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Abstract

This paper discusses a method that enables reliable
docking of a mobile robot with a rectangular container.
The process involves an aligned approach to the con-
tainer while avoiding any obstacles in the region and
avoiding collision with the container itself.

A modular behaviour-based architecture called the
Distributed ~ Architecture for Mobile Navigation
(DAMN) is used. Raw sensor data is processed to pro-
duce robust virtual sensors that provide input data to the
behaviour modules. Centralised arbiters then asynchro-
nously process the behaviour outputs and determine the
set points for the mobile robot drive and steering actua
tors.

Testing of the virtual sensors and behaviour-based al-
gorithms was performed on an indoor mobile robot,
SydNav, with wheel-encoders and a scanning range | aser
as its sensors. Further testing of a container pose-
estimation virtual sensor took place on a quayside cargo-
handling vehicle (a straddle-carrier); again using scan-
ning lasers for its sensoria input.

1 Introduction

Automatic pickup or manipulation of an object has been
considered previously in terms of a kinematic arm and
end-effector on a mobile robot base [Mandel and Duffie,
1987][Nagatani and Yuta, 1996]. In this case the alignment
of the mobile robot is non-critical as the arm mechanism
has sufficient degrees of freedom to accomplish the task
irrespective of the vehicle’s pose. The concept of autono-
mous pickup via an aligned approach and docking of a
mobile robot, with its subsequent kinematic constraints,
requires a more stringent approach method.

An aigned approach does not lend itself easily to a de-
liberative solution in which the container has known
global coordinates and the vehicle calculates an optimal
trajectory to achieve the docking procedure. Errors in the
initial container pose estimate and in the vehicle's global
pose estimate make this a fragile method at best. However,
with closed-loop sensor information, reasonable robust-
ness can be achieved. Sensors detect the relative pose of
the container with respect to the vehicle and update the
container pose estimate so that the tragjectory plan can be
adjusted accordingly. The tests carried out on the straddle-
carrier vehicle used this control method.

A more reactive behaviour-based control method is bet-
ter suited to the docking problem. No trgjectory plan is

made in this case but control actions are based on the out-
puts of a set of behaviour modules. A wide range of be-
haviour-based systems have been designed to date from
purely reactive, notably Brook’s subsumption architecture
[Brooks, 1986], to hybrid combinations of traditional delib-
erative planners and reactive low-level controllers, such as
Arkin's AuRA (Autonomous Rabot Architecture) [Arkin,
1997]. In this paper, a version of hybrid architecture called
the Distributed Architecture for Mobile Navigation (DAMN)
[Rosenblatt, 1997] is used. DAMN consists of a distributed
system of behaviour modules which are interpreted in an
intelligent manner by a centralised arbitration module.

Often it is undesirable for all behaviours to be active at
once. Methods such as RAPs (Reactive Action Packages)
[Firby, 1996] and Hughes behaviour pool [Payton, 1986]
enable a selection of behaviours to be activated for a par-
ticular task while the remaining behaviours are dormant.
The DAMN architecture uses a mode manager which is
effectively a state machine that selects a number of be-
haviours for the task at hand in a similar method to
Hughes' behaviour pool. The mode manager can also ap-
ply dynamic weightings to each behaviour.

The purely reactive approach to processing raw sensor
data is to have such a high bandwidth update rate that er-
roneous data can be effectively ignored. In this paper,
however, raw sensor data is fused and filtered to provide
modules of higher-level information so that later processes
using this information can function reliably at much lower
bandwidths. These modules of processed sensor data have
been termed virtual sensors. The advantages are twofold.
First the output of the virtual sensor is more robust as spu-
rious values can be rejected and estimates modeled and
filtered. Secondly, the output of the virtual sensor is con-
sistent irrespective of the type of input sensor providing it
with information.

This paper is organised as follows. Part 2 describes the
vehicles from which experimental data was collected to
test the virtual sensors and behaviour/arbiter agorithms.
Part 3 describes the virtual sensor modules in terms of the
raw sensor data inputs, signal processing agorithms, and
optimised outputs. The next section briefly describes the
behaviour modules that were tested for the docking proc-
ess and section 5 describes the DAMN arbiters that
choose the best steering angle and velocity set points
based on the behaviour data. The final section makes con-
cluding remarks on the operation of the system el ements.



2 Test Vehicles

The majority of testing was performed on an indoor mo-
bile robot, SydNav. All behaviour-based algorithms were
tested on this vehicle. Some additional testing for a ver-
sion of the Container Pose virtual sensor was done on an
outdoor cargo-handling vehicle — a quayside straddle-
carrier.

2.1 Indoor M obile Robot - SydNav

SydNav (see Figure 1) is a three-wheeled robot with the
two rear wheels fixed in the forward direction and able to
rotate freely. The front wheel only provides both drive and
steering (a tricycle model). This arrangement is relatively
free from dlip and produces quite accurate odometric es-
timates.
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Figure 1: SydNav Vehicle

Sensor data is supplied by wheel encoders, mounted on
the shafts of the steering and drive motors, and a SICK 2D
scanning range laser mounted on the front of the vehicle.

The wheel encoders have resolution of 2000 counts per
revolution which can be transformed directly into steering
angle (y) and distance traveled (Ad) by considering the
drive train gear ratios and the wheel radius.

The scanning laser produces a 2D scan over 180°, with
resolution 0.5°, for a range of about 30 meters. Its short
900nm wavelength means that it obtains reliable diffuse
reflection off nearly all surfaces. There are, however,
quantization errors of £30 mm; false readings (artifacts)
along steep edges; and possible false reflections from rain,
steam or dust particles. These must be removed by filter-
ing.

2.2 Outdoor M obile Robot - Straddle Carrier

In a port environment, quay cranes move containers from
the ship to the dock. A straddle carrier (see Figure 2) isa
13m tall cargo-handling vehicle used to transfer containers
from beneath the crane to a storage stack. It operates by
driving over (straddling) the container and dropping a
spreader onto it. The kinematics of this vehicle are char-
acterized by its anti-symmetric steering meaning that for
any fixed steering angle the front and rear wheels travel
along the same arc.

The current straddle-carrier test vehicle already has a
navigation system in place that gives it a global pose esti-
mate. This means that reliable global pose is an available
resource to any of the modules tested on this vehicle. It
also has two 2D scanning range lasers mounted on the
front left-hand-side and rear right-hand-side of the vehicle.
These lasers are similar to the one on SydNav but have a
sweep of just 100° and resolution of 1°. They are angled
inwards by 25° to enable a view of the container at close
range.

Figure 2: Straddle Carrier Vehicles

3 Virtual Sensors

Sensor data for the behaviour modules is provided by a
collection of virtual sensors. These are derived from raw
sensor data that has been filtered and fused to produce a
robust data set. The outputs of the virtual sensors are tai-
lored to the specific input requirements of the behaviour
modules and are designed to produce a known output type
regardless of the particular sensor types providing them
with raw information.

There are three virtual sensors discussed in this paper. The
first two, Globa Position and Obstacle Map, were tested
on SydNav only. The third, Container Pose, was tested on
both SydNav and the straddle-carrier vehicle.

3.2 Global Position Virtual Sensor

The Global Position Virtual Sensor is essentially a Kal-
man filtered estimation of the vehicle's pose (X, y, ¢) fus-
ing wheel-encoder data with laser observations (see Figure
3). Static features, small clusters and lines, that appear
stable over several observations are used as external refer-
ence points to correct pose estimate errors. An Extended
Kaman Filter (EKF) is used to fuse external observations
with odometric data. The state and observation models
used for the filter are based on the equations in [Borenstein,
1996]. Presently, the environment is arranged to make this
process as simple and reliable as possible by placing sev-
eral isolated objects within the observable region to serve
as beacons.



The Global Position virtual sensor is used to maintain a
global representation for the steering arbiter (Section 5.2).
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Figure 3: Global Position Virtual Sensor
3.3 Obstacle Map Virtual Sensor

The obstacle map is alocal map, in vehicle-centered coor-
dinates, that encompasses a rectangular region surround-
ing the vehicle. The map extents are determined by such
parameters as: the size of the operating environment; the
velocity of the vehicle; and other physical characteristics
of the vehicle. For example, the straddle-carrier operates
in both forward or reverse so the map should be symmet-
rical in both front and rear.

Scanned data from the laser is stored in a list if the
points lie within the map range. For each update of the
vehicle pose, the stored data points are transformed ac-
cording to the relative change in pose, enabling non-
observed objects to be remembered. New scans are added
tothelist asthey arrive. Any data points that are no longer
within the bounded region are deleted from the list (see
Figure 4).
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Figure 4: Obstacle Map Virtual Sensor

The implementation of this virtual sensor on SydNav is
shown in Figure 5. The area in front of the vehicle is up-
dated with each new 180° scan while the area behind the
vehicle is filled with points seen previously and moved
backwards as the vehicle travels forward. As with the
Globa Position virtual sensor, this is a very simplistic
virtual sensor and relies on good odometry and fairly
noise-free laser readings. Nevertheless, it is sufficient to
demonstrate the DAMN-based docking procedure and
show, at least conceptualy, the encapsulation of raw sen-
sor datainto avirtual sensor module.

3.4 Container Pose Sensor

The Container Pose Virtual Sensor operates as follows.
An approximate estimate of the container pose is given
once the vehicle is within the region where the container
might be observable. Each new scan the data points are
divided into clusters. Those clusters that lie close to the
predicted location of the container have lines fitted to
them using a least-squares algorithm. The least-squares
algorithm used here is a Cartesian-based algorithm similar
to that found in [Kahn et al., 1990].

+ new points

Area updated“
by new scan & /
/
Areafor
transformed
old points v .

old points

Figure 5: Obstacle Map Implementation

Geometric constraints of length and slope are used to
verify the observation of the front corners of the container,
which is then used to update an EKF estimate of the rela-
tive container pose (X, Y, ®) maintained at the container
centre (see Figure 6).

Container Pose

relative
laser (1, ¢) split scan into clusters container pose
regress sets close to predicted (X, Y, ®)
container location
heel encoders | - detect front corners
(y, Ad) - EKF update of pose estimate
——>

Figure 6: Container Pose Virtual Sensor

Figure 7 shows part of an actua scan from the laser in
an outdoor test environment. The environment consisted
of asingle cargo container in the presence of quite alot of
natural clutter. In this scan test, linear regression was per-
formed over the whole data set, without constraints for
expected pose, in order to test the robustness of the con-
tainer recognition algorithm. The figure shows the con-
tainer directly in front of the laser with miscellaneous ob-
jects to the right-hand-side. In the tests carried out at this
site, the container was consistently detected while moving
the laser through the environment.
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Figure 7: Linear Regression to Actual Laser Scan

The state model for the Container Pose virtual sensor as-
sumes the container is stationary and the change in relative
pose is due to the vehicle motion:

X(klk=1)7 | X(k—-1k-1)— Ad cos(y)
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Here, the state is the pose of the container and the
change in state is caused by the movement of the vehicle
(Ad) and its steering angle (y). The rate of change in (D),
as defined in Equation 1, is based on atricycle model ve-
hicle where (B) is the wheelbase.

Figure 8 shows the observation model for the Container
Pose virtual sensor. The observation vector consists of the
range (r) from the laser to a perpendicular intersection
with the front edge of the container and the angle (6) of
this range vector. It also incorporates the distance (d1 and
d2) from the intersection to the front corners, given the
fixed width (2W) and length (2L) of the container.

container
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Figure 8: Observation Model

An observation of the front corners can be inferred
without actually seeing the entire front. A partial view of
the front and one side is sufficient to calculate the position
of the corners.

The observation model for the container allows for the
uncertainty of the front corners to be incorporated as fol-
lows:
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The noise injected into the observation of r and 0 is di-
rectly proportional to the number of points contained in
the linear regression. The noise injected for d1 or d2 is
based on what part of the container was actually observed.
If the first corner is seen directly and the second is in-
ferred then the noise for d1 is small and d2 is set large as
its observation is correlated to the first corner.

4 Behaviour Modules

There are two sets of behaviour modules described here.
The first is for the control of steering angle (y) and the
second isfor control of velocity (V). The behaviour output
type is different for these two sets and so they are proc-
essed by two separate and independent arbiters.

4.1 Steering Behaviours

Steering behaviours produce outputs of lines, points or
polygons within the global 2D Cartesian space of the ro-
bot's environment. These lines, points or polygons are
assigned a positive or negative utility where positive util-
ity indicates a favourable state and negative utility indi-
cates an unfavourable state. A utility is simply a numerical
value (between *oo) that describes the degree of favoura-
bility.

Head To Goal A very simple behaviour where a goal
point (X, y) is specified and the behaviour applies a fixed
positive utility to it.

Avoid Obstacles Points from the Obstacle Map virtual
sensor are transformed to globa coordinates using the
global pose estimate. They are clustered together and rec-
tangles are drawn around each cluster (see Figure 9). The
rectangles are each assigned a large negative utility.

Dock The relative container position estimate from the
Container Pose virtual sensor is used to calculate a line of
positive utility passing through the middle of the container
and parallel to its sides. This will tend to align the vehicle
with the container as it approaches.

4.2 Velocity Behaviours
Velocity behaviours operate in 1D space whereby they

specify the maximum allowable velocity of the vehicle in
both forward and reverse (negative) directions.
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Figure 9: Enclosed Obstacle Map Point Clusters

Head to Goal The velocity bound in the direction towards
the goal is given some nominal value. The velocity bound
in the direction away from the goal is small but non-zero
to alow for possible maneuvering due to obstacles. Asthe
distance to the goal approaches zero, the velocity bounds
shrink to zero causing the vehicle to stop.

Avoid obstacles This behaviour has nominal velocity
bounds in both directions. The velocity bound in the di-
rection towards an obstacle shrinks according to the in-
verse distance squared to the obstacle.

Dock The velocity bound in the forward direction is set to
some nominal value and the bound in the reverse direction
to a small non-zero value. Information from the Container
Pose virtual sensor determines whether the docking proc-
ess becomes impossible (i.e. insufficient alignment) and
the forward velocity bound shrinks towards zero and the
reverse velocity bound is increased. Once sufficient
alignment has been attained, the origina velocity bounds
are reinstated.

5 DAMN Arbiter

The genera structure of the DAMN arbitration system is
shown in Figure 10. The arbiter has inputs from the be-
haviour modules and the behaviour mode manager. The
output from the arbiter is a set point value for a particular
controller based on the information from all the active
behaviour modules.
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data data sequence
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Sensor Sensor +
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Control
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Figure 10: System Block Diagram

5.1 Behaviour M ode M anager

The Mode Manager is a state machine that can dynami-
cally assign weightings to each of the behaviour inputs.
Presently, the Mode Manager simply switches behaviours
on or off (which is the same as applying weightings of one
or zero respectively). The Mode Manager states for the
current SydNav configuration are shown in Figure 11.
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Figure 11: Mode Manager States
5.2 Steering Arbiter

The steering arbiter is a utility arbiter [Rosenblatt, 1998]
which operates in the following manner. Taking the vehi-
cle's current pose in global coordinate space, the pose of
the vehicle at a fixed time-step in the future is predicted
for a variety of steering angles. The steering set is limited
by the kinematic constraints of the vehicle from hard-left
to hard-right (see Figure 12) and an arbitrary resolution is
given between these two limits.
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Figure 12: Range of Steering Angles taken from
[Rosenblatt, 1997]

For each predicted pose, the probability of hitting each
utility point, line or polygon is calculated. The most desir-
able steering angle is then calculated using the following
formula[Berger, 1985]:

(@) =>U(0)P(cla,® ©)



U(a) stands for the utility of a particular action (a) where
the action, in this case, is a steering angle (y;). U(c) isthe
utility of a particular consegquence (c) where the conse-
guence, in this case, is hitting a certain point, line or poly-
gon. Both U(c) and the location of the points, lines, or
polygons are defined by the behaviour modules. The no-
tation P(c|a,e) means the probability of a consequence (c)
given the action (a) and the evidence (€). The evidence
(e), in this case, is the location of the point, line or poly-
gon that makes possible the consequence (c).

Thus, the steering angle (y;) gives a predicted pose that
has the probability P(cla,e) of a particular consequence
(c). The probability of each consequence multiplied by its
utility is summed for each possible consegquence to give
the utility of the action U(a). The action with the highest
utility is chosen as a steering set point.

The difficult part of this algorithm is determining avalid
equation for calculation of P(cla,e). Previoudy in the
DAMN architecture this was a function of distance from
the evidence (e). For a docking procedure it becomes nec-
essary to extend this to being a function of distance, ori-
entation and velocity. A good function in this vein is the
General Potential Fields obstacle avoidance equation
[Krogh, 1984]:

ov
GPF = 2da V2 ()

Here o stands for the acceleration limit of the vehicle; dis
the distance from the vehicle to the closest point of the
obstacle; and v is the magnitude of the vehicle's velocity
component in the direction towards the closest point of the
obstacle. If v isless than zero then the GPF is set to zero.

The characteristics of the GPF function seem valid for
the purposes of calculating P(cla,e) and so it is used di-
rectly in the current steering arbiter design:

P(cla,e) = GPF ®)
5.3 Velocity Arbiter

The velocity arbiter is much simpler and, hence, much
higher bandwidth than the steering arbiter. It simply takes
the plus-minus maximum velocity bounds from each be-
haviour and chooses the maximum magnitude from the
intersecting set. It is possible that in some circumstances
the velocity may oscillate between forward and reverse but
further experimentation is necessary to determine this.

6 Conclusions

The docking process for a mobile robot is implemented
based on the DAMN behaviour-based architecture. Virtual
sensors minimise sensor error and produce optimal esti-
mates in the required format. A distributed system of be-
haviour modules independently provides information on
what actions should be taken such that data is gathered
without bottlenecks. Centralised arbiters interpret the in-
formation for the behaviours so that all available data is
considered in making an action decision.

The architecture described in this paper enabled robust
collision-free docking with a container in the presence of
other obstacles.

Further research is required to ensure the stability of the
forward/reverse component of the velocity arbiter. Also an
extension of the function for calculation of P(c|a,e) should
be made to incorporate the uncertainties from the infor-
mation gathered by the virtua sensors and behaviours
which result in uncertainty of the vehicle state and object
locations.
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