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ABSTRACT

This paper presents a ground based system for mapping the

geology and the geometry of the environment remotely. The

main objective of this work is to develop a framework for a

mobile robotic platform that can build 3D geological maps.

We investigate classification and registration algorithms that

can work without any manual intervention. The system ca-

pabilities are demonstrated with data acquired from a work-

ing mine environment. Geological maps are built by applying

classification techniques to hyperspectral images of the rocks’

surface. The result from the classification is then fused with

laser images to form the 3D geological models of the environ-

ment.

1. INTRODUCTION

This paper aims at developing a framework that can obtain a

detailed 3D geological map of the environment without any

manual intervention. The advents of optics and electronics

has enabled the development of commercial multi and hyper-

spectral sensors making this technology accessible not only

for military and government applications but also for civil

applications such as mining and agriculture. In particular,

we concentrate in the construction of 3D geological maps of

the environment. A 3D laser and a hyperpsectral camera are

mounted on a vehicle. The laser is used to capture geometry

and the hyperspectral sensor captures spectral characteristics

of the environment. By fusing the information of the two sen-

sors we are able to build 3D geological maps. Figure 1 shows

a diagram with an overview of the proposed framework.

A main application of our framework is in spatial control

and classification of material in mining excavation. An auto-

mated or remote operated shovel could use the 3D map ob-

tained with the system presented. Having access to real-time

information of the geometry and mineralogy of the mine face

could give an estimate of the ore-grade and volumes being

excavated.
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A similar approach is presented in [1]. The authors use

range sensors and hyperspectral cameras for a case study of

a dolomite and limestone quarry. The most important differ-

ence with the framework presented in this paper is in the form

in which the data fusion is done. While we use only natural

features for the sensors’ registration, the approach presented

in [1] uses retro-reflective targets to register laser and images.

Another important difference is that in [1] the image is man-

ually partitioned in sections followed by a bundle adjustment

process. The approach presented in this paper uses Delau-

nay triangulation to automatically partition the image before

a piecewise linear transformation.

2. MATERIALS AND METHODS

Reflectance and emittance spectroscopy of natural surfaces

are sensitive to specific chemical bonds in materials. The ad-

vantage of spectroscopy is that it can be used at close ranges

(laboratories) or far away (satellites). The main disadvantage

is that it is sensitive to small changes in the chemistry and/or

texture of the material. The variations in material compo-

sition often cause shifts in the position and shape of spectral

features. Thus, in the real world, spectral features can be quite

complex [2]. Nevertheless, spectroscopy has a great potential

to estimate or classify key geological properties.

Hyperspectral remote sensors collect data in hundreds of

bands. These measurements produce a “continuum” spectrum

that, after adjustments and corrections, can for example, be

compared with libraries of reflectance spectra. Typically, hy-

perspectral cameras collect all spectra across a spatial line in

the image. Then, some form of scanning is required in order

to build up a spectral image. The scanning can be done by ei-

ther camera movement (rotation or translation) or movement

of the scene (e.g. conveyor belt).

Expert systems have been shown to be effective for min-

eral mapping [3]. The main drawback of these systems is that

they require a large amount of input from an expert user. For

example, in Tetracorder [3], each comparisson of an unknown

to a reference spectrum is highly tailored to the chemistry of

the reference material. We want to focus on methods that

require none or little input from a human or a priori expert
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Fig. 1. Framework overview of hyperspectral image and laser data registration

knowledge. The next paragraphs explain the algorithm used

for the classification.

The first step for thematic mapping is to find the end-

members. In this paper, we apply Sequential Maximum An-

gle Convex Cone (SMACC) spectral algorithm, which extract

endmembers from the images. SMACC uses a convex cone

model (also known as Residual Minimization) to identify im-

age endmember spectra. Extreme points are used to deter-

mine a convex cone, which defines the first endmember. A

constrained oblique projection is then applied to the existing

cone to derive the next endmember. The cone is increased

to include the new endmember. The process is repeated until

a projection derives an endmember that already exists within

the convex cone (to a specified tolerance) or until the specified

number of endmembers are found [2].

Hyperspectral data processing is problematic due to its

high dimensionality [4]. However, the data presents high cor-

relation. The correlation between spectral bands arises from

a combination of factors; material spectral correlation, to-

pography (shading introduces correlations), and sensor band

overlap [5]. In addition to the correlation between bands, a

proportion of the variance exhibited by the data is noise. In

the experiments presented here we use Principal Component

Analysis (PCA). The principal component transformation is

a feature space designed to remove this spectral redundancy.

In PCA, the new features are a linear function of the origi-

nal data, and the aim is to obtain a new space that captures

as much of the variance as possible. The result is that a new

space is formed by the eigenvectors of the original data co-

variance matrix.

The final step is the classification itself. We use spectral

similarity. One of the most effective methods using spectral

similarity is Spectral Angle Mapper (SAM) [6]. The algo-

rithm determines the spectral similarity between two spectra

by calculating the angle between the spectra and treating them

as vectors in a space with dimensionality equal to the number

of bands. This technique, when used on calibrated reflectance

data, is relatively insensitive to illumination and albedo ef-

fects.

2.1. Registration of Hyperspectral Image and Laser data

Once the thematic mapping is completed, we register the re-

sulting mineral classification with the 3D data collected with

the laser. In this paper we use a Riegl 3D Laser. Different data

representations are possible, from raw data to parametrised

models. For the work presented in this paper we use the raw

data points with RGB colour sumperimposed. The colour is

obtained from a calibrated commercial camera sitting on top

of the laser.

A common registration method used for image-laser reg-

istration is to use a checkerboard [7, 8]. We implemented a

method that does not require manually selected control points.

The basic idea consists in finding the correspondences be-

tween hyperspectral image pixels and 3D points. The first

step is to transform the 3D point set into a 2D image by pro-

jecting each 3D point onto a cylinder. A 3D point P(x,y,z) can

be transformed in a 2D image pixel P’(i, j) using a panoramic

model [9].

The images are then registered with hyperspectral data us-

ing control points followed by a spatial transformation. The

control points are automatically selected using Scale Invariant

Feature Transform (SIFT) [10]. Control points are matched

by looking for the two closest features in the space of SIFT

descriptors. Two points are finally matched if the distance

to the closest one is less than a certain value of the distance

to the second closest (e.g. 0.6 was used for the implementa-

tions presented here). Mismatched points are removed by en-

forcing viewpoint consistency constraints. In the experiments

shown in this paper, we use both, a piecewise linear and a

polynomial transformation. Figure 2 shows a block diagram

of the registration process.
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Fig. 2. Automatic image registration overview.

Once we have computed the transformation that aligns hy-

perspectral and laser projected images, we project back pre-

viously extracted thematic maps onto 3D laser data by means

of the same cylindrical projection model. Each 3D point is

projected again onto the panoramic image registered with hy-

perspectral. If the projection of the point belongs to the over-

lapping panoramic-hyperspectral image area, the 3D point is

labelled with the corresponding geological classification. Us-

ing this method we can obtain a geological 3D map of the

environment.

3. EXPERIMENTS

Experimental data was collected in an open pit mine in West-

ern Australia. A Riegl LMS-Z420i laser was used to collect

range data and a Neo HySpex VNIR camera was use to ac-

quire hyperspectral images.

Data was collected in different parts of the mine, during

two days, in mostly sunny conditions. Image normalisation

(reflectance) was performed using a calibration board next to

the target.

3.1. Noise Reduction

Our main concern is with global noise, which is characterized

by a random variation of the DN value at every pixel. Smooth-

ing filters are the most common technique used to remove

global random noise. Low-pass spatial filters can effectively

reduce noise variance, particulary if it is uncorrelated from

pixel to pixel. Unfortunately, they also reduce the variance of

the noiseless signal, this having a negative impact particularly

on sharp signal features. Due to the scale of our problem, for

this work we are not concerned with sharp features. After

trying different noise reduction schemes, we found that us-

ing Maximum Noise Fraction (MNF) followed by a Gaussian

smoothing filters was the most effective for our data. Figure

3 illustrates with an example the effectiveness of the noise

reduction scheme.

(a) (b)

Fig. 3. (a) Original pixel spectra. (b) shows the spectra after

IMNF followed by a Gaussian low pass-filter. Wavelengths

are in nm.

Fig. 4. Mean spectra reflectance for the endmembers found

by the SMACC algorithm.

3.2. Thematic Mapping

Figure 4 shows the mean spectra for two of the endmembers

found by the SMACC algorithm. We also added two more

endmembers, one representing the sky and one representing

the darkest areas of the image. These last two do not have any

useful value for the geology classification, but were selected

to see the capabilities of SAM.

Figure 5 shows the mean spectra for clusters obtained us-

ing SAM. The blue and green clusters show the main absorp-

tion band feature of iron-ore at about 860 nm, indicating the

presence of this mineral in those clusters. The mean spectra

also shows an extra absorption band at about 680 nm which

indicates the mixture of minerals. However, finding a solution

for the mixing problem is beyond the scope of this paper.

3.3. Sensors Registration

To get the volume, the thematic map needs to be registered

with the laser information. The first step for the registration

is to generate control points in both data. To generate them

automatically we use SIFT [10]. We obtain about 2000 SIFT

from each hyperspectral image and more than 5000 from a

3D laser projected image. After matching them and remov-

ing outliers it remains about 200 SIFT matches between both

images.

Figure 6 shows the result using SIFT features and a piece-

wise linear transformation. The registered hyperspectral im-
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Fig. 5. Mean spectra reflectance for the clusters obtained us-

ing SAM. Note that the red one is the cluster representing the

sky.

Fig. 6. Registered hyperspectral image overlaid on top of 2D

laser image. Transparency was set to 50%. The figure shows

the result using SIFT and a piecewise transformation.

age was overlaid on the 2D laser image. We set transparency

to 50% so areas with a bad registration look blurred. We

found that the areas with bigger registration errors are the

ones with poor control points distribution. Finally, Figure 7

shows the resulting 3D geological map.

4. CONCLUSIONS

We demonstrated that the two main processes (i) classification

and (ii) registration can be done without any manual input.

We believe the framework presented can enable automation

in applications requiring geology estimation in conjunction

with geometry data. In future work, we plan to investigate the

use of machine learning algorithms to improve our current

results. We also intend to test different local invariant feature

algorithms to select the control points.
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