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Abstract—Hyperspectral image data has great potential to
identify and classify the chemical composition of materials
remotely. Factors limiting the use of hyperspectral sensors in
practical land-based applications, such as robotics and mining,
are the complexity and cost of data acquisition, and the process-
ing time required for the subsequent analysis. This is mainly due
to the high dimensional and high volume nature of hyperspectral
image data. In this paper, we propose to combine a feature
selection method, based on particle swarm optimization (PSO),
with a kernel method, support vector machines (SVM), to reduce
the dimensionality of hyperspectral data for classification. We
evaluate several different kernels, including some optimized for
hyperspectral analysis. In particular, a recent kernel called ob-
servation angle dependent (OAD) kernel, originally designed for
Gaussian Process regression, was extended for SVM classification.
The SVM with the optimized kernel was then applied to induce
the feature selection of a binary version of PSO. We validate the
method using hyperspectral data sets acquired of rock samples
from Western Australia. The empirical results demonstrate that
our method is able to efficiently reduce the number of features
while keeping, or even improving, the performance of the SVM
classifier.

I. INTRODUCTION

Mining involves heavy machinery and the processing of vast
quantities of material. Through the use of automated processes,
it is possible to improve the safety of employees by reducing
the human element from mining and, thus, reducing the risk
of severe injury or death. Collection and analysis of data
about the geology is crucial in order to make decisions on
the best options to spend resources. Identifying the location
of minerals of interest in a mine site can be complex and
require lengthy interpretation of geophysical data. Hyperspec-
tral data has been successfully used to classify materials on the
Earth’s surface [1]. Hyperspectral image data provides a large
amount of data about the chemical composition and spatial
distribution of materials. Different materials present different
level of reflectance at each wavelength in the spectrum, thus
allowing the remote identification of their composition without
destroying the sample. One issue with hyperspectral data,
however, is the inherent large number of bands, which can
make the analysis and processing very time consuming or
intractable. Our goal is to find the key spectral features that
allow the successfully classification of the data, in order to
reduce the number of spectral bands required and reduce the
data processing complexity. This has the potential to reduce

the requirements for data acquisition to limited number of
bands. As a consequence, remotely sensed images could be
obtained using less expensive multispectral cameras, calibrated
to acquire data from these key spectral bands.

In this paper, we propose a method that combines parti-
cle swarm optimization (PSO) with support vector machines
(SVMs) to perform the selection of optimal hyperspectral
features. Our feature selection method attempts to reduce the
dimensionality of the data by selecting only the features that
are required for an accurate classification. PSO is a type of
evolutionary optimization algorithm that has shown to perform
well in a range of applications [2]. We apply PSO to the
problem of feature selection and compare its performance to
a conventional method, sequential selection, as a baseline.

In order to select the most relevant features for mapping ge-
ology, we use the support vector machine (SVM) [3]. SVM is a
maximum margin classifier that calculates a decision boundary
to separate data. It can be used to take the features obtained
from hyperspectral data and classify the data according to
its material composition. SVM has been shown to provide
state-of-the-art results for hyperspectral classification [4]. We
present an empirical analysis of different kernel functions
that are used in SVMs. In particular, we introduce the novel
observation angle dependent (OAD) covariance function [5],
as a kernel for SVM classification. The OAD kernel was
originally proposed as a covariance function for Gaussian
processes.

We validate the proposed method using hyperspectral data
sets collected of rock samples from an iron ore mine in
Western Australia. Three data sets were used in the exper-
iments: a training set acquired under artificial illumination,
an independent test set acquired under varying conditions of
illumination, and hyperspectral image data of a vertical mine
face.

The main contributions of this paper are: i) proposing a
novel approach combining PSO and SVMs to select optimal
hyperspectral bands; ii) introducing the application of the OAD
kernel for SVM classification of hyperspectral image data;
iii) presenting an empirical comparison of several kernels
for hyperspectral classification; iv) presenting an empirical
analysis of the optimal set of spectral bands for classifying
ore-bearing rocks.



II. RELATED WORK

There has been a great deal of research done into using
SVM as well as its application for classifying hyperspectral
data. There has been work done looking at comparing SVM
to other feature extraction or feature reduction approaches [6].
Feature selection has also been used in the classification of
hyperspectral data. A method of feature selection based on
linear separability and spatial invariance has been examined
in [7]. Distance metrics commonly used in hyperspectral data
processing, such as the spectral angle mapper (SAM) and the
spectral information divergence (SID), have been extended as
kernels for classifying hyperspectral data in [8], [9]. However,
most of the papers above presented results using only well-
studied hyperspectral data sets, such as the Indian Pine data
set for example, in which training and test pixels come from
the same image.

There are several feature selection methods that can help
to reduce the number of necessary features required for
classification [10]. Genetic algorithms, such as in the approach
proposed in [11], is one of the most popular methods. PSO has
been applied in combination with SVM [12]. However, their
approach uses a different variant of PSO and they use only the
basic binary SVM classifier. Moreover, they test their method
only on publicly available benchmark data sets. Another PSO-
based method has been proposed to perform feature extraction
from hyperspectral data [13]. However, they combine PSO
with a neural network for performing regression. To the best of
our knowledge, our method is the first application of PSO and
SVM for hyperspectral feature selection using a specialized
kernel optimized for spectral classification.

III. SUPPORT VECTOR MACHINES

SVM, introduced in [14], is a binary classifier that has
shown robust and accurate performance for classification in
a range of applications. The SVM algorithm finds the best
hyperplane that separates the data by maximizing the margin
between the hyperplane and the support vectors. Since SVMs
have been widely used in recent studies, in this paper we omit
details on the training and optimization algorithm, which can
be found in standard textbooks on the subject, such as [3].
Implementation of the SVM algorithm is also readily available
in open source code or embedded in commercial software
packages.

Because the SVM is based on a hard decision boundary,
it cannot provide the probabilities that its classifications are
correct. It can only decide whether a sample belongs to
one category or not. Nevertheless, probabilistic outputs can
be estimated from the SVM output by fitting a parametric
model [15]. We use an improved version of this method to
calculate the class probabilities, as provided in [16].

A. Kernels

In cases where the data is not linearly separable, SVM
requires the use of a kernel function to map the data into
a higher dimensional space. The SVM can then find the
best linear separation of the transformed data in this higher

dimensional space, which will correspond to a nonlinear
classification in the input space. In this paper, we investigate
several kernel functions, including standard kernel functions
commonly used for SVM classification and specialized kernel
functions proposed specifically to process hyperspectral data.

The polynomial kernel and the Gaussian radial basis func-
tion (RBF) kernel are very popular choices of kernel functions
for SVM. The polynomial kernel maps the feature space into a
higher dimension defined by the polynomial order. It is written
as

k (x, x′) = (xTx′ + 1)n. (1)

The Gaussian RBF produces a mapping equivalent to an
infinite dimensional Hilbert space. It therefore allows for the
mapping of a wider variety of data sets. It is written as

k (x, x′) = exp

(
− 1

2σ2
‖x− x′‖

)
. (2)

The spectral angle mapper (SAM) and the spectral informa-
tion divergence (SID) are functions specifically designed for
analysing spectral signature information [9]. Their kernelized
version incorporate prior knowledge and information about
spectral signatures into SVM. The SAM kernel is written as

k (x, x′) = acos

(
xTx′

‖x‖ ‖x′‖

)
, (3)

and the SID kernel is written as

k (x, x′) =
d∑
i=1

pi log

(
pi
qi

)
+

d∑
i=1

qi log

(
qi
pi

)
, (4)

where pi = xi/
d∑
i=1

xi, qi = xi
′/

d∑
i=1

xi
′, and the parameter d

is the total number of features, or dimensions.
The modified observation angle dependent (OAD) nonsta-

tionary covariance was proposed in the context of Gaussian
processes [5] but, since it satisfies the Mercer’s conditions, it
can be used as a kernel function in SVM. The OAD kernel is
written as

k (x, x′) = σ2
0

(
1− 1− sinφ

π
acos

(
xTx′

‖x‖ ‖x′‖

))
, (5)

where σ0 and φ are scalar hyper-parameters of the ker-
nel function. Note that the OAD kernel can be seen as a
reparametrization of the SAM kernel, which turns out to be
very efficient and robust.

IV. PARTICLE SWARM OPTIMIZATION

The particle swarm optimization (PSO) algorithm was de-
veloped while trying to simulate the behavior of animals that
exhibit both individual and group behavior, such as birds, bees
and fish [2]. PSO can be used to find near-optimal solutions
in search spaces containing local minima. Each particle is
considered to be one possible solution to the problem. The
swarm of particles are given a random initial location and
velocity and are updated according to the following equations

vt+1
i,j =Wvti,j + c1r1

(
pi,j − xti,j

)
+ c2r2

(
pg,j − xti,j

)
; (6)



xt+1
i,j = xti,j + vt+1

i,j , (7)

where x and v are the position and velocity of the particle
i for dimension j, respectively, at time t. W is the inertial
weight and represents how much of the previous velocity is
retained while exploring. Parameters c1 and c2, and r1 and r2
are, respectively, the weighting and random factor associated
with the local best particle pi,j and the global best particle
pg,j .

The local best of a particle can be considered the cognitive
aspect of PSO, whereas the global best can be considered as
the social aspect. Due to this ‘communication’ between the
particles, PSO is able to “fly” over the local minima in the
direction of the global optimum. However, the PSO algorithm
is stochastic in nature and, therefore, depending on the initial
conditions of the search, the evolution of the particles may
vary and the global optimum may not be found.

A. PSO feature selection

We apply PSO as a feature selection technique and de-
termine how applicable it is for selecting features from hy-
perspectral data. Because PSO is designed to search through
continuous spaces, it needs to be discretized for use in feature
selection. We use a binary version of the PSO algorithm, as
in [17].

By converting the position vectors of PSO into probabilities,
we can use roulette wheel selection to select the appropriate
features. The probablities are calculated as follows

Pi,j =
xαi,j
n∑
j=1

xαi,j

, (8)

where α is a scaling factor known as the selection pressure.
Each feature is assigned with a probability and the roulette
wheel marks the feature to be selected. The roulette is spun
repeatedly until the desired number of features is selected.

V. EXPERIMENTAL RESULTS

A. Hyperspectral Data Sets

The data used in our experiment was comprised of spectra
taken from rock samples obtained from an iron ore mine in
Western Australia, as described in [18]. Reflectance spectra
were taken using an ASD spectrometer. There are 409 spectral
bands in the data set. The data set is composed of 9 rock
types typically found in the region, as listed in Table I. The
spectrometer data set was separated into a training set—pure
spectra acquired under artificial light—and a test set—spectra
acquired under various conditions of illumination, to simulate
the real scenario of classifying data in the field. The number
of samples used for training and testing was 228 and 297,
respectively.

In addition, we also tested the applicability of the SVM
classifier using the reduced number of features to classify
hyperspectral images. Hyperspectral image data was acquired
using two separate visible infrared (VNIR: 400–970 nm) and
shortwave infrared (SWIR: 907–2516 nm) Specim sensors

TABLE I
ROCK TYPES CONTAINED IN THE HYPERSPECTRAL DATA SET

Code Description
WRC Water Reactive Clay
BIF Banded Iron Formation
GOE Goethite
MAR Martite
SHL West Angelas Shale
SHN Manganiferous Shale
NS4 Marker Shales
NS3 Volcanic Shales
CHT Chert

Fig. 1. Hyperspectral camera used to acquire data for the experiments; note
that there are two sensors, one for the VNIR and other for the SWIR.

mounted adjacently on a rotating stage, as shown in Fig. 1.
The hyperspectral image data set was acquired from a vertical
geology, typical of mining environments, as shown in Fig. 6.

B. Performance Metrics

To evaluate the performance of our method, we present
an analysis of various statistical metrics including accuracy,
precision, recall, F-measure, kappa and area under the ROC
curve (AUC). Each of the metrics was calculated as follows:

Accuracy =
TP + TN

P
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F−measure = 2× precision× recall
precision+ recall

(12)

Kappa =
(P × (TP + TN)− C)

(P 2 − C)
(13)

P = (TP + TN + FP + FN)

C = (TP + FN)×(TP + FP )+(FP + TN)×(FN + TN)



Fig. 2. RGB image of the study area

TABLE II
COMPARISON OF DIFFERENT SVM KERNELS FOR CLASSIFYING SPECTRAL

DATA OF 9 ROCK TYPES (OUT-OF-SAMPLE ANALYSIS)

Polynomial Gaussian RBF SAM SID OAD
Accuracy 0.9192 0.8965 0.8679 0.8627 0.9426
Precision 0.7156 0.6444 0.4525 0.3360 0.8659

Recall 0.7533 0.6661 0.3883 0.2644 0.7350
F-measure 0.6945 0.5963 0.5037 0.4423 0.7879

Kappa 0.6553 0.5496 0.2342 0.1376 0.7312
AUC 0.9323 0.8998 0.7953 0.6920 0.9367

where TP , TN , FP , FN are the number of true and false
positives and negatives.

Each different metric captures a different aspect of the
behavior of the model. Accuracy is by far the most widely
used metric in classification studies. However, as our results
will show, accuracy alone might not be the best indication
of good performance of the classifier. Because of this, in
fields such as information retrieval or bioinformatics, other
metrics, such precision, recall and F-measure, are normally
used. Kappa is a metric that is popular in hyperspectral (remote
sensing) papers and is included here to allow comparison. The
ROC curve and the corresponding AUC are also important
metrics used in machine learning. For all metrics, higher values
represent better performance, and their maximum value is 1,
by definition.

C. Kernel Selection

The SVM algorithm was implemented using the following
optimization techniques: least squares minimization [19], se-
quential minimal optimization [15] and quadratic program-
ming [3]. The best performance of each kernel was kept,
regardless of optimization method. Since the different metrics
may give different results, we chose to optimize the F-measure,
based on the observation that its results suffer less positive bias
than accuracy. The data set used for kernel optimization was
the training data and independent test data, i.e., performing
out-of-sample analysis. The parameters of each kernel were
optimized using a grid search. Table II shows a summary of
the best results for all kernels.

D. Hyperspectral Band Selection

After choosing the kernel found to be the best, which, in
this case, was the OAD kernel, feature selection techniques

TABLE III
PARAMETERS USED IN THE PSO ALGORITHM

Parameter Value
Max. Epochs (iterations) 200

Population Size 40
Max. Particle Velocity 4

c1 2
c2 2

Initial ψ 0.95
Final ψ 0.2

Epochs to reach final ψ 90

were then used to reduce the select the most relevant spectral
bands to classify the data. We compare our PSO-based method
against a widely used technique for dimensionality reduction,
sequential selection [10]. Sequential selection is a feature
selection technique that involves comparing different subsets
of the data based on a criterion function. It can be performed
either forward or backward by adding or removing features,
one feature at each step. Depending on the direction of the
selection, features will be added, sequential forward selection
(SFS), or removed, sequential backward selection (SBS), from
the feature subset based on the criterion function. As in the
case with PSO, SBS and SFS the performance of the SVM
classifier as the criterion function. Again, F-measure was the
chosen metric to induce the feature selection.

During feature selection, the SVM algorithm was trained
using the least squares method [19], which is the most
computationally efficient method. Because PSO is stochastic
by nature, PSO was run multiple times and the best results,
highest F-measure, were kept. The parameters used in the
PSO algorithm are shown in Table III. Since we had no a
priori knowledge of the optimal number of features, tests were
run iteratively, each time searching for a different number of
features. Figure 3 shows results for up to 50 features being
selected. Note that scores in the range of 5–15 features provide
comparable results to higher numbers of features.

The best performing subset selected by each method con-
tained different number of features. Tables IV, V and VI show
the features selected by PSO, SFS and SBS, respectively, as
well as the average wavelengths corresponding to the spectral
band that the feature represents. Figure 4 show a representation
of the wavelengths of selected features for PSO, SFS and
SBS; the plots also show the spectral curve of martite, to
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Fig. 3. Comparison of performance of PSO, SFS and SBS for the number
of features ranging from 1 to 50.

TABLE IV
PSO BEST SELECTED FEATURES

Method Band Number Corresponding
Wavelength (nm)

PSO

3 408.54
46 506.41
69 559.70
88 604.91
116 671.60
155 765.06
318 1603.96
339 1736.5
388 2202.52

demonstrate the wavelengths that seem to have significance
in classifying spectral data.

The features selected by PSO, SFS and SBS were also
compared against the entire feature set to determine whether
the accuracy of classification was comparable for a small
number of features when compared to all the features. A
summary of the results is shown in Table VII. In addition,
Fig. 5 shows the ROC curve for the features selected by PSO,
SFS and SBS.

TABLE V
SFS BEST SELECTED FEATURES

Method Band Number Corresponding
Wavelength (nm)

SFS

4 410.77
32 474.26
68 557.32
106 647.76
129 702.61
174 811.57
210 899.33
257 1135.81
299 1483.91
386 2189.94

TABLE VI
SBS BEST SELECTED FEATURES

Method Band Number Corresponding
Wavelength (nm)

SBS

2 406.32
51 517.89
89 607.29

104 642.99
178 821.36
207 892.02
253 1110.46
298 1477.59

E. Classifing Hyperspectral Image Data

We present a qualitative test of the selected features to
classify hyperspectral images. The selected features were used
to train SVM using the two data sets acquired with the
spectrometer—both the training and test data sets used in
the previous sections combined. The multiclass classification
was obtained using a one-against-all approach in which the
most likely class based on the SVM probabilistic estimate was
assigned for each pixel.

We compared the features selected by PSO, SFS and SBS,
to the full feature set. Figure 6 show a visual representation of
the classification of the various rock types performed on the
hyperspectral image data set; each different color represents
a different rock type; the background sky is blacked out in
the image; and N/D in the legend, Fig. 6(e), refers to “no
data.” Note that there are no detailed ground-truth labels for
the hyperspectral image data. Therefore we cannot provide
numerical results on this test. However, the results coincide
with the known geology distribution in the region.

VI. DISCUSSION

Considering the various metrics used to assess performance,
the OAD kernel clearly outperformed the other kernels with
significantly higher scores across all metrics. The polynomial
kernel appeared as the next best kernel in terms of F-measure
and accuracy. The Gaussian RBF kernel was competitive,
but required a great deal of parameter tuning to achieve
its best performance. The poor performance displayed by
both SAM and SID was unexpected, as they are kernels
specifically designed for hyperspectral analysis. One thing to
notice is how the range of accuracy values in the results
was relatively narrow compared to F-measures. In this case,
accuracy alone could produce ambiguous or even misleading
results. F-measure, combined with the other metrics, allowed
a more robust assessment of performance.

The results of the feature selection demonstrate that even
using a reduced data set by selecting several key features we
can still retain an acceptable level of accurate classification.
The fact that by using only 9 features outperformed using all
features suggests that, in the latter, the SVM is probably having
convergence difficulties due to the high dimensionality of the
data (curse of dimensionality). Even if the improvement in
classification performance is statistically small, the reduction
in training and test time for the SVM using only the selected



TABLE VII
COMPARISON OF CLASSIFICATION RESULTS FOR THE BEST SELECTED FEATURES USING PSO, SFS AND SBS, COMPARED AGAINST ALL 409 FEATURES

PSO: 9 Features SFS: 10 Features SBS: 8 Features All 409 Features
Accuracy 0.9465 0.9508 0.9417 0.9426
Precision 0.8418 0.8571 0.8511 0.8659

Recall 0.7603 0.7538 0.7203 0.7350
F-measure 0.7975 0.7778 0.7738 0.7879

Kappa 0.7381 0.7539 0.7150 0.7312
AUC 0.9523 0.9370 0.9219 0.9367

(a) All 409 features

(b) PSO selection: 9 features

(c) SFS selection: 10 features

(d) SBS selection: 8 features

(e) Legend for figures

Fig. 6. Comparison of multi-class classification results produced by the different methods showing the spatial distribution of rock types on a vertical mine
face.

feature set is remarkable. PSO provided the best performing
selection of hyperspectral features. Probably because PSO
has more flexibility to explore the search space of possible
features, compared to SFS and SBS.

The selected features correspond to particular bands and as
such the physical meaning of the bandwidths in that range can
be identified. The results indicate that many of the important
wavelengths for classifying the rock types are located at the
lower end of the spectrum. Although none of the three selec-
tion techniques selected the same feature, there is evidence to
suggest particular regions where the features selected are only
a few bands apart. These particular wavelength ranges seem to
hold a particular significance for the classification of minerals.

By limiting the number of bands to a selected few, we can
design optical filters tuned in the selected spectral ranges. Such
a multispectral system, would allow accurate classification of
minerals without the burden cost of acquiring and processing
unnecessary spectral bands.

It is worth noting that the experiment using the hyperspec-
tral image data was very challenging, since the training data
and the test images were acquired with different sensors (the
ASD and the Specim sensors, respectively) and under differ-
ent environmental conditions (illumination, geometry, field of
view, etc). The good qualitative results can be attributed to the
generalization capabilities of the SVM-OAD classifier and the
careful calibration performed on the hyperspectral data sets.
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(a) PSO selection: 9 features
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(b) SFS selection: 10 features
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(c) SBS selection: 8 features

Fig. 4. Comparison of spectral features (vertical red lines) selected by the
different methods for classifying martite (spectral curve in blue).

VII. CONCLUSION

In this paper, we presented a method for reducing the num-
ber of features required to classify rock types from hyperspec-
tral image data. Using a combination of a kernel method, SVM
with a specialized kernel, and an evolutionary optimization
technique, PSO, it is possible to efficiently select a limited
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Fig. 5. ROC curves for the best selected features of PSO, SFS and SBS.

number of features optimized for classifying hyperspectral
data. The effectiveness of the methods was demonstrated using
hyperspectral data sets of rock samples; a challenging real-
world problem, since the spectral signatures of ore-bearing
rocks are very similar, which make classification particularly
difficult. PSO was very effective in selecting features and out-
performed conventional sequential selection techniques. Our
experiments with SVM kernel selection reveal that the OAD
kernel is highly applicable to the classification of hyperspectral
data. It outperformed other widely used kernels, such as the
RBF kernel, and also kernels specifically designed to process
hyperspectral data.

Nevertheless, the PSO-based approach is not restricted to
SVMs and can be easily extended to work in combination with
other kernel methods, such as Gaussian process regression and
classification. Future works include improving the convergence
properties of PSO on the feature selection problem, perhaps
investigating an alternative selection strategy, such as in [20].
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