
ISPRS Journal of Photogrammetry and Remote Sensing 75 (2013) 29–39
Contents lists available at SciVerse ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier .com/ locate/ isprs jprs
Mapping the distribution of ferric iron minerals on a vertical mine face using
derivative analysis of hyperspectral imagery (430–970 nm)

Richard J. Murphy ⇑, Sildomar T. Monteiro
Australian Centre for Field Robotics, The Rose Street Building J04, Department of Aerospace, Mechanical & Mechatronic Engineering, The University of Sydney, NSW 2010, Australia

a r t i c l e i n f o a b s t r a c t
Article history:
Received 26 August 2011
Received in revised form 17 July 2012
Accepted 19 September 2012

Keywords:
Mining
Iron ore
Remote sensing
Hyperspectral
Derivative analysis
Banded iron formation
0924-2716/$ - see front matter � 2012 International
http://dx.doi.org/10.1016/j.isprsjprs.2012.09.014

⇑ Corresponding author. Tel.: +61 2 9114 0897; fax
E-mail address: richard.murphy@sydney.edu.au (R
Hyperspectral imagery is used to map the distribution of iron and separate iron ore from shale (a waste
product) on a vertical mine face in an open-pit mine in the Pilbara, Western Australia. Vertical mine faces
have complex surface geometries which cause large spatial variations in the amount of incident and
reflected light. Methods used to analyse imagery must minimise these effects whilst preserving any spec-
tral variations between rock types and minerals. Derivative analysis of spectra to the 1st-, 2nd- and 4th-
order is used to do this. To quantify the relative amounts and distribution of iron, the derivative spectrum
is integrated across the visible and near infrared spectral range (430–970 nm) and over those wavelength
regions containing individual peaks and troughs associated with specific iron absorption features. As a
test of this methodology, results from laboratory spectra acquired from representative rock samples were
compared with total amounts of iron minerals from X-ray diffraction (XRD) analysis. Relationships
between derivatives integrated over the visible near-infrared range and total amounts (% weight) of iron
minerals were strongest for the 4th- and 2nd-derivative (R2 = 0.77 and 0.74, respectively) and weakest for
the 1st-derivative (R2 = 0.56). Integrated values of individual peaks and troughs showed moderate to
strong relationships in 2nd- (R2 = 0.68–0.78) and 4th-derivative (R2 = 0.49–0.78) spectra. The weakest
relationships were found for peaks or troughs towards longer wavelengths.

The same derivative methods were then applied to imagery to quantify relative amounts of iron min-
erals on a mine face. Before analyses, predictions were made about the relative abundances of iron in the
different geological zones on the mine face, as mapped from field surveys. Integration of the whole spec-
tral curve (430–970 nm) from the 2nd- and 4th-derivative gave results which were entirely consistent
with predictions. Conversely, integration of the 1st-derivative gave results that did not fit with predic-
tions nor distinguish between zones with very large and small amounts of iron oxide.

Classified maps of ore and shale were created using a simple level-slice of the 1st-derivative reflectance
at 702, 765 and 809 nm. Pixels classified as shale showed a similar distribution to kaolinite (an indicator
of shales in the region), as mapped by the depth of the diagnostic kaolinite absorption feature at 2196 nm.
Standard statistical measures of classification performance (accuracy, precision, recall and the Kappa
coefficient of agreement) indicated that nearly all of the pixels were classified correctly using 1st-deriv-
ative reflectance at 765 and 809 nm. These results indicate that data from the VNIR (430–970 nm) can be
used to quantify, without a priori knowledge, the total amount of iron minerals and to distinguish ore
from shale on vertical mine faces.
� 2012 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.
1. Introduction

Over the past three decades, advances in hyperspectral imaging
have continued to improve our ability to remotely identify, map
and quantify geological materials on the Earth’s surface (Bierwirth
et al., 2002; Plaza et al., 2009; Vane and Goetz, 1988). Most
commonly, data are acquired from airborne platforms, but recent
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advances in scanning technology have enabled data to be acquired
from sensors mounted on field-based platforms (Kurz et al., 2008,
2011; Monteiro et al., 2009). The use of imagery for open-pit min-
ing applications has enormous potential because it enables the
identity or abundance of minerals on vertical mine faces to be
determined remotely (Fraser et al., 2006; Murphy et al., 2012;
Ramanaidou et al., 2002). This is important for reasons of safety
and to develop methods to guide or automate the mining process,
particularly in large-scale mining operations such as those used in
the extraction of iron ore. In this context, methods need to be
emote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.
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evaluated which enable estimation of relative abundances of iron
minerals, without a priori knowledge of the distribution of rock
types on the mine face. The primary objective of this paper is to
quantify the total amounts of ferric iron minerals (hematite +
goethite) on an open pit mine face in the Pilbara region of Western
Australia, using hyperspectral imagery acquired from a field-based
platform. The region is characterised by deposits of Banded Iron
Formation (BIF) containing kaolinite-rich shale units of varying
thickness (Thorne et al., 2008).

The ferric iron minerals hematite (a�Fe203) and goethite
(a�FeOOH) in the BIF have distinct spectral curves in the visible
near-infrared (VNIR) caused by absorptions induced by crystal field
transitions at about 465 nm (6A1g ?

4T1g, 4Eg), 650 nm
(6A1g ?

4T2g) and 850–950 nm (6A1g ?
4T1g; Townsend, 1987).

The shape or magnitude of the spectral curve of iron oxides can
change due to numerous factors, including replacement of iron
by aluminium (Buckingham and Sommer, 1983), particle size vari-
ations causing transopaque spectral effects in different parts of the
spectrum and particle shape (reviewed in Cudahy and Ramanai-
dou, 1997; Ramanaidou et al., 2008). Distribution of iron minerals
can be mapped by quantifying the intensity of these VNIR features.
Ideally, to quantify intensity of absorption features they should be
completely resolved in the spectrum (i.e. the centre and the short-
and long-wave boundaries of the feature should be present). To do
this would require measurement of reflectance between 400 and
1314 nm (the latter being the long wavelength limit of the Fe3+ fea-
ture centred at about 850–950 nm). Some researchers do not use
the long-wave limit of the absorption feature but define the
‘boundary’ of the feature to be at shorter wavelengths i.e. within
the absorption feature itself (e.g. 1050 nm; Haest et al., 2012).
However, in data acquired by a VNIR imaging sensor, spectra at this
wavelength are extremely noisy due to a fall-off in sensor sensitiv-
ity and atmospheric absorption by water. VNIR sensors are gener-
ally sensitive up to about 970 nm and therefore truncate the long-
wave part of this feature. To measure longer wavelengths than
970 nm would require a separate shortwave infra-red (SWIR) sen-
sor, thus increasing the equipment costs and the time required to
acquire and process the data into a unified data-cube. We therefore
test the hypothesis that the distribution of iron minerals can be
quantified using only VNIR data (430–970 nm).

Quantifying the intensity of VNIR absorption features as an in-
dex of the abundance of iron minerals can be done using various
methods which either use discrete bands or the whole spectral
curve. The objective of all these methods is to quantify the strength
of the iron absorption features whilst minimising the effects of
variations in illumination, viewing geometry and changes in the
background slope of spectra which are known to occur, for exam-
ple, as a result of variations in grain size of the absorbing minerals
(Cudahy and Ramanaidou, 1997) or organic content (Ben-Dor et al.,
1999). In the simplest case, ratios of reflectance are used to quan-
tify changes in the slope of spectra between the centre of an
absorption feature and nearby wavelengths (bands) where iron
or other minerals do not absorb (Crowley et al., 1989; Rowan
and Mars, 2003; Rowan et al., 1974). Ratios, are very effective at
removing variations in illumination across a scene. Appropriate
bands, however, need to be selected a priori and because only a
few bands (normally 2–3) are used, ratios do not exploit all of
the available data. This can lead potentially to reduced accuracy
and specificity compared with methods which use the whole spec-
tral curve, as is the case for amounts of green vegetation (Elvidge
and Chen, 1995). Furthermore, ratios are only effective where there
is a constant spectral slope or gradient among samples. Variability
in slope can be caused by variations in grain-size of minerals,
organic material and water content (Clark, 1999). These factors
are unlikely to be consistent among samples. Removal of the spec-
tral continuum (Clark and Roush, 1984) has been used to normalise
variations in the brightness of the rock. This is done by defining a
spectral continuum for each spectrum and then dividing the spec-
trum by the continuum. Calculation of the depth (i.e. strength) of
the mineral absorption features is then straightforward (e.g.
Murphy, 1995). The defined continuum, however, would also
contain information on, and therefore be impacted by, variations
in background slope of the spectra, potentially causing changes
in the apparent depth of absorption features.

Derivative analysis presents an elegant way of removing back-
ground slope effects of spectra and minimising effects of variations
in illumination caused by sun-angle cloud cover or topography
(Tsai and Philpot, 1998). Vertical mine faces are topographically
complex and are subject to changes in incident illumination during
the course of the day which can mask spectral variation due differ-
ences in the type or abundance of minerals. Derivative analysis of
image spectra was used in this study to minimise these extraneous
effects whilst enhancing changes in reflectance across wavelengths
due to mineralogy.

Spectral derivatives have been used successfully to quantify
iron oxides (Deaton and Balsam, 1991), but mainly in sediments
or soils (e.g. Barranco et al., 1989; Kosmas et al., 1984; Scheinost
et al., 1998). Several different measures of the amounts of iron
minerals, calculated from the derivatives of spectra acquired in
the laboratory are compared with total amounts of iron minerals
determined from XRD analysis. These measures include the inte-
gration of the whole derivative curve (430–970 nm) and integra-
tion of specific peaks and troughs in the derivative spectrum
associated with iron (Fe3+) absorption. These same methods are
then applied to hyperspectral imagery of a mine face. The second-
ary objective of this paper is to demonstrate a method to distin-
guish ore from shales, an important waste product in the mining
process. Shales in the Pilbara are characterised by moderate to
abundant amounts of the clay mineral kaolinite. Kaolinite can be
mapped using its diagnostic SWIR absorption feature at 2196 nm
(e.g. Kruse et al., 2003). We demonstrate an alternative approach
which exploits residual slope differences between ore and shale
that are present in the 1st derivative spectrum between 430 and
970 nm, thus removing the need for a SWIR sensor. Both VNIR
and SWIR image data are collected, but the SWIR data are used
only to validate the map of shale produced using only VNIR bands.
2. Materials and methods

2.1. Study area

The study area is located at the West Angelas mine in the
Hamersley Province of the Pilbara Region of Western Australia.
The province is characterised by extensive (80,000 km2) Banded
Iron Formation (BIF), composed of multiple layers of iron oxides
including magnetite (Fe3O4) and hematite, alternating with bands
of carbonate and chert (Thorne et al., 2008). At the West Angelas
mine, operated by Rio Tinto, supergene enrichment has resulted
in the formation of a hematite-goethite and goethite iron ore de-
posit. Extensive beds of West Angelas shale and maganiferous
shale are also present and are considered to be waste (gangue).
Mining is conducted via conventional drill and blast open pit oper-
ations. The principal minerals/rock types considered in this study
are hematite, goethite, shale and manganiferous shale (Fig. 1).
2.2. Laboratory reflectance spectrometry and XRD analysis

Reflectance spectra (350–2500 nm) were acquired using a halo-
gen light-source from the cleaned surface of cores of rock (10 cm
wide), obtained from the mine site. Each spectrum was acquired
from an area of 3.6 cm2, and was the average of 30 replicate



Fig. 1. (a) Grey-scale image of the mine face at (765 nm) to provide spatial context. Major geological boundaries, separating Zones 1–6 are overlaid. West Angelas shale with
moderate kaolinite (Zone 1); manganiferous shale with abundant kaolinite (Zone 2); Mount Newman Member with dominant goethite with hematite background, some shale
is present (Zone 3); Mount Newman Member with dominant hematite with goethite background (Zone 4); Mount Newman Member with dominant goethite and interstitial
hematite – high-grade ore (Zone 5); Mount Newman/MacLeod Member comprising hematite with goethite background and small amounts of chert (Zone 6). Zones 1 and 2
are waste materials and Zones 3–6 iron ore.
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spectra. Spectra were converted to absolute reflectance using a
reference spectrum acquired from a reflectance standard (99%
Spectralon). All spectra were acquired from different (i.e. spatially
independent) areas of hematite (6 spectra), goethite (4 spectra),
West Angelas shale (2 spectra) and manganiferous shale (2
spectra). Spectra were convolved to the spectral resolution of the
imaging sensors using a Gaussian convolution and the full-width
half-maximum (FWHM) values for each image band.

After each spectrum had been acquired, the area of the rock core
within the field of view of the spectrometer was sampled for quan-
titative XRD analysis. Only the surface of the core was sampled.
Samples were firstly powdered in a ring-milled and then micron-
ized with a corundum internal standard for quality control. Diffrac-
tion patterns were measured in a Brukker D4 diffractometer with a
cobalt tube to provide the source of radiation. Quantitative XRD
analysis was done on the diffraction patterns using the SIRO-
QUANT™ (V3) software developed by CSIRO.
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2.3. Hyperspectral imagery

Hyperspectral imagery was acquired from a vertical mine face,
using separate visible infrared (VNIR; 400–970 nm) and shortwave
infrared (SWIR; 907–2500 nm) sensors (Specim, Finland), mounted
adjacently on a rotating stage. For the purposes of this study, only
the VNIR data are used to quantify/map ferric iron distribution and
to separate ore from shale. The SWIR data are used only to provide
a validation of the shale map produced from the VNIR data. The
VNIR and SWIR sensors had a FWHM spectral resolution of
2.22 nm and 6.35 nm, respectively. The spatial resolution (i.e. pixel
dimensions) of the VNIR sensor was approximately 4 cm and the
SWIR sensor, 8 cm. A calibration panel (99%-reflective Spectralon;
30 cm by 30 cm), was placed next to the mine face during image
acquisition. Integration time of each sensor was adjusted so that
the brightest objects within the scene did not saturate.

Images were corrected for dark current and an artefact (an in-
crease in spectral brightness towards shorter wavelengths) caused
by a build-up of charge in the detectors. Calibration to reflectance
was done at each band by dividing all pixel values in the image by
the average value of pixels over the calibration panel (as in Murphy
et al., 2008). Data were converted to absolute reflectance using
the reflectance factors of the calibration panel, provided by the
manufacturer. The SWIR data were spatially-registered to the VNIR
using multiple ground control points and nearest-neighbour
interpolation.
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Fig. 2. Effect of increasing width of smoothing window on the amplitude of spectral
derivatives. The first derivative of goethite is shown as an example: 20 bands (—);
40 bands (- -); 60 bands (-�-). The original reflectance spectrum of goethite is shown
for comparison (—). Note the amplitude of the derivative peaks and troughs
decreases with increasing width of smoothing filter.
2.4. Spectral analyses

2.4.1. Derivative analysis of VNIR data
A common approach to calculate spectrum derivatives is to first

apply a smoothing filter to reduce the noise and then perform the
derivatives using a finite difference approximation (Orfanidis,
1996). The Savitzky-Golay filter, also known as least-squares
smoothing filter, is a more elaborate approach that fits polynomials
and differentiates them analytically (Savitzky and Golay, 1964).
This analytical approach is used in this study, using the corrected
coefficients of Steiner (1972). Savitzky-Golay filters are attractive
for use with hyperspectral data because they preserve the relative
widths and heights of spectral signatures in noisy spectrometric
data (Tsai and Philpot, 1998). In the Savitzky-Golay method, a
frame of data points surrounding the current point (wavelength
or spectral band) is fit to a polynomial using local least-squares
regression. The function value of the current band is retained,
while the function values of the others in the frame are discarded.
For derivative analysis, an appropriate smoothing window must be
set which resolves absorption features, yet is effective at suppress-
ing spectral noise. The amplitude of derivatives changes with the
width of the smoothing window (Fig. 2). To standardise the results
across laboratory and imaging sensors, a smoothing filter of 60
bands was used. This number of bands was selected so that noise
in image data was minimised, but the (Fe3+) absorption features
were preserved. Previous work by Monteiro et al. (2009) showed
that by varying the width of the smoothing window of the deriva-
tive it is possible to control the degree of smoothness of spectra
prior to classification. The authors found that with a relatively
low (40 dB) signal-to-noise ratio it was possible to classify ore-
bearing rocks of the same types as the ones described here.

Derivatives were calculated from field and image spectra
between 430 and 970nm. 1st- and 2nd-derivatives were calculated
using a 2nd-order polynomial and 4th-derivatives were calculated
using a 4th-order polynomial. To aid visualisation, 4th derivative
spectra were inverted, so that peaks and troughs were consistent
with the second-derivatives. The effect of increasing order of
differentiation on estimates of absorption by iron minerals were
tested using 2nd- and 4th-derivatives.
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2.4.2. Measures of iron absorption from spectral derivatives
Different measures of derivative reflectance were tested for

their ability to quantify the total abundance (%weight) of ferric iron
minerals (hematite + goethite) as determined from quantitative
XRD. The same measures were also derived from hyperspectral
imagery of the mine face. Derivatives were integrated by summa-
tion over the range i to N bands:

XN

i¼1

jdðkiÞj

where d is the 1st- 2nd- or 4th-derivative
First, the entire derivative spectrum between 430 and 970 nm

was integrated either side of the zero-baseline (i.e. the area
bounded by the peaks and troughs; Int430–970). Due to the effects
of spectral noise towards longer wavelengths, derivative spectra
were also integrated over a restricted wavelength range of 430–
757 nm (Int430–757). Second, individual peaks and troughs in the
spectrum were integrated (Fig. 3). This was not done for the first
derivative because peaks were not fully differentiated about the
zero-baseline. The relationship between total abundance of ferric
iron minerals obtained from quantitative XRD analysis and these
different derivative measures was explored using linear regression.
The derivative measures calculated from image data were
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Fig. 3. Laboratory spectra of dominant rock types at the West Angelas: goethite (—); h
Centres of absorption by Ferric iron (Fe3+) are indicated, (b) 1st-derivative reflectance, (c
used to quantify amounts of ferric iron are numbered consecutively in (c–d). Location o
compared with predictions of the distribution of iron on the mine
face based on the field mapping of the ore zones.
2.4.3. Separating ore from shale
Variations in 1st-derivative reflectance between rock types en-

abled wavelengths to be selected to separate ore-bearing rocks
from shale, which is considered to be waste. Differences in
background slope among spectra of different rock types were still
evident in 1st-derivative spectra (spectra were not evenly distrib-
uted about the zero base-line). Further differentiation (in 2nd- or
4th-derivatives) removed differences in background slope, leaving
only information related to specific absorption features. 1st-
derivative spectra were therefore most useful in distinguishing
rock types based upon differences in the background slopes of
spectra. Preliminary analysis of laboratory and image spectra
identified three wavelengths (702, 765 and 809 nm) in the 1st-
derivative spectrum which could potentially be of use in separating
ore from waste (Fig. 3).
2.5. Validation

2.5.1. Distribution of iron
Numerical validation of the relationship between total amounts

of iron (hematite + goethite) done using field spectra of rock
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samples (Section 3.2). Ideally, estimates of the abundance of these
minerals derived from the imagery should be compared with
amounts measured (using XRD) from rocks sampled directly from
the mine face. Because of the relatively coarse spatial resolution of
the sensor, it would be necessary to acquire numerous rock sam-
ples from within several quadrats on the mine face. Average
amounts of iron from all rock samples within each quadrat could
then be compared with the estimates derived from the imagery,
averaged over each quadrat. Mine safety regulations severely re-
strict direct interaction with the mine face so it was not possible
to sample in this way. An alternative approach to validation of
the imagery was therefore designed. A large body of knowledge
about the geology of the local area and the mine pit has been accu-
mulated by Rio Tinto, including an extensive database of the typi-
cal mineral abundances for each of the rock types that were
mapped in each of the geological zones identified in the field
(see Fig. 1). From this database, hypotheses could be formulated
about how iron should be distributed among the different zones
on the mine face. These distributions can then be compared with
those measured from the imagery. This approach to validation of
the image distribution of iron depends upon an accurate delinea-
tion and mapping of the geological zones on the mine face. To
achieve this, an experienced mine geologist with a working knowl-
edge of the particular mine pit in question, was used to verify the
geological mapping (Fig. 1). Based on our a priori knowledge of the
abundance of hematite and goethite in the rocks present in these
zones the following hypotheses can be made:

Hypothesis 1. Zone 2 (manganiferous shale) will have the smallest
amount of iron of all zones.
Hypothesis 2. Zones 1 and 2 will each have less iron than
Zones 3–5.
Hypothesis 3. Zone 5 (high grade ore) will have the greatest
amount of iron of all zones, including the other ore zones (Zones
3, 4 and 6).

If Hypotheses 1–3 are supported then the image-derived distri-
bution of iron will be consistent with the geological mapping in the
field. To test these hypotheses, statistics were generated from two
Regions of Interest (ROI; 60 � 60 pixels) defined for each Zone.

2.5.2. Separation of ore from shales
Maps of the distribution of shale were validated by: (i) compar-

ing them to the distribution of kaolinite as mapped by the SWIR
sensor and (ii) comparing them to the distribution of shale from
the geological mapping made in the field.

Images of 1st-derivative reflectance reflectance at 702 nm,
765 nm and 805 nm were compared with maps of kaolinite distri-
bution as mapped by the depth of the kaolinite absorption feature
at about 2196 nm. The depth of this feature is proportional to the
amount of kaolinite and is therefore an independent and reliable
indicator of manganiferous shale (with abundant kaolinite) and
West Angelas shale (with moderate kaolinite). If the 1st-derivative
reflectance was effective at separating shales, then the distribution
of pixel values would show similar patterns to those mapped by
the depth of the kaolinite feature. The kaolinite feature at about
2196 nm (ABD2196) was isolated using automated feature extrac-
tion (Kruse, 1988), and its depth determined in accordance with
Clark and Roush (1984). Mean values of the 1st-derivative reflec-
tance at 702, 765 and 809 nm and ABD2196 were extracted from
common (spatially collocated) ROI, randomly located within the
images (24 ROI from the ore zones and 24 from the shale zones).
Plots of ABD2196 against derivative reflectance were made from
the mean ROI values; these were used to define appropriate
thresholds for classification.

To determine how well the 1st-derivative reflectance at 702,
765 and 809 nm corresponded to the distribution of shales, they
were each compared with the geological maps made in the field.
Standard statistics, describing the performance of classification
were generated from 1st-derivatives at 702, 765 and 809 nm for
areas of ore and shale identified in the field mapping. Using the
plots of ABD2196 against 1st-derivative reflectance, appropriate
thresholds for classification were determined as the mid-point be-
tween the median ROI values separating ore from shale classes
(1.382 for 702 nm, 0.549 for 765 nm and �0.207 for 809 nm). Pixel
values below and above their respective thresholds were classified,
respectively, as ore and shale. The classified pixels were extracted
from Zones 1–6 in the image and compared with the distribution of
ore and shale mapped in the field using a one-against-all approach.
Zone 3 was not included in this analysis because it contained a
highly heterogeneous mix of ore and shale which varied at small
spatial scales, making it impossible to assign class labels. Definitive
class labels against which the classified maps were to be compared
were assigned according to the geological mapping made in the
field (i.e. ore vs. shale). Statistics, including accuracy, precision, re-
call and the Kappa coefficient of agreement (Kappa; Congalton
et al., 1983; Hudson and Ramm, 1987) were generated. Precision
is a measure of the quality of the results predicted and is the num-
ber of positive results predicted divided by the total number of re-
sults returned (Olson and Delen, 2008). Recall measures the
quantity of positive results predicted by the classifier. It is the
number of positive results predicted divided by the total number
of results that should have been returned (van Rijsbergen, 1979).
For Kappa, a value of zero means no agreement and a value of
one perfect agreement. A value of 0.75 is considered to be a very
good to excellent classification (Monserud and Leemans, 1992).
3. Results

3.1. Laboratory and image reflectance spectra and their derivatives

The four minerals/rock types examined as part of this study
(hematite, goethite, West Angelas shale and manganiferous shale)
had distinctive spectral curve shapes (Fig. 3a). Absorption features
associated with Fe3+ are evident in all spectra. The spectrum of
manganiferous shale, however, has only a weak shoulder due to
Fe3+ at wavelengths greater than 820 nm. Peaks and troughs in
the 1st-derivative spectrum represent, respectively, the inflection
points of the upward and downward slopes of absorption features
(Fig. 3b). Because the reflectance spectrum of manganiferous shale
monotonically increases with wavelength, the 1st-derivative of
this spectrum never dips below the zero base-line. With increasing
order of differentiation, background slopes of spectra are
progressively removed and the peaks and troughs become more
symmetrically centred around the zero-baseline (e.g. the 2nd-
and 4th-derivatives; Fig. 3c and d).

Image spectra from areas of the mine face of known composi-
tion closely resemble laboratory spectra from cores of rock (cf.
Figs. 3 and 4). Although there are brightness differences between
laboratory and image spectra (e.g. West Angelas shale), their curve
shapes and the wavelength positions of the peaks and troughs in
derivative spectra are consistent.
3.2. Relationship between XRD and derivative estimates of iron

Regression analyses of XRD estimates of total abundance of iron
minerals on the different spectral derivative measures of iron
absorption show moderate to strong linear relationships (Fig. 5;
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Table 1). There was no significant difference in the strength of the
relationship between XRD estimates and the Int430–970 and Int430–

757 measures, respectively (Table 1). The weakest relationship was
for the 1st-derivative measures Int430–970 and Int430–757, which
explained only 56% and 54% of the variance in the data, respec-
tively. Int430–970 and Int430–757 generated from 2nd- and 4th-
derivatives showed strong, linear and highly significant relation-
ships with total amounts of iron minerals. Integration of individual
peaks and troughs in the derivative spectra, in some cases, margin-
ally improved the strength of the relationship over integration over
broader spectral regions (e.g. for the 2nd-derivative, Trough 1 gave
a marginally stronger relationship than did the Int430–970 and
Int430–757 measures). The weakest relationships were found in
the peaks and troughs towards longer wavelengths (e.g. Trough 2
in the 2nd-derivative and Peak 3 and Tough 3 in the 4th-
derivative).

3.3. Distribution of iron from hyperspectral imagery

Images of the distribution of iron minerals are shown in Fig. 6.
Box plots of values extracted from within ROI for each geological
zone are shown in Fig. 7. Integrated derivative values across the
whole spectral curve (Int430–970) gave almost identical results to
values integrated up to 757 nm (Int430–757). This was true for all or-
ders of derivative generated from the image data. Henceforth,
therefore, only Int430–970 is considered. Visual examination of the
images showed that Int430–970 constructed from the 1st-derivative,
had different patterns of distribution of iron than did the same
measure constructed from 2nd- or 4th-order derivatives (cf.
Fig. 6a with b and c). Fig. 6a shows that the 1st-derivative does
not show the large differences in the amounts of iron between
the zones of manganiferous shale (Zone 2) and ore (Zones 3–6).
The zone with the smallest median amount of iron was Zone 3
(Fig. 7a), therefore Hypothesis 1 was rejected. The median amounts
of iron in the shale zones (Zones 1 and 2) was greater than in the
mixed shale and ore zone (Zone 3; Fig. 7a), leading to the rejection
of Hypothesis 2. The amount of iron in Zone 5 was less than Zone 4,
leading to the rejection of Hypothesis 3. Thus, the patterns of dis-
tribution of iron mapped from the 1st-derivative were not consis-
tent with patterns expected from the geological mapping made in
the field. Results from the 2nd- and 4th-derivatives (Figs. 6b and c
and 7b and c) were similar to each other, but different to results
from the 1st-derivative. The smallest amount of iron was found
in Zone 2 (Hypothesis 1 accepted); the amounts of iron in Zones
1 and 2 were less than in Zones 3–6 (Hypothesis 2 accepted) and
the greatest amount of iron was found in Zone 5 (Hypothesis 3 ac-
cepted). Acceptance of all hypotheses indicates that the pattern of
distribution among zones as mapped by the 2nd- and 4th-deriva-
tive was entirely consistent with patterns expected from the geo-
logical mapping made in the field.
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Fig. 5. Regression analyses of amount (% weight) of Ferric iron (Fe3+) on the
absolute derivative reflectance integrated over the wavelength range 430–970 nm.
Symbols represent different types of rock: goethite (D); hematite (d); West Angelas
shale (s); manganiferous shale (N). (a) 1st-derivative reflectance, (b) 2nd-deriv-
ative reflectance, (c) 4th-derivative reflectance.

Table 1
Regression analysis of XRD estimates of total amounts of iron minerals on spectral
estimates derived from integrated derivative reflectance (n = 14).

Index 1st–derivative 2nd-derivative 4th-derivative

R2 P R2 P R2 P

Int430–970 0.56 <0.01 0.74 <0.0001 0.77 <0.0001
Int430–757 0.54 <0.01 0.76 <0.0001 0.76 <0.0001
Peak 1 – – 0.73 <0.0001 0.75 <0.0001
Peak 2 – – 0.70 <0.001 0.78 <0.0001
Peak 3 – – 0.74 <0.0001 0.49 <0.01
Trough 1 – – 0.78 <0.0001 0.77 <0.0001
Trough 2 – – 0.68 <0.001 0.74 <0.0001
Trough 3 – – – – 0.49 <0.01
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Analysis of individual peaks and troughs in 2nd- and 4th-deriv-
ative spectra gave mixed results (not shown). Images from individ-
ual peaks and troughs were all noisier than Int430–970 calculated
from the same derivative. Integration of P1, P2, T1 and T2 from
2nd-derivatives showed a similar distribution to Int430–970, how-
ever, P3 showed only gross differences in distribution of iron
among geological zones. For the 4th-derivative, P1 gave almost
identical results to Int430–970. P2 and T1 were very noisy and
showed only gross differences in distribution of iron among geo-
logical zones. P3 and T2 contained only noise.
3.4. Separation of ore from shale

To provide an independent validation of the distribution of
shale as mapped by the first derivative, values were compared with
amount of kaolinite on the mine face as mapped by the depth of
the diagnostic kaolinite Al–OH feature at 2196 nm (ABD2196). Val-
ues of the 1st-derivative at 702, 765 and 809 nm were separately
plotted against ABD2196 (i.e. average values within each of 24 ROI
from the ore Zones and 24 ROI from the shale Zones; Fig. 8). 1st-
derivative reflectance at 702 nm did not show any relationship
with ABD2196 (Fig. 8a). Good separation of shales from ore was pro-
vided by 1st-derivative reflectance at 765 nm (Fig. 8b), however,
the best separation was provided by 1st-derivative reflectance at
809 nm (Fig. 8c).

Visual comparison of 1st-derivative reflectance at 702 nm with
the geology maps made in the field showed that it did not separate
ore from shale (Fig. 9a). At 765 nm, the 1st-derivative reflectance of
the West Angelas (Zone 1) and manganiferous shale (Zone 2) had a
consistently larger 1st-derivative reflectance than did the ore
zones (Zones 3–6), providing good separation between the ore
and shale (Fig. 9b). Reflectance at 809 nm showed a similar pattern
to that at 765 nm (Fig. 9c). Statistical analyses of the classified
maps of ore and shale showed that there was excellent agreement
between the classification made from a simple level-slice of the
derivative reflectance at 765 and 809 nm and the geological map-
ping made in the field (Table 2). Both of these maps had an accu-
racy and precision greater than 98%. Recall, a measure of the
sensitivity, was greater than 97%. Kappa was greater than 95% indi-
cating a near-perfect classification performance. 1st-derivative
reflectance at 702 nm provided a poor classification (Table 2).
4. Discussion

Increasingly, hyperspectral data acquired from field based
platforms are being exploited in dangerous environments to
acquire information about nearby – but inaccessible – objects. This
relatively new modality of use introduces new opportunities and
challenges. Open pit mines are extremely challenging places to
acquire hyperspectral data from field-based platforms. Dust,
high-temperatures and safety considerations necessitate that data
used for operational mining should be acquired in the shortest
possible interval of time. To this end we have shown that the
distribution of iron can be quantitatively estimated using only
VNIR data.

The analyses described here were done using the 4 rock types
most commonly found at the West Angelas mine. Further work
needs to be done to determine if the relationship between deriva-
tives and amounts of iron holds true for other rock types. The
advantage of the method described here is that it can provide,
without a priori knowledge, estimates of the abundances of iron
by directly quantifying the intensity of crystal field absorptions
caused by ferric iron. As such, this is a physically-based method.

Our results show that differentiating spectra to the 2nd- or
4th-derivative gives significantly better results than the 1st-
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Fig. 6. Integrated derivative values (430–970 nm; Int430–970). Distribution of ferric iron minerals (hematite + goethite) on the mine face. Amounts of iron were determined
using the regression coefficients from separate regressions of amounts of hematite + goethite measured from XRD analyses on integrated values (see Fig. 4). (a) 1st derivative,
(b) 2nd-derivative (c) 4th-derivative.
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derivative in quantifying distribution of ferric iron minerals.
This is likely due to background slope effects being present in
the 1st-derivative spectrum but which had been removed by
further differentiation in the higher-order derivatives (Tsai and
Philpot, 1998). A positive slope means that the 1st-derivative
spectrum has a positive bias, even though no appreciable
absorptions were present in the spectrum. Integration of the
spectral curve mean that such biases would be translated into
large abundances of iron even though only small amounts of
iron, were present. In 2nd- and 4th-order derivatives, the devi-
ation around the zero base-line was related only to absorptions
present in the spectrum, with low-frequency spectral slope ef-
fects being largely eliminated. The distribution of amounts of
iron on the mine face calculated from the 1st-derivative was
therefore not consistent with field observations. This draws into
question the use of 1st-derivatives to quantitatively estimate
abundances of minerals in any rocks which may have variable
spectral slopes. We had anticipated that the 1st-derivative
would yield less accurate results than higher-order derivatives
(as predicted by the smaller coefficient of determination; Ta-
ble 1) but the very large differences in distribution of iron on
the mine face as mapped by former compared with the latter
was surprising. In this study, the abundance of total iron (i.e.
hematite + goethite) was estimated. Work is underway to derive
independent estimates for goethite and hematite which take
into account the inherent variations in brightness between
these minerals.

Reflectance spectra have absorption features which contain
information on the identity of an absorbing material as well as
its concentration. A major advantage of derivative analysis is that
background (i.e. low frequency) slope effects are removed with
increasing order of differentiation, leaving only information related
to absorption by specific materials. Information on background
slope can still remain in 1st derivative spectra of many materials
(e.g. sediment; Murphy et al., 2005). We exploit differences in
the slope of 1st-derivative spectra of ore and shale to separate
these classes of rock. It was initially expected that quantifying
amounts of iron absorption on the mine face by integrating the
spectral curve would, by default, delineated ore from shale (ore
should have been separated from shale because it has more iron).
However, West Angelas shale contains (or is coated with) some
iron (see Fig. 6b and c) it was not delineated from the ore using this
method. Ore zones were instead separated from shale using infor-
mation on spectral slope retained within the 1st-derivative spec-
trum. The 1st-derivative spectra at 765 nm and 809 nm are
brighter in the shales because, their zero-order image spectra are
still, overall, increasing in reflectance, unlike goethite or hematite.
The distribution of shales on the mine face as mapped by the first-
derivative reflectance at 765 nm and 809 nm strongly resembles
that mapped by the depth of the kaolinite feature at 2196 nm. A
classification based on the 1st-derivative was extremely effective
at mapping distribution of shale and ore, indicating the potential
of the 1st-derivative for separating rock types on the basis of differ-
ences in spectral curve shape in the VNIR.

Derivatives have the disadvantage of increasing spectral noise
with increasing order of derivative. We attempted to minimise
the effects of noise by generating the derivatives using a com-
bined differentiation and smoothing approach rather than simple
change in slope with respect to wavelength. A second limitation
with derivatives is that an appropriate wavelength interval needs
to be specified. For broad spectral features like crystal field
absorptions a relatively wide wavelength interval needs to be
set to detect the change in slope. The optimal wavelength inter-
val would change depending upon the spectral resolution of the
sensor and the absorption characteristics of the minerals being
mapped.

The purpose of this study was to demonstrate the potential of
hyperspectral VNIR imagery to yield quantitative information on
the distribution and abundances of iron minerals and to separate
major components (ore and shale) in the mining process. Other
studies have used derivative analysis to obtain information about
iron minerals, particularly in soils (e.g. Kosmas et al., 1984), how-
ever these studies have been limited to using only field spectra.
In this study we applied derivative analysis to hyperspectral imag-
ery of a mine face. To the best of our knowledge, this is the first
study to apply derivative analysis to hyperspectral imagery ob-
tained from a field-based platform for geological applications.
Hyperspectral imagery is a more difficult test of this approach than
laboratory spectra because of the increased amounts of noise in
the data and the variable illumination and viewing geometries
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Fig. 7. Box plots of amounts of hematite and goethite (iron) estimated by Int430–970.
Data are from ROI randomly located within each geological Zones (1–6) mapped in
the field. Image data have been converted to amounts of hematite + goethite using
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involved. Although integration over some individual Peaks or
Troughs (e.g. T1 in 2nd-derivative and P2 in the 4th-derivative)
showed the strongest relationship with total amounts of iron min-
erals obtained from XRD analysis, these measures, when calculated
from hyperspectral imagery, produced much noisier images than
did integration over broader spectral regions (e.g. Int430–970).

Methods used in this draw upon knowledge about the physical
processes which governed the absorption of light by iron minerals.
Spectral features (in this case integrated values of 1st-, 2nd- and
4th-derivatives) were selected to measure of the intensity of
absorption. Such manual selection of features may not, however,
be the most efficient, effective or parsimonious way to select the
optimal constellation of features required to predict amounts of
iron or to separate different types of rock using hyperspectral
data. Methods designed to detect spectral anomalies in hyperspec-
tral data could also be used to identify iron minerals from
hyperspectral data (Du and Zhang, 2011; Matteoli et al., 2010). This
paper has underscored the fact that different orders of derivative
(including the original reflectance) bring out different aspects of
information contained within spectra. A more general approach
to feature selection would be to automate the process within a
machine-learning framework so that the most optimal features
are ‘learned’ from the data. Some work has already been done in
this regard (e.g. Monteiro et al., 2009; Murphy et al., 2012) and
further work is underway.
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Fig. 9. 1st-derivative reflectance images of individual bands selected from laboratory and image spectra (see also Fig. 2 and 3). (a) 702 nm; (b) 765 nm; (c) 809 nm; (d) depth
of the kaolinite absorption feature centred at about 2196 nm (ABD2196).

Table 2
Statistics assessing the agreement between the geological mapping made in the field
and the classification of ore and shale from the 1st-derivative reflectance.

Wavelength Accuracy Precision Recall Kappa

702 nm 0.62 0.65 0.66 0.24
762 nm 0.98 0.98 0.98 0.95
809 nm 0.99 0.99 0.98 0.98
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5. Conclusions

(i) Total abundance (% weight) of iron minerals from quantita-
tive XRD analysis was tightly correlated with measures from
2nd- and 4th-derivatives of laboratory spectra. These mea-
sures were obtained by integrating the derivative curve over
the entire VNIR wavelength range and over specific parts of
the spectrum corresponding to specific Fe3+ absorption
features.

(ii) Ore and shale (waste) could be separated using the 1st-
derivative reflectance at 765 and 809 nm. The distribution
of shale, thus mapped, was entirely consistent with a map
of the distribution of kaolinite (a major component and spe-
cific indicator of shales in the study area), derived from SWIR
data. Standard statistics of validation (accuracy, precision,
recall and Kappa) showed excellent agreement with the field
mapping.

(iii) Total amounts of iron can be quantified and that ore can be
separated from shale using only the VNIR sensor module of a
hyperspectral imaging system. The significance of this is that
data can be collected using only a single imaging sensor,
thus reducing costs associated with equipment, data collec-
tion and analysis.

(iv) Hyperspectral imagery provides information on the identity,
abundance and distribution of minerals on vertical mine
faces. This information is invaluable in informing, guiding
and automating the mining process.

(v) Derivative analysis was found to be an effective tool for sup-
pressing topographically-induced variations in illumination
across the mine face, enabling the distribution of iron to be
mapped.

(vi) 2nd- and 4th-derivatives were most effective in quantifying
amounts of iron minerals in accordance with predictions
based on a field mapping and a priori knowledge. The 1st-
derivative was a poor estimator of amount of iron minerals.
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