral 
Li Light 

source

iii xotww )( −+= η  (4) 
where  is weight associated with the input , t is the 
target output, o is the actual perceptron output and 

iw ix
η is 

the learning rate. 
 The other ANN architecture implemented was a multi-
layer perceptron feedforward network trained by the 
backpropagation algorithm with momentum, details of the 
training procedure for this architecture can be found in 
 [21]. A diagram of this ANN architecture is shown in 
figure 4. 
 

 
Figure 4. Multi-layer perceptron network scheme 

 As a pre and post-processing step, we propose to 
codify the image using a discrete thermometer encoding, 
as described by T. O. Jackson  [22], due to the difficulty 
presented by the neural network in providing a good 
output generalization when dealing with continuous data 
such as the pixel image information. In the discrete 
thermometer encoding, the units are coded to respond 
over some interval of the input range . It is a 
distributed scheme and a unit is always active if the input 
values is equal to, or greater than, its interval threshold. 
The thermometer code can be expressed in the following 
manner: 
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where n is the number of nodes,  is the output 
activation of unit n, and 

na
δ  is the interval size given by 

.  1/)( +− nuv
 The hyperspectral data processing by the ANN 
followed the steps shown in figure 5. 

  
Figure 5. Block diagram of the hyperspectral data 
processing 

 First, we discard some bands that present excessive 
noise and then we manually select the spatial region of the 
data cube to be used as training (input and target) and test 
data.  Second, each pixel's reflectance value is normalized 
to fall in the range [-1,1] and serve as input data. Third, 
the target data is codified using the discrete thermometer 
scheme. Forth, the ANN is trained until the mean squared 
error falls to zero or the maximum epoch is reached. The 
test set is then simulated with the trained ANN. Fifth, the 
output generated by the ANN needs to be decoded from 
the discrete thermometer scheme to a desired image 
format, like binary or 8 bits grey-scale.   
 Both ANN architectures need 151 input nodes, which 
is the number of useful channels of our hyperspectral 
sensor. For the multi-layer perceptron, we utilized rules of 
thumb to define the number of nodes in the hidden layer 
as 10. 
 To produce a binary output using the discrete 
thermometer encoding, we simply defined the number of 
nodes in the scheme n = 1. The result is a two level 
representation of the image, black or white values for 
each pixel. For this case, only one neuron in the output 
layer is sufficient. 
 To generate a grey-scale representation we defined the 
number of nodes n = 128, thus producing 128 halftone 
levels. This encoding requires 128 nodes in the output 
layer to be represented. 
 
 
4.  Experiments 
 
The experiments were performed using the Hyperspectral 
line sensor to scan the near infrared spectra of a test 

sample. The hyperspectral data was processed off-line by 
the ANNs afterwards.  
 For our preliminary practical experiments, we 
analysed the spectral data of a solution of blood (70%) 
and saline water (30%), with approximately 3 mm of 
thickness, poured in an uncovered Petri dish. As 
background scene, we utilized a monthly calendar with 
big numbers. The typical data cube of the scene is 
presented in figure 6. The optical absorption of the blood-
water solution is very high, allowing reflectance variation 
in only a small spectral range, as can be observed in 
figure 6, (c). 

 
Figure 6. (a) Scene data cube with visualization of λ = 
1100 nm. Spectral reflectance curve, in the range λ = 900–
1700 nm, for: (b) the white paper and (c) the blood  

 
4.1. Hyperspectral Image Processing Results 
 
The hyperspectral data cube acquired was applied to both 
proposed ANNs architectures. In order to evaluate the 
results, we visually analysed and picked the single band 
presenting the clearest visualization of the blood-affected 
area, λ = 1260 nm. Then we processed the image with 
conventional techniques of contrast stretching and binary 
conversion using a threshold. The resulting images of a 
sample area, around the calendar's number 5 submerged 
in the blood, are presented in figures 7 and 8. 
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(a)               (b)            (c)
re 7. Comparison of binary images of a sample area 
processing: (a) binary conversion using a threshold, 
e of λ = 1260 nm; (b) single-layer perceptron output; 
ulti-layer perceptron output 



 
Figure 8. Comparison of grey-scale images: (a) contrast 
stretched image of λ = 1260 nm; (b) multi-layer perceptron 
output 

 The multi-layer perceptron notably generated the 
clearest visualization of the calendar's number under the 
blood. The single-layer perceptron was also able to learn a 
good visualization but the output presented more noise. 
The contrast stretching method and threshold binary 
transformation presented the less distinctive image.  
 
4.2. Empirical Analysis of the ANN Performance  
 
The long-term knowledge of an ANN is stored in the 
strength of the weighted connections between units. The 
simplicity of the output equation of the single-layer 
perceptron allows a verification of its weight vector and 
an empirical assessment of the problem of band 
combination, how the wavelengths are automatically 
weighed by the learning algorithm. The weights 
configuration of the single-layer perceptron trained is 
presented in a graphical format in figure 9. This graph 
shows that bands in the interval from band 41       (λ = 
1100 nm) to 81 (λ = 1300 nm) really received higher 
weight values by the learning algorithm, confirming our 
initial assumption. 

Figure 9. Single-lay
to each spectral ban
band 1 (λ = 900 nm)

 To follow the effective learning of the ANN we 
produced binary images processed by the multi-layer 
perceptron at several early epochs of the learning process, 
a montage with the resulting images is shown in figure 
10. As weights are set randomly in the beginning, early 
images generated by the ANN are very noisy, but as the 
learning steps continue, output images become more and 
more definite. The stopping criterion to generate the 
images was 20% decay from the previous mean squared 
error value. The last image was obtained after the training 
algorithm had stopped completely.  

 
Figure 10. Composite picture of sample images generated 
during the training process of the multi-layer perceptron. 
Training epochs are, from top left, respectively: 1, 67, 
138, 214, 294, 383, 563 and 2000 

 
 
5.  Conclusion 
 
Preliminary results in our investigation of combining 
wavelengths from the near infrared region to visualize 
images submerged in a blood layer are very promising. 
The ANN approach performed quite well in the above 
experimental assessment, attesting the viability of the 
proposed method. The ANNs proved able to learn how to 
combine the reflectance data from various spectral bands 
and generate a clearer image. The multi-layer perceptron 
presented the best performance and is the architecture of 
choice for further developments of the method. Still,the 
single-layer perceptron was also useful, providing a 
simple and comprehensible verification for the feasibility 
of the method. 
 The ANN main advantage is its ability to learn from 
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 to band 161 (λ = 1700 nm)   

example and generalize this result to other samples not 
presented to the ANN yet. Conventional image processing 
methods usually require an elaborate examination of the 
hyperspectral data to generate a single image. 
Nevertheless, ANN presents the difficulty of architecture 
design, typically a trial and error procedure, and has an 
intrinsic sensibility to the quality and diversity of the 
training data set.  
 The use of hyperspectral imagery to serve as a visual 
aid tool during surgical procedures demands an online and 
automatic method. The hyperspectral imaging 
spectrograph that we have been using represents a 
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shortcoming of our method. Since it is necessary to line-
scan the image, its practical use is limited yet.  
Nonetheless, a medical application using a 10-band multi-
spectral camera that acquires two-dimensional images at 
three frames per second was reported in  [24]. Such a 
system could be tuned to the wavelengths of interest, and 
be utilized with an adapted version of our method.  
 We are continuing this research aiming at generating 
RGB pseudo-colour images and developing an 
unsupervised version of the method. Future experiments 
need to be performed to define the limit of thickness until 
which the blood layer can be seen through. 
 The results reported in this paper indicate the 
possibility of exploiting a spectral gap presented by the 
optical absorption property of a substance in order to 
generate an enhanced image of the subsurface area. The 
straightforward application is in the medical field, but 
extensions of the method to other substances can also be 
developed and applied to diverse fields such as arts, work 
of art analysis, and agriculture, remote crop assessment. 
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