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Abstract
Tim Bailey Doctor of Philosophy
The University of Sydney August 2002

Mobile Robot Localisation and
Mapping in Extensive Outdoor

Environments

This thesis addresses the issues of scale for practical implementations of simultaneous local-
isation and mapping (SLAM) in extensive outdoor environments. Building an incremental
map while also using it for localisation is of prime importance for mobile robot navigation
but, until recently, has been confined to small-scale, mostly indoor, environments. The
critical problems for large-scale implementations are as follows. First, data association—
finding correspondences between map landmarks and robot sensor measurements—becomes
difficult in complex, cluttered environments, especially if the robot location is uncertain.
Second, the information required to maintain a consistent map using traditional methods
imposes a prohibitive computational burden as the map increases in size. And third, the
mathematics for SLAM relies on assumptions of small errors and near-linearity, and these
become invalid for larger maps.

In outdoor environments, the problems of scale are exacerbated by complex structure
and rugged terrain. This can impede the detection of stable discrete landmarks, and can
degrade the utility of motion estimates derived from wheel-encoder odometry.

This thesis presents the following contributions for large-scale SLAM. First, a batch data
association method called combined constraint data association (CCDA) is developed, which
permits robust association in cluttered environments even if the robot pose is completely
unknown. Second, an alternative to feature-based data association is presented, based on
correlation of unprocessed sensor data with the map, for environments that don’t contain
easily detectable discrete landmarks. Third, methods for feature management are presented
to control the addition and removal of map landmarks, which facilitates map reliability and
reduces computation. Fourth, a new map framework called network coupled feature maps
(NCFM) is introduced, where the world is divided into a graph of connected submaps.
This map framework is shown to solve the problems of consistency and tractability for very
large-scale SLAM.

The theoretical contributions of this thesis are demonstrated with a series of practical
implementations using a scanning range laser in three different outdoor environments. These
include: sensor-based dead reckoning, which is a highly accurate alternative to odometry
for rough terrain; correlation-based localisation using particle filter methods; and NCFM
SLAM over a region greater than 50000 square metres, and including trajectories with large
loops.
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There is a fine line between thorough and slow.

Anon.

We know that we all possess knowledge. Knowledge
puffs up, but love builds up. The man who thinks he

knows something does not yet know as he ought to
know. But the man who loves God is known by God.

1 Corinthians 8:1b–3
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Chapter 1

Introduction

Autonomous mobile robot localisation in previously unexplored environments requires the
robot to incrementally construct a map of its surroundings by a process called simultaneous
localisation and mapping (SLAM). This thesis is concerned with the implementation of
SLAM in extensive environments that possess difficult properties like rough terrain and
lack of man-made structure. The development of a feasible and reliable SLAM system in
these types of environments is dependent on addressing the following issues.

• Data association. SLAM relies on correct correspondence between data obtained from
the robot sensors and the data currently stored in the map. In natural environments
the varied distribution of recognisable objects (features) necessitates a data association
algorithm robust to both high feature density and an absence of stable features. There
may also be a high proportion of dynamic objects and spurious sensor measurements,
and these difficulties are further accentuated if the robot location is unknown or highly
uncertain.

• Computation. For real-time operation in very large environments, the computational
complexity and storage requirements of the SLAM algorithm must scale in a reason-
able manner.

• Non-linearity. The process of constructing an incremental map while also localising
from it is highly non-linear. In large environments involving significant error accumu-
lation and correction, the SLAM algorithm must remain mathematically consistent.

• Adaptation. In the presence of dynamic objects and changing environmental struc-
ture, it is necessary to establish criterion for information removal from the map so
that it maintains a contemporary representation of the real world.

The objective of this thesis is to develop solutions to the issues specified above and
demonstrate the functionality of these solutions with experimentation in real outdoor envi-
ronments.
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1.1 Mobile Robot Localisation and Mapping

The ability of a mobile robot to determine its location in space is a fundamental competence
for autonomous navigation. Knowledge of self-location, and the location of other places of
interest in the world, is the basic foundation on which all high level navigation operations
are built. It enables strategic path planning for tasks such as goal reaching, region cover-
age, exploration and obstacle avoidance, and makes following of these planned trajectories
possible. Without a notion of location, a robot is limited to reactive behaviour based solely
on local stimulii and is incapable of planning actions beyond its immediate sensing range.

1.1.1 Forms of Localisation

This section describes three types of localisation—dead reckoning, a priori map localisation,
and SLAM—representing increasing levels of competence in pose estimation.1

The most basic form of localisation is dead reckoning, which is simply estimation of
the vehicle pose by integrating estimates of its motion (e.g., inertial sensing, encoder-based
odometry). The problem with dead reckoning is that each change-in-pose estimate includes
a component of error and these errors accumulate as part of the integration process. Thus,
uncertainty in the pose estimate increases monotonically with time and improving sensor
and motion model accuracy can serve only to slow, but not prevent, this increase. Eventu-
ally, the pose estimate must become so uncertain that it can serve no useful purpose and,
for this reason, dead reckoning is an insufficient mechanism for long-term localisation. Dead
reckoning does, however, retain usefulness as an auxiliary information source in conjunction
with map-based localisation.

Pose estimation with bounded uncertainty is only possible through the availability of
absolute rather than incremental pose measurements. A map of the environment defined by
the locations of distinct landmarks provides such a source of absolute information. Thus,
given an ability to sense its surroundings, the robot can obtain absolute pose estimates
by registering sensed information with the map. The problem with a priori map based
localisation is the need to have explored the environment in advance, and to have surveyed
the landmark locations before the robot can begin to navigate autonomously. Construction
of an a priori map may be a difficult operation and a new map must be built for each new
environment. Moreover, the resulting map is static and cannot adapt to changes in the
environment or grow with exploration into regions beyond the original map bounds.

The motivation for SLAM is to overcome the need for a priori maps as a mechanism for
bounded pose uncertainty, and to enable map construction that is extensible and adaptive
to environmental change. SLAM is performed by storing landmarks in a map as they are
observed by the robot sensors, using the robot pose estimate to determine the landmark
locations, while at the same time, using these landmarks to improve the robot pose esti-
mate (see Figure 1.1). As the landmarks are repeatedly reobserved, their locations become
increasingly certain and the map converges, eventually acquiring the rigidity of an a priori
map.

1This thesis investigates the localisation problem in the context of 2-D (planar) environments, meaning
that the location of the robot is given by its pose (i.e., position (x, y) and orientation φ). However, the
concepts and results presented are equally valid for 3-D environments.
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Figure 1.1: A SLAM example. The vehicle (triangle) obtains a set of range-bearing mea-
surements (green rays). From these measurements, landmarks are extracted; new landmarks
are added to the map and reobserved landmarks are used to improve the estimates of the
vehicle pose and known landmark positions. The landmark uncertainties are shown by red
ellipses (using a 5σ bound). Note, the uncertainty of the vehicle and added landmarks in-
creases with distance from the map origin, but the uncertainty of each landmark decreases
monotonically once initialised. In the limit, the landmark uncertainties approach a lower
bound and their uncertainty with respect to each other approaches zero [42].
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The SLAM ideal is to allow immediate navigation capabilities in completely unknown
environments, so that a robot might be placed in a new environment and left to explore
and map the environment without human intervention. Alternatively a human operator
might drive the robot through an environment once (a training phase where the operator
might demonstrate trajectories and way-points) and it could accumulate sufficient knowl-
edge to thereafter travel competently within the region. It is worth noting that, for real
environments, training by a human operator is currently a more practicable scenario than
autonomous exploration, as exploration is unlikely to operate safely in the presence of hid-
den structures (i.e., structures invisible to the robot’s sensors). For example, transparent
objects, and objects outside of the view plane, are invisible to a robot with only a range
laser sensor and will not be avoided. Also, structures such as stair-wells present a danger
unless there is a specific recognition of vertical free-space.

1.1.2 A Brief History of Autonomous Localisation

The origin of mobile robot localisation extends back to the 1950s with the installation
of wire guided tractors in industrial factories [47]. By the 1970s this path following con-
cept had been developed to the point where autonomous guided vehicles (AGVs) navigated
by following lines on the ground—either buried wires (via magnetic inductance) or painted
stripes [133]. Buried wires were reliable and permanent but suffered from substantial instal-
lation effort and subsequent inflexibility. Painted lines enabled more rapid path generation
and alteration but required continued maintenance to ensure reliability (against wear and
fading). The basic limitation of path following is that it restricts navigation to fixed tra-
jectories and, therefore, limits AGV application to simple repetitive tasks. Thus, the path
following method, while not actually localisation in the pose estimation sense,2 was a pre-
cursor to autonomous localisation in establishing the problem of autonomous navigation
and precipitating the need for more flexible navigation strategies.

Increased flexibility via pose estimation was introduced through the use of artificial
beacons. These were either active beacons such as infrared [57] or ultrasonic [80] tranducers,
or passive beacons such as retro-reflective markers [20] or radar trihedrals [49], and they
enabled mobile robots to localise relative to the known beacon locations. This meant
that the prescribed navigation paths could easily be redefined in software without any
change to the physical environment and the robot could generate adaptive trajectories to
bypass obstacles. Nevertheless, this method still requires the introduction of specialised
infrastructure (the beacons themselves) that need to be carefully surveyed so as to provide
accurate landmark locations.

The use of the natural environment structure to provide landmarks was the next step in
the development of autonomous localisation, removing the need for specialised infrastruc-
ture. By providing the robot with accurate metric maps of the environment (constructed
by hand or, commonly, based on CAD structural plans [33]) the sensed environment could
be registered with the map to determine its location. This use of natural landmarks intro-
duced the problem of data association—the process of finding a correspondence between
elements of two data sets. In the case of mobile robot localisation, data association concerns

2Path following is a more direct forerunner to the topological map localisation paradigm [85], where a
qualitative network of paths and places is employed in preference to a metric map of landmark locations.
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assigning sensed features to appropriate map landmarks. While data association is also an
issue in artificial landmark localisation, it can be easily avoided by keeping the beacons well
separated or making each beacon uniquely distinguishable, using bar-codes for example.

Manually mapping (surveying) an environment, when CAD plans are not available, is
tedious work and susceptible to human errors and inaccuracies. A better method for a priori
map construction was demonstrated recently [131] where the robot was driven manually
through the environment gathering information with its sensors. This information was
subsequently used to automatically generate an environment map using an offline batch
process, reducing map building from several days to a matter of hours.

The first SLAM algorithm to comprise an explicit and consistent representation of uncer-
tainty, and therefore provide qualification of map convergence, was presented in [122]. This
method, referred to here as stochastic SLAM, remains the basic foundation of practically
all subsequent SLAM proposals using the landmark-based map framework. Early experi-
mental verification of the algorithm with laser [102] and sonar [87] sensors demonstrated its
utility in relatively small-scale indoor environments. However, for larger regions, the O(n2)
computation and storage involved in building a map of n features made direct application
of the algorithm intractable. More feasible adaptations of stochastic SLAM have since been
proposed such as removing redundant map features [40], developing efficient estimation
procedures [65, 140], and dividing the environment into a network of submaps [90, 140, 30].

For practical SLAM in large-scale unstructured environments, several open problems re-
main including issues regarding landmark representation, data association and map struc-
ture. First, nearly all current stochastic SLAM implementations represent landmarks as
simple geometric primitives like point-location or line features and so are viable only in
environments where these forms exist. In many real environments, SLAM depends on the
development of more general feature models. Second, SLAM tends to fail if data associa-
tion is performed incorrectly. Therefore, data association must be made robust to variable
densities of (often identical) features and dynamic objects, and large uncertainties in vehicle
pose. Finally, the structure of the SLAM map needs to enable consistent uncertainty repre-
sentation regardless of the size of the map. This is partly a computational problem, where
correlations between uncertain variables need to be maintained, but is also a mathematical
issue as uncertainty must be dealt with properly in a highly non-linear system.

1.2 Contributions

This thesis is concerned with the robustness and tractability issues for practical stochastic
SLAM in large-scale, particularly outdoor, environments. Specific contributions are made
towards reliable data association, map management, feasible computation, and mathemat-
ical consistency. The principal contributions of this thesis are as follows:

• The development of a batch data association algorithm for sets of parametric features.
This method, called Combined Constraint Data Association (CCDA), incorporates
all available constraint information to produce an optimal set of assignments between
two feature sets. Of particular value to robot navigation is its ability to perform data
association with or without the availability of vehicle pose information.
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• The presentation of a probabilistic (Gaussian sum) representation for unprocessed
sensor data, which provides a means for finding a Bayesian correlation between un-
processed data sets without feature models. This is a necessary alternative to feature-
based data association in environments not suitable to geometric feature extraction.

• The investigation of feature management techniques to limit the addition of unreliable
features, remove obsolete features and control feature density. These methods are vital
for the adaptability and efficiency of long-term SLAM.

• The development of a hybrid topological-metric map representation, called Network
Coupled Feature Maps (NCFM), that enables stochastic SLAM in very large-scale
environments by addressing issues of computation, storage and mathematical con-
sistency. In conjunction with the CCDA algorithm, this framework also provides a
robust solution to the difficult problem of loop closure.

• The implementation of experiments in outdoor environments to demonstrate the util-
ity of CCDA, Bayesian correlation, feature management, and NCFM. These appli-
cations include sensor-based (odometry-free) dead reckoning for use in rough-terrain
environments, particle filter localisation, traditional stochastic SLAM, and NCFM
SLAM with large-scale loop closure.

1.3 Thesis Overview

Chapter 2 presents the necessary background to this thesis by discussing common alter-
native map representations and their pros and cons when used for SLAM. The traditional
stochastic SLAM algorithm for feature-based maps is then presented, and a discussion of
the experimental issues for performing large-scale SLAM in outdoor environments.

Chapter 3 gives a detailed background to data association for multiple target tracking,
and its relevance to stochastic SLAM. The CCDA algorithm is presented as a highly robust
batch association method, and is then used to implement laser-based dead reckoning in
rugged outdoor terrain.

Chapter 4 discusses scan correlation—the association (or alignment) of unprocessed data
without using geometric feature models. A probabilistic (Gaussian sum) representation is
developed for range-bearing data, which permits appropriate sensor modelling and Bayesian
pose estimation. The validity of this approach is demonstrated through two applications:
sensor-based dead reckoning and particle filter localisation.

Chapter 5 addresses two issues concerning long-term SLAM in medium-scale environ-
ments. The first is feature management—feature addition and removal—for efficient and
reliable maps that can adapt to structural change. The second concerns loop closure, which
cannot be performed robustly with batch association alone and requires feature grouping
within the map. An implementation of traditional SLAM in a high feature density environ-
ment is used to verify these solutions.
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Chapter 6 examines the current state-of-the-art in submap SLAM techniques, and presents
the NCFM approach as a complete SLAM framework that is consistent and highly accurate
at a global level. NCFM is also shown to permit very robust loop closure. Preliminary
experimental NCFM SLAM results are demonstrated.

Chapter 7 presents conclusions and suggests future directions for the completion and
extension of this work.



Chapter 2

Autonomous Localisation

The problem of autonomous localisation has received considerable attention over the past
two decades and, as a result, a variety of paradigms exist for determining the position
and orientation of a robot vehicle in relation to other objects in the environment. One
attribute all localisation methods have in common is a map—a representation of the ex-
ternal environment that provides a reference for the information obtained from the robot
sensors. This chapter examines several map forms currently used in mobile robot navigation
systems. Their suitability for reliable localisation is discussed, particularly with regard to
large-scale SLAM, and this evaluation leads to the selection of metric feature-based maps
as a best choice for most situations. The remainder of this thesis is based on a feature
map representation, although the developments in Chapter 6 draw from topological map
concepts.

The later sections of this chapter provide a context for the research in this thesis by
describing the following aspects of feature-based SLAM.

• The basic stochastic SLAM algorithm is presented which stores the vehicle pose and
map feature parameters in a state vector and updates these estimates using an ex-
tended Kalman filter (EKF).

• Recent improvements in the efficiency of the SLAM algorithm are reviewed in terms
of their ability to permit feasible operation in large-scale environments.

• The issues involved in performing practical SLAM experiments in rugged outdoor
environments are discussed with emphasis on the particular case where a scanning
range laser is the sole information source.

2.1 Navigational Maps and Their Application to SLAM

This section considers the three types of maps most commonly used in current localisation
systems: occupancy grids, feature maps and topological maps. For each of these maps, a
basic functional description is given and a survey is made of their suitability to a priori map
localisation (in terms of computational complexity, reliability, etc). An examination of suit-
ability for SLAM follows, with attention to criteria considered essential for the development
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of a tractable and consistent SLAM algorithm. These criteria are given below (note, the
first two criteria are valid only for metric maps).

• Representation of uncertainty. Mobile robot sensors cannot measure locations in the
environment with total accuracy and so there is a degree of uncertainty in the map
representation. At the same time, the vehicle location is derived from this map and
so the pose estimate is also uncertain. This thesis stipulates that both map and
pose estimates require a proper quantification of uncertainty, including conditional
uncertainty where various factors are dependent. Essentially, an uncertainty model
needs to accurately reflect the error between the estimated and actual state of the
system.

• Monotonic convergence. The primary purpose of an uncertainty measure is to ensure
map convergence. A map is convergent if the estimated spatial geometry of the en-
vironment approaches its true (physical) geometry as new observation information is
incorporated. This is synonymous with a monotonic reduction in map uncertainty
(i.e., non-increasing uncertainty of the known map). Without this uncertainty mea-
sure, a static object with estimated location (x1, y1) may drift with subsequent map
updates to some arbitrarily distant location (x2, y2). Explicit uncertainty permits for-
mal assessment of map accuracy and constrains the effect of subsequent observation
information.

• Data association. The map representation must permit reliable correspondence be-
tween the information obtained from the robot sensors and the stored map informa-
tion. First, the search for observation-to-map association needs to be efficient enough
for real-time operation and, second, the association must be robust to partial views
and large search-spaces. Partial views occur because an observation may consist of
a combination of currently mapped region, unexplored region and dynamic objects.
The size of the search space is determined by the vehicle pose uncertainty; thus, an
accurate uncertainty model improves both efficiency and robustness by prescribing a
minimal search space.

• Cycle detection. If a mobile robot explores an environment by traversing a large loop
(i.e., much larger than its sensing range), then identifying a return to an old map region
is the cycle detection problem (also known as the map revisitation or loop closure
problem). Cycle detection involves special-case conditions concerning the two previous
criteria. The first issue is data association, which is distinct from local association
because of the much larger vehicle pose uncertainty, and hence search-space, involved.
Search efficiency is one aspect but, more importantly, there needs to be robustness in
deciding whether an association is correct or an artifact of environmental similarity.
The second issue, having found a correct association, is convergence, where substantial
accumulated error in the map loop must be compensated properly during the map
update phase by propagating the error-offset back through the map circuit.

• Computation and storage. The map must store sufficient information to enable data
association and convergence. This storage, and the computation required to update
the map with new observation data, should scale reasonably with the area of environ-
ment covered.
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Figure 2.1: Occupancy grid map. The probability of occupancy for each
grid square is defined by a value bounded by (0, 1) such that 0 indicates
definitely not occupied (free space) and 1 means definitely occupied. A
prior probability of 0.5 implies unexplored space (depicted by the light
gray regions). Note that the rectangular grid is not an efficient represen-
tation of non-rectangular environments such as this one.

2.1.1 Occupancy Grids

Occupancy (or evidence) grids [50, 118] represent a region as a matrix of cells as shown in
Figure 2.1. Each cell describes a small rectangular area in the environment, and indicates
the probability that the area is occupied by a value in the range (0, 1). Localisation is
accomplished by registering observation data with the map using cross-correlation methods
(the same technique as used for image-based template matching).

As an a priori map, in reasonably small environments, occupancy grids are an effective
localisation method. Typically observation data is accumulated in a short-term occupancy
grid before being registered with the main map [100, 50, 142, 128]. This enables data fusion
in a uniform occupancy representation—to filter noisy sensor data over a short time period,
or to combine data from multiple sensors and different sensor modalities. Occupancy grids
also offer an explicit representation of both occupied and free space, which is useful for path
planning.

One difficulty concerning occupancy grids is data association. The cross-correlation
search, within the region of the vehicle pose uncertainty, is expensive if the search-space
is large (although fast search methods have been presented e.g., [82]). Also, if the cross-
correlation result is multi-modal within the search-space region, a maximum likelihood
correlation search may fail by converging to the wrong mode. This problem might be
addressed by employing a Monte Carlo localisation procedure, as introduced in [38].

The most significant difficulty with occupancy grids, as a priori maps in large envi-
ronments, is the tradeoff between grid resolution (termed granularity) and computational
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complexity. Ideally, to capture environmental detail and to facilitate accurate pose estima-
tion, the grid size is as small as possible (fine grained), whereas for feasible computation,
given that storage and computation increases in proportion to the number of grid cells, a
larger grid size may be necessary (coarse grained). Also, tasks like path-planning become
computationally expensive for fine grid resolutions. Methods to obtain variable granularity,
and so focus resources at regions of environmental complexity, have been presented [103, 21],
but these possess implementation difficulties of their own.

Occupancy grid SLAM [142, 119] interleaves the steps of localisation and map update by
first registering the short-term map with the global map (localisation), and then updating
the perceived occupancy of the global map grid cells (map building). This method has
been shown to work robustly in dynamic indoor environments over a limited period of time.
However, as a SLAM map representation, occupancy grids do not possess an appropriate
uncertainty model and so will tend to diverge in the longer term.

Occupancy grids are reasonably able to incorporate models of sensor uncertainty (e.g.,
see [99, 50]), and so are suitable for either localisation given an a priori map or map building
given location. SLAM, however, requires an integrated representation of sensor and vehicle
pose uncertainty and their correlations, but this is not supported within the occupancy grid
framework. That is, occupancy grids can represent uncertainty at a local (vehicle-centric)
level, but not at a global level—which is essential for map convergence. By not defining
criteria for convergence, the developing map is able to drift with each observation update
and this divergence exhibits itself as a slow blurring of the map.

Cycle detection provides the main instance for examining the failings of occupancy grid
SLAM. First, without a reasonable estimate of global map uncertainty, the search-space
for cycle detection is undefined and must either cover the whole space or be limited by ad
hoc bounds. Second, for large cycles, the minimal search-space may become too great for
real-time cross-correlation. Third, given a large search-space, the possibility of multiple
correlation modes is high, and data association failure becomes increasingly likely. Finally,
and most importantly, even if a correct correspondence between the observed data and the
old map region is made, there is still no mechanism for offsetting the error accumulated in
the map loop, and any large error in a map cycle will certainly result in an inconsistent
map.

2.1.2 Feature Maps

Feature maps (or landmark maps) [123, 89] represent the environment by the global loca-
tions of parametric features (such as points and lines) as shown in Figure 2.2. Localisation
is performed by extracting features from sensed data and associating them to features in the
map. The differences between the predicted feature locations and the measured locations
are then used to calculate the vehicle pose. In this way, localisation is very like a multiple
target tracking problem [14] but, unlike normal target tracking, the targets are static and
the observer is in motion.

The landmark locations in an a priori feature map are assumed to be perfectly known
and so each feature is entirely defined by its parameter set. For example, a point-location
feature for a cylindrical landmark, such as a pole or tree trunk, might be defined by
f = (t, r, x, y), where t is the feature type (cylinder type), r is the cylinder radius, and
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Figure 2.2: Feature map. The environment is defined by parameterised
features (point locations in this example). These static landmarks are
tracked using target tracking methods to determine the motion of the
observer.

x and y define its centre location. Only the location information is directly useful for
localisation but the other information serves to assist landmark recognition for data associ-
ation. Since each landmark is represented by a limited set of parameters, the feature map
{f1, ..., fn} is a very efficient environment representation. Unlike occupancy grids, where a
dense environmental description is maintained, feature maps form a sparse representation
of select landmarks. In particular, free-space is not represented and does not incur any cost
in the localisation process. For this reason, feature maps do not facilitate path-planning or
obstacle avoidance, and these must be performed as separate operations.

Localisation using a feature map is a parameter estimation problem to determine the
vehicle pose (x, y, φ) given the map feature information and a set of feature observations.
Assuming the measurements are correctly associated to the appropriate map features, the
vehicle pose can be tracked using standard estimation techniques—with the EKF being the
most common method applied to this problem [88, 49, 42].1 Recursive EKF pose estimation
has the advantages of efficient data fusion from multiple sensor measurements and the ability
to incorporate explicit sensor uncertainty models.

Data association is arguably the main weakness of feature map localisation. Correct
pose estimation relies on finding correct correspondence between a feature observation and
its associated map feature. A misassociation results in an inconsistency where the vehicle
pose uncertainty decreases but the estimate error actually increases. The effect of signifi-
cant false associations is to dramatically increase the pose estimate error and prevent any
subsequent map registration—so that the vehicle becomes lost. Most feature map local-
isation implementations are susceptible to data association failure because they rely on
the association methods developed for target tracking, which treat each measurement in
isolation. By failing to exploit the correlations between fixed landmarks, this approach is
sensitive to observer pose uncertainty and high feature density. A dramatic increase in ro-
bustness is possible using batch data association, where a set of observations are assigned at
once, as this enables association distinction based on their combined association likelihoods,
effectively utilising the geometric character of the local region.

1Details regarding state-space methods, the Kalman filter and the extended Kalman filter are provided
in Appendix B.
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Figure 2.3: SLAM uncertainty correlations. In (a) the vehicle observes
and initialises feature f1 and so the estimate of f1 is dependent on the
vehicle pose estimate. In the next time step (b) the vehicle reobserves
f1 and initialises f2. Thus the estimate of f2 is dependent on the vehicle
pose which in turn is dependent on f1. As the features are repeatedly
reobserved, they become increasingly correlated to each other and, in the
limit, form a completely rigid map.

A further problem concerning feature maps is their suitability only to environments
where the observed objects can be reasonably depicted by basic geometric feature models.
This is often not the case in very unstructured environments where the observed objects
might appear as arbitrary curves rather than, say, distinct points or lines. For reliable
operation in these environments, it is necessary to devise parametric feature models that
describe these general objects sufficiently well for consistent extraction and classification.

Feature map SLAM [122, 42] comprises the dual task of adding observed features to the
map, using the vehicle pose as a reference, while using existing map features to estimate
the vehicle pose. The uncertainty of sensor measurements, therefore, results in uncertain
estimates of both the vehicle pose and the map feature locations, and these uncertainties are
dependent (or correlated), as shown in Figure 2.3. Correlated uncertainty has an important
consequence for feature-based SLAM as it inextricably couples the individual features to
each other and the vehicle to the map. Attempts to estimate the vehicle pose and map
features independently have been shown to produce inconsistent (optimistic) uncertainty
estimates [87, 27].

Consistent stochastic estimation requires that correlations between parameters are ex-
plicitly maintained. For an EKF, this means storing the parameters in a single state vector
and their associated correlations in a covariance matrix. The upshot for EKF-based SLAM
is that the vehicle pose estimate and the map feature locations must be stored in the same
state vector, and this vector must be augmented as new features are observed and added to
the map. Assuming the SLAM process satisfies the basic EKF conditions of near-linearity
and approximately Gaussian uncertainty distributions, then the uncertainty model provided
by the EKF has been shown to yield monotonic map convergence [42]. In the limit, with
repeated observation, the map becomes totally rigid such that the relative feature locations
are perfectly known and the global uncertainty approaches a lower bound established by
the initial vehicle pose uncertainty.



2.1 Navigational Maps and Their Application to SLAM 14

Stochastic SLAM suffers from three main weaknesses: high computation and storage
costs, fragile data association, and inconsistent treatment of non-linearity. High compu-
tation and storage are the price paid for maintaining correlations in the state covariance
matrix. For n state parameters, the n2 covariance elements need to be updated with each
new observation. Generally, the number of vehicle parameters is insignificant compared
to the number of feature parameters, and so the computation and storage are specified as
being O(n2) where n is the number of map features.

Data association failure is a much more serious problem for SLAM than for a priori
map localisation. Simple localisation may be able to recover from a minor misassociation,
because only the vehicle pose estimate is affected, but with SLAM the map is also altered
and these inconsistencies tend to be self-propagating, causing divergence. A further data
association problem concerns the management of non-associated observations. These are
either new map features, outlier measurements, or observations of dynamic objects, and
discerning the latter two is essential to prevent cluttering the map. The most difficult data
association complication arises during cycle detection. This is difficult because, not only is
the vehicle pose uncertain, but the new and old portions of the map are also uncertain in
relation to each other, which reduces the reliability even of batch data association.

Non-linearity is typically not a significant problem for normal SLAM operation [48] but,
again, proves to be an issue during cycle detection. Incremental map building without
cycles is a reasonably linear process and the EKF requirement of small estimation errors
is generally met. The same is true for cycles that accrue only small pose errors, as the
map feature correlations permit proper error compensation back through the map loop.
However, cycles involving large accumulated errors can incur corrections that violate the
linearised filter assumptions and result in divergence. There are two aspects that contribute
to the inconsistency of large corrections. The first is the effect of linearising a highly non-
linear observation model, as the first-order approximation may be inaccurate if the state
uncertainty is large compared to the observation uncertainty. This problem could possibly
be addressed using iterated linearisation methods such the iterated EKF (IEKF) [6, pages
404–406] or the smoothly constrained Kalman filter (SCKF) [37]. The second aspect is that
the Gaussian uncertainty approximation for the state (i.e., vehicle and feature covariances
and correlations) may be optimistic because of the large estimate deviations, which would
prevent convergence to the true state.

In summary, feature maps are a viable representation for long-term convergent SLAM
in fairly small-scale environments where stable landmarks are observable, computation is
tractable, and accumulated state uncertainty does not exceed conservative limits. For fea-
sible and convergent operation in larger areas, modifications to the basic stochastic SLAM
algorithm are required.

2.1.3 Topological Maps

Topological maps [85] illustrate a major conceptual shift in environmental representation.
Occupancy grids and feature maps are both metric maps where location is defined as a
set of coordinates in Cartesian space. Topological maps, however, do not rely on metric
measurements and instead represent the environment in terms of places and connecting
paths as shown in Figure 2.4. They are generally depicted by a graph structure where



2.1 Navigational Maps and Their Application to SLAM 15

Figure 2.4: Topological map. The environment is defined using a graph
data structure where each node (or vertex) contains a place description
and each edge contains a path description. Travelling from one place
to another entails travelling via intermediate places and standard graph
shortest path algorithms can be used (e.g., A to H requires travelling
through the sequence A-D-F-H).

the graph nodes define particular locations in the environment (termed distinctive places)
and the graph edges define procedural information for traveling between nodes. Thus,
navigation between two non-adjacent locations is determined by a sequence of transitions
between intermediate place nodes. The concept works on the assumptions that distinctive
places are locally distinguishable from the surrounding area and the procedural information
is sufficient to enable the robot to travel within recognising distance of a specified place.

Place recognition is a form of data association where the observation-to-map correspon-
dence is based on the apparent similarity between two data sets—in this case between the
observed information and a graph node description. Appearance-based association, which
relies on locally unique data, can be considered in contrast with metric proximity con-
straints, as used with feature maps, which enables association in the presence of identical
landmark data. For place recognition to function correctly, a node description must be
unique along the connecting path regions from its adjacent nodes. This allows the robot
to compare observed data with the node template while travelling towards it and to de-
termine being “at” the place location once a positive match is made. Most topological
localisation systems use one of two basic types of place recognition. The first is based on
range-bearing measurements, such as sonar or laser, and involves defining place nodes at
locations fitting certain geometric qualities and then matching the measured data to these
place descriptions. For example, these descriptions might be observation criteria such as
equidistance from near objects [85, 31], or simple models of indoor structures like doors and
corridor intersections [83, 3]. The second recognition method is based on vision data and
involves defining each place node with images obtained from its (arbitrary) location and
then matching observed images to the node according to a prescribed similarity measure
[51, 1, 137].

Topological maps, as an a priori reference, are attractive for their efficient and compact
representation, and their logical organisation for tasks like path planning. The departure
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from metric representation makes pose uncertainty estimation irrelevant and, instead, qual-
itative measures are used like “follow path from A to B” or “at B”. Of particular advantage,
is the ability to utilise standard graph algorithms for high-level planning operations such
as finding the shortest path between non-adjacent nodes [39].

The primary weakness of topological maps concerns ensuring reliable navigation between
places, and subsequent place recognition, without the aid of some form of metric location
measure. Travelling between nodes using purely qualitative trajectory information, such as
wall following [85], is often sufficient for static structured environments but, in more complex
and dynamic environments, may fail to guide the robot to the appropriate place vicinity.
The most critical weakness, however, is place recognition. If a place is not recognised (false
negative) or an alternate location is mistaken for a place (false positive) then the topological
sequence is broken and the robot becomes lost. False negatives occur because of alteration
in place appearance through circumstances such as viewpoint variation, occlusion, struc-
tural change, dynamic objects or changed lighting conditions. Both geometric and visual
recognition methods are sensitive to this form of failure. False positives can be generated if
another portion of the environment appears similar to the place definition—meaning that
the place is not locally unique. This is common in highly structured environments (such as
rows of office cubicles) but can also be a symptom of inadequate place definition. For the
simple descriptions offered by most geometric recognition methods, ambiguous associations
may be created even by the presence of transient objects. Vision-based recognition is prob-
ably more immune to false positives because of the increased level of information defining
the node.

One further problem with topological maps is their limitation to waypoint-based navi-
gation. The robot is constrained to follow specific trajectories and to pass through (or very
near) each place location. Effectively, control is directly tied to the localisation process
(i.e., the robot must perform active localisation). While this situation is adequate for many
autonomous vehicle systems, there exist applications where the robot trajectory should be
independent of discrete place locations and passive localisation is necessary.

Topological SLAM [85] operates by performing exploration of the environment guided
by a set of path following criteria, and recording place descriptions at appropriate locations.
For geometric place recognition, these would be locations effecting certain patterns in the
sensory data and, for vision-based recognition, they could be either regularly-spaced loca-
tions or locations where a given distinctiveness metric is maximised. As each new place is
found, it is connected to the previous place according to the path following specifications
required to reach it. In this way, the map is built as a linear sequence of places, which
continues until a place is observed that matches a previously stored place description (pre-
suming the robot is not simply traversing old sections of the map). This matching place
description is generated by either a new region of similar appearance or by observing the
old place reached via an alternate route. If the match can be identified unequivocally as
the old place location, then a cycle2 is created, linking the topological sequence back upon
itself to form a closed path.

The a priori map problems of qualitative path following and sequential data association
2The term cycle detection, used in this thesis to refer to map revisitation, is coined from the graph-

theoretic term for a closed path. For topological maps, the result of loop closure is a cycle in the map
graph.
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remain significant for topological SLAM, but the most prominent concern is cycle detec-
tion. By avoiding metric location measurement, topological SLAM removes the difficulties
of uncertainty representation and non-linearities but, instead, places full responsibility for
robust operation upon data association. In the case of cycle detection, where an observed
place is found to resemble a previous place (or perhaps several previous places), data asso-
ciation becomes ambiguous, and the observed place could be one of the stored locations or a
newly discovered location. Discerning the correct association can be found by a method of
rehearsal [85], where the ensuing sequence of places is tracked until the number of candidate
cycles is reduced to one (a cycle) or none (a new place). This method is appropriate if a
globally unique place, or place sequence, exists in the map [9]. However, in many envi-
ronments, such uniqueness cannot be ascertained, and the cycle cannot be confirmed since
the matching sequence could actually represent a similar, but previously unexplored, region
of the environment. An approach for artificially creating unique locations by having the
robot drop coloured markers has been proposed [46], but this method is not practical for
many robot applications. In general, the observation of an expected place sequence serves
to increase confidence of a cycle detection but cannot definitely confirm this hypothesis.

Essentially, unless the environment possesses at least one globally unique sequence of
places, cycle detection must always be ambiguous. This is the key weakness in the topologi-
cal map paradigm as environmental similarity may eventually produce a consistently similar
sequence of places and result in data association failure. The solution to this problem is to
introduce metric information, which would enable the estimation of pose uncertainty be-
tween places—bounding the cycle search-space so that place sequences need only be locally
unique.

2.1.4 Hybrid Topological-Metric Maps

The qualities of metric and topological maps are complementary. Metric maps, with an ap-
propriate uncertainty representation, constrain data association and permit non-qualitative
trajectory planning, while topological maps break the world up into locally connected re-
gions and avoid the problems of maintaining a global reference frame. Hybrid topological-
metric maps [141, 121, 30, 31] are basically topological frameworks where the place defini-
tions and/or path definitions contain metric (as well as qualitative) information.3 Impor-
tantly, this means that places are no longer restricted to discrete locations but can describe
regions of arbitrary size and shape as local metric maps.

Defining places as small-scale feature maps is proposed in this thesis as an effective
method for performing large-scale SLAM. The global topological structure addresses the
problems of computational cost and non-linearities by decoupling distant (non-adjacent)
regions. Cycle detection remains a significant problem but, by combining place recognition
methods with pose uncertainty constraints, the ability to disambiguate cycles is greatly
improved. Further development of this hybrid map concept is presented in Chapter 6.

3An alternative type of topological-metric hybrid is presented in [128] where the map is essentially a
standard (occupancy grid) metric map overlaid with a topological network for path planning. However, this
type of map does not address the issues of large-scale localisation with which this thesis is concerned and so
is not investigated further.
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2.2 The Stochastic SLAM Algorithm

The fundamental equations for feature map SLAM based on the EKF are presented in this
section. An account of the EKF algorithm, and a brief introduction to state-space concepts,
is provided in Appendix B. For convenience, the k notation used in Appendix B is dropped
in the following explanation as the sequence of operations is apparent from its context.

Stochastic SLAM [122, 36, 42, 140] is performed by storing the vehicle pose and map
landmarks in a single state vector, and estimating the state parameters via a recursive
process of prediction and observation. The prediction stage deals with vehicle motion
based on incremental dead reckoning estimates, and increases the uncertainty of the vehicle
pose estimate. The observation, or update, stage occurs with the re-observation of stored
features, and improves the overall state estimate. When a feature is observed for the first
time, however, it is added to the state vector through an initialisation process called state
augmentation.

2.2.1 Vehicle, Map and Augmented State Vectors

The vehicle state is represented, in this thesis, by its pose relative to a base Cartesian
coordinate frame (as shown in Figure 2.5) with mean and covariance defined as

x̂v =
[

x̂v ŷv φ̂v

]T
(2.1)
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
 (2.2)

The locations of 2-D point features observed by the vehicle form a map in the same base
coordinate system. (More elaborate parametric feature models, such as lines, might also
be used, but are not implemented in this thesis.) The covariance matrix Pm of this map
includes cross-correlation information between the features (i.e., the off-diagonal terms)
which captures the dependence of each feature location upon knowledge of the other features
in the map. Since the feature locations are static, these correlations will increase with each
re-observation as the map becomes increasingly rigid.
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The SLAM map is defined by an augmented state vector formed by the concatenation
of the vehicle state and the feature map state. This is necessary as consistent SLAM relies
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Figure 2.5: Augmented state vector. The SLAM state vector is com-
posed of the vehicle pose and of landmarks observed in the environment
referenced with respect to a base coordinate frame.

on the maintenance of correlations Pvm between the vehicle and the map.

x̂a =
[

x̂v

x̂m

]
(2.5)

Pa =
[

Pv Pvm

PT
vm Pm

]
(2.6)

Note that the initial condition of the state estimate is usually given as x̂a = x̂v = 0 and
Pa = Pv = 0. In other words, no features have yet been observed and the initial vehicle
pose defines the base coordinate origin.

2.2.2 Prediction Stage

The SLAM process model specifies that the vehicle moves relative to its previous pose
according to a dead reckoning motion estimate, and the map features remain stationary.
The effect of this model on the state estimate is a change in the x̂v portion of the state
vector, and in the Pv and Pvm terms of the state covariance matrix, while the x̂m and Pm

portions remain constant.
An estimate of the vehicle change-in-pose x̂δ = [x̂δ, ŷδ, φ̂δ]T with covariance Pδ (see

Figure 2.6) is commonly obtained using wheel encoder odometry and a vehicle kinematic
model. In this thesis, it is obtained using laser-based dead reckoning,4 which finds the rela-
tive pose between sequential laser scans through a combination of the batch data association
algorithm in Chapter 3 and the relative pose estimation method in Appendix C.3.

4Concurrent use of laser-based dead reckoning and laser-based SLAM would involve information reuse
and lead to an over-optimistic SLAM estimate. However, SLAM may use the laser dead reckoning predict
for data association purposes, provided a separate predict step is used as the prior for the SLAM update
step. To avoid reuse, the SLAM predict is based on a simple constant velocity dynamic model where the
predicted change-in-pose equals the previous observed change-in-pose with suitably large uncertainty to
capture vehicle accelerations.
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Figure 2.6: Change in pose vector. Laser-based dead reckoning provides
a vector of the vehicle motion between sequential scans.

The predicted augmented state, therefore, is given by

x̂−
a = f (x̂a, x̂δ) =

[
g (x̂v, x̂δ)

x̂m

]
=


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φ̂v + φ̂δ

x̂m


 (2.7)
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where the Jacobians ∇fxa and ∇fxδ
are defined as
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and the Jacobians ∇gxv and ∇gxδ
are as follows.
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As these Jacobians only affect the vehicle portion of the covariance matrix Pv and its
cross-correlations Pvm, Equation 2.8 can be implemented more efficiently as

P−
a =

[ ∇gxvPv∇gT
xv

+ ∇gxδ
Pδ∇gT

xδ
∇gxvPvm

(∇gxvPvm)T Pm

]
(2.13)
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2.2.3 Update Stage

If a feature already stored in the map as estimate (x̂i, ŷi) is observed by a range-bearing
sensor with the measurement

z =
[

r
θ

]
(2.14)

R =
[

σ2
r σ2

rθ

σ2
rθ σ2

θ

]
(2.15)

where (r, θ) is the range and bearing relative to the observer and R is the observation
covariance, then the sensed information is related to the map by the following equation.

ẑi = hi (x̂a) =



√

(x̂i − x̂v)
2 + (ŷi − ŷv)
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Assuming correct data association of the observation z to the map feature estimate (x̂i, ŷi),
the Kalman gain Wi can be determined as

νi = z − hi
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)
(2.17)
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where the Jacobian ∇hxa is given by
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∆x = x̂i − x̂v

∆y = ŷi − ŷv

d =
√
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2 + (ŷi − ŷv)

2

For SLAM maps with large numbers of features, the Jacobian ∇hxa consists mainly of
zero terms enabling efficient calculations of Equations 2.18 and 2.19. The non-zero terms
align with the positions of the vehicle states and the observed feature states (x̂i, ŷi) in the
augmented state vector. The a posterior SLAM estimate is subsequently determined from
the update equations.

x̂+
a = x̂−

a + Wiνi (2.21)

P+
a = P−

a − WiSiWT
i (2.22)

The observation model in Equation 2.16 correlates the feature estimate to the vehicle
pose estimate and serves to reduce the uncertainty of both. Through correlation to the
vehicle pose estimate, the map features become correlated to each other and these correla-
tions increase monotonically until their locations (relative to each other) become perfectly
known.
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On a practical note, if several independent observations are available at once (a batch
observation z = [r1, θ1, . . . , rn, θn]T ), then a more accurate update may be possible if they
are treated corporately than if each observation is processed individually. The reason for
improved performance is because the EKF performs linearised error correction and the
update tends to be “pulled in the right direction” better if the innovation vector ν consists
of several observation errors at once. The difference in performance is most noticeable if the
vehicle pose is very uncertain prior to the update stage. However, a disadvantage of batch
update processing is the need to invert the innovation covariance matrix S which requires
computation to the order O(n3) where n is the number of features in the batch. A simple
compromise is to process the observations in manageable sub-batches.

2.2.4 State Augmentation

As the environment is explored, new features are observed and must be added to the stored
map. A method for initialising new features is shown below.5 First, the state vector and
covariance matrix are extended (augmented) with the polar values of the new observation
z, and its covariance R, as measured relative to the observer.

x̂aug =
[

x̂a

z

]
(2.23)

Paug =


 Pv Pvm 0

PT
vm Pm 0
0 0 R


 (2.24)

A function gi is derived to convert the polar observation z to a global Cartesian feature
location. This transformation is a function of the new observation and the current vehicle
pose.

gi (xv, z) =
[

xi

yi

]
=
[

xv + r cos (θ + φv)
yv + r sin (θ + φv)

]
(2.25)

The augmented state can then be initialised to the correct values by performing a linearised
transformation by the function fi as follows.

x̂+
a = fi (x̂aug) =

[
x̂a

gi (x̂v, z)

]
(2.26)

P+
a = ∇fxaugPaug∇fT

xaug
(2.27)

where the Jacobian ∇fxaug is given by

∇fxaug =
∂fi

∂xaug

∣∣∣∣
x̂aug

=


 Iv 0 0

0 Im 0
∇gxv 0 ∇gz


 (2.28)

5Thanks to Stefan Williams for this derivation.
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and the Jacobians ∇gxv and ∇gz are as follows.

∇gxv =
∂gi

∂xv

∣∣∣∣
(x̂v ,z)

=


 1 0 −r sin

(
θ + φ̂v

)
0 1 r cos

(
θ + φ̂v

)

 (2.29)

∇gz =
∂gi

∂z

∣∣∣∣
(x̂v ,z)

=


 cos

(
θ + φ̂v

)
−r sin

(
θ + φ̂v

)
sin
(
θ + φ̂v

)
r cos

(
θ + φ̂v

)

 (2.30)

The matrix multiplication in Equation 2.27 requires computation to the order O(n3) where
n is the number of features in the map. Due to the sparseness of the Jacobian matrix,
however, a much more efficient implementation is possible as the transform only affects the
block diagonal matrix of the new feature and its off diagonal cross-correlations to the rest
of the map.

P+
a =


 Pv Pvm Pv∇gT

xv

PT
vm Pm PT

vm∇gT
xv

∇gxvPv ∇gxvPvm ∇gxvPv∇gT
xv

+ ∇gzR∇gT
z


 (2.31)

Feature deletion from the SLAM map is straightforward. The elements are simply
removed from the state vector and the associated rows and columns are deleted from the
state covariance matrix. Map management through the deletion of features is discussed at
length in Chapter 5.

2.2.5 Efficiency Improvements for Large-Scale SLAM

The state covariance update in Equation 2.22 is an O(n2) computation for n map fea-
tures. For tractable operation in large-scale environments, several efficient variations of the
stochastic SLAM algorithm have been proposed.

The compressed filter [65] limits the SLAM update stage to only affect features within a
bounded region surrounding the vehicle location. As such, the computational cost becomes
O(n2

a) where na is the number of features contained within the local region. Correlations to
features outside the local region are preserved in an optimal manner but the O(n2) transfer
of this information to the entire map is only performed when the vehicle transitions to
another region. Thus a full O(n2) SLAM update can be processed as a low frequency
event even with high frequency observation information. Moreover, the full update can
be handled as a background task with only the features within the new region requiring
immediate update in sequence with incoming observations. A further contribution in [65] is
a suboptimal algorithm for the full update step that permits an upper bound to be set on the
number of features receiving a decrease in uncertainty—therefore bounding the quadratic
portion of the SLAM update. With appropriate map organisation, this method is shown to
produce results almost indistinguishable from the optimal algorithm.

The postponement algorithm [81] is similar to the compressed filter. It is an optimal
filter, and permits the same O(n2

a) local region complexity and deferred application of the
full O(n2) update while the vehicle remains within the local area. Unlike the compressed
filter, the postponement local regions are not governed by geometric bounds but can ex-
pand dynamically to accommodate newly observed features and extend the region bounds.
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Thus, a local region is described as a “cache of features whose update is cheap, but which
ultimately must be ‘swapped out’.” A full update is required only when the computational
load of the local region becomes excessive, whereupon a new local region is commenced and
the full update may be performed as a background task.

The constrained local submap filter (CLSF) [140] is an alternative approach which per-
forms actual information gathering and localisation via the construction of an independent
local map. This technique operates as follows. The robot is at some (approximately) known
location in the global map and, from this location, starts a new independent SLAM map.
As the robot moves and receives observations of the environment the new local map is built
in the normal SLAM fashion and the global map serves as a static map. Thus, the robot
pose in global coordinates may be found by transforming the local pose estimate given the
known global pose of the local map coordinate origin. When the local map reaches a state
where either it contains too many features or the vehicle location is too uncertain, the local
map is registered with the global map and a new local map is commenced. The process of
local map registration results in a global map update equivalent to the standard optimal
SLAM algorithm. Like the compressed filter, this method enables a low frequency global
SLAM update that can be performed as a background task (i.e., the full update does not
need to reach completion until the next local map is ready for registration). An additional
benefit of this approach is that it can be applied directly to multiple robot systems where
each robot builds its own local map and periodically registers it with a shared global map.

Another recent technique called local map sequencing [127] performs local map construc-
tion and registration in a manner virtually identical to the CLSF. The robot constructs local
submaps, and these are periodically registered with the global map by transforming to the
global coordinate frame and augmenting the global state vector. Common features between
the local and global maps are fused via geometric constraints and duplicate features are
subsequently removed to produce a single map equivalent to the full SLAM solution.

All of the above proposals improve the computational burden of stochastic SLAM but
they do not address the O(n2) memory requirement, and storage may eventually present a
problem. The covariance intersection [77] is an interesting development of the (extended)
Kalman filter that enables the consistent fusion of information without knowing the correla-
tion between state variables or between sources of observed data. Effectively, the covariance
intersection filter performs data fusion by producing the best possible estimate given an as-
sumption of worst case conditions where all available information is fully correlated. This
filter is applied to the SLAM problem in [135] and results in a formulation where both
computation and storage are O(n). However, the assumption of total state and observation
dependence is highly suboptimal and the SLAM map tends to suffer large feature uncer-
tainty within a short distance from the map origin. The map also tends to converge only
very slowly or not at all with repeated observation.

2.3 Experiments in Outdoor SLAM

One of the main contributions of this thesis is verification of the techniques developed in the
later chapters through experimental application in a variety of rugged outdoor environments.
These experiments reveal several factors influencing outdoor SLAM, in addition to scale-
related issues, which make it considerably more difficult than indoor SLAM.
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Figure 2.7: Two scanning lasers (different models) attached to the front
bumper of a standard utility vehicle.

Most indoor environments permit reasonably straightforward SLAM implementation
because they possess a smooth planar ground surface and a high level of man-made struc-
ture. Smooth ground surface enables the use of accurate wheel-encoder odometry and the
surface flatness means that the system closely resembles the assumed 2-D world model.
Sensor observations of man-made structure, such as walls, are often well modelled by geo-
metric primitives, such as lines and corners, and produce reliable static features. A further
simplification for indoor SLAM is the relative low speed of indoor vehicles, which means
that the vehicle motion is kinematic rather than dynamic, the sensor scan does not suffer
appreciable distortion, and the effects of timestamp discrepancies are negligible.

Outdoor environments are much less ideal and this section discusses the practical issues
concerning outdoor SLAM in non-flat non-smooth environments. The particular context of
this discussion is derived from experiments using a high-speed road vehicle equipped with
a scanning range laser sensor. Finally, some comments are made regarding the role of GPS
in outdoor localisation.

2.3.1 SLAM with a Scanning Range Laser

The experimental data used in this thesis was obtained from a 2-D scanning range laser
(SICK PLS) mounted on the front bumper of a standard motor vehicle (see Figure 2.7).
The laser returns a 180◦ planar sweep of range measurements in 0.5◦ intervals (i.e., 361
range values in anti-clockwise order) with a range resolution of about ±50mm. The vehicle
was also equipped with wheel and steering encoders, but this information was used for
comparison purposes only.

Scanning laser was the sole information source for all experimentation in this thesis
(SLAM and dead reckoning). This meant that successful operation required the existence
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of visible static objects in the laser field-of-view, and these tests would certainly fail in
environments that do not meet this basic criterion. It is important to realise that these ex-
periments do not seek to present a complete and infallible SLAM system but to demonstrate
a single application of the theoretical methods developed in this thesis. System integrity,
on the other hand, is dependent on multiple independent and redundant sub-systems with
different physical sensing properties and statistically observable failure conditions [117].

A planar scanning laser is a rather inappropriate sensor for outdoor environments, with
the main impediment to adequate interpretation of the laser data being non-planar sensor
movement—laser tilt caused by acceleration of the vehicle and undulations in the ground
surface. This effectively alters the laser view plane so that it observes varying cross-sections
of the environment. Thus, objects can appear and disappear erratically from the sensor field-
of-view, and persisting objects can appear to change shape or shift location. A particularly
troublesome problem is ground sweeps, where the laser dips towards the ground and the
viewed scene becomes intermittently swamped with ground returns.

2.3.2 Two Dimensional Projection of Non-Planar Environments

In this thesis, the world is modelled as planar and the vehicle pose is defined by posi-
tion and heading (x, y, φ). The three-dimensional components of non-flat ground surfaces,
therefore, result a distorted representation of the environment. For objects observed by a
scanning laser sensor, the effect of 3-D motion is most pronounced for angular tilt as shown
in Figure 2.8. In these diagrams, the sensed objects are vertical cylinders and the laser is
rotated about the y-axis only, resulting in increasing range measurement distortion with
increasing distance in the direction of the x-axis. These biased measurements not only dis-
tort the SLAM map but also hinder data association, particularly for more distant objects.
Most significantly, these biases are correlated for all feature measurements in a scan, which
invalidates the assumption of independent observation errors.

To compensate for tilt distortion, an explicit estimate of sensor tilt may be required to
project the essentially 3-D measurements onto the 2-D map plane. However, if the observed
features are non-vertical or have variable cross-sections, this correction would provide little
benefit and a more complete 3-D model may become necessary.

In this thesis, 3-D distortions, and other unmodelled factors such as imprecise feature
classification, are incorporated into the observation model by expanding the observation
uncertainty to cater for expected worst-case environment conditions. This means that the
actual observation uncertainties used in practice are much greater than would be presumed
from the sensor accuracy alone. Also, in regions that more closely approximate the 2-D
ideal, the actual pose error tends to be considerably less than the estimated uncertainty.

2.3.3 Dead Reckoning in Rough Terrain

Wheel-encoder based odometry becomes unreliable in outdoor terrain due to the combined
influence of rugged ground surface and vehicle dynamics, which can invalidate the kinematic
model assumptions of pure rolling motion (i.e., that all motion is due to wheel rotation).
Wheel slip through loss of traction, skidding, or sliding results in a biased motion estimate
and, at high speeds or over rough terrain, the amount of slip can be significant, particularly
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(a) Side view

(b) Plan view

Figure 2.8: Trigonometric distortion. The side view (a) shows the effect of tilting the sensor
when viewing a vertical object—the apparent distance to the object increases. In plan view
(b), the objects appear to recede in the direction of the view-plane incline (the x-axis in
this case) causing distorted geometry.
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for heavier (high inertia) vehicles. For vehicles with high-slip steering mechanisms, such
as articulated skid steering or tracked differential steering, slip can be a problem even at
low speeds. Fundamentally, reasonable modelling of wheel slip error is difficult given the
complex physics of ground-wheel interaction.

The shape of the terrain is another biasing factor for odometry since, when modelling
the world as a plane, a non-flat ground surface causes the apparent distance travelled to be
greater than the actual planar motion.

Augmenting odometry with an inertial navigation system (INS) can significantly al-
leviate these problems by detecting slip [116, 86], tilt, and non-planar terrain [56]. Also,
odometry and INS are complementary since encoder-based constraint information facilitates
on-line attitude alignment of the INS platform [41]. However, while a low-cost INS is able to
improve certain high-frequency odometry faults, it cannot to observe low-frequency faults
such as model biases. Thus, INS-encoder dead reckoning is suited to short-term estimates
between external (map-based) observations, but is not sufficient for accurate dead reckoning
in the longer term.

An alternative to odometry is dead reckoning based on the incremental pose changes
obtained from external sensors (e.g., optical flow [11]). Sensor-based dead reckoning removes
dependence on precise kinematic modelling and, compared to odometry, the estimate errors
tend to be less prone to bias. This thesis presents a laser-based dead reckoning method which
estimates the relative pose between sequential laser scans using the batch data association
algorithm in Chapter 3. From scan to scan, the predicted relative pose is determined by a
simple dynamic (constant velocity) model, which states that, for fixed time intervals, the
expected change-in-pose equals the previous change-in-pose. Thus, the data association
search-space is constrained by rough maximum acceleration bounds about the predicted
value and a dead reckoning estimate can be computed provided the sequential scans possess
a subset of common landmark information.

Sensor-based and odometric dead reckoning are not mutually exclusive and, used to-
gether, can provide a level of redundancy. That is, agreeing estimates from the two systems
can be fused while disparities can signal faults such as wheel slip or feature tracking failure.

2.3.4 Ramifications of GPS

GPS (Global Positioning System) [126, 62, 6] is a satellite based localisation system that
is capable of providing a three-dimensional global location estimate at almost any point on
(or above) the planet surface. It has important implications for outdoor SLAM because, at
face value, it would appear to make this line of research irrelevant.

As a localisation mechanism, GPS is essentially an artificial (active) beacon a priori
map. Observation of the satellites enables position estimation via triangulation, with accu-
racy of about 10 metres influenced by factors such as atmospheric conditions and geometry
of the satellite configuration. The estimate errors are also temporally correlated, consisting
of a noise component and a drifting bias component. A dramatic reduction in error is pos-
sible through the use of a differential base station (a nearby stationary GPS receiver that
transmits GPS error). Differential GPS (DGPS) compensates for the noise and bias com-
ponents of the GPS measurement enabling improved precision; standard DPGS is accurate
to 1–2 metres and real-time kinematic DGPS to 1–2 centimetres.
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Exclusive application of GPS for all outdoor localisation purposes is hindered, however,
by the following problems. First, reception of the satellite signals requires direct line-of-
sight to the GPS receiver. This prevents GPS-based localisation for underground or subsea
operations. It also means that GPS can often provide only intermittent coverage in areas
containing tall structures like buildings or trees. Second, the level of precision necessary
for autonomous navigation (less than one metre) requires simultaneous line-of-sight of at
least five satellites. This is again hampered by the presence of occluding structures. Third,
satellite signal reflection off objects in the environment can result in multipath errors, where
the estimated satellite distance is greater than its true distance.6 Fault detection alone is
reason enough for alternative redundant localisation methods. Finally, since GPS is not
self-contained within the mobile robot system, localisation is dependent on uncontrollable
external factors such as satellite availability7 and possible system downtime.

In environments where GPS is at least intermittently available, it remains a very useful
localisation tool since the position estimates it provides are known to have bounded error.
These estimates might be used in conjunction with other localisation or SLAM systems to
implement smooth and continuous navigation on a very large scale (e.g., see Section 5.2).
However, in environments where GPS is unavailable or insufficient (as an a priori map), or
where multiple redundant navigation loops are required, either alternative maps must be
built or the robot must build its own using SLAM.

2.4 Summary

This chapter introduces the fundamental background information for performing SLAM.
It presents the four most common map representations: occupancy grids, feature maps,
topological maps, and hybrid topological-metric maps; and discusses their relative merits
and utility for SLAM. In particular, it contends that occupancy grids are inappropriate for
long-term SLAM (the map will drift), feature maps are suited to small-scale SLAM, and a
topological-metric hybrid is the most likely answer for SLAM in larger environments.

The traditional algorithm for stochastic SLAM is presented based on feature maps and
the EKF. This algorithm requires O(n2) computation and storage for a map of n features,
and so several techniques are reviewed for improving its efficiency.

The experimental context of this thesis is described, where a standard road vehicle is
fitted with a scanning range laser and driven through a series of outdoor environments. The
issues relating to outdoor SLAM with a laser sensor involve high speeds, uneven ground
surfaces, sensor tilt, geometric distortion, and degraded odometry. Finally, given the com-
mon availability of GPS, it is argued that research into large-scale SLAM is still relevant,
since GPS may not always operate (reliably) in all areas, and some applications require
multiple redundant navigation loops.

6Some of these problems may not remain in the long term, as scheduled changes to GPS over the next
few decades are expected to improve position accuracy and reduce susceptibility to signal blockage and
multipath [62, pages 71–76].

7Satellite availability refers to the availability of a sufficient number of satellite signals within the receiver
line-of-sight. It does not refer to “selective availability”—the intentional introduction of errors into the GPS
signals for civilian use. For one, selective availability errors are implicitly removed when using DGPS. Fur-
thermore, selective availability has “been discontinued since May 1, 2000. The prevention of the hostile use
of GPS is [now] accomplished through other measures, such as selective and local denial of GPS signals” [6].



Chapter 3

Batch Data Association for
Correlated Feature Sets

Data association is arguably the most critical aspect of the SLAM algorithm. Correct
correspondence of sensed feature observations to map landmarks is essential for consistent
map construction, and a single false match may invalidate the entire process.

Most feature-based SLAM implementations model landmarks as simple geometric prim-
itives, such as points or lines, which means that the maps are represented by sets of virtually
identical features, distinguishable only by their locations. This representation lends itself
to the data association methods developed for target tracking where correspondence is con-
strained by statistical geometric information. However, general target tracking problems
presume that the targets move independently and the observation-to-target associations
are processed without considering possible correlations in target motions. The implication
for SLAM is that each observation is processed individually and association is based on
uncertainties in the measurement, landmark locations, and vehicle pose. Importantly, if the
vehicle pose is highly uncertain (compared to the density of targets) then data association
becomes very fragile indeed.

This chapter investigates the target tracking data association problem where the target
motions have known correlation. Specifically, the SLAM problem states that the landmarks
have zero relative motion and, therefore, become increasingly correlated with repeated ob-
servations. Given a set of observations, the constraint information available when processed
as a batch can greatly increase data association robustness. This chapter presents the fol-
lowing topics regarding the feature-based data association problem.

• Current target tracking data association methods, for single and multiple targets, are
reviewed. In particular, the traditional methods for managing ambiguous associations
are discussed.

• The technique of batch data association for correlated targets is introduced as a
mechanism for reducing association ambiguity.

• The combined constraint data association (CCDA) algorithm is presented. This graph
theoretic method constrains association with all available information to produce
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mutually compatible association sets. Reliable data association becomes possible even
with total uncertainty in observer pose.

• The CCDA algorithm is applied to real laser data to permit sensor-based dead reck-
oning in outdoor environments.

3.1 Data Association For Target Tracking

Data association when tracking identical targets is determined by the correspondence be-
tween the observation measurement and the predicted observation for a given target. This
section discusses the statistical measure most commonly used for gauging the valid neigh-
bourhood for association, and states when this constraint is not sufficient for discerning
unique associations. For ambiguous associations, there exist a variety of track management
methods in the target tracking literature [14, 6]. These methods have been developed from
tracking single targets, amidst clutter of spurious measurements, to tracking multiple tar-
gets with batch observations in clutter. It should be remembered that none of the methods
presented in this section utilise the correlation information that may be available between
the targets.

3.1.1 Validation Gating

Since, within the EKF framework, both the target location estimates and target observa-
tions are assumed to have Gaussian uncertainty (with infinite tails), it is possible that any
given observation might correspond to any target. However, to reject unlikely associations,
only targets within a reasonable neighbourhood of an observation should be considered.
Association validation is usually performed in observation space, and a validation gate de-
fines the maximum permissible discrepancy between a measurement zi and a predicted
observation ẑj = h (x̂j) for target xj .

The most common statistical validation gate is based on the normalised innovation
squared (NIS) [6] also known as the Mahalanobis distance [45]. Given an observation inno-
vation νij = zi − h (x̂j) with covariance Sij , the NIS is defined as

Mij = νT
ijS

−1
ij νij (3.1)

For a Gaussian distributed innovation sequence, the NIS forms a χ2 (chi-squared) distri-
bution. The shape of the χ2 distribution is dependent on the dimension of the innovation
vector as shown in Figure 3.1. The gate, therefore, is applied as a maximum NIS threshold
Mij < γn, where the innovation is of dimension n. The integral of the χ2 distribution from 0
to γn specifies the probability that, if zi is truely an observation of target xj , the association
will be accepted.1

The NIS validation gate remains the underlying association threshold for the batch data
association method presented in this chapter.

1It is worth noting that the NIS gate does not actually say anything about the rejection of false associa-
tions; it only specifies the probability of accepting (or rejecting) correct associations. Thus, although used
as a rejection mechanism, it does not explicitly define a statistical measure of false association rejection.
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Figure 3.1: χ2 distribution. The shape of this distribution, shown here
for 1 to 4 degrees of freedom, is determined by the dimension of the
innovation vector. The integral of this distribution from 0 to γn defines
the probability of accepting a correct association.

Example 3.1
Associating a range-bearing measurement z = [r, θ]T to a point target x = [x, y]T . The pre-
dicted observation is found from the observation model

z = h (x) =
[ √

x2 + y2

arctan
( y

x

) ]
If the target estimate is x̂ with covariance P and the observation covariance is modelled as
R, then the observation innovation ν = z − h (x̂) has covariance

S = ∇hxP∇hT
x + R

where the Jacobian ∇hx is

∇hx =
∂h
∂x

∣∣∣∣
x̂

=

[
x̂√

x̂2+ŷ2

ŷ√
x̂2+ŷ2

− ŷ
x̂2+ŷ2

x̂
x̂2+ŷ2

]

With the innovation vector being of dimension 2, the gate

νTS−1ν < γ2 = 6.0

will accept 95% of correct associations, as 95% of the χ2 probability mass lies between 0 and
6.0.
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Figure 3.2: Validation gate. The NIS of the measurement zi and the
predicted observation h (x̂j) must be less than γn to be considered as a
candidate assignment.

Figure 3.3: Ambiguous data association. If either a single observation
falls within the validation gate of multiple targets, or multiple observa-
tions fall within the validation gate of a single target, there exists uncer-
tainty as to the correct assignments. For example, either z1 or z2 could
be assigned to x̂1, and z1 could be assigned to either x̂1 or x̂2.

The validation gate may be visualised as an ellipsoid in observation space centred about
the predicted observation h (x̂j) as shown in Figure 3.2. An acceptable observation must
fall within this ellipse. Data association ambiguity occurs if either multiple observations
fall within the validation gates of a particular target, or a single observation lies within the
gates of multiple targets (see Figure 3.3). Furthermore, it is possible that an observation
might arise from clutter or non-tracked targets leading to false associations even with the
satisfaction of unique gating conditions.

The simplest method for reducing ambiguous associations is to reduce the validation
gate threshold γn. This increases the rejection ratio of outlier measurements but, effectively,
serves to ignore good information while still allowing false associations to slip through. In
recent target tracking literature, a number of mechanisms have been developed to appro-
priately deal with data association ambiguity, while maintaining suitable gate thresholds
(95% acceptance of true measurements, for example).
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3.1.2 Tracking a Single Target in Clutter

The most basic form of target tracking is estimating the motion of a single point target with
the presence of spurious measurements or clutter.2 Single target tracking introduces sev-
eral ambiguity management methods that are later developed for multiple target, multiple
observation problems.

The most common ambiguity resolution method is nearest neighbour data association.
Given a set of observations z = {z1, . . . , zn} within the validation gate of target x, a likeli-
hood of association Λi can be calculated for each zi ∈ z.

Λi =
1

(2π)n/2
√|Si|

exp
(
−1

2
νT

i S−1
i νi

)
(3.2)

where n is the dimension of the innovation vector. This is simply a likelihood function
of Gaussian contact [125, page 35]. An equivalent metric, the normalised distance Ni, is
obtained by taking logs of Equation 3.2.

Ni = νT
i S−1

i νi + ln |Si| (3.3)

Nearest neighbour data association then selects the observation that minimises Ni (or max-
imises Λi). Note that nearest neighbour is sometimes referred to as maximum likelihood data
association because of the equivalence of Equations 3.2 and 3.3. In environments where the
density of clutter is much less than the target location and measurement uncertainties,
nearest neighbour works quite well. However, its performance deteriorates rapidly in envi-
ronments with relatively high clutter density. In practical terms, nearest neighbour offers
similar performance to reduction of the validation gate threshold.

A method designed to explicitly incorporate the informational uncertainty induced by
ambiguous associations is probabilistic data association (PDA) [7]. Also known as the all-
neighbours approach, PDA combines the information from all the candidate associations as
a weighted average of the individual updates. The uncertainty of this combined update is
modified to represent the association uncertainty.

A third ambiguity management approach is multiple hypothesis tracking (MHT) [113].
MHT delays the application of hard observation-to-target assignment by forming an indi-
vidual track for each ambiguous association. This method, termed track splitting, views
each candidate observation as a viable track hypothesis (plus a further hypothesis that
all observations in the gate are false). With subsequent observations, new hypotheses are
formed and old ones are pruned based on a likelihood function. The effect of MHT is to
defer irrevocable data association decisions until further information arises that removes
the ambiguity (i.e., through compatibility with subsequent motion observations).

3.1.3 Tracking Multiple Targets in Clutter

Multiple target tracking with multiple simultaneous observations develops the target track-
ing problem to deal with ambiguities due to both spurious measurements and known targets.

2Clutter is defined as the presence of false observation returns. Typically these are assumed to form a
Poisson distribution within the validation gate of the predicted target location. If, however, the returns are
not random occurrences but are produced by discrete interfering sources [55], then they do not behave as
clutter and should be tracked as targets in their own right.
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Figure 3.4: Injective assignment example. The validated observation-
to-target associations are indicated by connecting lines. The set
{E1, . . . , E5} of all maximal assignment sets complying with the injec-
tive mapping constraint is as follows (E1 is pictured in bold above):
E1 = {(z1,x2), (z2,x3), (z3,x4)}, E2 = {(z1,x2), (z2,x1), (z3,x4)},
E3 = {(z1,x3), (z2,x1), (z3,x4)}, E4 = {(z1,x2), (z2,x4)}, E5 =
{(z1,x3), (z2,x4)}.

The main extension introduced with multiple target tracking is enforcement of the injec-
tive (or one-to-one) mapping constraint, such that no two observations in a batch may be
assigned to the same target. In other words, each observation must map to a unique target
or be classified as unknown (clutter or new target).

The multiple target equivalent of nearest neighbour data association is optimal assign-
ment, which operates as follows. Let Ek = {e1, . . . , en} represent a maximal set of com-
patible (injective) assignment pairs such that em = {i, j} stands for assignment zi to xj

(see Figure 3.4, for example). Notice that not all Ek are the same size but are maximal in
the sense that, given the assignments already contained in the set, no further assignments
can be added. Optimal assignment finds the set Ek that maximises the product of the
likelihoods Λij . ∏

{∀em∈Ek}
Λem (3.4)

which is equivalent to maximising the sum of the log-likelihoods.∑
{∀em∈Ek}

ln Λem (3.5)

or minimising the sum of normalised distances Nij .∑
{∀em∈Ek}

Nem (3.6)

The method generally used to maximise the log-likelihood sum while ensuring one-to-one as-
signment is maximum-weight bipartite graph matching [35]. Basic renditions of this method
assume the bipartite graph is complete (any observations might validly be assigned to any
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target), but extensions have been proposed to cater for the existence of false alarms (spuri-
ous observations) and non-detections (non-observed targets) [34]. However, models of false
alarm probabilities are application specific and often of little value so, if the bipartite graph
is incomplete, it is generally preferable to select the optimal assignment set only from the
Ek’s of equal maximum size.

Notice that, while optimal assignment uses the injective mapping constraint to prevent
conflicting associations, it does not use the concurrent existence of the observation set to
influence the value of the association likelihoods. These likelihoods are still calculated on an
individual (isolated) basis. An alternative method is proposed in [134], which adjusts the
individual assignment probabilities as a batch event, and produces a modified set of likeli-
hoods called the joint assignment matrix (JAM). This algorithm introduces the mapping
constraint into the likelihood calculation so that the likelihood of a particular observation-
to-target pairing is “the sum of the probabilities of all [sets of] assignments containing the
pair, normalised by the sum of the probabilities of all assignments” [134, page 134].

Λ
′
em

=

∑
{Ek|∃em∈Ek}

∏
{∀ei∈Ek} Λei∑

{∀Ek}
∏

{∀ei∈Ek} Λei

(3.7)

The resulting constrained association likelihoods more accurately reflect the combined in-
fluence of the observation set, and can be used to obtain better optimal assignment results
when substituted into Equation 3.4.

Extensions to PDA and MHT have also been proposed to incorporate the injective
mapping constraint. The multiple target version of PDA, joint probabilistic data asso-
ciation (JPDA), again utilises all valid associations in a weighted average update but is
modified to account for some observations having non-unique correspondence possibilities.
The injective mapping constraint means that both JPDA and MHT operate with sets of
mutually compatible association pairs, rather than with individual assignment pairs. For
the sake of efficiency, the number of association sets is usually limited to the k most likely
sets of hypotheses, which are found using an extension of optimal assignment [35].

3.2 Batch Data Association For Correlated Feature Sets

Stochastic SLAM is a form of multiple target tracking problem where the targets are known
to have zero relative motion. This is a specific case of a more general target tracking category
where the target set (or the observation set) is internally correlated. However, none of
the traditional data association methods exploit these correlations to reduce ambiguity.
This section presents methods for batch data association that capitalise on the correlations
present within a set of features.

Data association requires the transformation of the two data sets into the same coordi-
nate space (usually observation space). If either data set is internally correlated when they
are transformed to a common coordinate space, then the batch data association methods
described in this section are able to produce better results than is possible with individual
validation gating.



3.2 Batch Data Association For Correlated Feature Sets 37

Caveat. It is important to make a distinction between ambiguity reduction and ambi-
guity management. The NIS gate is an ambiguity reduction mechanism, as it constrains
the number of observation-to-target associations according to a specified probability of ac-
ceptance. (Recall that Gaussians have infinite tails and, without the gate, an observation
might correspond to any target.) On the other hand, the methods described in the previ-
ous section—nearest neighbour, JPDA, MHT—are ambiguity management techniques, as
they attempt to resolve any conflicting data associations that remain after gating. Thus,
ambiguity reduction implies reducing the number of association possibilities, and ambigu-
ity management implies determining how to resolve ambiguous association possibilities.
The batch data association methods presented in this section fall into the category of
ambiguity reduction. They are essentially multiple-target versions of the NIS gate that
enforce stronger constraints by incorporating additional correlation information. This re-
sults in fewer possible observation-to-target correspondences given the same probability of
acceptance. However, ambiguous associations may remain and, for these, the traditional
ambiguity management techniques must still be applied (e.g., see Section 3.3.7).

3.2.1 Joint Compatibility Branch and Bound

The joint compatibility branch and bound (JCBB) algorithm [105, 106] generates tentative
sets of associations and searches for the largest set that satisfies joint compatibility. The
search is performed by incrementally constructing an “interpretation tree” (see [63]) of the
solution space, which enables efficient search space pruning.

For a given set of association pairs, joint compatibility is determined by calculating a
single joint NIS gate. The benefit of joint compatibility is that it preserves the correla-
tion information within the set of observations and predicted observations. Consider a set
of observations z = [z1, . . . , zn]T with covariance model R and a set of target estimates
x̂ = [x̂1, . . . , x̂m]T with covariance P. A tentative set of associations Ek = {e1, . . . , ej} is
chosen, subject to the individual validation and injective mapping constraints. Let the
association pair for ei be denoted zei and xei , such that the joint observation is given by

zEk
= [ze1 , . . . , zej ]

T (3.8)

with covariance REk
, and the joint predicted observation is as follows.

ẑEk
= hEk

(x̂) =


 he1 (x̂)

...
hej (x̂)


 (3.9)

The joint innovation and innovation covariance are then calculated as

νEk
= zEk

− ẑEk
(3.10)

SEk
= ∇hxP∇hT

x + REk
(3.11)

where the Jacobian ∇hx =
∂hEk

∂x

∣∣∣
x̂
. The joint validation gate, therefore, is found to be

MEk
= νT

Ek
S−1

Ek
νEk

< γn (3.12)

where the value of n is equal to the dimension of the joint innovation vector.
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Example 3.2
Joint compatibility for SLAM. At a given instant in time, the SLAM augmented state vector
is defined by xa = [xT

v ,xT
m]T where xv is the vehicle pose [xv, yv, φv]T and the map contains

three point features xm = [x1, y1, x2, y2, x3, y3]T . This SLAM estimate is denoted x̂a with
covariance Pa. In this moment, a set of range-bearing observations z = [r1, θ1, r2, θ2, r3, θ3]T

is obtained. These measurements are modelled as uncorrelated with covariance

R =


 R1 0 0

0 R2 0
0 0 R3


 where Ri =

[
σ2

ri
σ2

riθi

σ2
riθi

σ2
θi

]

A hypothetical association set Ek = {(z1,x2), (z3,x1)} is chosen, and so the tentative joint
observation is given by zEk

= [r1, θ1, r3, θ3]T with covariance

REk
=
[

R1 0
0 R3

]

and the joint predicted observation is

ẑEk
= hEk

(x̂a) =
[

h2 (x̂a)
h1 (x̂a)

]
=




√
(x̂2 − x̂v)

2 + (ŷ2 − ŷv)
2

arctan
(

ŷ2−ŷv

x̂2−x̂v

)
− φ̂v√

(x̂1 − x̂v)
2 + (ŷ1 − ŷv)

2

arctan
(

ŷ1−ŷv

x̂1−x̂v

)
− φ̂v




The joint validation gate can then be calculated trivially from Equations 3.10 to 3.12. The
χ2 threshold for a 95% acceptance probability of true association sets is γ4 = 9.5.

The solution space for joint compatibility is depicted as an interpretation tree, where
each level of the tree defines the set of possible associations for a particular observation
and each descending path from the tree root represents a set of injective associations.
Continuing from the example in Figure 3.4, the interpretation tree is pictured in Figure 3.5.
The branch-and-bound algorithm in [106] constructs the interpretation tree incrementally
using depth-first search with a maximum likelihood branching heuristic.3 At each level,
a new node is added to the joint association set and tested for joint NIS. If a node on
a given level fails the joint validation test, then its child nodes are also invalid and need
not be searched. Also, if a descending path has insufficient non-null nodes to produce an
association set greater than or equal to the current maximum, it is not searched. The
concept of JCBB is illustrated in Figure 3.5 where the search is marked in bold (with the
leftmost branch being searched first).

In [106], the maximum set of valid joint associations is assumed to be the correct data
association hypothesis. However, the process of searching through the interpretation tree

3The branching heuristic used in [106] is simply the minimum joint NIS. However, a more correct likelihood
measure is the maximum joint likelihood ΛEk , or minimum joint normalised distance NEk , which may be
obtained by substituting νEk and SEk into Equation 3.2 or Equation 3.3, respectively.
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Figure 3.5: Interpretation tree. This figure shows the entire joint com-
patibility solution space for the assignment example from Figure 3.4.
Each level of the tree pertains to a particular observation and each
node represents an observation-to-target association (these include pos-
sible non-assignments). Each descending path represents an alternative
joint association hypothesis. An example maximum joint compatibility
branch-and-bound search is shown in bold, with the best result being
Ek={(z1,x3), (z2,x1), (z3,x4)}.

generates many alternative joint compatible association sets of maximum, or near maximum,
size. The coexistence of these alternatives embodies batch data association ambiguity, which
can be resolved using traditional ambiguity management methods. For instance, the nearest-
neighbour association set is the set with maximum joint likelihood ΛEk

. Note, however, that
the interpretation of joint likelihood is complicated by the different sizes |Ek| of the various
candidate sets. This is the same problem as discussed in Section 3.1.3 regarding optimal
assignment. If the joint likelihoods of unequal sized assignment sets are to be compared,
then probability models for false alarms, target non-detections, and new target detections
are required; and it is generally difficult to reasonably model these factors. Thus, as with
optimal assignment, the best option is usually to select the maximum likelihood result from
the set of valid association sets of maximum size.

3.2.2 Maximum Common Subgraph

The maximum common subgraph (MCS) batch data association algorithm [5, 4] is a graph-
theoretic approach to finding sets of jointly compatible associations.4 Each data set is
described by a complete graph (i.e., where each node is connected to every other node)
such that the nodes represent features, defined by feature type and characteristics, and

4MCS-based data association was first proposed in the early 1980s as an object recognition tool [16, 72],
but was not previously applied to the problems of multiple target tracking or robot localisation. More
recently, a pair-wise constraint interpretation tree algorithm has been applied to mobile robot localisation
[104, 26], which produces equivalent association results to MCS (including the case where a priori pose
information is unavailable). However, the branch and bound search of this algorithm is considerably less
efficient than a maximum clique implementation of MCS.
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Figure 3.6: Common subgraphs. The two data sets form complete graphs
where the nodes are defined by the feature types and the edges are the
constraints between features. The common subgraphs shown result from
the matching of constraints {C45, C34, C35} from the first graph to con-
straints {C12, C24, C14} of the second (along with matching node types).

the edges define pair-wise relational constraints between features. For example, a node
might represent a point landmark and an edge the distance between two points. In this
thesis, these edges are termed relative constraints. The MCS algorithm compares the two
feature graphs and finds the maximum complete subgraphs that possess compatible nodes
and edges (e.g, see Figure 3.6). Basically, this operation involves matching nodes and edges
to find matching subgraphs (see [136, 98, 120, 28] for MCS search algorithms).

The MCS data association algorithm presented in [5] operates purely through matching
relative constraints and feature types, which has the effect of enabling batch data association
without a priori knowledge of the relative pose between the data sets.5 However, when pose
information is available, a greater degree of association constraint can be achieved through
its application. In [4] pose constrained MCS is introduced, which uses the a priori relative
pose information to constrain feature associations between the two data sets (in the same
manner as traditional target tracking). Thus, the compatibility of nodes between subgraphs
becomes constrained by the proximity of features from one data set to the predicted locations
of features from the other, in addition to compatibility of feature type and characteristics.
In this thesis, constraints on node compatibility between data sets are collectively termed
absolute constraints.

The main advantages of the MCS data association method are that the constraints are
pair-wise, may be of arbitrary type, and may be incomplete. For example, the relative
constraint between two points might be distance, while the relative constraint between two
line features might be the subtended angle. Similarly, an absolute constraint might be the
type circle with radius r. Incomplete constraint information means that edge and node
matching between the two graphs may be partially unrestricted. That is, an unknown rela-
tive constraint (or unconstrained edge) is compatible with all other edges, and an unknown

5For the robot localisation problem, where one data set is the map and the other is the observation scan,
the “relative pose” between the two data sets is simply the robot pose with respect to the map coordinate
frame. Thus, not having a priori knowledge of the relative pose means the robot location is initially unknown.
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absolute constraint (or unconstrained node) may correspond to any other node. The ef-
fect of incomplete information is most apparent in two extreme cases, where there are only
relative constraints or only absolute constraints. In the former, MCS data association is
determined purely by relational similarity (this is basically the algorithm presented in [5]).
The latter case is simply individual assignment limited by the injective mapping constraint,
and has similar behaviour to the optimal assignment algorithm.

MCS and JCBB are similar in that they both utilise all the available correlation informa-
tion to perform batch data association. JCBB does this by forming association hypotheses
and searching an interpretation tree. MCS instigates a two-stage process of (i) compiling
pair-wise constraints and (ii) searching for the largest compatible association set. The rel-
ative advantages of these two approaches, when given an a priori estimate of the relative
pose, have not been properly investigated. A probable outcome will be that JCBB is sim-
pler to implement while MCS offers more flexible constraint options. However, MCS offers
one significant advantage in its ability to provide a most likely batch association set when
the relative pose is initially unknown or very uncertain.

3.3 Combined Constraint Data Association

This section presents a development of the MCS batch data association algorithm called
combined constraint data association (CCDA). The CCDA algorithm integrates the appli-
cation of relative and absolute constraints into a unified EKF framework.

The fundamental data structure of the CCDA algorithm is the correspondence graph
(CG) [8], which represents valid associations between the two data sets (see Figure 3.7).
Complete subgraphs (or cliques) within the CG indicate mutual association compatibility
and, by performing maximum clique search, the largest joint compatible association set may
be found.6

Construction of the CG is performed through the application of relative and absolute
constraints. The nodes of the CG indicate individual association compatibility and are
determined by absolute constraints (e.g., node 1 is valid if feature a1 may correspond to b1).
The edges of the CG indicate joint compatibility of the connected nodes and are determined
by relative constraints (e.g., if the relative constraints between {a1, a2} and {b1, b2} match,
then node 1 is connected to node 5).

Explicit examples of relative and absolute constraints are presented in this section,
for the range-bearing SLAM problem with point location landmarks. These constraints
are statistical thresholds based on the NIS validation gate. Application of more general
constraint forms (including non-statistical constraints such as feature type) can be inferred
in light of these examples.

6Note, as mentioned previously, it is not possible to compare association sets of different sizes without
models of non-detection, false-detection, etc. Here, as elsewhere [14, 106], the set with the greatest number
of compatible associations is assumed to represent the maximum likelihood association set—hence the search
for the maximum clique. In reality, each clique implies an alternative possible association set and resolution
of these ambiguities is addressed in Section 3.3.7.
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Figure 3.7: Correspondence graph. The (individually) possible associa-
tions between feature sets, A and B, are depicted as nodes. Since, in this
example, no absolute constraints exist, all combinations of association
pairs are valid. The edges of the CG define which pairings are mutually
compatible, dependent on injective mapping and relative constraints. The
maximum clique of this graph is shown in bold.

3.3.1 Calculation of Relative and Absolute Constraints

In the previous discussions of target tracking data association, the NIS was calculated
in range-bearing observation space. However, in this section, the set of observations are
transformed to Cartesian space, with the observer as the coordinate origin. Since each
observation zi is assumed uncorrelated to the others, the polar-to-Cartesian transformation
can be performed individually.

zCi = f (zi) =
[

ri cos θi

ri sin θi

]
(3.13)

RCi = ∇fziRi∇fT
zi

(3.14)

The two data sets, therefore, are the augmented SLAM state vector x̂a = [x̂T
v , x̂T

m]T with
covariance Pa, and the batch observation vector zC with covariance RC .

Relative constraints concern each data set separately, so let x̂ with covariance P
represent either the state or observation data. The invariant property between the point
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features (x̂i, ŷi) and (x̂j , ŷj) in x̂ is their relative distance7

dij (x̂) =
√

(x̂i − x̂j)
2 + (ŷi − ŷj)

2 (3.15)

with scalar variance
σ2

ij = Pd = ∇dxP∇dT
x

where the Jacobian ∇dx is given by

∇dx =
∂dij

∂x

∣∣∣∣
x̂

=
[

0 . . . 0 x̂i−x̂j

dij(x̂)
ŷi−ŷj

dij(x̂) 0 . . . 0 − x̂i−x̂j

dij(x̂) − ŷi−ŷj

dij(x̂) 0 . . . 0
]

A more efficient form of this calculation can be derived considering the sparseness of the
Jacobian. First the relevant portions of the covariance matrix are extracted to produce a
reduced form8

Pr =
[

Pxi Pxixj

PT
xixj

Pxj

]
(3.16)

The distance variance can now be calculated as

σ2
ij = ∇dxrPr∇dT

xr
(3.17)

where the Jacobian ∇dxr is given by

∇dxr =
[

x̂i−x̂j

dij(x̂)
ŷi−ŷj

dij(x̂) − x̂i−x̂j

dij(x̂) − ŷi−ŷj

dij(x̂)

]
(3.18)

As relative constraints make no distinction between the observation and state information,
let the two data sets be represented by set A and set B. Let CAi denote a relative constraint{
dpq, σ

2
pq

}
(�
{
dAi , σ

2
Ai

}
) from set A and CBj denote a relative constraint

{
drs, σ

2
rs

}
from

set B. The constraints CAi and CBj are said to match if they satisfy the NIS threshold

Mij =

(
dAi − dBj

)2
σ2

Ai
+ σ2

Bj

< γ1 (3.19)

Absolute constraints determine individual compatibility across the two data sets. For
the SLAM problem, this is determined by the NIS between an observation zCi in zC and a
feature xj in xa. The predicted observation is modelled as

ẑCj = hj (x̂a) =
[

(x̂j − x̂v) cos φ̂v + (ŷj − ŷv) sin φ̂v

−(x̂j − x̂v) sin φ̂v + (ŷj − ŷv) cos φ̂v

]
(3.20)

The innovation and innovation covariance between observation and predicted observation
are as follows.

νij = zCi − hj (x̂a) (3.21)

Sij = ∇hxaPa∇hT
xa

+ RCi (3.22)

7An alternative relative constraint between x̂i and x̂j is dij (x̂) = [x̂i − x̂j , ŷi − ŷj ]
T , which is likely to

give better results since it is a linear constraint model. The NIS gate in Equation 3.19 would be γ2.
8Notice that the cross-correlation terms Pxixj are utilised in the calculation of relative constraints. It is

this information that makes CCDA more constrained than non-batch methods, like optimal assignment.
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where the Jacobian ∇hxa is given by

∇hxa =
∂hj

∂xa

∣∣∣∣
x̂a

=
[ − cos φ̂v − sin φ̂v −(x̂j − x̂v) sin φ̂v + (ŷj − ŷv) cos φ̂v

sin φ̂v − cos φ̂v −(x̂j − x̂v) cos φ̂v − (ŷj − ŷv) sin φ̂v

0 . . . 0 cos φ̂v sin φ̂v 0 . . . 0
0 . . . 0 − sin φ̂v cos φ̂v 0 . . . 0

]

As with the relative constraint calculations, the sparse nature of the Jacobian permits more
efficient calculation of the innovation covariance by extracting a reduced form of the state
covariance matrix.

Sij = ∇hxrPr∇hT
xr

+ RCi (3.23)

Pr =
[

Pv Pvxj

PT
vxj

Pxj

]
(3.24)

∇hxr =
[ − cos φ̂v − sin φ̂v −(x̂j − x̂v) sin φ̂v + (ŷj − ŷv) cos φ̂v cos φ̂v sin φ̂v

sin φ̂v − cos φ̂v −(x̂j − x̂v) cos φ̂v − (ŷj − ŷv) sin φ̂v − sin φ̂v cos φ̂v

]
(3.25)

The absolute constraint of NIS validity is therefore calculated as

Mij = νT
ijS

−1
ij νij < γ2 (3.26)

3.3.2 Set and Graph Terminology

The pseudocode modules in this section are described using set and graph notation. The
meanings of these notations in the context of the CCDA algorithm are listed below.

A set S is a collection of elements {s1, . . . , sn} with the number of elements given by
|S|. An empty set is denoted ∅. The existence of element si in set S is denoted si ∈ S. Two
sets are combined by their union S3 ← S1 ∪ S2. Thus, new elements may be added to a set
as S ← S ∪ {snew}. The set difference S3 ← S1 \ S2 assigns to S3 the elements in S1 that
are not in S2. This operation can be used to remove an element from a set as S ← S \ {si}.
The intersection of two sets S3 ← S1 ∩ S2 defines the set of elements common to both sets.
Most of the sets specified in the code modules below are ordered sets (also known as vectors
or arrays) as they require a specific iteration order. Adding new elements to these sets
by the union operator ∪ implies addition to the back of the set. Similarly, the difference
operator \ removes elements from the back of an ordered set.

An undirected unweighted graph G = {V, E} is defined as a set of nodes (or vertices)
V = {v1, . . . , vn} and a set of edges E = {e1, . . . , em} where each edge ek = {vi, vj} repre-
sents a connection between two nodes. Two nodes vi and vj are adjacent if there exists an
ek = {vi, vj} ∈ E. The set of nodes adjacent to node vi is given by adj(vi) which represents
the set of all vj ∈ V for which there exists ek = {vi, vj} ∈ E. Each node vi = {x, adj(vi)}
represents a stored item x and links to its adjacent nodes. A graph G = {V, E} is complete
if all its vertices are adjacent. A clique is a complete subgraph of G. A clique GM ⊂ G
is maximal if no additional node in G is adjacent to all the nodes contained in GM . The
largest maximal clique in G is termed the maximum clique (and there may exist several
maximum cliques).
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3.3.3 Correspondence Graph with Unknown Vehicle Pose

The construction of the CG is presented here for the case where there exist no absolute
constraints.9 This situation is encountered with pose initialisation in a (partially) known
map, and recovery from localisation failure where the robot has become lost.

Data association based solely on relative constraints operates by finding subsets of map
features that possess similar geometric configuration to subsets of the observed feature set.
An example of CCDA with only relative constraints is shown in Figure 3.8. Both figures
represent the same two feature sets extracted from real scanning laser data but the bottom
figure depicts a false association set due to environmental symmetry. In both cases, the
relative pose between the two feature sets is calculated subsequently using the method in
Appendix C.3. Usually, as in this example, the correct association set is larger than for
incorrect hypotheses, but this may not always be the case and, in general, symmetry-based
ambiguities must be resolved using MHT.

The CG construction algorithm CorrespondenceGraph(A, B) in Algorithm 3.1 takes
as input two feature sets A = {x̂A,PA} and B = {x̂B,PB}. The set of nodes for the un-
connected CG are generated via the function MakeNodeSet(m, n, G) (see Algorithm 3.2).
Each node represents a possible association and, since there are no absolute constraints,
this means that mn nodes are created. The node set V is ordered such that each node
vk = {ai, bj} can be found as k = (ai − 1)n + bj .

The generation of relative constraints for each data set is performed via the function
MakeRelativeConstraints(F ) in Algorithm 3.3. Given a set of features F = {x̂,P},
a constraint Ck = {i, j, dij , σ

2
ij} is calculated for each combination of feature pairings. In

Algorithm 3.1, the second constraint set CB is subsequently ordered via a sorting function
Sort(CB), which arranges the elements CBk

∈ CB so that the distance estimates dBk
are

in ascending order. This enables efficient constraint matching between the two data sets.
CG edges are generated by matching the two relative constraint sets CA and CB as

shown in Figure 3.9. To permit search efficiency, the matching region is restricted by a
fixed bound ∆d since, without this restriction, the constraint CAi would have to be checked
against all CBk

∈ CB. The consequence of ∆d is that some matching constraints in CB are
not tested. This is a reasonable tradeoff, in practice, as the efficiency gained is substantial
and association possibilities rejected by the bounded search tend to be unlikely.

The details of constraint matching are provided in Algorithm 3.4 where the function
MatchConstraints(CA, CB, G) takes as input the two relative constraint sets and the
unconnected graph G = {V, ∅}. For each constraint CAi ∈ CA, the constraints {CBj} ⊂ CB,
satisfying dAi − ∆d ≤ {dBj} < dAi + ∆d, are checked as follows. First, a binary search10 is
performed using the function UpperBound(CB, dAi − ∆d) which returns the index j of the
first constraint in CB with dBj ≥ dAi − ∆d. Each ensuing CBj satisfying dBj < dAi + ∆d is
then compared using the function CheckConstraint(CAi , CBj ), shown in Algorithm 3.5,
which calculates the NIS gate given in Equation 3.19.

Let CAi be the relative constraint between feature pair {ar, as} and CBj the pair {bp, bq}.
9Features are assumed to be identical point targets in this discussion and absolute constraints based on

feature distinctiveness are not considered. However, addition of these constraints, as for pose-based absolute
constraints, is straightforward using the method presented in Section 3.3.4.

10The C++ STL function upper bound() performs the form of binary search task described.
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Figure 3.8: CCDA with relative constraints. The above figures (dimensions in metres) show
two association possibilities for the same two sets of real data. The relative pose between
these data sets is not known a priori, and both contain large numbers of spurious features.
The location of the observer for each set is indicated by a triangle, and their positions
depict the estimated relative pose derived from association. The top figure shows a correct
association set and the bottom figure shows an incorrect association set.
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Algorithm 3.1: CorrespondenceGraph(A, B)

G ← {V = ∅, E = ∅}
G ← MakeNodeSet(|A| , |B| , G)
CA ← MakeRelativeConstraints(A)
CB ← MakeRelativeConstraints(B)
Sort(CB)
G ← MatchConstraints(CA, CB, G)
return (G)

Algorithm 3.2: MakeNodeSet(m, n, G)

for i ← 1 to m

do
{
for j ← 1 to n
do V ← V ∪ {i, j}

return (G)

Algorithm 3.3: MakeRelativeConstraints(F )

C ← ∅
for i ← 1 to |F |

do




for j ← i + 1 to |F |

do




dij ← Equation 3.15
σ2

ij ← Equation 3.17

C ← C ∪
{

i, j, dij , σ
2
ij

}
return (C)
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Algorithm 3.4: MatchConstraints(CA, CB, G)

for i ← 1 to |CA|

do




d ← dAi ∈ CAi

j ← UpperBound(CB, d − ∆d)
while (dBj ∈ CBj ) < (d + ∆d)

do




if CheckConstraint(CAi , CBj )
then G ← MakeEdges(CAi , CBj , G)

j ← j + 1
return (G)

Algorithm 3.5: CheckConstraint(CAi , CBj )

Mij ←
(
dAi

−dBj

)2

σ2
Ai

+σ2
Bj

return (Mij < γ1)

Algorithm 3.6: MakeEdges(CAi , CBj , G)

k1 ← NodeIndex(ar ∈ CAi , bp ∈ CBj )
k2 ← NodeIndex(as ∈ CAi , bq ∈ CBj )
E ← E ∪ {vk1 , vk2}
k1 ← NodeIndex(ar ∈ CAi , bq ∈ CBj )
k2 ← NodeIndex(as ∈ CAi , bp ∈ CBj )
E ← E ∪ {vk1 , vk2}
return (G)

Algorithm 3.7: NodeIndex(ai, bj)

k ← (ai − 1)n + bj

return (k)
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Figure 3.9: Relative constraint matching. The elements of constraint set
CB are sorted in ascending order according to their distance values dBj

(representing the distance between features {bp, bq}). The variance σ2
Bj

of each constraint is signified here by a vertical line. Matching constraint
CAi to elements of CB is performed as follows. The first element dBj

greater than dAi − ∆d is found by binary search. A check for match
is then performed with each element CBj possessing dBj in the region
dAi − ∆d to dAi + ∆d.

A valid matching means that the associations {ar, bp} and {as, bq} are mutually compatible,
and {ar, bq} and {as, bp} are mutually compatible (although, clearly, these two hypotheses
are not compatible with each other). This results in two edges being added to the CG
via the function MakeEdges(CAi , CBj , G) in Algorithm 3.5. The indices of the connected
nodes are found in O(1) time using the order of set V as shown in Algorithm 3.7.

The computational complexity of Algorithm 3.4 is not readily apparent because the
inner while loop is non-deterministic. On average the while loop performs approximately k
iterations, where k is dependent on n, ∆d, and the distribution of

{
dBj

}
in CB. An empirical

evaluation of k, as a function of n, is shown in Figure 3.10. These measurements are taken
from the laser-based dead reckoning experiment presented in Section 3.4 using data from
the internal road environment (see Appendix A). From these results, the complexity of k
appears to be quadratic with respect to n, for fixed ∆d. However, over the experimental
range of n, this complexity is bounded above by a small-constant linear bound k = 2n. This
is a substantial improvement over the brute force complexity k = n2−n

2 for comparing CAi

to every CBj ∈ CB.
The total complexity of Algorithm 3.1, therefore, is O(mn + m2 + n2 + n2 log n2 +

m2 log n2 + km2), which may be simplified to O(n2 log n2 + km2). If it is assumed that
m ≈ n, this can be further simplified to O(km2).

3.3.4 Correspondence Graph with Partially Known Vehicle Pose

With the existence of partial knowledge of the observer pose, absolute constraints can be
incorporated into the CG construction process. Absolute constraints minimise the prob-
lem of environmental symmetry by rejecting associations that fall outside the threshold of
observer pose uncertainty. As a result, only local symmetries, that fall within the pose
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Figure 3.10: Inner loop of CG construction. Empirical measure-
ments for the number of iterations k of the while loop in the function
MatchConstraints(CA, CB, G) are shown as a function of n, where
n is the number of features in set B (and ∆d = 1.0 metre). The brute
force complexity k = n2−n

2 and the linear bound k = 2n are shown for
comparison.

uncertainty region, remain ambiguous.
Two CG construction algorithms are presented in this section. The first applies absolute

constraints after each relative constraint match, and is a simple extension to the method
in Section 3.3.3. The second applies absolute constraints prior to the relative constraint
matching process, and is a very efficient implementation for situations where the vehicle is
already reasonably well localised.

Method 1: Post application of absolute constraints

Let the data set A represent the observation data set {zC ,RC}, and the set B represent
the augmented state estimate {x̂a,Pa}. The following algorithm differs from the algorithm
in Section 3.3.3 only in the implementation of the function MakeEdges(CAi , CBj , G) (see
Algorithm 3.6). The new version of this function checks the node validity for each edge
entry and inserts a new edge into the CG only if the nodes satisfy Equation 3.26. For the
purpose of this calculation, the function is additionally passed the data sets A and B as
shown in Algorithm 3.8. The absolute constraint check is performed in Algorithm 3.9 by
the function CheckNode(ai, bj , A, B), which takes as input the indices of two features ai

and bj and the feature sets A and B. It returns a Boolean value indicating whether the
absolute constraint for the association ai → bj is satisfied.

Checking the absolute constraint for each node is an O(1) computation and, if imple-
mented as a lookup table so that Mij for each node is evaluated at most once, Algorithm 3.9
can be performed very efficiently. Thus, the complexity of the correspondence graph con-
struction remains O(n2 log n2 + km2) as for the unknown observer pose algorithm in the
previous section.
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Algorithm 3.8: MakeEdges(CAi , CBj , A, B, G)

if CheckNode(ar, bp, A, B) and CheckNode(as, bq, A, B)

then




k1 ← NodeIndex(ar, bp)
k2 ← NodeIndex(as, bq)
E ← E ∪ {vk1 , vk2}

if CheckNode(ar, bq, A, B) and CheckNode(as, bp, A, B)

then




k1 ← NodeIndex(ar, bq)
k2 ← NodeIndex(as, bp)
E ← E ∪ {vk1 , vk2}

return (G)

Algorithm 3.9: CheckNode(ai, bj , A, B)

νij ← Equation 3.21
Sij ← Equation 3.23
Mij ← νT

ijS
−1
ij νij

return (Mij < γ2)

Method 2: Prior application of absolute constraints

If the vehicle pose uncertainty is small, then the set of valid associations can be largely
determined from absolute constraints alone. Association set consistency can be subsequently
enforced by applying relative constraints to a greatly reduced solution space.

This version of CorrespondenceGraph(A, B) is shown in Algorithm 3.10. The set
of valid nodes V is generated via the function MakeNodeSet(A, B) (see Algorithm 3.11),
which applies absolute constraints using the function CheckNode(ai, bj , A, B) shown pre-
viously in Algorithm 3.9. This node generation process takes O(mn) operations.11

The mutual compatibility of each node-pair {vi, vj} is then tested using the function
CheckConstraint(vi, vj , A, B) in Algorithm 3.12. This function first applies the injec-
tive mapping constraint by rejecting nodes vi = {ar, bp} and vj = {as, bq} if either ar = as

or bp = bq. Surviving node-pairs are then tested for relative constraint compatibility by
comparing the constraints

{
drs, σ

2
rs

}
and

{
dpq, σ

2
pq

}
. For each compatible node-pair, a con-

necting edge is added to the CG.
Algorithm 3.10 has computational complexity O(mn + |V |2). The efficiency of this

approach depends on the observer pose uncertainty being small enough that the size of
set V is approximately O(min {m, n}). That is, the assignments between sets A and B
are largely determined by the absolute constraints. If this assumption holds, the overall
computational complexity becomes O(mn).

11The process of applying absolute constraints may be improved using more efficient gating procedures, as
presented in [32] for example. This would mean Algorithm 3.11 could be performed in O(m log n) iterations.
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Algorithm 3.10: CorrespondenceGraph(A, B)

V ← MakeNodeSet(A, B)
E ← ∅
for i ← 1 to |V |

do




for j ← i + 1 to |V |
do
{
if CheckConstraint(vi, vj , A, B)
then E ← E ∪ {vi, vj}

return (G)

Algorithm 3.11: MakeNodeSet(A, B)

V ← ∅
for i ← 1 to |A|

do




for j ← 1 to |B|
do
{
if CheckNode(ai, bj , A, B)
then V ← V ∪ {ai, bj}

return (V )

Algorithm 3.12: CheckConstraint(vi, vj , A, B)

if (ar ∈ vi = as ∈ vj) or (bp ∈ vi = bq ∈ vj)
then return ( false )

drs ← Equation 3.15 for features ar and as

σ2
rs ← Equation 3.17 for features ar and as

dpq ← Equation 3.15 for features bp and bq

σ2
pq ← Equation 3.17 for features bp and bq

Mij ← (drs−dpq)2

σ2
rs+σ2

pq

return (Mij < γ1)



3.3 Combined Constraint Data Association 53

3.3.5 Maximum Clique Search

Maximum clique search is a standard graph search algorithm, and a great number of tech-
niques may be found in the literature for finding the maximum clique in an undirected
unweighted graph (see [17] for a comprehensive survey).

Finding an exact solution to the maximum clique problem in a general graph is thought
to be NP complete [78], but two factors make it a feasible algorithm for the CCDA applica-
tion. First, in typical environments (with normal levels of geometric symmetry), the CG is
very sparse and search heuristics favouring nodes of high degree tend to rapidly obtain good
results. Second, the CCDA algorithm does not require the exact maximum clique(s) but,
rather, the largest maximal clique (or set of maximal cliques) that can be found within a
reasonable time period. In fact, an approximate maximum clique search algorithm may be
trivially implemented as an anytime algorithm [15] where the search runs until a specified
time limit and then returns its best result.

Two approximate maximum clique algorithms were empirically trialed for CCDA: a
degree-ordered search with a tabu queue [58], and a simple randomised descent search. In
most cases the latter method was more efficient and so this version is presented below.

The function MaximumClique(G) (see Algorithm 3.13) is sent the graph G = {V, E}
as input and returns a clique M ⊆ G that is (approximately) the maximum clique of G.12

The algorithm uses three global variables: the largest clique found M , a temporary clique
T , and a set of nodes S. These variables are shared by the other functions that declare them
as global. In Algorithm 3.13, clique search is performed in a loop terminated when a timing
function TimeUp() returns true. This loop provides the base level of the randomised
descent search where a node vi is chosen at random from V ∈ G, and the node set S is
initialised with the adjacency list adj(vi). The randomised descent search is then performed
by recursion of the function RecursiveSearch(n).

In Algorithm 3.14, the function GetRandomNode(V ) chooses a node at random from
the node set V (i.e., a node index is selected with uniform13 likelihood from the discrete
range [1, |V |]). Note, the input parameter V is local to this function and does not specify
the set V ∈ G (although V ∈ G may indeed be passed to this function). For a node vi,
the maximum possible clique size is |adj(vi)| + 1; therefore, a selected node is accepted for
searching if the size of its adjacency list is at least as large as the current maximum clique
M . If a valid node cannot be found within the final time limit, an empty set is returned.

The function RecursiveSearch(n) in Algorithm 3.15 is the central process of the
maximum clique search operation. Each call of this function indicates the entry to a lower
search depth and a new node is added to the accumulating clique stored in T , which
represents the current descent path. A set of nodes V that is adjacent to all the nodes
currently stored in T is used to perform the next descent level. Provided |V | is large
enough to possibly improve the maximum clique size, a node is selected at random from V
and another level of RecursiveSearch(n) is entered. After the completion of the recursive

12The cliques are actually represented in Algorithm 3.13 by sets of nodes only rather than as graphs as
the nodes implicitly (by definition) form a complete graph.

13Rather than simply selecting a node vi with uniform likelihood, better performance may be possible if
the likelihood of selecting node vi is a function of its degree |adj(vi)| meaning that more strongly connected
nodes are favoured for addition to the clique.
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Algorithm 3.13: MaximumClique(G)

global M, T, S
M ← ∅
T ← ∅
while not TimeUp()

do




vi ← GetRandomNode(V )
S ← adj(vi)
RecursiveSearch(vi)

return (M)

Algorithm 3.14: GetRandomNode(V )

global M
n ← ∅
while n = ∅ and not TimeUp()

do




i ← U [1, |V |]
if |adj(vi)| ≥ |M |
then n ← vi

return (n)

Algorithm 3.15: RecursiveSearch(n)

global M, T
if n = ∅
then return

T ← T ∪ n
V ← MutuallyAdjacentNodes(n)
if |V | > 0 and |T | + |V | > |M |
then

{
vi ← GetRandomNode(V )
RecursiveSearch(vi)

if |T | > |M |
then M ← T

T ← T \ n

Algorithm 3.16: MutuallyAdjacentNodes(n)

global S
S ← S ∩ adj(n)
return (S)
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descent, the size of the maximal clique T is compared with the current maximum clique. If
T is greater, then it is assigned to M . The node n is subsequently removed from T at the
end of the function to indicate the return to a higher level.

The function MutuallyAdjacentNodes(n) finds the intersection of the sets S and
adj(n) and stores the result in S so that, at each level of descent, the nodes in S represent
the remaining nodes in the graph G adjacent to all the nodes in the current clique T (but
not already stored in T ).

This basic implementation finds only a single largest clique but can easily be modified to
store the set of all maximal cliques found (a maximal clique is obtained with each descending
path). Alternatively, the k largest maximal cliques might be retained. It is possible that the
implementation of more sophisticated maximum clique search algorithms (e.g., [10, 54, 28])
may enable more efficient application of the CCDA algorithm, thereby permitting batch
associations with larger data sets, but determining the computational advantage of these
algorithms for the particular structure of the CG will require an empirical evaluation.

3.3.6 Computational Complexity of the Maximum Clique Search

While maximum clique search may be NP complete for a general graph, it appears to be
feasible here due to the structure of the CG. This section presents an empirical study of
the CG density and maximum clique search complexity, both with and without absolute
constraints.

These experimental results are obtained from the laser-based dead reckoning trials in
Section 3.4 using the internal road data set (see Appendix A). CCDA was performed be-
tween the feature sets obtained from sequential pairs of laser scans. This test was performed
twice over the same ensemble of feature sets: once including absolute constraints and once
without (i.e., using relative constraints only).

The structure of the CG is affected by numerous factors. These include the density of
observable features (and clutter), their geometric distribution, the measurement (sensor)
uncertainty, and the vehicle pose uncertainty. The effect of pose uncertainty (i.e, absolute
constraints) on the number of CG nodes is particularly significant. Given moderate absolute
constraints, the number of CG nodes is proportional to the number of features in the smaller
of the two data sets while, without absolute constraints, the number of nodes is equal to
the number of features in one set multiplied by the number of features in the other.

The empirical CG density results, edges versus nodes, are shown in Figure 3.11. In
both cases, the number of edges is quadratic in relation to the number of nodes. However,
with absolute contraints, the CG is quite dense (between 20% and 60% connected) while,
without absolute constraints, the CG density is between 2% and 4%.

In the absence of a theoretical bound for the maximum clique search, the empirical
results in Figures 3.12 and 3.13 serve to characterise the expected complexity of the ran-
domised descent algorithm. Figure 3.12 shows the number of descent iterations (i.e., the
number of calls to the function RecursiveSearch(n)) required to find the (exact) max-
imum clique, versus the number of CG nodes. Because the algorithm is randomised, the
computational spread is large; however, the important attribute is the average case as
shown.
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Figure 3.11: Correspondence graph density. These figures show empiri-
cal measurements for the number of CG edges versus number of nodes.
The top and bottom figures depict the results for CGs with and without
absolute constraints, respectively. The two lines in each figure show the
average CG density and, for comparison, the density of a complete graph
where e = n2−n

2 .

For the first case (with absolute constraints), the number of descent calls is linear with
the number of nodes. This is expected since the CG is dense and contains essentially a
small number of large cliques. (Note, the apparent drop-off for n > 140 is just an artifact
of insufficient trials for these larger node quantities.) The second case, without absolute
constraints, is particularly interesting as the number of descents achieves a constant bound
for large n. It appears that the sparse CG contains relatively few highly connected nodes,
and the graph is composed of a small number of large cliques amidst a high proportion of
very small cliques.

However, the results in the second case do not tell the entire story for CCDA without
absolute constraints. In these experiments, features are matched between sequential laser-
scan pairs, meaning that the feature sets are of similar size, and have many features in
common. Thus, those CGs with many nodes tend to possess correspondingly large (and
distinctive) cliques. A more difficult problem would be associating a small number of
observations in a large map without absolute constraints. This would mean a large number
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Figure 3.12: Maximum clique search iterations. These figures show the
number of descent iterations versus the number of CG nodes. The top
and bottom figures depict the results for CGs with and without abso-
lute constraints, respectively. The lines in each figure show the average
number of descents.

of CG nodes but small cliques and many ambiguities.
The results shown in Figure 3.12 are dependent upon a small modification to the function

GetRandomNode(V ) in Algorithm 3.14. The modified version uses a simple rejection
sampling strategy to favour the selection of nodes of higher degree. This change has a
marginal effect on the search with absolute constraints (i.e., the average number of descent
iterations becomes c = 0.7n rather than c = 0.8n). However, for the search without absolute
constraints, the average case falls from linear (c = 0.45n) to constant (c = 200). Clearly, the
modified node selection strategy directs the search away from unlikely nodes and towards
the relevant larger cliques within the sparse graph.

Finally, the number of descent iterations do not actually convey the total complexity
of the maximum clique search algorithm, as each descent includes a call to the function
MutuallyAdjacentNodes(n) (see Algorithm 3.16). This function performs a set inter-
section operation, which has linear complexity with respect to the degree of the passed node
parameter.

The empirical results for the total search complexity, therefore, are shown in Figure 3.13.
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Figure 3.13: Maximum clique search complexity. These figures show the
number of inner-loop iterations versus the number of CG nodes (with and
without absolute constraints, respectively). The lines depict the average
complexity.

The average case with absolute constraints is quadratic in relation to the number of nodes
c = 0.3n2. The average case complexity without absolute constraints is not so well de-
fined. For the number of CG nodes between 0 and 700, the complexity appears quadratic
c = 0.01x2 but, after this point, it levels off. Whether this result is due to insufficient trials
is unclear, but certainly the complexity for large n seems not worse than linear.

3.3.7 Ambiguity Management

The process of searching for the maximum clique finds many maximal cliques of equal or
near maximum size. These cliques represent ambiguity in the CCDA result. There are
two types of ambiguity that can arise (described here, for simplicity, in terms of just two
maximal cliques). The first is due to environmental symmetry, where the association sets
given by two cliques represent two completely different observer locations. One (or both)
of these sets must be incorrect, and determining the correct clique is dependent on further
information. The appropriate way to deal with this type of ambiguity is to use MHT, where
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a different track is maintained for each clique. The second type of ambiguity is simple
clutter, where both cliques represent essentially the same set of associations with some
differing assignment-pairs due to sensor uncertainty and the close proximity of features.

In the case of multiple cliques, representing simple clutter, one of the following ambiguity
management methods might be applied.

• Select the clique of maximum size that has maximum joint likelihood (i.e., joint nearest
neighbour). Alternatively, choose the maximum joint likelihood clique from the set
of cliques with size greater than a specified minimum (see Section 3.5.2 regarding
minimum acceptable clique size).

• Retain only those associations common to the k largest cliques.

• Select the k largest cliques and perform JPDA with those associations that are am-
biguous.

• Perform MHT with the k largest cliques (including, perhaps, a hypothesis that all
association sets are false).

3.3.8 A Comparison of Optimal Assignment, JCBB and CCDA

This section compares the relative merits of optimal assignment (OA), JCBB and CCDA
for finding a single most likely set of associations. They are compared according to two
criteria: level of association constraint and computational complexity.

Constraint quality determines the number of associations that are rejected for a given
statistical (i.e., NIS) probability of acceptance. The more constraint information available,
the more associations become invalid. OA represents the best of the traditional multiple-
target tracking data association methods (i.e., the best maximum likelihood method, this
does not include JPDA or MHT).14 It incorporates injective mapping constraints and ab-
solute constraints, and searches for the association set of maximum size with maximum
summed log-likelihood.

The batch association methods, JCBB and CCDA, both incorporate injective map-
ping, absolute and relative constraints. Through the addition of relative constraints, these
methods will always give a better (i.e., less ambiguous) result than OA for the same NIS
threshold. Both methods search for the association set of maximum size with maximum
joint likelihood, but their approaches to applying constraints are different. The JCBB algo-
rithm selects an association set hypothesis and applies the absolute and relative constraints
concurrently via calculation of the joint NIS. CCDA, on the other hand, applies these
constraints explicitly and separately between feature pairs; this has a significant practical
advantage as it enables the production of sensible results without absolute constraints.

An experimental comparison between OA and batch association is not given in this
thesis. However, a comparison of JCBB and a greedy nearest neighbour association similar
to OA is provided in [106].

14Arguably, the JAM method improves on OA by performing batch likelihood adjustment. However,
the JAM has yet to gain popular acceptance and the experimental verification needed to make a proper
comparison with OA.
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The computational complexity of OA has a theoretical worst-case bound of O(n4) for
n measurements and n targets [35], although the average-case complexity is reported to
be considerably better. The implementation in [35] uses the “Hungarian” bipartite graph
matching algorithm [84], and lower complexity might be possible using more recent bipartite
matching methods (e.g., see [59, 14]).

JCBB performs incremental construction and search of an interpretation tree of joint
association hypotheses. The joint NIS gate determines acceptable hypotheses and performs
branch-and-bound pruning of the search space. The discussion in [106] does not provide a
theoretical bound, but gives an empirical complexity estimate of O(1.53n), where n is the
number of observed features (for fixed vehicle pose uncertainty).

The CCDA algorithm is composed of two parts: CG construction and maximum clique
search. The first part takes O(n2 log n2+km2) time if the vehicle pose is unknown, where m
and n are the number of measurements and targets, respectively, and k is found empirically
to be O(n). If the vehicle pose is known, CG construction may be performed by one of two
methods. For the first, the same complexity O(n2 log n2 + km2) applies but, for the second
method, the complexity becomes O(mn + |V |2), where |V | is the number of nodes in the
CG. If the pose uncertainty is reasonably small, |V | is O(min {m, n}).

The maximum clique search complexity was found to be quadratic with the number of
CG nodes (on average) if the vehicle pose is known, and not worse than linear if the vehicle
pose is unknown (although more analysis is required for this second result). In these two
cases the relationship between the number of nodes and number of features is O(min {m, n})
and O(mn), respectively. Therefore, assuming m ≈ n, the average complexity in both cases,
in terms of the number of observed features, is expected to be O(m2).

3.4 Application: Sensor-based Dead Reckoning

This application associates features between sequential laser scans to determine the change
in pose of the observer. The experimental results have a two-fold objective: first, to demon-
strate the CCDA algorithm in outdoor high-clutter environments and, second, to present a
sensor-based alternative to odometry that is both more accurate and more reliable.

The two environments in which these tests are carried out are the parkland and internal
road locations described in Appendix A. Both environments provide a challenging data as-
sociation problem, particularly the latter with feature density ranging from extreme clutter
to extreme sparsity.

3.4.1 Feature Extraction

The predominant landmarks in both environments are trees, and so feature extraction is
governed by a point feature model for detecting tree trunks.

To begin with, the range-bearing measurements for a given laser scan are broken into
clusters using Algorithm 3.17. Here, z = {(r1, θ1), . . . , (rn, θn)} is the angle-ordered set
of laser measurements, and the returned set C = {C1, . . . , Ck} is the resulting clusters.
Clustering is performed on the basis of discontinuity between adjacent range measurements,
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Algorithm 3.17: Cluster(z)

k ← 1
Ck ← (r1, θ1)
for i ← 2 to n

do




∆max ← A + B · min {ri, ri−1}
∆ ← abs (ri − ri−1)
if ∆ < ∆max

then Ck ← Ck ∪ (ri, θi)

else
{

k ← k + 1
Ck ← (ri, θi)

return (C)

Figure 3.14: Point feature model. Given a foreground cluster (i.e., a clus-
ter with both edge points closer than the adjacent clusters), the parame-
ters of a circle can be calculated from the minimum range measurement
rm and the angles of the two edge measurements.

and is tuned by adjusting the gains A and B. In these experiments, the constant gain
A = 0.07m and the proportional gain B = 0.04.

Clusters are selected from the ordered set C if they are in foreground. That is, a cluster
i is selected if its first and last range measurements are shorter than the last and first range
measurements of clusters i−1 and i+1, respectively. These foreground clusters define point
features according to the model shown in Figure 3.14, which expresses the range-bearing of
a circle origin in terms of the cluster’s bounding angles {θ1, θ2} and minimum range rm.15

From this diagram, it can be seen that

sinα =
R

rm + R
(3.27)

15An alternative circle extraction model is given in [67], which estimates the circle parameters from the
entire set of cluster measurements using an EKF. However, empirical laser tests indicate that range values
at sharp discontinuities tend to be very unreliable, and this is the rationale for the simple model presented
in this thesis—which uses only angle information at the cluster edges.
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where α = θ2−θ1
2 . Rearranging Equation 3.27, the circle radius is given by

R =
rm sinα

1 − sinα
(3.28)

Therefore, the range and bearing measurement zp = [rp, θp]T is

rp = rm + R =
rm

1 − sinα
(3.29)

θp =
θ1 + θ2

2
(3.30)

The individual laser measurements are assumed to be independent, with Gaussian uncer-
tainty in range and bearing, such that each measurement zi = [ri, θi]T has covariance

Pi =
[

σ2
r 0
0 σ2

θ

]

Therefore, if the circle origin is defined as a function of the parameters (rm, θ1, θ2)

[
rp

θp

]
= h




 rm

θ1

θ2




 (3.31)

so that the Jacobian ∇h is given by

∇h =

[
∂rp

∂rm

∂rp

∂θ1

∂rp

∂θ2
∂θp

∂rm

∂θp

∂θ1

∂θp

∂θ2

]
=

[
1

1−sin α − rm cos α
2(1−sin α)2

rm cos α
2(1−sin α)2

0 1
2

1
2

]
(3.32)

then the foreground point covariance Pp can be approximated by linearised transformation
of the measurement uncertainties.

Pp = ∇h


 σ2

r 0 0
0 σ2

θ 0
0 0 σ2

θ


∇hT =

[
1

(1−sin α)2
σ2

r + r2
m cos2 α

2(1−sin α)4
σ2

θ 0
0 1

2σ2
θ

]
(3.33)

Notice that this model produces a correct estimate of the point range-bearing covariance
only if the object observed is, in fact, circular, and it assumes that the minimum range
measurement rm is actually an observation of this circle’s closest point. However, clusters
are classified as points based on the sole criterion that they are foreground, which means that
non-circular clusters can be selected, and are often poorly represented by this model (e.g.,
see Figure 3.15). To cater for non-ideal feature classification, it is necessary to inflate the
observation uncertainty; also, to limit the possibility of gross misclassifications, a maximum
radius estimate is applied (i.e., only keep those points satisfying R < RMAX). Typically,
the tree trunks in the two experimental environments are well approximated by the circular
model as depicted in Figure 3.16.
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Figure 3.15: Feature misclassification. A non-circular object is poorly
represented by the circular foreground point model.
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Figure 3.16: Tree trunk observations in the park environment. Using
SLAM pose estimates, the unprocessed laser points are recorded over a
series of passes to illustrate the circular shape of these four trunks.
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3.4.2 Dead Reckoning Implementation Details

The steps of this dead reckoning algorithm follow from the CCDA algorithm in Section 3.3,
and the relative pose estimation method in Appendix C.3. Given a set of change-in-pose
estimates {x̂δ,Pδ} between sequential scans, the accumulated dead reckoning estimate is
found using the equations in Example C.1. Therefore, to avoid unnecessary repetition, the
discussion below just provides additional details regarding (i) calculation of the change-in-
pose xδ, and (ii) application of the CCDA algorithm.

The initial estimate for a particular xδ is based on the prior information afforded by
the change-in-pose estimate of the previous scan-pair. Thus, the relative pose calculations
in Appendix C.3 use Equations C.17 and C.18 rather than Equations C.15 and C.16. The
prior estimate is given by a simple constant-velocity inertial model as follows.

x̂prior = x̂δ (3.34)
Pprior = Pδ + Pacc (3.35)

where x̂δ and Pδ are the previous change-in-pose estimate, and Pacc represents the increase
in uncertainty due to possible accelerations over the time interval. Note, the prediction
of constant x̂δ is possible since the laser information arrives after equal time intervals (4.7
Hz in these trials). The value of Pacc is determined by a model of the maximum possible
vehicle accelerations; in these trials, Pacc was fixed at

Pacc =


 0.5 0 0

0 0.5 0
0 0 0.03




Batch data association was performed using the first of the tracking CCDA methods (see
Section 3.3.4). This implementation used a basic form of the maximum clique algorithm,
which returned, as a “best” solution, the largest association set found (or, if multiple equal
largest sets exist, the first largest set found). Significantly better results could probably be
obtained if other association sets were also considered, but these results were sufficient to
demonstrate the utility of the CCDA algorithm.

The test environments displayed a high degree of variability in landmark density at
different locations, resulting in batch associations ranging from less than 3 in some regions
to as great as 70 in others. For each scan-pair, a minimum batch size was applied to
determine whether the association set was deemed reliable and, while more sophisticated
measures may be possible (considering factors such as local feature density), this simple
threshold gave reasonable results (see Section 3.5.2 below for further discussion). If, for a
given scan-pair, insufficient associations are obtained, then the estimated change-in-pose is
equal to the prior estimate, and this in turn becomes the prior for the next scan-pair (with
expanded uncertainty Pprior = Pδ + Pacc). There is a basic tradeoff, therefore, between
association reliability and the possibility of prolonged periods of tracking failure, and batch-
size thresholds of between 3 and 7 were found to work best in these trials.

3.4.3 Results

Wheel-encoder odometric data was logged during both the trials presented below, and an
odometry-based dead reckoning estimate calculated using the vehicle model parameters
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that were used in [67, 65] (for the same vehicle). These model parameters were tuned to
give optimal results, and the odometric results shown here are assumed to be of the best
possible quality. The laser result, on the other hand, required no detailed kinematic model
and operated with just a coarse dynamic process model and a simple observation model.

The dead reckoning results for the park environment are shown in Figure 3.17, with
the top figure based on wheel-encoder information and the bottom on laser scans. The
superior accuracy of laser-based dead reckoning is readily apparent, particularly in heading.
In general, odometry tends to provide a smoother estimate, but is subject to biases (many
of which are not easily modelled, such as slip during turning). Laser-based dead reckoning,
while noisier, does not possess such significant bias.

The internal road result, shown in Figure 3.18, exhibits the same characteristics over
a longer distance (approximately 6 km). Several regions of this environment produced
relatively inaccurate laser-based estimates due to lack of observable features, but overall
the trajectory retains the geometry of the roadway. The encoder-based estimate, on the
other hand, rapidly diverges into incoherence.

3.5 Remarks

The two matters discussed in this section are concerned with (i) the usefulness of geometric
features in general unstructured environments, and (ii) determining a minimum association
set threshold for CCDA.

3.5.1 Utility of Simple Geometric Features

Simple geometric primitives, such as points and lines, are often criticised16 as insufficient
for general environments and a current trend [93, 118, 132, 95, 48] is to try and develop
more general representations (e.g., scan correlation, see Chapter 4). A typical rationale
for rejecting simple features is the problem of misclassification; for example, if a smoothly
curved surface is represented by a set of line segments, these lines may shift arbitrarily.
Also, methods like scan correlation use all the available observation information, and not
just the parts that can be classified.

It is argued here, however, that geometric models are probably more universally appro-
priate than they are given credit. Point locations such as edges (i.e., range discontinuities)
and corners occur in a great many environments. Batch association, and the feature man-
agement methods presented in Chapter 5, can be used to reject unstable features without
harm. Another important factor to note is that data association imparts significant infor-
mation and feature-based methods may produce better results than scan correlation.

Some environments, such as mining tunnels and subsea, do not yield stable geometric
features and require more general representations. However, this does not preclude the
use of the EKF stochastic SLAM framework. Fundamentally, there is confusion between
the use of geometric (point) feature models and the estimation of the point location of an
object. The former may well not apply, but the latter is generally applicable to any static

16For example, geometric feature-based methods have been described as “less accurate and less robust”
than scan matching for laser-based localisation in an indoor environment [93].
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Figure 3.17: Encoder-based (top) versus laser-based dead reckoning in
the park environment.
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Figure 3.18: Encoder-based (top) versus laser-based dead reckoning in
the internal road environment.
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map. For example, an object might be represented by a set of unprocessed measurement
data, which serves as a static model of the object. Subsequent observations of the object
can then use scan correlation to estimate the object location relative to the vehicle (i.e., as
a relative pose (x, y, φ) and uncertainty). By approximating the relative pose uncertainty
with a Gaussian, the global object pose can be maintained in the EKF SLAM state vector.
This approach is suggested as a future research direction combining scan correlation and
SLAM in Section 7.2.2. Essentially, an object might not possess a simple parametric feature
model but still defines a point pose in space (its local coordinate axis) which is static and
approximately Gaussian.

3.5.2 Minimum Acceptable Batch Size

Batch data association, as described in this chapter, produces sets of associations that are
mutually compatible given their combined constraints. From this it is possible to obtain a
“best” association set consisting of the greatest number of associations. However, selecting
a best set, or set of best sets, is not sufficient for ensuring correct association (i.e., selecting
the best of a bad batch is not good enough). For the SLAM problem, the real requirement
is a measure of association reliability; it is better to reject all associations, or perform MHT
where one hypothesis rejects association, than to risk accepting an incorrect association set.

A likelihood of association set “correctness” is a function of many factors: (i) the number
of associations in the set, (ii) the quality of the individual constraints and correlations, (iii)
the geometric distribution of features, (iv) the observer pose uncertainty, (v) the presence of
clutter, occlusions, and dynamic objects, (vi) and so on. In this thesis, association reliability
is not properly quantified and defining an appropriate measure remains an open question.
The approach used in the experiments of this chapter considers only property (i) above,
such that a threshold on minimum batch size is used as a blanket criterion. This is a very
suboptimal approach; a low threshold is fragile in dense regions due to symmetries and a
high threshold is fragile in sparse regions because of possible tracking loss.

3.6 Summary

This chapter addresses the data association problem for localisation and SLAM. First, it
reviews the data association methods developed for target tracking, where the basic test
for accepting or rejecting an association is the NIS (or Mahalanobis distance) validation
gate. For tracking a single target in clutter, there are three main procedures for resolving
association ambiguity: nearest neighbour, PDA, and MHT. These methods have analogues
for tracking multiple targets in clutter: optimal assignment, JPDA, and MHT.

If a set of targets, or a set of observations, are correlated within themselves, then
more robust data association can be achieved if they are processed as a batch. Two batch
association methods are reviewed: JCBB and MCS data association. MCS data association
is unique in finding associations without prior knowledge of the observer pose.

The CCDA algorithm is presented as extension to the MCS data association method.
This algorithm is based on a “correspondence graph” (CG) which is constructed from the
relative and absolute constraints between feature pairs. The maximum clique of the CG
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defines the largest set of mutually compatible associations. Every other clique in the CG
represents an alternative (ambiguous) association set hypothesis.

The CCDA method is demonstrated with an implementation of laser-based dead reck-
oning in two outdoor environments. These estimates are shown to be greatly more accurate
than encoder-based odometry.



Chapter 4

An Alternative to Feature-based
Data Association: Scan Correlation

Feature-based data association is a viable solution in environments where static landmarks
exist suitable for classification as geometric primitives. However, in some environments (e.g.,
see Figure 4.1), it may be difficult to define appropriate parametric feature models, and
more reliable association is possible through direct correlation of unprocessed observation
information with the map. Direct correlation is also a useful alternative in environments
amenable to feature-based methods, as it incorporates all available sensor information (i.e.,
does not reject unmodelled data) and avoids imperfect model-based classification.

Unprocessed data correlation, also called scan correlation or range-image registration,
is the process of aligning an observed set of (2-D or 3-D) points with a reference point set.
Thus, scan correlation may be defined as a function of the relative pose between the two
data sets.

For the mobile robot localisation problem, scan correlation is useful as a mechanism to
facilitate sensor-based dead reckoning, localisation from an a priori map [38], and off-line
map generation [128, 22, 82]. Presently, the implementation of real-time stochastic SLAM
using scan correlation is considered intractable, but recent proposals regarding incremen-
tal EM-based SLAM [130] and hybrid topological-metric SLAM [92, 68] show promise for
tractable and consistent correlation-based solutions.

A large number of correlation techniques have been proposed in the literature, as re-
viewed in the next section. However, most are based on heuristic cost functions and lack a
theoretical probabilistic derivation. The motivation of this chapter is to present a theoret-
ically grounded approach to scan correlation—derived from a stochastic sensor model—so
that the correlation procedure provides an accurate estimate of the relative pose uncertainty.

This chapter presents a method and justification for performing scan correlation, with
discussion of the following topics.

• Current methods for performing scan correlation are reviewed, with particular atten-
tion to their deficiencies concerning sensor modelling and uncertainty estimation.

• For the probabilistic representation of scan measurements, several different parameter-
spaces are considered. In particular, given a scan of 2-D points, the merits and
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Figure 4.1: Unprocessed laser scan of a mining tunnel. In this environ-
ment it is difficult to extract stable parametric features but there exists
ample information for scan correlation given the surface texture of the
tunnel walls.

limitations of a 2-D Cartesian-space representation are examined and compared with
those of higher-dimensional parameter-spaces.

• The 2-D parameter-space causes a scan to be interpreted according to a point-target
model. Assuming this model, a Bayesian likelihood function for scan correlation is
derived.

• Conversion from a scan of unprocessed point data to a 2-D probability distribution is
implemented using a sum of Gaussians representation. This representation is shown
to facilitate efficient calculation of the scan correlation likelihood function.

• Scan correlation is applied to unprocessed laser data (represented as Gaussian sums)
to perform two practical localisation tasks: maximum likelihood dead reckoning and
particle filter localisation.

Caveat. This chapter is quite disparate from the rest of the thesis, which is primarily
concerned with feature-based SLAM. The focus of this chapter is not SLAM but simply the
alignment of two point data scans in environments not suited to feature extraction. In this
chapter, scan correlation is investigated in a probabilistic manner, and the reader is assumed
to be familiar with the basic concepts of recursive Bayesian estimation. In particular, it
is necessary to understand terms such as probability density function (PDF) and likelihood
function. For a brief introduction to these concepts, refer to Appendix D.
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Algorithm 4.1: ICP(Po, Pr,x0)

x ← x0

while not Converged

do




E ← ∅
for each p ∈ Po

do




p
′ ← TransformPoint(p,x)

q ← FindNearestNeighbour(Pr, p
′
)

E ← E ∪ {p, q}
x ← CalculateLeastSquaresPose(E)

return (x)

4.1 A Review of Point Data Correlation Techniques

This section examines a selection of commonly used scan correlation methods, with a par-
ticular focus on whether these methods incorporate appropriate sensor uncertainty models.
The following review presents two non-probabilistic techniques, iterative closest point (ICP)
and the angle histogram, and several other methods that may be implemented in a proba-
bilistic fashion including grid correlation and particle filter localisation.

In the discussion below, the two scans are termed the reference scan and the observa-
tion scan, where the fixed reference scan defines the base coordinate frame. Correlation,
therefore, involves finding the pose of the observation scan relative to this base coordinate
frame.

4.1.1 Iterative Closest Point

ICP [13, 143] is arguably the most commonly used range-image registration technique,
with its popularity due mainly to its simplicity and efficiency. The basic algorithm is
shown in Algorithm 4.1. Let Po = {p1, ..., pm} represent the observation point set and
Pr = {p1, ..., pn} be the reference point set. The relative pose of the observation set is
denoted x. The algorithm is initialised with an initial pose guess x0 and, until the es-
timated pose satisfies some convergence criterion, it is iteratively refined by a process of
point-to-point data association and least-squares transformation. Each point p ∈ Po is first
transformed to the reference coordinate frame using the current pose estimate, and then
associated to its nearest neighbour in Pr. The original point p and its associate q are added
to an association set E. Finally, the pairs in E are used to calculate the relative pose that
minimises the least-mean-squared error between the associated points.

For each iteration, the nearest neighbour search can be performed in O(m log n) time
using an efficient search data structure (e.g., k-d trees [12, 101]), and the least-squares
calculation has a closed form solution [2, 73, 93] that can be performed in O(m) compu-
tations. Convergence of the algorithm occurs when the nearest neighbour for each p ∈ Po

does not change between iterations. However, it might also be determined by a least-mean-
squared residual threshold, or simply a fixed number of iterations k—in which case the total
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algorithm complexity is O(km log n).
There are three basic shortcomings to the ICP algorithm. First, it performs explicit

point-to-point data association each iteration (n.b., without injective mapping constraints),
which introduces error since the points in each scan represent a surface and not a set
of discrete locations.1 Second, ICP converges to a local minima and so requires a good
initial pose guess to find the global minimum. And third, the ICP result is a least-mean-
squares estimate where each association pair is equally weighted; there is no direct means
to incorporate modelled sensor uncertainty or to obtain an estimate of pose uncertainty in
the solution.

A precursor to ICP [33], which uses a reference map of line segments and performs cor-
relation with an observation point set, is worth noting for its efficiency and use in current
localisation systems [69, 68]. Also, a large selection of ICP variants have been proposed in
the literature over the past decade. These include improved convergence rate [93, 115], mod-
els for point location error [43], and a method for estimating the final pose uncertainty [124]
(although neither of the latter two variants are derived from models of sensor uncertainty).

4.1.2 Angle Histogram

The angle histogram method [71, 139] of scan correlation is specific to a planar sensor with
scanning-laser qualities. That is, the sensor must return a set of range-bearing measure-
ments equispaced in bearing. In addition, each scan is expected to cover a full 360◦ so as
to provide a circular (closed) sequence of measurements.

The essence of the angle histogram algorithm is as follows. Each measurement (ri, θi)
in a scan is projected into observer-centred Cartesian space. Given two consecutive mea-
surements, vi = (xi, yi) and vi+1 = (xi+1, yi+1), the angle of their vector difference is given
by

αi = arctan
yi+1 − yi

xi+1 − xi

The angle histogram is generated from the set of angles for each pair of adjacent scan
measurements. The shape of this histogram is invariant to pure rotation, which appears as
a phase shift. Thus, the amount of sensor rotation may be found by cross-correlation of
the two histograms. The relationship between phase shift and sensor rotation is valid even
when combined with a small quantity of sensor translation. Therefore, the change in sensor
pose is found by first rotating the observation scan by the calculated angle offset, and then
finding the translation offset using x and y histograms.

The angle histogram method does not appear to offer any advantage over ICP. It is
neither more efficient, more accurate, or simpler to implement. Perhaps the one benefit of
the angle histogram is that it does not require explicit point-to-point associations.

1The error due to discrete associations is usually small if the associated points represent nearby locations.
However, outlier associations, where associated pairs are very distant, can skew the least-squares solution. A
simple measure to improve outlier robustness is to ignore pairs with distance greater than a given threshold.
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4.1.3 Occupancy Grid Correlation

Occupancy grid maps (described in Section 2.1.1) use scan correlation to perform registra-
tion of the observed scan with the map [50, 128, 118, 82]. The method of registration is
2-D cross-correlation, which is usually implemented in the same manner as template match-
ing in image processing. That is, the observation grid is shifted by a given pose, and the
correlation value for this pose is calculated by (i) multiplying the overlapping grid cells
together, and (ii) summing this result for each cell in the observation grid. (Note, since
the observer pose varies in x, y, and φ, the search space is 3-dimensional. Thus, the two
grids do not overlap cleanly and interpolation techniques are required, as shown in [128] for
example. Also, the search-space is much greater than for 2-D, and cross-correlation may be
computationally infeasible without a priori bounds. This is also dependent on the tradeoff
between efficiency and granularity as discussed in Section 2.1.1.)

Occupancy grids represent sensor information in a high-dimensional parameter-space,
where each cell has an separate variable for its state between 0 and 1. The value and
correlation of these states is updated in a non-Bayesian manner according to geometrically
derived sensor models (e.g., see the sonar model in [50]). That is, a sensor is modelled
spatially, in terms of probability of occupancy, rather than by directly relating the mea-
surement uncertainty to the state of each cell parameter. This means that the relationship
between the sensor uncertainty and the uncertainty obtained from cross-correlation is not
precisely defined. Cross-correlation may still be probabilistic, but is not associated to the
sensor model in a Bayesian sense.

While occupancy grids may achieve good scan correlation results by virtue of the large
quantity of information stored in their grid cells, they fail to exploit the higher accuracy and
robustness available from a Bayesian model, and do not provide a theoretical justification
for the resulting relative pose uncertainty.

4.1.4 Probabilistic Methods

A number of recent scan correlation techniques claim to operate according to probabilis-
tic principles, meaning that correlation is driven by a likelihood function derived from a
stochastic observation model. Usually these methods are presented as maximum likelihood
algorithms, which attempt to find the relative pose value that maximises the likelihood
function, but a few proposals demonstrate full probability density estimation, combining
the likelihood function with prior information to calculate an a posterior PDF of the pose.

Two forms of maximum likelihood correlation appear commonly in the literature. The
first is ICP-like, iteratively searching for nearest neighbour data associations for each point
in the observation scan [108, 110]. Each association is given a likelihood value, and the prod-
uct of these likelihoods defines the scan likelihood. A maximum likelihood pose can be found
by sampling pose values within the solution space, usually employing a greedy optimisation
algorithm to converge to a local maximum. The problem with these ICP-based methods
is that the likelihood models do not accurately represent the sensor uncertainty. They are
typically based on geometric properties rather than a proper sensor model (e.g., in [108]
the likelihoods are simply functions of nearest-neighbour distance) and, more importantly,
they rely on an incorrect model of explicit point-wise association. The algorithm presented
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in [110] incorporates measures to account for correspondence error, and is a promising ICP
variant, but it remains an ad hoc geometric fix for these fictitious discrete associations.

The second common maximum likelihood correlation technique is grid-based, typically
using occupancy grids [50, 22, 82]. However, an alternative grid-based concept is probability
grids (see [125], for example), which are fundamentally different to occupancy grids. While
a 2-D occupancy grid defines a high-dimensional parameter-space equal to the number of
its grid cells, a 2-D probability grid simply represents a 2-D parameter-space. (In [96, 95],
a probabilistic grid is used to represent the uncertainty distributions of unprocessed sonar
ping returns. Note the difference between the sonar model in [96, 95] and the occupancy
grid sonar model in [50].) The main weakness of grids as a probability representation is
that they artificially dicretise the distribution (i.e, pixelation), which involves a considerable
loss of information. In some cases, better PDF representation might be obtained using, for
example, sums of Gaussians, wavelets, NURBS, and so forth. Using a 2-D probability
representation for scan correlation (of 2-D scans) is a primary focus of this chapter.

Estimation of the full a posteriori PDF is rarely applied to the scan correlation problem
because of computational complexity. However, a recent advance in general non-linear es-
timation called particle filtering (see Appendix D), which approximates general PDFs with
samples, enables tractable computation of many problems previously considered infeasible.
In [132], a particle filter is used to perform localisation from an a priori map via scan cor-
relation.2 This implementation permits direct estimation of multi-modal pose distributions
and so avoids the fragility inherent in the maximum likelihood approach.

4.2 A Probabilistic Representation for Unprocessed Data

To perform probabilistic scan correlation, it is necessary, first, to define an appropriate
parameter-space for the scan data and, second, to derive a Bayesian likelihood function
for the relative pose between two scans. This section addresses the first requirement: the
definition of a parameter-space, and the conversion of a scan of real data to a joint PDF in
this space. The derivation of a likelihood function, having specified a parameter-space, is
presented in Section 4.3.

For clarity, this discussion is given in terms of a 2-D laser scan consisting of n range-
bearing measurements. Each laser measurement observes the presence of a (diffuse re-
flective) surface within the envelope of its beam-width and maximum range. The actual
location of the observed surface is uncertain and is modelled by a Gaussian PDF. Thus, for
a set of n measurements, there is a set of n Gaussians each representing a discrete surface
location. These surface points are distinct from each other but may be correlated due to
their proximity, the smoothness of the environment, and the beam-width of the sensor.

The objective of this section is to represent the scan of measurements so that scan corre-
lation is both accurate and consistent. Two basic forms of state-space parameterisation are
considered. The first is a projection from 2-D measurement space to a 2-D Cartesian space,

2The implementation in [132] presents an interesting simplification to reduce computational load. The
likelihood function is built on a ray-tracing model, which makes an implicit data association for each range-
bearing measurement with its map intersection. Essentially, this implies that uncertainty is present in
the range measurement only (modelled as Gaussian) and both the bearing measurement and the map are
perfectly known.
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which represents world-coordinates. The second is higher-order, where the measurements
are mapped to a non-Cartesian parameter space of dimension greater than two.

The following discussion examines the transformation of the individual measurement
uncertainties to these spaces, and considers whether each parameter-space is a reasonable
representation of the original scan. The utility and limitations of each representation for
scan correlation is considered, with particular attention to the criteria below.

• Generality. The transformation from measurement to parameter-space should not
require restrictive models, as this is the primary reason for choosing scan correlation
over feature-based methods.

• Data association. Ideally, scan correlation should avoid data association thresholds.

• Accuracy and consistency. The resultant pose uncertainty from scan correlation
should be minimal, and consistent in the (weak) sense that the likelihood for the
true pose is non-zero.

• Tractability. Scan correlation should be computationally feasible in real-time.

4.2.1 Representation as a Two-Dimensional PDF

A 2-D PDF is generated from a scan of measurements by transforming each range-bearing
Gaussian to sensor-centred Cartesian space, and accumulating these distributions by scaling
and summing. The resulting Gaussian sum3 defines an uncertainty distribution over the
2-D Cartesian parameter-space. The details for this operation are presented in Section 4.4.

The 2-D parameter-space implies that the scan represents a single point target. This is
implicit in its dimensionality; the PDF defines the uncertainty of a random vector (x, y) for
which there can exist only a single true value (xt, yt).

This point target model has several advantages. First, it is general; conversion from mea-
surement uncertainties to the Cartesian PDF does not involve any feature models. Second,
since the model implies a single entity, there is no data association problem for scan corre-
lation. Alignment is determined by cross-correlation of the two scan PDFs (see Section 4.3
below). Third, cross-correlation of two Gaussian sums can be computed efficiently (see
Section 4.4) and does not incur the artificial pixelation of grid methods. And finally, this
model appears to produce accurate results in practice (see Sections 4.5 and 4.6).

Nevertheless, the 2-D parameter-space representation has two significant difficulties.
The first is obvious; the point target model is not a true representation of the actual data.
Plainly, the measurements describe n discrete points of an arbitrarily complex surface, not
the location of a single point target. The second problem is more subtle. The individual
measurement Gaussians are scaled before being added to the Gaussian sum, and the values
of these scaling terms, necessary for good results in practice, are difficult to justify in theory
(this issue is addressed further in Section 4.4.2).

3The transformed Gaussians will no longer be Gaussian due to the non-linear polar-to-Cartesian function.
However, Gaussian approximations to these PDFs are reasonable in practice. Also note, the PDFs for each
measurement must be combined by summation rather than multiplication; for further explanation, see
Section 4.7.
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The 2-D space representation effectively converts the interpretation of a scan from a
set of discrete surface measurements to a set of possible locations for a point target. The
distribution of one Gaussian in the sum says “the point target could be here” while another
says “or here” and so forth. Basically, the scan measurements can be interpreted as a 2-D
analogue of a sonar ping, where each sampled amplitude of the return signal indicates the
likelihood of a point target at a certain range.

While the 2-D model has serious imperfections, it is not entirely incorrect either. For
instance, for a single measurement, both the true and contrived interpretations state that
“there is a point target somewhere in this distribution.” More importantly, provided two
scans share at least some commonality, scan correlation using the 2-D PDF representation
will result in a consistent likelihood function for their relative pose. (That is, the likeli-
hood of the true relative pose will be non-zero, provided the scans actually share common
information and the individual measurement uncertainties are modelled consistently; they
need not be modelled as Gaussian.) This property arises from the likelihood function being
computed via cross-correlation of the two scans (see Section 4.3), which will give a non-zero
result for the true pose even if there is only common information from a single measurement
in each scan. Therefore, the 2-D model seems also to offer robustness to outliers and partial
views; this is examined further in Section 4.4.6.

The 2-D parameter-space model satisfies the four essential criteria set out at the begin-
ning of this section. However, in light of its deficiencies, a number of higher dimensional
models are considered as to their ability to better represent the scan data and to facilitate
scan correlation.

4.2.2 Higher Dimensional Alternatives

Since a 2-D parameter-space is insufficient to properly describe the scan, a complete solution
necessitates a higher-order parameter-space. Three higher-dimensional possibilities are con-
sidered in this section: feature-based parameters, measurement parameters, and occupancy
grids.

A feature-based parameter-space is obtained by specifying feature models, and clus-
tering and classifying the sensor measurements according to these models; this is simply
traditional feature-based tracking as covered in Chapter 3. Where applicable, the feature
models transform the measurement data to feature-space [f1, . . . , fk]T , and each new fea-
ture specifies an augmentation of the space. The drawbacks of this approach are well
known. Representation of the measurement data in feature-space is subject to restrictive
models, which ignore a high proportion of the available information and which may not
be appropriate in certain environments. Also, performing scan alignment incurs the data
association problem—finding correspondences between features from the two scans—which
can be fragile.

A preferable approach is one that avoids both feature models and data association.
One such approach is to define the parameter-space by the measurements themselves
[r1, θ1, . . . , rn, θn]T . Thus, a scan is represented without models and data association is
not meaningful, since a measurement from one scan observes a point on a continuous sur-
face and will not directly correspond to any particular measurement in another scan. In
this case, the full Bayesian solution to scan correlation is to define a likelihood function that
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models the probability of obtaining the second scan, conditioned on the state of the first
scan and their relative pose. However, definition of such a function is complicated because,
for any given relative pose, the likelihood of a measurement in the second scan may be
related to the existence of any number of measurements in the first.

Even if a reasonable likelihood function could be defined, the large state-space involved,
consisting of the relative pose and the measurements of the first scan, presents a still greater
problem. A recent general solution to the problem of tracking states without data associa-
tion, called unified tracking, is presented in [125]. The implementation of this method is in-
sightful particularly with regard to the tractability of tracking without data association. The
authors state that unified tracking “is computationally infeasible for problems involving even
moderate numbers of targets” [125, page 205]. They claim that it is practical for up to two
targets, but that efficient approximations to the full solution are necessary for applications
with greater target numbers. Therefore, it seems that, for higher-dimensional parameter-
spaces, there is no current, tractable solution to scan correlation without some form of
data association (which might be maximum likelihood, multiple hypothesis, heuristic, or
otherwise).

Occupancy grids are a high-dimensional parameter-space that do not require feature
models and permit feasible scan correlation. However, the occupancy grid solution is ad hoc
in the sense that the uncertainty and correlations of the cells are updated in a non-Bayesian
manner. This means that there is no theoretical relationship between the sensor uncertainty
and the uncertainty of the scan correlation result. Also, data association between parame-
ters is determined by an ad hoc metric of geometric proximity during cross-correlation. For
the purpose of scan correlation, occupancy grids offer no advantage over the 2-D parameter-
space model. They have no better theoretical justification, are expected to be less accurate
(due to pixelation), and are likely to be less efficient (depending on their granularity).

Of the higher-dimensional representations, the first two fail to meet the criteria spec-
ified at the beginning of this section. The feature-based parameter-space uses restrictive
models and data association, and the measurement-space representation is not tractable.
Occupancy grids satisfy the criteria in principle (although they implement heuristic data
association), but are a non-Bayesian solution that possess no better justification than the
2-D parameter-space approach.

4.2.3 Application of the 2-D Representation

In environments where reliable feature extraction is difficult, the 2-D parameter-space model
seems to be a reasonable, if imperfect, representation and superior to its higher-dimensional
alternatives.

However, the 2-D representation is subject to restricted application. It permits the
alignment of two point data sets and is, therefore, applicable to localisation from an a priori
map, where the map is the reference scan and the robot sensors obtain the observation scan.
It might also apply to batch map building, where a set of logged scans are aligned pair-wise
to produce a conglomerate off-line map.

But, the 2-D representation is not suitable for applications where the reference scan
information is updated by a recursive filter (i.e., the reference scan is non-static). This
excludes it from on-line map building and SLAM. Basically, a recursive estimate of the ref-
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erence scan will not result in an improved description of the environment but will eventually
collapse to a single point location (see Section 4.7 for further discussion).

The on-line mapping and SLAM problems must be represented by a higher-dimensional
state-space. For SLAM, the feature-based approach has known practical solutions and the
measurement-space concept (without data association) is at least theoretically sufficient.
Occupancy grids, on the other hand, are not suitable for SLAM as they do not maintain the
necessary correlations between their parameters. For on-line mapping, given location, the
feature-based and measurement-space methods are again applicable, and the occupancy grid
approach is also reasonable, as the correspondence heuristic between grid cells is sufficient
to produce a valid and effective map.

4.3 A Bayesian Likelihood Function for a Point Target Model

This section derives a likelihood function for scan correlation based on the point target
model. It shows that, given two scan PDFs, each representing the distribution of a single
point target, the likelihood function for their relative pose is computed by their cross-
correlation.

As a concrete illustration of scan correlation, this discussion is presented in terms of
robot localisation in a plane. Therefore, scan correlation becomes the alignment of an
uncertain observation to an uncertain map, where the map contains a single point landmark.
(Performing localisation in this manner is subject to a minor caveat. After alignment of
the first observation scan, the map and the robot pose become correlated and should no
longer be treated as independent when aligning subsequent observations. However, the
inconsistency due to this correlation is easily absorbed by adding process stabilising noise,
which means that the map can be treated as independent in practice.)

4.3.1 Notation

This section uses some specialised notation as follows. Given a 2-D random vector x ∈ X ,
its PDF is defined by the distribution function fx (x, y). The subscript denotes that this
function represents a PDF of x, and the scalar variables x and y are independent parameters
over the space X . If two random vectors a and b are concatenated as [a,b]T , their distri-
bution function is given by fab (·). For example, if a and b were 2-D and 1-D, respectively,
it would be fab (x, y, z).

The state at time k is the robot pose xk = [xk, yk, φk]T . The likelihood function for the
state is denoted Λ(xk) = fxk

(x, y, φ).

4.3.2 Robot Localisation in a Plane

In a plane, the robot pose is composed of three variables (xk, yk, φk). However, given a
single point-location landmark, as shown in Figure 4.2, it is possible to solve for only two
of these states, and therefore necessary to fix one of them to find a solution to the other
two. In this presentation, the heading value is assumed known such that φk = φo. The
exposition below shows that, for any fixed φk, the likelihood function for the robot pose



4.3 A Bayesian Likelihood Function for a Point Target Model 80

Figure 4.2: Two-dimensional robot localisation. The single point land-
mark is stored in the map as (xm, ym), and observed from the vehicle by
the measurement (xz, yz).

is given by the cross-correlation of the observation and map PDFs, and argues that this is
also the case if φk varies.

In Figure 4.2, the map defines the landmark location by xm = [xm, ym]T and the vehicle-
centred observation measures this landmark as xz = [xz, yz]T . Both xm and xz are random
variables with PDFs represented by fm (x, y) and fz (x, y), respectively (note that, fm (0, 0)
denotes the map density at the map coordinate origin, and fz (0, 0) is the measurement
density at the vehicle coordinate origin). The vehicle state is xk = [xk, yk]T with a known
heading φo.

The following derivation uses the method for transforming probability densities shown
in [109, pages 146 and 173].4 Given the independent PDFs fm (x, y) and fz (x, y), it is
desired to find the state PDF fxk

(x, y) (which is simply the likelihood function Λ(xk) for
fixed φk). The state is related to the observation by the following equation.

xk = xm − Rxz (4.1)

where R is the rotation matrix

R =
[

cos φo − sinφo

sinφo cos φo

]
(4.2)

Using the auxiliary variables a1 and a2 to provide four equations in four unknowns,
Equation 4.1 becomes

xk = xm − xz cos φo + yz sin φo

yk = ym − xz sinφo − yz cos φo

a1 = xm

a2 = ym

(4.3)

which is referred to functionally as (xk, yk, a1, a2) = g (xz, yz, xm, ym). This has the unique
4Thanks to Jose Guivant and Hugh Durrant-Whyte for their assistance with this derivation.
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solution
xz = (a1 − xk) cos φo + (a2 − yk) sinφo

yz = −(a1 − xk) sinφo + (a2 − yk) cos φo

xm = a1

ym = a2

(4.4)

The joint probability distribution for the transformation in Equation 4.3 is obtained as
follows (see [109, page 173]).

fxka (xk, yk, a1, a2) =
fzm (xz, yz, xm, ym)

abs (|∇gzm|) (4.5)

where the Jacobian ∇gzm is given by

∇gzm =
∂g

∂(xz, yz, xm, ym)
=




− cos φo sinφo 1 0
− sinφo − cos φo 0 1

0 0 1 0
0 0 0 1


 (4.6)

The determinant of ∇gzm is one and, since xz and xm are independent, Equation 4.5
becomes

fxka (xk, yk, a1, a2) = fz (xz, yz) fm (xm, ym) (4.7)

where the values of xz, yz, xm, and ym are the particular solutions found in Equation 4.4.
The PDF fxk

(xk, yk) is extracted from this result by integrating over all (a1, a2) (see [109,
page 125]).

fxk
(xk, yk) =

∫ ∞

−∞

∫ ∞

−∞
fz (b1, b2) fm (a1, a2) da1 da2 (4.8)

where b1 and b2 abbreviate the solutions for xz and yz, respectively.

b1 = (a1 − xk) cos φo + (a2 − yk) sinφo

b2 = (xk − a1) sin φo + (a2 − yk) cos φo

Intuitively, Equation 4.8 is interpreted as first rotating the observation PDF fz (x, y) by
φo and then performing two-dimensional cross-correlation with the map PDF. This can be
shown more clearly by defining the rotated observation xr = Rxz. Plainly, xz has the unique
solution xz = R−1xr and, following the same procedure as demonstrated in Equation 4.5,
the PDF of xr is

fr (x, y) = fz (x cos φo + y sin φo,−x sinφo + y cos φo) (4.9)

Therefore, Equation 4.8 may be rewritten as

fxk
(xk, yk) =

∫ ∞

−∞

∫ ∞

−∞
fr (a1 − xk, a2 − yk) fm (a1, a2) da1 da2 (4.10)

This result demonstrates that, for any fixed φk, the likelihood function Λ(xk) is calcu-
lated by the cross-correlation of the map and the rotated observation distributions. Fur-
thermore, for any fixed φk, the total probability mass of Λ(xk) is one and, therefore, the
probability masses for any two values of φk are equal. Thus, by rule of proportionality, it
follows that the set of cross-correlations for all φk constitutes a valid likelihood function
over the domain of xk as φk varies.
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4.4 Sum of Gaussians Scan Correlation

This section presents the conversion of a set of point measurements to a Gaussian sum
PDF, and derives the equations for the cross-correlation of two such PDFs. This discussion
is given in the context of a laser sensor, which observes scans of range-bearing measurements
swept in a 2-D plane.

The following topics are examined with regard to implementing Gaussian sum based
scan correlation.

• The equations for converting a scan of range-bearing measurements to a Cartesian
Gaussian sum are presented.

• Two possible scaling criteria for the individual Gaussians within the Gaussian sum are
proposed, with equal height scaling being deemed the more suitable representation.

• The cross-correlation equations for two Gaussian sum PDFs are derived, both for the
1-D and planar cases.

• A second correlation method is presented that treats the measurements in the obser-
vation scan individually rather than as a single entity.

• The likelihood functions produced by the two scan correlation methods from this
section are compared with the likelihood function resulting from explicit point-wise
data association.

4.4.1 Conversion to Gaussian Sum Representation

An n-dimensional Gaussian distribution, with mean value p̄ and covariance P, is defined
by the following equation.

g(x; p̄,P) � 1
(2π)n/2

√|P|exp
(
−1

2
(x − p̄)TP−1(x − p̄)

)
(4.11)

The integral (or, informally, volume) of this function over the space R
n is one and, therefore,

a scaled Gaussian αg(x; p̄,P) has a volume equal to α.
An n-dimensional sum of Gaussians PDF is defined as the sum of k scaled Gaussians,

G (x) �
k∑

i=1

αig(x; p̄i,Pi) (4.12)

where the sum of the scaling factors αi equals one (i.e., the total probability mass is one).
For the purpose of cross-correlation, the correct total probability is not relevant—only
relative scale is important. Therefore, in this thesis, the Gaussian sums do not require
normalisation (i.e., the αi’s need not sum to one).
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Example 4.1
Conversion of a laser scan to a sum of Gaussians. For a scan of k range-bearing measure-
ments, each measurement zi = (ri, θi) is first converted to sensor-centred Cartesian space.

x̂i = f (zi) =
[

ri cos θi

ri sin θi

]
Pi = ∇fziRi∇fT

zi

where the Jacobian ∇fzi is given by

∇fzi =
∂f
∂zi

=
[

cos θi −ri sin θi

sin θi ri cos θi

]

These Gaussian estimates are then compiled as a Gaussian sum as follows.

G (x) =
k∑

i=1

αi

2π
√|Pi|

exp
(
−1

2
(x − x̂i)TP−1

i (x − x̂i)
)

A complete theoretical basis for the values of the αi’s is not presently known. However, two
basic scaling criteria have been trialed experimentally, and the effects of these values on the
scan correlation results are discussed below.

4.4.2 Scaling Models for Gaussian Sum

An intuitive summation of the individual measurement Gaussians is to simply add them
without scaling.

G (x) =
k∑

i=1

g(x; p̄i,Pi) (4.13)

However, it transpires that this formulation gives a skewed representation of the environ-
ment, and it would seem that a more suitable scaling is possible. To illustrate, Figure 4.3
shows a scan of laser measurements transformed to Cartesian space, and Figure 4.4(a) de-
picts the Gaussian sum PDF for this scan, based on Equation 4.13. Since, each unscaled
Gaussian has equal (unit) volume, those with small uncertainty5 possess very high peaks,
indicating high likelihood. The effect of this scaling model on scan correlation is that the
short (highly certain) measurements swamp the cross-correlation result, and more distance
points have little influence.

The difficulty with scaling arises from the discrepancy between the physical reality of
the sensed measurements (i.e., discrete points on a surface) and the interpretation of the
Cartesian parameter-space model (i.e., distribution of a single point target). The intuitive
“equal volume” scaling model makes sense if each measurement actually does observe the
point target, as more a accurate measurement would give a better estimate of its location.
However, the individual Gaussians in the Gaussian sum must be understood as defining

5For the laser sensor, the measurement uncertainties in range and bearing are assumed constant. There-
fore, the uncertainty in Cartesian space increases with distance from the observer.
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Figure 4.3: Unprocessed laser scan measurements of a mine tunnel wall.

possible locations for the target, and a more accurate measurement is no more likely than
a coarse measurement. In fact, the inaccurate measurement, covering a wider region of the
state-space, actually conveys more information about the target’s possible location. (This
is clear from the beam-width of the laser sensor; an accurate near measurement detects the
likelihood of a target within a very small region, and so provides little information about
the environment, while a more distant measurement covers a broader spatial region.)

An alternative scaling model is to make each Gaussian equal height.

G (x) =
k∑

i=1

exp
(
−1

2
(x − p̄i)TP−1

i (x − p̄i)
)

(4.14)

In other words, each Gaussian has a scaling factor αi = (2π)n/2
√|Pi|. The Gaussian sum

PDF for the example scan is shown in Figure 4.4(b), and depicts a much more even spatial
representation. This “equal height” scaling model asserts that the point target is equally
likely to exist within the distribution of an accurate or inaccurate measurement, but that
the coarser measurement covers a wider spatial region and so conveys more information;
thus, the wider Gaussians have greater volume.
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(a) Equal volume Gaussians

(b) Equal height Gaussians

Figure 4.4: Two alternative Gaussian sum representations for the laser scan in Figure 4.3.
The first assigns each point measurement a Gaussian of equal volume. This results in very
high peaks for measurements with low uncertainty. The second assigns Gaussians of equal
height, which stipulates that very precise measurements contain less information about the
shape of the environment (i.e., smaller volume Gaussians), and produces a better spatial
description.
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4.4.3 Cross-Correlation in One Dimension

The likelihood function for correlating two Gaussian sum PDFs is derived here for the n-
dimensional case, but is strictly correct only for the 1-D case. That is, this form is valid
for higher dimensions only if the angular alignment (e.g., roll, pitch, yaw) between the two
data sets is fixed.

As preliminary information, the following two points are noted. First, the volume under
a scaled Gaussian is equal to the scale factor.∫ ∞

−∞
αg(x; p̄,P)dx = α

∫ ∞

−∞
g(x; p̄,P)dx

= α

(4.15)

Second, the volume obtained from the multiplication of two Gaussians∫ ∞

−∞
g(x; p̄,P)g(x; q̄,Q)dx =

∫ ∞

−∞
αg(x; r̄,R)dx (4.16)

is equal to the following (see Appendix E for derivation).

α =
1

(2π)n/2
√|P + Q|exp

(
−1

2
(p̄ − q̄)T (P + Q)−1(p̄ − q̄)

)
(4.17)

Therefore, given two Gaussian sums

Go (x) =
k1∑
i=1

αig(x; p̄i,Pi)

Gr (x) =
k2∑
i=1

βig(x; q̄i,Qi)

(4.18)

the likelihood function (i.e., cross-correlation) is calculated as follows.

Λ(xk) = Go (xk) � Gr (xk)

=
∫ ∞

−∞

k1∑
i=1

αig(u − xk; p̄i,Pi)
k2∑

j=1

βjg(u; q̄j ,Qj)du

=
k1∑
i=1

k2∑
j=1

αiβj

∫ ∞

−∞
g(u − xk; p̄i,Pi)g(u; q̄j ,Qj)du

=
k1∑
i=1

k2∑
j=1

αiβjγij (xk)

(4.19)

where the function γij (xk) is the cross-correlation of the two Gaussians g(x; p̄i,Pi) and
g(x; q̄j ,Qj). From Equation 4.17, this function is given by

γij (xk) =
1

(2π)n/2
√|Pi + Qj |

exp
(
−1

2
(xk + p̄i − q̄j)T (Pi + Qj)−1(xk + p̄i − q̄j)

)
(4.20)
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Algorithm 4.2: Likelihood(Go, Gr,xk)

Λ ← 0

t ←
[

xk

yk

]

R ←
[

cos φk − sinφk

sin φk cos φk

]
for i ← 1 to |Go|

do




p
′ ← t + Rp̄i

P
′ ← RPiRT

for j ← 1 to |Gr|

do




ν ← p
′ − q̄j

S ← P
′
+ Qj

γ ← 1

2π
√

|S|exp
(−1

2νTS−1ν
)

Λ ← Λ + αiβjγ
return (Λ)

4.4.4 Planar Cross-Correlation

For the planar case, such as the 2-D robot localisation problem, the state xk = (xk, yk, φk)
varies in φk and so Λ(xk) cannot be obtained directly by cross-correlation. However, given
the result in Section 4.3.2, it is sufficient to alter Equation 4.20 as follows,

γij (xk) =
1

2π
√|P′ + Qj |

exp
(
−1

2
(p

′ − q̄j)T (P
′
+ Qj)−1(p

′ − q̄j)
)

(4.21)

where p
′
and P

′
are the mean and covariance of the ith Gaussian in the observation PDF

transformed the the reference coordinate frame,

p
′
=
[

xk

yk

]
+ Rp̄i

P
′
= RPiRT

R =
[

cos φk − sinφk

sinφk cos φk

]

Algorithm 4.2 provides a simple implementation of the planar likelihood function (where
|G| denotes the number of Gaussians in a Gaussian sum G). For two Gaussian sums of
size k1 and k2, this algorithm has complexity O(k1k2) and, for larger PDF definitions,
is prohibitively slow for estimation methods like particle filtering. However, assuming the
Gaussians in each sum possess reasonably similar covariance and scale, the added likelihood
due to two particular Gaussians becomes negligible if the two-norm ||p′ − q̄j || is large. This
leads to the possibility of various optimisations, two of which are discussed below.
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First, the search space (in the reference Gaussian sum) can be partitioned so that, for
a given mean p

′
, only those Gaussians satisfying ||p′ − q̄j || < d are incorporated into the

likelihood calculation. This might be achieved by binning the mean values q̄j in a coarse grid
of granularity 2d. Alternatively, a sufficiently accurate result might be obtained by using
only the k nearest neighbours to p

′
. This method, implemented with k-d trees [12, 101], is

used in the experimental applications of this chapter.
A second optimisation is to cache a set of near neighbours for each Gaussian in Go,

and retain these while ever the state xk is reasonably close to its initial value. This is
particularly useful for maximum likelihood estimation, which will converge even if the near
neighbour sets are only updated every n iterations.

4.4.5 An Alternative Correlation Scheme

In the previous discussion, the reference and observation scans are both represented as
a Gaussian sum PDFs, but an alternative proposition is to consider each measurement
in the observation scan as an independent observation of the reference PDF. Thus, each
measurement determines a separate likelihood function

Λi (xk) =
k2∑

j=1

βjγij (xk) (4.22)

where γij (xk) is given in Equation 4.21. Notice that the scaling factor αi for each obser-
vation Gaussian is not required, since each measurement forms a unit volume PDF. The
combined likelihood for the observation scan, therefore, is the intersection of the individual
likelihoods.

Λ(xk) =
k1∏
i=1

Λi (xk) (4.23)

This correlation method, with due assumptions, is shown in Section 4.4.6 to produce more
optimal likelihood results than is obtained with a single observation PDF, but there are
several complicating issues.

First, the reference PDF is reused for each iteration of Equation 4.22. This correlation
between the likelihoods might be compensated by inflating the observation uncertainty
but, since each observation usually observes only a small portion of the reference PDF
(and recalling that the reference PDF is itself composed of independent measurements),
it is difficult to determine the quantity of this inflation. A better solution, perhaps, is to
use the correlated reference information without inflation, given the understanding that
Equation 4.23 will converge to a best fit of the reference PDF and not the true state of the
environment.

A second problem is that the observation scan not only observes parts of the reference
scan, but may also include additional measurements due to viewpoint variation, occlusion
and dynamic objects; corporately these are termed outlier measurements. The presence of
outliers means that a state value xk close to the true state may be made unlikely by the
multiplication of Λi (xk), where i represents an outlier measurement. This is particularly
so if the measurements possess bounded uncertainty, in which case the probability of the
true state may become zero. A work-around for this problem is to specify a probability of
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(a) A nominal likelihood function
(truncated Gaussian)

(b) Likelihood with probability
of false detection

Figure 4.5: Likelihood function with probability of false detection. Any
value Λ(xk) less than Pf becomes equal to Pf .

false detection Pf to set a minimum likelihood for any state value (see Figure 4.5). In other
words, given a particular state xk = x0, if Λi (x0) is less than Pf , then the measurement i is
assumed an outlier for x0. Determining an appropriate value for Pf is a matter of tuning.6

This method has not yet been implemented and is not used in the experimental appli-
cations below; all results using real data are obtained with the more conservative represen-
tation of a single observation scan PDF.

4.4.6 A Comparison of Correlation and Explicit Data Association

The two correlation methods described above are demonstrated via a simple 1-D example,
and their results are compared to the likelihood function obtained from explicit data as-
sociation (i.e., where each observation measurement is assigned to a particular reference
landmark).

The example depicts a simple case where the environment consists of two point land-
marks (e.g., two trees), and the reference scan represents them by two Gaussians of equal
uncertainty, and the observation scan is exactly the same as the reference. Two varia-
tions of this example are presented: the first where the two Gaussians are merged (see
Figure 4.6(a)) and the second where they are distinct (see Figure 4.7(a)). These instances
serve to compare the characteristics of the three association methods.

To begin with, the equations for the three versions of likelihood function are shown. Each
share the basic calculation of the correlation of two Gaussians where, from Equation 4.20,
the cross-correlation of two 1-D Gaussians is given by

αij (xk) =
1√

2π(σ2
i + σ2

j )
exp

(
−(xk + x̄i − x̄j)2

2(σ2
i + σ2

j )

)
(4.24)

6One important factor in the tuning of Pf is the local density of the reference PDF, which is dependent
on the total size of the reference scan. For a reference scan built from laser data, this difficulty may be
circumvented by not normalising the reference Gaussian sum. Other influences on Pf may perhaps be
subsumed by empirical tuning.
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Figure 4.6: Correlation results for merged measurements. The measurement Gaussians (a)
are merged, resulting in the likelihood functions shown in (b). Note, the constituent αij ’s
are shown in colour, while the resultant likelihood functions are black.



4.4 Sum of Gaussians Scan Correlation 91

−5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

(a) Scan Gaussian sum

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

(b) Likelihood functions

Figure 4.7: Correlation results for distinct measurements. The measurement Gaussians (a)
are well separated, resulting in the likelihood functions shown in (b).
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where i represents an observation Gaussian and j a reference Gaussian. In the equations
below, this area is denoted αij , without the implicit state parameter.

The first correlation-based likelihood function is for the case where the observation scan
forms a single Gaussian sum PDF. Thus, the reference and observation PDFs each consist
of two scaled Gaussians (with scale factors equal to 1

2).

Λ(xk) =
1
4
(α11 + α12 + α21 + α22) (4.25)

Ignoring the (irrelevant) constant term, this is expressed as

Λ(xk) = α11 + α12 + α21 + α22 (4.26)

Notice that this likelihood function is the union of the individual likelihoods.
The second correlation-based likelihood function is obtained when the observation mea-

surements are processed independently according to Section 4.4.5 (n.b., without inflating
the observation uncertainties).

Λ(xk) = (α11 + α12)(α21 + α22) (4.27)

This likelihood function is always less conservative7 than Equation 4.26 since it is the in-
tersection of the sums α11 + α12 and α21 + α22, which is more constrained than the union
of all α’s.

Finally, the third likelihood function (data association) is obtained by defining explicit
correspondences, 1 → 1 and 2 → 2, between the observation and reference measurements.

Λ(xk) = α11α22 (4.28)

In other words, this likelihood function is the intersection of the likelihoods for each corre-
spondence, and is clearly the least conservative of the three likelihood functions.

Examining the results of the two examples in Figures 4.6 and 4.7, the reference and
(identical) observation Gaussian sums for each example are shown in (a) and their resulting
likelihood functions are shown in (b). These results depict (top to bottom) Equations 4.26
to 4.28, respectively. The top result shows the four constituent αij ’s (note, all are Gaussian
with equal variance, and α11 and α22 have equal mean), and their sum; the middle result
shows α11 + α12 and α21 + α22, and their product; and the bottom result shows α11 and
α22, and their product. Note, each of these distributions is normalised to possess area equal
to one.

In both Figures 4.6 and 4.7, the first correlation method produces a likelihood function
that reflects the degree of overlap between the observation and reference PDFs. This can be
seen as a conservative likelihood function in the presence of outlier measurements (or miss-
ing data etc)—this is particularly apparent in Figure 4.7. The second correlation technique,
when compared in the two figures, produces a likelihood function that is more conservative
for merged measurements than for discrete measurements. That is, as the measurements

7The term conservative refers to the shape of a distribution. A flat distribution is totally conservative
with all states equally likely; a less conservative PDF is more peaked, with areas of concentrated probability
mass.
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become more discrete, the product of the α12 and α21 components approach zero, and
Equation 4.27 approaches Equation 4.28. Thus, Equation 4.27 correctly deals with data
association uncertainty from merged measurements provided each measurement in the ob-
servation scan does, in fact, correspond to something in the reference scan. However, it
fails to consider outlier measurements (and so requires a probability of false detection Pf ).
Finally, the likelihood function for explicit data association is the same in both figures,
as expected. This likelihood function provides greater accuracy than the correlation-based
methods if the associations can be guaranteed (i.e., data association constraints, if correct,
are a substantial source of information), but is inconsistent if the associations are uncertain
(as for merged measurements).

To summarise these results,

• Equation 4.26 is conservative provided some of the observation measurements corre-
spond to part of the reference scan.

• Equation 4.27 is conservative provided all of the observation measurements corre-
spond to part of the reference scan. To some extent this limitation may be reduced
by incorporating a probability for outlier measurements.

• Equation 4.28 is optimal provided the associations are known and correct, otherwise
it is optimistic.

4.5 Application: Maximum Likelihood Dead Reckoning

This application uses maximum likelihood scan correlation to perform laser-based dead reck-
oning. For each scan-pair, the predicted change-in-pose is equal to the maximum likelihood
estimate obtained for the previous scan-pair. The estimated change-in-pose is then obtained
by searching for the maximum scan cross-correlation using a greedy search method (i.e.,
the Nelder-Mead downhill simplex method [107, 112]). Note, these results do not supply
any measure of uncertainty.

4.5.1 Results

The results for the internal road environment are shown in Figure 4.8. The laser data used
here is the same as used for feature-based dead reckoning in the previous chapter.

These results are comparable to the results of the previous chapter but are less accurate
for a number of reasons. First, for many scan-pairs the likelihood function was multi-
modal and, on several occasions, the greedy optimisation converged to the wrong mode.
Second, even when converging to the correct mode, the optimisation step was run for a
fixed number of iterations, and may not have converged completely; (the feature-based es-
timate, on the other hand, is closed form). Third, in some regions there was insufficient
common information between scans to allow proper correlation and, while this was detected
in the feature-based implementation, it was not detected here and spurious estimates were
obtained. (Note, lack of correlation information might be detected by examining the non-
normalised value of the maximum cross-correlation.) Finally, the explicit batch data associ-
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Figure 4.8: Maximum likelihood dead reckoning in the internal road envi-
ronment. The result here is rather less accurate than was obtained using
the feature-based approach.

ation used by the feature-based method imparts substantial information that is unavailable
to correlation methods.

The results for the mine tunnel environment are shown in Figure 4.9 (see Appendix A.3
for a description of this environment). In this environment reliable geometric features are
difficult to obtain, although some efforts have been made to do so using points of maximum
curvature [94]. Nevertheless, the mine walls are rich in information (highly textured),
and permit extremely accurate and unambiguous correlation-based estimation. A smooth
and precise dead reckoning trajectory is shown; note that the apparent discontinuity at
coordinates (72, 2) is, in fact, where the vehicle made a 3-point turn.

In addition to the vehicle trajectory, the unprocessed laser measurements are pictured
in Figure 4.9, projected onto their global locations according to the estimated pose of the
laser for each scan. This gives a clear indication of the precision of the dead reckoning result
as the overlaid points produce walls about 10cm thick—which is plus-minus the laser range
resolution (see Figure 4.10).
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Figure 4.9: Maximum likelihood dead reckoning in the mine environment. Here geometric
features are not readily available but excellent results can still be obtained (as demonstrated
by the shape of the walls formed by plotting laser points at their predicted global locations).
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Figure 4.10: Mine walls depicted by unprocessed laser measurements.
These two figures are characteristic of the scan correlation dead reckoning
result, where the projected laser points form walls with about ±5cm
accuracy.

4.5.2 Multimodal Likelihood Functions

The fragility of maximum likelihood estimation is primarily due to the ambiguity of multi-
modal likelihood functions. This was true in the internal road environment, where tilting
of the laser sensor observed varying cross-sections of the world, including different layers of
undergrowth and other clutter.

Two examples of multimodal likelihood functions are shown here from data obtained
in the park environment. The first scan-pair, in Figure 4.11, shows a scene containing
tree trunk features and also a large section of spurious returns, in the bottom-left corner,
due to ground sweeps. The resulting likelihood function shows a narrow peak with mode
(0.83,−0.03,−0.00) representing the correct change-in-pose, and a broad peak with mode
(1.48,−1.09,−0.04) due to the apparent motion of the ground sweep. Note that the incorrect
mode is more likely than the correct one.

The second scan-pair, in Figure 4.12, again depicts a scene consisting mostly of trees,
but this time it also contains a set of returns, in the bottom-left corner, from a moving
vehicle. The likelihood function shows a narrow peak at (0.66,−0.02, 0.00) for the true
change-in-pose, and a long thin distribution with mode (−1.70,−1.20,−0.01) showing the
relative motion of the observer with respect to the (moving) observed vehicle. Once again,
the false mode presents the greater likelihood.
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Figure 4.11: Multimodal likelihood function due to ground sweep. Notice
that the maximum mode is not the correct mode.
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Figure 4.12: Multimodal likelihood function due to dynamic object (mo-
tor vehicle).
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4.5.3 Discussion of Results

One of the key points to be learned from these results is that unprocessed scan correlation,
which uses all the available information, is not necessarily more accurate than feature-based
methods that use only part of the available information. This counter-intuitive outcome
may be primarily attributed to two factors. First, the ability of feature models to reject
spurious data makes use of a priori knowledge that certain formations in the data are more
reliable than others. For example, data that resembles a tree trunk is likely to be reliable,
while disordered data, such as a ground sweep, is not. Second, explicit data association,
when correct, is a significant source of information and markedly constrains the resulting
relative pose esimate (as shown in Section 4.4.6).

In environments where reliable feature extraction is difficult, scan correlation is undeni-
ably a valuable approach. The results in the mining tunnel demonstrate the quality of the
alignment accuracy possible from distinctive, but difficult to model, data.

The multimodal results from the park environment show that dynamic objects (e.g., peo-
ple, cars, ground sweeps) can induce strong alternative modes, which can cause maximum-
likelihood scan correlation to fail. Thus, in environments susceptible to multiple modes, it
may be necessary to maintain a full representation of the vehicle pose PDF.

4.6 Application: Particle Filter Localisation

This section presents an implementation of particle filter localisation in the mining tunnel
environment.8 An off-line map of the mine is created from the laser data and dead reckoning
results of the previous section. A different set of laser data, where the vehicle travels back
along the tunnel in the opposite direction, is used as the observation data set.

The off-line map was created in a rather ad hoc manner to produce a single reference
Gaussian sum. Basically, the unprocessed laser points are located in the global reference
frame according to the maximum likelihood dead reckoning estimate. Each point represents
a unit-height Gaussian, as before, and this set of Gaussians is culled—retaining points on the
basis of minimum determinant, representing minimal spatial area—to reduce the number
of points while maintaining a reasonable density. In other words, points are compared with
other points in a small neighbourhood, and the point with the smallest determinant is kept,
while the others are removed from the map. Thus, the map Gaussian sum is composed of
a minimal representative point set.

This experiment uses a naive realisation of the particle filter—without provision for the
problems of sample impoverishment or inadequate sample coverage. It is assumed that the
process noise provides sufficient roughening to prevent impoverishment, and the sensor noise
is broad enough to permit reasonable overlap between the prior and posterior distributions.

4.6.1 State Vector and Process Model

The vehicle state is represented by its position and velocity as follows.

xk = [xk, yk, φk, ẋk, ẏk, φ̇k]T

8Discussion of particle filter concepts and implementation is provided in Appendix D.
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Note, the pose (xk, yk, φk) is the vehicle pose with respect to the global coordinate frame,
while the velocity (ẋk, ẏk, φ̇k) is the change-in-pose with respect to the vehicle-centred coor-
dinate frame. This form permits a straightforward realisation of a constant velocity process
model.

The six-element state means that a constant velocity state transition model can be
derived that satisfies Markov assumptions (i.e., the predicted state x̂−

k+1 is dependent only
on the previous state estimate x̂+

k ). The process model, therefore, is given by

xk+1 =




xk + ∆T (ẋk+1 cos φk − ẏk+1 sinφk)
yk + ∆T (ẋk+1 sinφk + ẏk+1 cos φk)

φk + ∆T φ̇k+1

ẋk + ∆Tq1

ẏk + ∆Tq2

φ̇k + ∆Tq3




where ∆T represents the change-in-time, and q1, q2 and q3 are independent random variables
representing the uncertain change in velocity due to accelerations. The values for q1, q2 and
q3 are drawn from zero-mean Gaussian distributions with standard deviations 1.5m/s2,
1.5m/s2, and 0.3rad/s2, respectively. Notice that the process model uses the predicted
velocities for time k +1 to predict the vehicle pose. These values introduce the acceleration
uncertainties into the pose prediction and, in doing so, add roughening noise to the samples
of the next prior; thus, uncertainty in pose is due entirely to acceleration uncertainty.

4.6.2 Likelihood Modification

The structure of the mine environment necessitates a modification to the likelihood func-
tion obtained directly from scan correlation. The problem is that the robustness of cross-
correlation to outlier measurements produces an over-conservative likelihood in the direction
of the mine walls.

A typical likelihood function from the mine environment is shown in Figure 4.13, which
illustrates the extended likelihood tails in the direction parallel to the mine walls. (Note,
the likelihood is reasonably narrow in the perpendicular direction.) Essentially, the char-
acteristic wall texture, which indicates the most likely vehicle pose, is not very distinctive
for the scan correlation method described in this chapter (since it fails to penalise outlier
measurements). The alternative scan correlation method in Section 4.4.5 might perhaps
address this problem without having to resort to the ad hoc modification described below.

The solution chosen in this application is to use the basic cross-correlation method (i.e.,
where the observation forms a single PDF for correlation with the reference PDF) and
modify the resulting likelihood to reduce the tail thickness. The modification is simply
to subtract half the maximum sampled likelihood from the likelihood weight of each pose
sample.9

Λk(i) = Λk(i) − max {Λk(i)}
2

Likelihood samples with Λk(i) < 0 are assigned zero likelihood Λk(i) = 0.
9The likelihood of each state sample is dependent only on the pose portion (xk, yk, φk) of the state vector,

not the velocity portion (ẋk, ẏk, φ̇k).
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Figure 4.13: Likelihood function along a straight tunnel section. Cross-
correlation produces reasonably narrow peak in the direction perpendic-
ular to the walls but is over-conservative along their course.

4.6.3 Results

An initial sample set of 3000 particles is drawn such that the pose estimate has mean
[81m, 96m,−2rad] with uniform distribution in the range [±6,±8,±3.5], and the velocity
estimate has mean [3.9m/s, 0.0046m/s, 0.0046rad/s] with Gaussian distribution governed
by the standard deviations [.2, .2, .02]. The “true” initial state was somewhere close to
x0 = [84.8, 100.9,−2.1, 3.8, 0.0036, 0.0055]T .

With each subsequent iteration of the particle filter, the number of resampled particles is
1000. The first six iterations are shown in Figure 4.14. Notice that after the first iteration,
the sample distribution is multimodal, and this quickly settles into two dominant modes due
to symmetries in the map structure. The distribution then converges to the true mode after
six iterations. Notice also that this implementation does not make use of “coastline” infor-
mation, which would constrain particles to within the mine walls (i.e., prior samples outside
the mine walls would have zero likelihood); this constraint is not particularly advantageous
here after initial convergence.

The localisation results for the entire run are shown in Figure 4.15. This figure gives
the mean pose estimate for each iteration as a black line and, at selected intervals, shows
the full prior and posterior sample sets. Note, the apparent discontinuity at coordinates
(35, 25) is actually a 3-point turn.

The (x, y) posterior standard deviation reached as high as 1.5m in the direction parallel
to the tunnel walls along some straight sections. However, it was typically less than 0.1m in
the direction perpendicular to the walls, and similarly less than 0.1m in all directions as the
vehicle approached distinctive regions such as tunnel junctions. Clearly, this particle-based
localisation result is quite accurate and robust.
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Figure 4.14: First six iterations of localisation. The green samples are the prior (with
green sample covariance ellipse). The black samples are the posterior (with black sample
covariance ellipse). The red points are the unprocessed laser data projected from the most
likely posterior sample.
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Figure 4.15: Particle filter localisation. The mean pose for each iteration
is depicted by the black line. The prior (green) and posterior (black)
samples are shown at periodic intervals along with the unprocessed laser
scan (red).
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4.7 Remarks: A 2-D PDF for Map Building and SLAM

This chapter is, in part, a response to the work in [95] with regard to the use of a 2-D
Cartesian parameter-space as the probabilistic representation of a 2-D environment. A main
goal of this chapter is to show when and where a 2-D PDF is an appropriate representation,
and how it should be interpreted.

The work in [95] presents experimentation in a subsea environment using a scanning
sonar sensor. Each radiating sonar “ping” is modelled by a sum-of-Gaussians uncertainty
in range and a Gaussian in bearing, indicating the likelihood of a point-target location.
This polar PDF is then transformed to observer-centred Cartesian space. The individual
ping PDFs, for a full rotation of the sonar, are accumulated into a joint “scan” PDF via
multiplication.10 The scan PDFs may then be used to perform localisation (through scan
correlation), map building (multiplication of the scan PDF with an accumulating map PDF,
given location), or SLAM.

The fundamental assumption in [95] is that a 2-D PDF is capable of representing the
shape of a complex environment and can provide the basis for multiple sensor Bayesian
data fusion.

This chapter contends that the use of a 2-D PDF for map building or SLAM is flawed;
map building will produce nonsense and SLAM will diverge. The Gaussian sum representa-
tion for a sonar ping is valid, but its fusion with other pings via multiplication is incorrect.

Inherently, the 2-D PDF represents the uncertainty distribution of a single point-location
target. Thus, the sampled amplitudes of a sonar ping, which measure the likelihood of a
point target versus range, are reasonably represented. The Gaussian sum approximation
of the ping is also reasonable, and the set of Gaussians in the sum might be interpreted
as saying “the true state is here or here.” On the other hand, the fusion of measurements
by multiplication is equivalent to saying “the true state is here and here.” This is not a
reasonable interpretation of the data, as each ping does not observe the same point target
but different aspects of a non-point surface. Recursive estimation with this data in a 2-D
parameter-space is inconsistent.

The apparently reasonable results in [95] are most likely an artifact of using Gaussians
(because of their infinite tails), and a counter example can be given by considering a ping
with bounded distribution in bearing. In this case, map building (for example) would fail
since multiplication of the map PDF with the ping PDF would set every part of the map
outside the bearing bounds irrevocably to zero likelihood. Circumventing this problem, by
specifying which portions of the map are affected, would involve extremely ad hoc tinkering
with the estimation process.

The conclusion of this chapter is to claim that a 2-D PDF representation is suited
only for tasks like scan correlation and localisation. At most, it might be used to align
a set of scans, using a batch process (possibly EM), such that the resulting “map” is the
sum of the aligned distributions, which might be used for localisation. It is not suitable
for recursive estimation problems, such as map building or SLAM, which will inevitably
converge (collapse) to a single point.

10Accumulation into a “scan” PDF is just an implementation detail to simplify scan correlation. Locali-
sation, map building and SLAM might equally be performed using the individual ping PDFs directly.
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4.8 Summary

This chapter examines scan correlation as an alternative to feature-based data association.
Scan correlation involves finding the relative pose between two unprocessed point data sets,
so that the data sets are aligned. A review of current correlation methods—ICP, angle
histogram, occupancy grids, and probabilistic methods—argues that most are deficient in
their use of sensor uncertainty. The goal of this chapter, therefore, is to formulate a scan
correlation method that incorporates sensor uncertainty appropriately.

If a scan of data is represented in Cartesian space by a 2-dimensional PDF (or 3-D
PDF for a 3-D data set), this distribution is implicitly interpreted as defining a single point
target. Higher-dimensional parameter-spaces might permit more realistic interpretations
of the data, but are subject to other limitations (e.g., they require feature models, are
computationally intractable, or lack theoretical justification).

A Bayesian likelihood function for scan correlation, using the “point-location target”
model, is shown to be computed via cross-correlation of the two scan PDFs.

A 2-D sum of Gaussians is proposed as a PDF representation for point data sets where
the individual point distributions are Gaussian. This representation is shown to permit
efficient scan cross-correlation. Two variants of scan correlation are presented. The first
is straightforward cross-correlation between two scan PDFs, and the second involves cross-
correlation of the reference scan PDF with individual measurement Gaussians from the
observation scan. The first variant is robust to outliers and viewpoint variation, while the
second is less robust but can be more accurate.

Gaussian sum scan correlation is demonstrated via maximum likelihood dead reckoning
in an outdoor environment and in a subterranean mining tunnel. This application gives good
results but maximum likelihood estimation is fragile for multimodal likelihood functions. A
second application for scan correlation is particle filter localisation, again in the mine tunnel,
which shows that the likelihood function gives an accurate and conservative estimate of pose
uncertainty.



Chapter 5

Considerations for SLAM in
Moderate-Sized Environments

This chapter is concerned with the practical realisation of stochastic SLAM in small to
moderate scale environments. The qualifier “moderate” refers to an environment size where
the number of stored features (i.e., computation) and non-linearities are small enough to
permit straightforward implementation of the SLAM algorithm as presented in Section 2.2.

The first consideration, particularly in dynamic environments with non-static and tem-
porarily static entities, is feature management—the addition and deletion of map features.
Without mechanisms to minimise the addition of non-static or unstable features, and to re-
move obsolete or redundant features, the SLAM map will progressively accumulate clutter.
Eventually, this clutter will lead to either excessive computational load or data associa-
tion failure. Thus, feature management is an essential requirement for successful long-term
deployment.

The second consideration concerns the cycle detection problem. While batch data asso-
ciation (such as CCDA) yields reliable association within local regions, it is an insufficient
mechanism for robust cycle detection, and may provide little better reliability than individ-
ual (i.e., one assignment at a time) association. This chapter describes when this problem
will occur and a simple method for its solution.

The feature management and cycle detection concepts are illustrated with experimental
SLAM results, performed using the basic SLAM implementation described in Section 2.2
and the CCDA algorithm.

5.1 Feature Management

Feature management is a major contributing factor to SLAM being a harder problem than
a priori map localisation; not only is it essential to ensure correct associations between
observed and stored features, but it is also necessary to manage measurements that fail these
validation tests. Non-matched observations might be due to dynamic objects, anomalous
feature extraction, outlier measurements of map landmarks, or measurements of landmarks
previously unseen. SLAM requires that the last of these cases is detectable, while rejecting
the others, so as to permit map extension.
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This section is concerned with three aspects of feature management for dynamic envi-
ronments.

• Feature addition. Non-static or unstable features are avoided by deferring addition
into the map until satisfactory evidence of stability is obtained. The method of con-
strained initialisation is examined as a mathematically consistent way to incorporate
tentative observation information.

• Removal of redundant features. It is not necessary to retain all static features to build
an effective map, and the removal of extraneous features (i.e., density control) can
deliver substantial computational saving. Measures are discussed for assessing feature
reliability and information content as deletion criteria.

• Removal of obsolete features. If the structure of the environment changes over time,
those landmarks ceasing to exist should be removed from the map. By deleting fea-
tures that are predicted visible, but are not observed, the map automatically adjusts
to change.

5.1.1 Feature Addition

The standard procedure for deferring feature addition is to add new features to a “tenta-
tive” list, and transfer features from this list to the map once they have been reobserved
sufficiently often. Thus, on obtaining a new observation, an attempt is made first to asso-
ciate it with a feature in the map, then to a feature in the tentative list and, failing that, it
becomes a new tentative feature. A series of associations to a particular tentative feature
relegates it to the “confirmed” map, while failure to reobserve a tentative feature results in
its demise.

In [53], SLAM is performed using sonar, which is “notorious for exhibiting drop-outs,
false returns, no-returns and noise.” To circumvent this problem, all measurements not
matched to known map features are stored in a list as potential features. These are retained
for N time-steps and are discarded if not reobserved during this time. Each time-step a
search for clusters1 of M ≤ N measurements is made in the tentative list and, if found, each
cluster defines a new confirmed map feature.

A similar approach is presented in [42], where each tentative landmark has a counter for
the number of times it is reobserved. A tentative feature is transferred to the map once a
sufficient number of associations have occurred, or deleted if not observed for a given period
of time.

5.1.2 Constrained Initialisation

The issue of feature initialisation is, in essence, an issue of data association—whether or not
a set of subsequent observations correspond to a particular tentative feature. In ascribing

1Clustering is determined via pair-wise compatibility using the NIS validation gate. Each measurement
in a cluster must be from a different time-step and must be compatible with every other measurement in the
cluster. Typically, the NIS calculation for tentative features is not performed correctly; this is addressed in
Section 5.1.2.
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associations, however, the calculation of appropriate validation gates for tentative features
is a non-trivial task and is frequently done incorrectly. A related problem is the matter of
transferring the accumulated observation information to the map once a feature has been
confirmed, and this is usually carried out in a very suboptimal manner. In the discussion
below, the method of constrained initialisation [140] is shown to address both of these
problems.

The exposition in [42] provides a good example of the usual approach to the initialisation
problem. A potential feature xi is obtained from an observation z = [r, θ]T with covariance
R. [

xi

yi

]
= gi (xv, z) =

[
xv + r cos(θ + φv)
yv + r sin(θ + φv)

]
(5.1)

The covariance of this feature is given by

Pi = ∇gxvPv∇gT
xv

+ ∇gzR∇gT
z (5.2)

where ∇gxv and ∇gz are the Jacobians of gi (xv, z) with respect to xv and z, respectively,
as given in Equations 2.29 and 2.30 in Section 2.2.4 (notice that Equation 5.2 is simply the
bottom diagonal of Equation 2.31). Having similarly obtained another potential feature xj ,
the innovation (and innovation covariance) between them is calculated as follows.

νij =
[

x̂i − x̂j

ŷi − ŷj

]
(5.3)

Sij = Pi + Pj (5.4)

Association validation is then determined via the NIS gate.

Mij = νT
ijS

−1
ij νij < γ2 (5.5)

There are two suboptimal consequences of this approach. First, the validation gate
is under-constrained since the innovation covariance Sij does not include the correlations
between features xi and xj (resulting from their correlations with the vehicle). Thus,
associations may be made that should not be. Second, since these correlations have been
lost, only the final observation can be used when initialising a confirmed feature into the
map; all preceding observation information for the feature will be lost.

Constrained initialisation [140] is an optimal and consistent mechanism for feature ini-
tialisation, which allows immediate addition of tentative features into the map but defers
data association until the feature is confirmed. This method permits fully constrained data
association and conserves all tentative observation information.

Consider the following example where there is an augmented state vector xa = [xT
v ,xT

m]T

that is subsequently augmented with two tentative features xi and xj .2 The covariance of
the map may, therefore, be represented by

Pa =




Pv Pvm Pvi Pvj

PT
vm Pm Pmi Pmj

PT
vi PT

mi Pi Pij

PT
vj PT

mj PT
ij Pj


 (5.6)

2State augmentation is performed using the procedure shown in Section 2.2.4. This method is known to
be consistent—it adds no information to the older portions of the map and does not involve data association.
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If, at some stage, the features xi and xj (and, perhaps others) are found to represent the
same (new) landmark, they can be combined by constraining their estimates. On the other
hand, if a tentative feature is not reobserved within a reasonable period, it is deleted from
the map.3

Data association is performed by way of a perfect “virtual” observation zij = xi − xj = 0,
stating that the two features are equivalent.

ẑij = hij (x̂a) =
[

x̂i − x̂j

ŷi − ŷj

]
(5.7)

This constraint has the following innovation and innovation covariance.

νij = zij − hij (x̂a) = −hij (x̂a) (5.8)

Sij = ∇hxaPa∇hT
xa

(5.9)

where the Jacobian ∇hxa is given by

∇hxa =
∂hij

∂xa

∣∣∣∣
x̂a

=
[

0 . . . 0 1 0 −1 0
0 . . . 0 0 1 0 −1

]
(5.10)

From the sparsity in ∇hxa , a more efficient evaluation of the innovation covariance is pos-
sible.

Sij = ∇hr

[
Pi Pij

PT
ij Pj

]
∇hT

r (5.11)

where the reduced Jacobian ∇hr is

∇hr =
[

1 0 −1 0
0 1 0 −1

]
(5.12)

The resulting NIS value (using Equation 5.5) correctly includes the cross correlations Pij

for properly constrained gating.
Having confirmed that a set of tentative features represent the same landmark, a final

constrained estimate is obtained through the normal Kalman filter update equations pre-
sented in Section 2.2.3 (using Equations 5.8 and 5.9 in place of Equations 2.17 and 2.18).
This causes the constrained features to each possess the same value (and correlations), and
so the set of redundant estimates can be simply deleted from the map. A complete discus-
sion of constrained initialisation is provided in [140], including proof that the solution is
equivalent to that obtained without deferred data association.

5.1.3 Density Control

In many environments, it is possible to obtain many more static landmarks than are neces-
sary for accurate navigation, and the increase in information is outweighed by the increase
in computation and storage. This is particularly so when features are unevenly distributed

3Deletion of a feature from the SLAM map has been shown to be consistent [40] and, in the case of
feature initialisation, no information is lost save the location of the tentative feature.
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or clustered. The aim of density control, therefore, is to determine which subset of features
to retain, and which to remove, so as to obtain a “best” minimal map.

Presented in [40] are two important characteristics of the stochastic SLAM algorithm
with regard to feature removal.

• A feature can be deleted (by removing the appropriate elements from the state vec-
tor, and the associated rows and columns of the state covariance matrix) without
compromising the statistical consistency of the map.

• The accumulated information of a deleted feature must be discarded, and cannot be
reinstated if the feature is reobserved; the feature must be initialised using only the
new observation information. Conversely, reusing the old information will result in an
inconsistent map.

In [40], the information content of a particular feature xi is specified as the inverse of
the trace of its covariance Pi (a submatrix of the state covariance). The following strategy
is proposed to permit feature removal with minimal information loss. At each time-step,
those map features transitioning from visible to not-visible are stored in a list and, whenever
the vehicle has travelled a distance interval greater than dv, a single feature from the list
is retained (i.e., the one with maximum information) and the rest are discarded from the
map. The result is that the landmark density outside the vehicle field-of-view becomes
closely related to the distance dv. Using this strategy, experimental results in an indoor
environment showed that over half the map features could be deleted without significant
change in SLAM accuracy.

Another criterion for feature removal is a measure of “quality” as suggested in [42], where
at regular intervals (perhaps again using the distance dv) those features below a fixed quality
threshold are deleted. The quality measure given in [42] is determined from the innovation
sequence for each feature as follows. Suppose feature xi has been observed n times, then
the innovation sequence for this feature is {ν1, . . . , νn} with covariance {S1, . . . , Sn}. The
quality of this feature, therefore, is given by

Qi =

∑n
j=1

1

2π
√

|Sj |
exp
(
−1

2νT
j S−1

j νj

)
∑n

j=1
1

2π
√

|Sj |
(5.13)

which is the normalised sum of association likelihoods (see Equation 3.2 in Section 3.1.2).4

This quality measure is essentially an indicator of feature stability and may also be useful
as a criterion for feature addition.

In this thesis, a third criterion for feature removal is proposed: feature visibility. This
expresses that the utility of a particular feature is dependent on the size of the region from
which it is observable. In a sense, feature visibility is similar to information content—the
more frequently a feature is observed, the more certain its location—however, there is a
significant difference, which is well illustrated by the case where the vehicle is stationary.
Repeated observations of a feature from a fixed location serves to ever reduce its uncertainty

4Note, the likelihood formulation in Equation 5.13 represents the particular case where the innovation
vector is of dimension 2 (i.e., for a range-bearing observation of a point feature).
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(i.e., increase information) but says nothing about the size of its visibility region, which may
be arbitrarily small due to occlusion from surrounding objects.

For the SLAM problem, feature visibility is generally more important than information
content, but this is not necessarily always the case. The essential measure of a feature’s
utility is the frequency with which it is observed—thereby enabling the robot to gauge its
pose—and observation frequency is a function of the size of the feature’s visibility region
and the quantity of time the robot spends in that region. As a measure of utility, the size
of the visibility region indicates potential observation frequency, and is the better measure
if the robot trajectory is unconstrained (i.e., the robot may travel anywhere within the
environment). On the other hand, information content provides an indication of past ob-
servation frequency, and is therefore a better utility measure if the robot is constrained to
follow previous actions and trajectories (e.g., the robot trajectory might consistently favour
a less visible feature). Note, further complication to measuring utility is introduced by the
interaction of multiple features. For example, a feature with small visibility region and low
information content becomes important if it is the only feature visible from a certain pose.
Another feature may be of better quality, but might always share visibility with other near
features.

The following metric for quantifying visibility is used in this thesis. A feature’s visibility
upon initialisation is zero and, whenever the feature is observed for two consecutive scans,
its visibility rating is increased by the distance travelled by the vehicle over that interval.
While this metric is not a very accurate representation of visibility (and, no doubt, better
metrics are possible), it was found to be sufficient for the experimental purposes of this
thesis. Essentially, it is a compromise between visibility and information content; it does
not actually specify a region of visibility, but rewards feature utility as a function of both
observation frequency and distance travelled.

The strategy for feature removal, therefore, is as follows. The vehicle field-of-view is
specified by a bounded region and, each time-step, a set of features transition from inside
to outside this region. If a transitioning feature has no neighbours closer than dv, it is
retained. If, however, it has a neighbour closer than dv with greater visibility, it is removed.
On the other hand, if the neighbour has lower visibility and is also outside the field-of-view
region, the neighbour is removed.5 A demonstration of this strategy in practice is shown
in Figure 5.1. Note that the field-of-view region may be arbitrarily greater than the actual
sensor field-of-view and, in this example, extends 10 metres behind the vehicle.

5.1.4 Obsolete Feature Removal

Landmarks become obsolete if they move, are removed, or become permanently occluded.
For example, people or vehicles might remain stationary for arbitrary periods of time, and be
considered good quality landmarks by the SLAM algorithm. In the longer term, structural
changes may occur in the environment—furniture shifted, trees or poles removed. An object

5A problem with this strategy can arise if a highly reliable feature becomes permanently occluded for
some reason. Other near features may be unable to accumulate sufficient visibility to remove it; they are
always deleted first. One way to circumvent this problem is to maintain the visibility count of all valid
landmarks—even after removal. (This approach assumes that correct association can be made to a deleted
feature once it is reinitialised.)
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Figure 5.1: Density control. The vehicle performs SLAM along the tra-
jectory shown (using a laser-sensor in an outdoor environment) with the
final location depicted by the triangle. As map features move out of
the prescribed field-of-view region they are culled to obtain a minimum
spacing of dv = 4 metres.

might be placed in front of a landmark, occluding it from view. For whatever reason, some
landmarks may cease to exist and no longer provide useful information. These obsolete
features should be deleted from the map to maintain an uncluttered and contemporary
representation of the environment.

The density control methods in Section 5.1.3 tend to remove obsolete features that are
in close proximity to good features. This discussion focuses on removing obsolete features
that may not be near other objects.

In [53], if a map feature is predicted to be visible, but is not observed over several
consecutive time-steps, it is deleted. A probability of detection PD < 1 is assumed such
that the probability of a feature’s existence, if not observed over n time-steps, is (1 − PD)n.
Thus, setting a threshold on n is equivalent to setting a minimum probability threshold on
the feature’s existence at the predicted location. The explanation in [53], however, does
not specify criteria for “predicted visibility.” For example, it does not mention whether the
vehicle uncertainty or models of occlusion are taken into consideration.6 These details are
the subject of the method presented below.

6Another visibility consideration, not addressed in this thesis, is the range of vehicle headings (i.e., angular
range) over which a feature is predicted visible. This is important for features such as edges (i.e., range
discontinuities) that might only be visible from particular directions.
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In this thesis, obsolete features are detected by projecting map features into sensor-space
and comparing their expected location with the current observation set. The approach
described is specific to a scanning laser sensor, where the set of measurements can be
connected to form a polygon, such that map features are either inside (i.e., predicted visible)
or outside (i.e., occluded or outside the field-of-view).

One implementation is to convert each map feature xi to an observer-centred Cartesian
frame as follows.

ẑCi = hi (x̂a) =
[

(x̂i − x̂v) cos φ̂v + (ŷi − ŷv) sin φ̂v

(ŷi − ŷv) cos φ̂v − (x̂i − x̂v) sin φ̂v

]
(5.14)

RCi = ∇hxaPa∇hT
xa

(5.15)

where the Jacobian

∇hxa =
∂hi

∂xa

∣∣∣∣
x̂a

is obtained in the same way as shown in Equations 3.20 to 3.25 of Section 3.3.1. The re-
sulting estimate will lie either inside or outside the scan polygon as shown in Figure 5.2(a).
If the feature is sufficiently inside the polygon, (e.g., by 2σ), then it is marked as “obso-
lete” (i.e., predicted visible and not observed). This might be accomplished practically by
sampling equispaced points about the feature’s 2σ ellipse, and subjecting them to a point-
in-polygon test [70]. Note, in the figure, the sensor uncertainty is assumed much smaller
than the feature uncertainty, and is ignored. However, measurement uncertainty might be
included by shortening each range measurement by 2σr.

Since the laser scan is a set of angle-ordered range-bearing measurements, a much more
efficient implementation of this test is possible. The map features are projected into polar
sensor-space as follows.

ẑi = hi (x̂a) =



√

(x̂i − x̂v)
2 + (ŷi − ŷv)

2

arctan
(

ŷi−ŷv

x̂i−x̂v

)
− φ̂v


 (5.16)

Ri = ∇hxaPa∇hT
xa

(5.17)

where the Jacobian ∇hxa is given in Equation 2.20 of Section 2.2.3. The 2σ ellipse of ẑi

is then tested for being inside the (θ, r) polygon as shown in Figure 5.2(b). This may be
performed by sampling the ellipse as before and checking whether, for each sampled value
(θs, rs), the two theta values in the laser scan bounding θs possess values for r greater than
rs.

5.2 Application: Partial SLAM

This application demonstrates an interesting type of feature management, where all features
outside the vehicle field-of-view are removed. The field-of-view, in this case, is specified
as a (40m radius) circular region about the vehicle. This application is termed partial
SLAM since it represents an intermediate form between full SLAM, where all features are
stored, and the sensor-based dead reckoning of Section 3.4, where only the features from
the previous scan are retained.
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Figure 5.2: Obsolete feature removal. The 180◦ unprocessed laser scan defines a polygon
relative to the sensor location. The range of these measurements is limited by a “no return”
maximum (40 metres in this case). Features from the SLAM map are transformed to the
observer coordinate space and compared with the polygon bounds. If the 2σ ellipse of a
feature is inside the polygon it is marked as obsolete. Figures (a) and (b) represent the same
information, (a) in observer-centred Cartesian space, and (b) in polar space. In Figure (a),
the feature on the right is removed and the other two are retained.
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Sensor-based dead reckoning, through alignment of consecutive scans, enables (almost)
temporally uncorrelated motion estimation, but produces pose estimates with monotonically
increasing uncertainty over time—even if the vehicle is standing still. Partial SLAM, on
the other hand, is temporally correlated, and produces pose estimates that converge with
time, but diverge slowly with spatial motion.

Partial SLAM is identical to full SLAM for the case where the vehicle is motionless
or moves only in one direction (or, more precisely, does not return to old regions of the
environment). While full SLAM experiences convergence when retracing old regions, par-
tial SLAM suffers unbounded uncertainty growth with all translational motion beyond its
current field-of-view. This growth tends to be very slow, however, and has a corresponding
benefit of bounded computation due to the bounded map size. Also the problems with cycle
detection (see Section 5.3 below) tend not to be an issue since the map size is of the same
order as the sensor range, and is strongly correlated.

5.2.1 Results

Experimental results of partial SLAM are shown in Figure 5.3, where the feature extrac-
tion and other implementation details are the same as for sensor-based dead reckoning in
Section 3.4. While the accuracy of this result appears similar to the results in Section 3.4,
there is a significant difference in the estimate of uncertainty, as shown in Figure 5.4.

The covariance of the sensor-based dead reckoning result (in Section 3.4) tended to
grow very quickly due to over-conservative tuning of the measurement uncertainty and,
particularly, occasional loss of tracking (i.e., if insufficient features were matched between
scans, the sensor data was ignored and the change-in-pose estimate was simply the very
uncertain prediction). Because of the gross effects of occasional tracking loss on the rapid
growth in pose uncertainty, these graphs were not shown in Section 3.4; they were essentially
meaningless in the long-term.

However, for partial SLAM, with the same tuning parameters, quite reasonable esti-
mates of uncertainty were obtained as shown in Figure 5.4. This was because storage of
local features, and their reregistration, served to permit temporal convergence of the pose
estimate, in spite of conservative tuning of the measurement uncertainty. The most signif-
icant improvement was the ability to reregister after temporary tracking failure, such that
the very great increases in uncertainty from being lost over short-term scan sequences could
be resolved. For example, scans 1743 to 1760 failed to register, resulting in extreme pose
uncertainty, but this was reduced subsequently with the registration of scan 1761.

5.2.2 Partial SLAM and GPS

Partial SLAM on its own is not particularly useful; it essentially provides a highly accurate,
albeit temporally correlated, dead reckoning estimate. It has potential value, though, as an
auxiliary information source in conjunction with an observer of absolute pose, such as GPS.
While GPS may be intermittent, noisy, and inaccurate (depending on satellite availability),
partial SLAM acts both as a low pass filter on the absolute measurements and an interpo-
lating estimate between GPS signals. The GPS information can be incorporated into the
SLAM equations using a trivial observation model such as zgps = xv with uncertainty Rgps.
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Figure 5.3: Partial SLAM in the internal road environment.
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Figure 5.4: Partial SLAM covariance estimates. The top figure shows the xv and yv standard
deviations (scan number versus metres), and the bottom shows the φv standard deviation
(truncated at 0.05 radians; peaked 0.5 at scan 1760). Notice that the uncertainty ever
increases with vehicle motion because feature information outside the vehicle field-of-view
is lost. However, sudden large increases in uncertainty, due to temporary loss of tracking,
are recovered by subsequent reregistration with the local map.
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5.3 Data Association and the Cycle Detection Problem

Batch data association permits robust association for a priori map localisation and for
most situations in SLAM. However, the cycle detection problem introduces a difficulty not
directly addressed by batch association methods. This difficulty arises from the weakness
of correlation between new and old parts of the map when closing the loop, which implies
weak relative constraints and reduced benefit in using a batch process.

Consider the example in Figure 5.5. The vehicle returns to an old map region via a large
loop, all the while creating new map landmarks. Since the vehicle has not yet reregistered
with the old map features, its pose uncertainty relative to those features is very large.
Furthermore, the uncertainty of the new map features with respect to the old map is also
large (i.e., large covariance diagonals and weak cross-covariance terms). Suppose the vehicle
makes an observation scan where it observes several of the new map features and another
feature not previously observed (perhaps spurious), but the latter observation is (wrongly)
associated to an old map feature. The batch constraints in the association process do not
prevent this catastrophic failure because the relative constraints between the new and old
map features are so weak—the association to the old map feature may just as well have been
performed individually. As a result of this association, the map irretrievably diverges since
the relative location of the new map portion is updated, and hence constrained, incorrectly.

In general, the problem occurs if (i) there exist groups of features in the map that are
strongly correlated to each other but very weakly correlated to features in other groups,
and (ii) the batch association assigns a disproportionate number of observations to some
groups and only one or two to others. Essentially, the reliability of batch association (due
to relative constraints) is dependent on the number of associations within each group.

A solution to the cycle detection problem is quite simple. First, group the map into sets
of mutually constrained features and, second, perform batch association separately for each
group. If the same observation is assigned in two different groups, then the participating
map features are said to be the same (i.e., constrained as a single feature).7 In this thesis,
grouping map features was performed using a simple, though only approximately correct,
algorithm as follows (see Figure 5.6). Initially there are no groups. For each feature xi in
the map, if there exists a group where each feature in the group is suitably constrained
with xi, then xi is added to that group. Otherwise, xi starts a new group. The metric for
“suitably constrained” is a threshold on the covariance of the relative constraint between
two features (see Equations 3.15 to 3.19 in Section 3.3.1).

A limitation of this solution to cycle detection is that it lacks checks for false batch
associations to entire groups due to the existence of symmetries in the environment. This
is a difficult problem which is addressed more completely in Section 6.3.

5.4 Application: Full SLAM

This application presents a full SLAM experiment that incorporates simple feature man-
agement, batch data association and cycle detection via feature grouping. The basic im-

7Constraint between two features from different groups is performed according to the constrained ini-
tialisation method in Section 5.1.2. The redundant feature is subsequently removed. Note, the two groups
involved will then merge to form a single strongly correlated group.



5.4 Application: Full SLAM 119

Figure 5.5: The cycle detection problem. Consider, for example, the situation depicted
where batch data association fails to prevent a major false association. A vehicle performs
SLAM along a cyclic path such that there exists an old map portion (diamonds) and a new
map portion (circles, their true locations given by fainter circles). Each of these portions
of the map are strongly correlated within themselves but only weakly correlated to each
other. The current observation set (triangles) is assigned to the map features using batch
data association. Four are assigned to recent map features and one to an old map feature.
However, due to lack of geometric constraint, the incorrect assignment to the old map
feature is allowed and results in an inconsistent map update. (Note, the falsely assigned
observation may have been of a feature not previously seen, perhaps due to occlusion, or
simply a false return.)
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Figure 5.6: Feature grouping. Working sequentially through the vector of
map features, groups are formed of features sufficiently united by relative
constraints. Each feature xi is first checked against existing groups. If
a group is found where xi is constrained by every feature in the group,
then xi is added to the group, and the process begins again with the next
non-grouped feature xj . If, on the other hand, no groups adequately
constrain xi, then it forms a new group. Once grouping is completed,
batch data association is performed separately for each group.

plementation details for this experiment (i.e., feature extraction, inertial prediction model)
are the same as described in Section 3.4.

Feature management in this experiment was limited to visibility-based density control
only. (A simple ad hoc initialisation criterion was also used, where new features were not
added to the map if closer than x metres to existing features.) The more sophisticated
feature management methods described in this chapter were not implemented, although
this test would certainly benefit from constrained initialisation. Furthermore, the SLAM
result was not real-time since the naive SLAM algorithm used was insufficient to contend
with the large number of features involved.

5.4.1 Results With Medium-Scale Loop Closure

The result of SLAM after the first 1070 scans is shown in Figure 5.7, during which time the
vehicle travelled 800 metres. The vehicle first turns clockwise about a small loop, and then
twice counter-clockwise around a large 330 metre loop, before heading away along a linear
path. The size of the main loop was not large enough to necessitate grouping as the map
was strongly correlated throughout (due to the loop size being of similar order to the sensor
range and the high feature density in the region). The accuracy of the map is apparent
from the closeness of the two loop traversals (on a narrow road), and the structure of the
unprocessed laser measurements when projected onto their global locations; they depict
precisely the cabin walls and tree trunk shapes.

The SLAM features are shown as circles in Figure 5.7, and can be seen to correspond
to objects of near-circular cross-section from the unprocessed laser data (n.b., the circles
are iconic and do not represent the estimated radius). These features were culled as they
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Figure 5.7: Full SLAM in the internal road environment. The path of the vehicle over 1070
laser scans (800 metres) is shown along with the unprocessed laser returns for each pose
(depicting shrubs, trees and cabins). The SLAM features are shown as circles. Note, there
are two subtle points to be gleaned from this figure. The first is the effect of mild laser
tilt, where both front and back edges of the cabin verandas are observed as different laser
scans detect slightly different vertical slices of the environment. Second, notice that some
features lie on the lines of the cabin walls; these are not spurious, but are poles extending
above (or piers below) the cabin floor.
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Figure 5.8: Covariance for full SLAM over first 1070 scans (top, standard deviations for xv

and yv, bottom, standard deviation for φv). Note, the covariance of the first loop traversal
is greater than the second, and returns to a minimum when returning close to the origin
(scans 490 and 1000).
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moved out of the vehicle field-of-view to obtain a minimum spacing of 4 metres.
The covariance of the result is shown in Figure 5.8. The covariance increases as the

vehicle travels away from the origin and reaches a maximum about the extremities of the
loop. The covariance falls back to a minimum as the vehicle returns towards the origin.
Notice that the map converges with repeated observation, and the peak covariance of the
second loop traversal is rather less than the first. The rapid rise in uncertainty at the end
occurs as the vehicle again heads away from the origin, this time into an unexplored region
with considerably lower feature density.

5.4.2 Results With Large-Scale Loop Closure

The results in Figure 5.9 show the trajectory of the vehicle over 2290 scans, during which
it travelled about two kilometres. After completing the dual loop traversal described
previously, the vehicle maintained a straight heading until turning left at coordinates
(−35,−145), continuing straight until (80,−200) and turning right. At this point, the
vehicle performed an off-road counter-clockwise loop and, during this manoeuvre, observed
many spurious features (mostly due to a sloping embankment) and few stable features.
This resulted in highly uncertain map building, and probably association failures due to
the simplistic implementations of the feature initialisation mechanism (no tentative set) and
the CCDA algorithm (choose largest clique). Returning to the road, the major clockwise
loop was resumed; a region with very few visible features was encountered at the turn at
(−70,−240) and, finally, cycle detection and a large error correction was performed on clos-
ing the loop. The vehicle then retraced the old map a distance, turning left at (55,−190),
making a small clockwise loop at (100,−120), and performing a second major cycle detection
(this time with little correction) on rejoining the original map loop.

The two regions mentioned with few useful features tended to break the map into sep-
arated regions connected to each other by very weak correlations. Thus, for reliable cycle
detection, feature grouping was essential. A detailed view of the main loop closure is shown
at the bottom of Figure 5.9. Notice the large error correction and accompanying reduction
in pose uncertainty at this point.

The large error correction in this experiment demonstrates a major flaw in the traditional
stochastic SLAM formulation. Even with correct data association, the map would definitely
become inconsistent after such a large linearised update. In fact, given the prior map
uncertainty, it is probable that the map was inconsistent before the update. The problem is
two-fold: first, the linear (Gaussian) representation of such large uncertainties is likely to be
optimistic and, second, the large linearised update (including error propagation throughout
the map via correlations) invalidates the basic near-linear, small-error assumptions of the
EKF.

Fundamentally, the existence of large uncertainties in the map, so as to necessitate
feature grouping for data association, is likely to prevent consistent application of the EKF-
based SLAM framework. This problem leads to the development of submap methods, which
break SLAM into manageable connected subsets, as presented in the next chapter.
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Figure 5.9: Full SLAM with large-scale loop closure. The top figure shows the vehicle path
over 2290 scans (2 kilometres), and the bottom figures show detail of the large loop error
correction—with the vehicle pose and 2σ covariance ellipse before and after cycle detection.
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5.5 Remarks: SLAM versus Batch Map Building

Recent progress in offline batch map building (e.g., using EM [131]) offers a competitive
alternative to SLAM, particularly in highly dynamic environments. This section discusses
their relative merits and stipulates when an a priori batch map might be preferred.

A map produced by SLAM is incremental and requires no prior exploration of the
environment; it is used immediately for localisation. It also permits on-line adaptation to
structural changes. However, in dynamic environments, SLAM reliability is hindered by
the need to consider all objects (static and dynamic) as potential landmarks. In extreme
cases, this can lead to data association fragility through map clutter.

Offline map generation using batch procedures has been shown in [131] to permit accu-
rate metric maps with minimal human intervention. These maps can be checked manually
(visually) for consistency and are subsequently used as static a priori maps. This approach
has several marked advantages. First, the map can be used consistently and reliably with-
out a formal uncertainty model (i.e., unlike SLAM, the map does not require a measure
of global convergence). The map is formed according to a maximum likelihood criteria,
which does not necessarily have to match the true physical shape of the world. Second, if
localisation becomes temporarily lost (perhaps through incorrect data association), it can
be recovered subsequently by increasing the search space; unlike SLAM, such errors are
not self-propagating. Third, measurements of dynamic objects can be identified on-line
and filtered from the localisation data set. This technique is demonstrated in [129], where
shorter-than-expected range measurements are rejected to permit robust localisation in an
environment crowded with people. A disadvantage of offline maps is that the map must be
rebuilt whenever there is significant change to the structure of its working environment.

To offer some general rules of thumb regarding the use of SLAM or static batch maps,
consider the following criteria. SLAM is best suited if a task requires an immediate estimate
of location in a previously unknown environment. It is also suited to environments where
the physical structure changes regularly but have only moderate levels of transient objects.
In these environments, SLAM can operate robustly given the mechanisms described in
this thesis: batch data association serves to extract known landmarks and reject clutter,
constrained initialisation prevents the addition of non-static objects to the map, and obsolete
feature removal adapts the map to structural change. On the other hand, an a priori batch
map cannot automatically adjust to environmental change but is very reliable in stable
environments with large numbers of transient objects. The static nature of the map means
that measurements of transient objects can be easily filtered out, and localisation can be
recovered even after a data association failure.

5.6 Summary

This chapter is concerned with feature management and cycle detection for traditional
SLAM in medium-sized environments.

Feature management involves addition and removal of map features based on feature
reliability and utility. The constrained initialisation procedure is reviewed as an optimal
method for deferred feature initialisation, which permits delayed data association without
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loss of information. Two reasons for feature removal are examined: density control and
obsolete features. Density control reduces map clutter and improves efficiency by deleting
lesser quality features. Two measures of feature quality are reviewed—information content
and innovation sequence stability—and a new measure is proposed: feature visibility, where
a feature’s utility is governed by the size of the region over which it is visible. Obsolete
feature removal is necessary to delete landmarks that no longer exist (due to environmental
change). A feature is marked obsolete if it is predicted visible but not observed and, for
this purpose, a laser-specific model of “predicted visibility” is presented.

For large loops, robust cycle detection may require more than just batch data association;
rather, it is shown to rely on feature grouping, where the map features are clustered into
strongly constrained sets. Batch association must then be performed separately for each
set.



Chapter 6

Network Coupled Feature Maps

Stochastic SLAM suffers two major problems in relation to scale: excessive computation
and storage costs, and inconsistent (optimistic) uncertainty estimation due to accumulated
non-linearities and bias. This chapter proposes that both these problems can be addressed
by partitioning the map into a topological-metric network of submaps. Each submap is
a small independent stochastic SLAM map, and these are connected by suboptimal, but
consistent, coupling estimates.

The strengths of topological and metric maps are complementary. Topological maps
provide a natural division of the environment, low computation and storage, large-scale
connectivity and consistency, and place recognition through the characteristics of local
groupings. Metric maps, on the other hand, provide high local accuracy, quantified uncer-
tainty, generality, and pose constrained data association. Combining these qualities in a
hybrid topological-metric map permits feasible consistent SLAM on a very large scale.

This chapter presents a hybrid map framework for stochastic SLAM in extensive envi-
ronments. The following topics are discussed with regard to this map proposal.

• A review is made of current submap-network systems that use stochastic SLAM as the
estimation mechanism for the local submaps. This discussion is primarily concerned
with the consistency of the submap coupling methodologies.

• The network coupled feature maps (NCFM) framework is introduced. The NCFM
concept is presented in terms of the map structure and the methods for performing
globally consistent, convergent SLAM.

• The cycle detection problem is examined in detail, with solutions to the issues of very-
large-scale search and loop confirmation presented using the NCFM framework. Also
discussed is the difficult problem of pathological environmental symmetries, where
rejection of false cycles may be practically impossible.

• An application of NCFM SLAM in an outdoor environment is shown to demonstrate
the concepts described in this chapter.



6.1 Submap Methods for Stochastic SLAM 128

6.1 Submap Methods for Stochastic SLAM

This section reviews five recent submap-SLAM proposals, which represent the current state-
of-the-art in decoupled stochastic SLAM methods. Each of these methods possess a common
theme whereby, at the level of individual submaps, SLAM is performed using (essentially)
the traditional EKF equations given in Section 2.2. Furthermore, these submaps are main-
tained independently so as to avoid correlation with other submaps.

The critical difference between these methods is their approach to estimating the cou-
pling between submaps, and thus connecting the map at a global level. This is the area where
submap methods break away from established SLAM concepts and involve new complexi-
ties, particularly with regard to the consistent use of information. Therefore, this section
is primarily concerned with the consistency of submap coupling estimation and submap
transitions, and the submap methods are examined in terms of the following questions.

• Coupling estimation. How are the submaps coupled? Are the coupling estimates
consistent (i.e., do they provide a conservative estimate of pose errors at a global
level)? Do the coupling estimates converge (i.e., global map convergence) and what
are the limits of this convergence?

• Vehicle transition. When the vehicle transitions from one submap to another, how
is the pose estimate reinstated in the new submap? What (if any) information is
transferred from the previous submap, and is this consistent?

• Loop closure. Is the global structure of the map appropriate for cycle detection and
consistent loop closure?

6.1.1 Decoupled Stochastic Mapping

Decoupled stochastic mapping (DSM) [90] is actually a global map, but the total region is
split into a number of “globally referenced” cells. (In this regard, DSM is distinct from the
subsequent submap methods discussed in this section, wherein each submap defines a local
coordinate origin.) Correlations are maintained between features within each submap, but
are neglected between features from other submaps. Thus, the advantage of this method is
purely computational; if there were N cells of n features, full SLAM would require O(N2n2)
computation and storage but DSM reduces computation to O(n2) and storage to O(Nn2).

Each submap has its own estimate of the vehicle pose and the locations of features within
the cell region—all with respect to the global coordinate frame. All submaps are marked
“inactive” except for the single “active” cell currently occupied by the vehicle and, while
active, this submap is updated according to the standard SLAM algorithm. The inactive
submaps are frozen with their last “active” state estimate (including vehicle pose).

When transitioning from the active submap to another, one of two transition procedures
are performed: cross-map relocation or cross-map update. The former is used when moving
into an older submap (where age refers to the order of cell creation), and serves simply to
reinitialise the vehicle pose estimate in the newly activated cell. The latter procedure is
used when entering a newer submap, and transfers information from the older cell to permit
improvement in the global uncertainty of the newly activated cell.
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The fundamental contention with DSM is the information transfer between submaps
during the “cross-map” procedures. These processes inevitably introduce correlations be-
tween the submaps, and the attempts to then decorrelate them using ad hoc uncertainty
inflation are questionable. In general, the inflation incurs over-conservative submap esti-
mates but, in some circumstances, may yet produce optimistic results (n.b., empirically
these procedures appear to yield consistent results). A consistent alternative to cross-map
relocation is presented in [140], wherein vehicle pose reinitialisation is performed without
correlation between the submaps. However, a theoretically consistent alternative to cross-
map update, necessary for global convergence, is not presently available.

Finally, the globally referenced structure of DSM does not address the problem of loop
closure. As with traditional stochastic SLAM, the large-error non-linear update associated
with closing a large loop will tend to invalidate the basic EKF assumptions of near-linearity,
and result in an inconsistent map estimate.

6.1.2 Two-Level Landmark Representation

In [24] a two-level representational hierarchy is proposed. The first of these is the landmark
level, where a “landmark” is a set of local features expressed according to a common local
coordinate frame. Each landmark also includes an estimate of the vehicle pose relative to
its local frame. The second level of representation is the global level, where the pose of each
landmark (i.e., each landmark coordinate origin) is estimated with respect to a common
global coordinate frame. This base frame also has an estimate of the (global) vehicle pose.

The estimation process1 for each landmark is performed in isolation from every other
landmark; similarly, the global frame is also treated in isolation. At each prediction
timestep, the vehicle states are propagated independently within each landmark, and also
for the global frame. Meanwhile, in the vehicle-centred frame, a temporary landmark is
constructed and this is matched against the existing map landmarks. Having obtained a
unique landmark match, the features of the map landmark are updated using the geomet-
ric constraints of the observation landmark. This same observation information is then,
separately, used to update the global estimate of the landmark pose.

The advantage of this two-level approach is that, by ignoring correlations between the
landmark and global levels, the computation and storage for SLAM are reduced to O(N2 +
n2) and O(N2 + Nn2), respectively (where N is the number of landmarks and n is the
number of features per landmark).

There are three significant problems with this approach. The first is that neglecting
the correlations between the two levels (i.e., between the features of a landmark and the
global landmark location) must introduce inconsistencies into the global map; although
it is possible, in this case, that the level of inconsistency is small and easily subsumed by
conservative (inflated) observation uncertainty. The second problem is that the vehicle pose
prediction step may introduce very large uncertainties into the local landmark estimates, and
these non-linear errors can compromise filter consistency. A solution to this problem is to

1The underlying estimation process used in [24] is a stochastic SLAM variant called the symmetries
and perturbations map (SP map) [25]. This approach is reported to provide a uniform representation for
information gathered by different sensors, and to overcome the problem of singularities in the representation
of geometric features.
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remove the vehicle pose elements from the local landmark state while the vehicle is distant,
and reinitialise them when it returns to the landmark vicinity (see [140] or Appendix C.2
for details on the vehicle reinitialisation process). The third problem is that, as with DSM
above, the structure of the global level does not address the loop closure problem, and the
global map estimate may be invalidated by a large non-linear error correction.

6.1.3 Relative Landmark Representation

The relative landmark representation (RLR) [64, 66] possesses a similar conceptual structure
to the previous method [24]. It represents sets of nearby features in local relative coordi-
nate frames and maintains these local frames according to the global coordinate system.
However, unlike the previous method, the RLR manages all the appropriate correlations in
a consistent, and near-optimal, manner.

The RLR divides the map into sub-regions where, in each region, the landmarks are
represented with respect to a local coordinate frame. The pose of each local frame is
defined by a small subset of local features (called “base” features), which are represented
in the global coordinate frame. Thus, the SLAM augmented vector consists of: the vehicle
states and local frame base features in absolute coordinates, and the remaining local region
features in relative coordinates. The vehicle and base features are referred to as “absolute”
states and the local features are called “relative” states.

The motivation behind the RLR structure is to reduce correlations between state ele-
ments. In traditional SLAM, where vehicle and features are all in global coordinates, the
states become increasingly correlated over time. With the RLR, the absolute states become
strongly correlated, and the relative states within each local region become strongly cor-
related to each other and to the absolute states, but the relative states in different local
regions are only ever weakly correlated. This is particularly so between relative states from
physically distant local frames. The key idea, therefore, is that the relative states in different
local regions can be “decorrelated” from each other with little loss of information—resulting
in a dramatic reduction in computation and storage requirements.

The method of decorrelation is to inflate the diagonal sub-matrices of the state covari-
ance, so that the respective states can be treated as uncorrelated.[

A C
C B

]
decorrelate−−−−−−−→

[
A

′
0

0 B
′

]

The decorrelated covariance is conservative if the difference between it and the original
covariance matrix is positive semi-definite.[

A
′

0
0 B

′

]
−
[

A C
C B

]
≥ 0

The decorrelation strategy of the RLR is to maintain all strong correlations: absolute-
to-absolute, relative-to-absolute, and (within each local region) relative-to-relative; but to
decorrelate relative-to-relative states from different local regions. Since the correlations
between these non-local relative states are very small, decorrelation can be performed with
minor inflation of the covariance diagonals.
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Nevertheless, performing decorrelation after each observation would result in a very
conservative SLAM estimate, and the RLR achieves its near-optimal convergence properties
by employing the compressed EKF (CEKF) [65] as its estimation method. The CEKF limits
the SLAM update step to only effect the relative and base landmarks in the vehicle’s current
neighbourhood (these are termed the “active” states) and postpones the full update, and
the decorrelation process, until the vehicle leaves the local region. Thus, decorrelation is
performed only intermittently and, when applied, inflates the covariance of the active states
but leaves the covariance of the other “passive” states unchanged.

The advantage of the RLR is its O(Nn2) computation and storage, where N is the
number of local regions and n is the number of features per region. Also, it is reported to
achieve close to the accuracy and convergence rate of full SLAM (although this depends
somewhat on the assumption that the vehicle remains in a local area for a reasonable period
of time so as to minimise covariance inflation).

The main issue not addressed by the RLR is non-linearity. The same problems of
loop closure and large error corrections affecting traditional SLAM, and the two submap
methods discussed previously, will also tend to generate inconsistent estimates with the
globally referenced portions of the RLR state vector.

6.1.4 Hierarchical Local Maps

In [29, 30] a hierarchy of local submaps is introduced, where each local submap is maintained
independently using traditional SLAM,2 and these are connected by estimates of the relative
pose between submap origins.

The relative pose between two adjacent submaps is determined at the creation of the
second submap as follows. The first submap is built using standard SLAM until the vehicle
pose uncertainty reaches a given threshold. Let the augmented SLAM estimate with respect
to the first submap coordinate frame S1 be given by

S1x̂a = [S1 x̂T
v , S1 x̂T

m]T

S1Pa =
[

S1Pv
S1Pvm

S1PT
vm

S1Pm

]

At this point, the second submap S2 is created, with the current vehicle pose as its origin.
Thus, the pose of the second submap relative to the first is equal to the vehicle pose portion
of the first submap state estimate (i.e., S1 x̂S2 = S1 x̂v and S1PS2 = S1Pv).

The set of coupling estimates
{

Si x̂Sj ,
SiPSj

}
, therefore, are extracted from the relevant

state estimates and stored in a coupling tree, which represents the order of submap cre-
ation. Consider, for example, a situation where the vehicle constructs and traverses a set of
submaps in the order shown in Figure 6.1(a). The coupling tree for this traversal sequence
is shown in Figure 6.1(b). The relative pose between two non-adjacent submap coordinate
frames can be calculated from the “monotonic linkage” between the submaps—the vector
sum of connecting relative pose estimates in the coupling tree. For example, the relative

2In fact, [29, 30] implement a suboptimal variant of SLAM called relocation-fusion [102], and use an
unscented filter [76] rather than the standard EKF.
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(a) Map creation order (b) Coupling tree

Figure 6.1: Submap coupling tree. New submaps are coupled to their
parent submap according to the vehicle pose at creation. In this example,
from [29, 30], the coupling tree was constructed from the following order-
of-events. Create maps 1, 2, then 3, reenter map 2, create maps 4, 5, and
6, reenter map 4, then 3, create maps 7 and 8.

pose between submaps 4 and 6 is the vector sum of 4-to-5 and 5-to-6.

S4 x̂S6 = f
(
S4 x̂S5 ,

S5 x̂S6

)
=


 S4 x̂S5 + S5 x̂S6 cos S4 φ̂S5 − S5 ŷS6 sin S4 φ̂S5

S4 ŷS5 + S5 x̂S6 sin S4 φ̂S5 + S5 ŷS6 cos S4 φ̂S5

S4 φ̂S5 + S5 φ̂S6




S4PS6 = ∇fS4xS5

S4PS5∇fS4xS5
+ ∇fS5xS6

S5PS6∇fT
S5xS6

where the Jacobians ∇fS4xS5
and ∇fS4xS5

are found as follows.

∇fS4xS5
=

∂f
∂S4xS5

∣∣∣∣
(S4 x̂S5

,S5 x̂S6)

∇fS5xS6
=

∂f
∂S5xS6

∣∣∣∣
(S4 x̂S5

,S5 x̂S6)

The relative pose between submaps 4 and 6 can be calculated using two separate Jaco-
bians because the individual coupling estimates are uncorrelated. However, a problem arises
when this approach is applied to relative pose calculations involving a “common root.” For
example, the relative pose between submaps 3 and 4 is found from the coupling estimates
2-to-3 and 2-to-4. In [29, 30], this calculation is performed in a separable fashion similar
to the example above (i.e., assuming S2xS3 and S2xS4 are independent) when, in fact, the
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coupling estimates are correlated. This error3 is rectified in [140], as described below.
A further issue with this method is that it lacks convergence at a global level; the

coupling estimates remain static throughout. This is particularly troublesome for cycle
detection and loop closure since the uncertainties accumulated over a large cycle of submaps
cannot be reduced even after the loop has been completed (e.g., consider a cycle between
submaps 4 and 8, the coupling estimate would remain the path 4-2-3-7-8). In other words,
the coupling estimate between the two submaps connected by the cycle will possess a large
and irreducible uncertainty equal to the sum of monotonic linkages connecting them.

6.1.5 Constrained Relative Submap Filter

The constrained relative submap filter (CRSF) [140] is similar in structure to the submap
hierarchy in [29, 30], but presents significant advantages in terms of correlation estimation
and global convergence.

The CRSF is similar to the method in [29, 30] in the following ways. It consists of
independent submaps performing traditional SLAM and coupled via “monotonic linkage.”
When a new submap is created, its origin is defined by the current vehicle pose, and an
estimate of this pose is held by its “parent” submap. Calculation of the relative pose between
two non-adjacent submaps is performed via the coupling tree. Both methods are consistent
at a global level, avoid accumulated non-linearities, and require O(n2) computation and
O(Nn2) storage (where N is the number of submaps and n is the number of features per
submap).

The CRSF differs from the method in [29, 30] in the way it stores the coupling esti-
mates, and the consequences of this storage approach. Rather than extract the relative
pose estimate from the parent submap state, the coupling estimate (and its correlations to
the parent map) is retained as follows.

S1 x̂a = [S1 x̂T
S2

, S1x̂T
m]T

S1Pa =
[

S1PS2
S1PS2m

S1PT
S2m

S1Pm

]

When the vehicle subsequently returns to the parent map, the vehicle estimate is reinitialised
using geometric constraints, so that the state becomes S1xa = [S1xT

v , S1xT
S2

, S1xT
m]T . There

are two important consequences of this formulation. First, if the parent submap later
creates a second child submap, the correlations between the two child submaps are known;
this corrects the error in [29, 30] for “common root” calculations. Second, as the vehicle
performs SLAM within the parent submap, the map converges and the coupling estimate
also converges through its correlations to the map. Thus, the overall CRSF map experiences
global convergence while maintaining statistical independence between submaps.

A further advantage of the CRSF discussed in [140] is that geometric constraints can
eventually be applied between the submaps so that it merges into a consistent monolithic
map. This operation is shown to be almost equivalent to optimal SLAM implementations,
but with considerable improvements in computation and reduction of non-linearities.

3The common root “error” in [29, 30] does not actually constitute an inconsistency; rather it results in
an over-conservative estimate of the coupling uncertainty (see Section 6.2.6).
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The CRSF in its present form is limited in terms of convergence. At a local level,
the couplings between submaps can converge to a lower limit defined by the correlations
between the coupling estimate and the parent submap. More importantly, at the global
level, convergence is restricted by monotonic linkage and, as in [29, 30], loop closure is
unable to reduce the uncertainty between two submaps, which is specified by the coupling
tree path.

The CRSF is a promising alternative to the NCFM approach presented in this chap-
ter, particularly if the loop closure convergence problem can be solved. In general, this
requires an investigation into whether a coupling estimate can be formed between two ex-
isting submaps, which shortcuts the coupling tree, without having to propagate geometric
constraints throughout the entire map (i.e., without having to correlate all submaps).

6.2 Network Coupled Feature Maps

This section presents a new submap framework called network coupled feature maps (NCFM).4

The basic structure of NCFM is shown in Figure 6.2, where independent submaps are con-
nected by a network (or graph) of coupling estimates—these being the relative pose between
submap coordinate frames. This concept is similar to the submap methods in [29, 30] and
[140], but with the important difference that the coupling estimates are not restricted to
monotonic linkages. The implementation and consequences of this difference are discussed
later in this section.

This section presents the following basic mechanisms for SLAM within the NCFM frame-
work.

• Coupling estimate equations. These equations for manipulating coupling estimates
are key to global map management as they enable pose estimation across submaps
and along coupling-paths connecting non-adjacent submaps.

• Map traversal. This includes traversal within and across existing submaps, with
particular emphasis on consistent vehicle reinitialisation during submap transition.

• Submap creation. At the boundaries of the existing map, new submaps are created
and coupled to neighbouring submaps. This procedure is developed for the case where
the vehicle pose becomes the new coordinate origin, and also for when the origin is
offset from the vehicle.

• Coupling convergence. Transitions between submaps allow for iterative improvement
of their coupling estimates. A method for consistent coupling estimation is presented
that produces a globally convergent map while retaining independent submaps. This

4The NCFM framework was first introduced in [4], where it was used primarily to demonstrate the
reliability of batch data association in situations where the vehicle pose was highly uncertain. In May
2002, a method very similar to the NCFM framework was introduced at an oral presentation at Workshop
W4, IEEE International Conference on Robotics and Automation (ICRA 2002). This approach, the Atlas
framework, develops many of the same concepts given in this chapter. However, the author was made aware
of this seminar only after submission of this thesis in August, and written details of the approach [18] only
became available in October 2002. Thus, the NCFM methodology presented here was not influenced by the
Atlas framework in conception or particulars.
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Figure 6.2: Network coupled feature map structure. The coordinate axes
represent the origins of independent submaps. Neighbouring submaps
are coupled by estimates of the relative pose between their coordinate
origins.

method tends to correlate coupling estimates attached to any one submap, and the
consequences of these correlations on global consistency are also discussed.

6.2.1 NCFM Overview

The NCFM structure consists of a local submap level and a global topological level. At
the local level, each submap is a feature map defined with respect to a local coordinate
frame. At the global level, each network link defines a coupling estimate of the relative pose
between two submap coordinate origins.

Within a local submap, a robot performs traditional stochastic SLAM. The submap state
vector is augmented with the vehicle state, and the normal SLAM operations are performed
(e.g., prediction, observation, feature addition). When moving to another area, the vehicle
state is initialised in the neighbouring submap using the coupling information connecting the
two submaps, and so the robot transitions from one submap state vector to another. The
vehicle state may even be maintained simultaneously in multiple neighbouring submaps.
However, each submap is built independently from its neighbours and no information is
ever transferred from one submap to another.

The coupling estimates between submaps are maintained so that they converge as their
associated submaps converge. They enable consistent pose estimation across submaps, and
effect map convergence at a global level.

The NCFM framework facilitates two basic navigation paradigms: topological-metric,
and (conventional) global navigation. With topological-metric navigation, the vehicle might
be located at a certain pose in submap A, and its goal location might be in submap D,
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which is connected to A via submaps B and C. The submap coupling estimates, therefore,
describe a relative connecting path between the vehicle and its goal. Alternatively, for global
navigation, a particular submap is nominated as the “base” frame, and poses relative to
other submaps are converted to the base coordinate system via the topology of coupling
estimates. Thus, NCFM can be used as though it were a traditional monolithic map.

Existing submap methods have solved the problem of efficiency for stochastic SLAM.
However, the best of these solutions address either convergence (i.e., the RLR, with global
base-feature coupling) or non-linearity (i.e., CRSF, with relative submap coupling), but not
both. The NCFM framework presents a combined solution to efficiency, convergence and
non-linearity.

In terms of efficiency, NCFM SLAM requires O(Nn2) storage and O(n2) computation,
where N is the number of submaps and n is the number of features per submap. To convert
the robot’s local pose to a global estimate takes O(N) coupling evaluations between the
current and base submaps. Note, this complexity assumes the coupling path is already
known, and excludes the complexity of the connecting path algorithm (e.g., shortest path
between two nodes [39]).

Non-linearity and bias are not significant issues for small-scale SLAM,5 but their cumu-
lative effects are problematic for large-scale global maps, particularly in connection with
loop closure. NCFM performs all map building at a local submap level so that error correc-
tions are small and the effects of non-linearity and bias do not accumulate beyond submap
bounds. The calculation of a “global” pose estimate, with respect to a base frame, is
still subject to cumulative errors, but these are non-critical. First, the global estimate is
never used in the actual SLAM update, and so does not effect the consistency of the map.
And second, as the individual submaps converge, the local estimation problem becomes
increasingly linear, and the global estimate accordingly becomes more linear.

Eventually biases may cause even small-scale SLAM to become inconsistent. The NCFM
framework cannot prevent this but, by containing biases within submaps, serves to make
the effects less pronounced and less detrimental.

Convergence at a submap level is the same as for traditional SLAM, and the coupling
estimates converge as their associated submaps converge. Therefore, the map also converges
at a global level. The lower limit of global convergence, as the features within each submap
become fully correlated, is conjectured to approach that of traditional SLAM.

6.2.2 Coupling Estimate Equations

The coupling estimate of submap frame S2 with respect to submap frame S1 is denoted
S1x̂S2 with covariance S1PS2 . In this case, S1 is referred to as the base coordinate frame.
Determining the pose of a particular submap (or of the vehicle) relative to a non-adjacent

5Non-linearity and bias problems fall into three basic categories. First, non-linear transformations cause
Gaussian distributions to become non-Gaussian, and to be underestimated by a Gaussian approximation.
These inconsistencies can be easily offset by adding stabilising noise to the process and observation models.
Second, linearised error correction may be divergent if the error is large (i.e., if the first-order Taylor ex-
pansion is not a reasonable approximation to the non-linear function). This problem gives rise to the basic
small-error assumption of the EKF. Third, persistent biases, which result from non-linear transformations
and modelling errors, may cause the system to converge to a biased steady-state. This means that the
system may eventually become inconsistent even with the addition of stabilising noise.
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base frame is an important operation for a variety of navigation tasks, and is crucial for
performing cycle detection (as described in Section 6.3). Three equations for coupling ma-
nipulation are presented here—coupling summation, coupling inversion and common root
coupling—which permit recursive cross-submap calculations.

Coupling summation is the vector addition of two coupling estimates S1xS2 and S2xS3

to obtain the coupling S1xS3 . This operation can be used recursively to determine the pose
of an entity with respect to a non-adjacent base frame.

S1 x̂S3 = f
(
S1 x̂S2 ,

S2x̂S3

)
=


 S1 x̂S2 + S2 x̂S3 cos S1 φ̂S2 − S2 ŷS3 sin S1 φ̂S2

S1 ŷS2 + S2 x̂S3 sin S1 φ̂S2 + S2 ŷS3 cos S1 φ̂S2

S1 φ̂S2 + S2 φ̂S3


 (6.1)

S1PS3 = ∇fS1xS2

S1PS2∇fT
S1xS2

+ ∇fS2xS3

S2PS3∇fT
S2xS3

(6.2)

where the Jacobians ∇fS1xS2
and ∇fS2xS3

are given by

∇fS1xS2
=

∂f
∂S1xS2

∣∣∣∣
S1 x̂S2

=


 1 0 −S2 x̂S3 sin S1 φ̂S2 − S2 ŷS3 cos S1 φ̂S2

0 1 S2 x̂S3 cos S1 φ̂S2 − S2 ŷS3 sin S1 φ̂S2

0 0 1


 (6.3)

∇fS2xS3
=

∂f
∂S2xS3

∣∣∣∣
S2 x̂S3

=


 cos S1 φ̂S2 − sin S1 φ̂S2 0

sin S1 φ̂S2 cos S1 φ̂S2 0
0 0 1


 (6.4)

Given a connecting path between the base frame and the frame representing the object of
interest, a “global” estimate of the object can be found. For example, in Figure 6.3 the base
frame S1 and the vehicle are connected by the path 1-2-3-v of piece-wise couplings S1xS2 ,
S2xS3 , and S3xv. A global vehicle estimate is obtained by applying Equation 6.1 twice to
determine first S1xS3 then S1xv.

Note that the covariance summation in Equation 6.2 is calculated with two separate
Jacobians, which implies that the coupling estimates S1 x̂S2 and S1 x̂S3 are independent (i.e.,
uncorrelated). This is true given the coupling estimates when the submaps are first created
(see Section 6.2.4), but is generally not the case following the convergence operations shown
in Section 6.2.5. The issue of treating correlated coupling estimates as though they were
uncorrelated is addressed in Section 6.2.6 (with the verdict being that the result is consistent
and, in fact, conservative).

Coupling inversion is the calculation of the pose of frame S1 with respect to frame S2,
when given the pose of frame S2 with respect to frame S1. That is, it allows the switching
of base coordinate frames.

S2 x̂S1 = f
(
S1 x̂S2

)
=


 −S1 x̂S2 cos S1 φ̂S2 − S1 ŷS2 sin S1 φ̂S2

S1 x̂S2 sin S1 φ̂S2 − S1 ŷS2 cos S1 φ̂S2

−S1 φ̂S2


 (6.5)

S2PS1 = ∇fS1xS2

S1PS2∇fT
S1xS2

(6.6)
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Figure 6.3: Coupling summation. The vehicle pose with respect to the
base frame S1 is found by recursive application of Equation 6.1. First
S1xS3= f

(
S1xS2 ,

S2xS3

)
then S1xv= f

(
S1xS3 ,

S3xv

)
.

where the Jacobian ∇fS1xS2
is given by

∇fS1xS2
=

∂f
∂S1xS2

∣∣∣∣
S1 x̂S2

=


 − cos S1 φ̂S2 − sin S1 φ̂S2

S1 x̂S2 sin S1 φ̂S2 − S1 ŷS2 cos S1 φ̂S2

sin S1 φ̂S2 − cos S1 φ̂S2
S1 x̂S2 cos S1 φ̂S2 + S1 ŷS2 sin S1 φ̂S2

0 0 −1




(6.7)
Common root coupling is the calculation of S2 x̂S3 given S1 x̂S2 and S1 x̂S3 . That is, given

the pose of two frames with respect to a common base frame, obtain the relative pose
between the two frames.

S2x̂S3 = f
(
S1 x̂S2 ,

S1 x̂S3

)
=


 (S1 x̂S3 − S1 x̂S2) cos S1 φ̂S2 + (S1 ŷS3 − S1 ŷS2) sin S1 φ̂S2

−(S1 x̂S3 − S1 x̂S2) sin S1 φ̂S2 + (S1 ŷS3 − S1 ŷS2) cos S1 φ̂S2

S1 φ̂S3 − S1 φ̂S2




(6.8)
S2PS3 = ∇fS1xS2

S1PS2∇fT
S1xS2

+ ∇fS1xS3

S1PS3∇fT
S1xS3

(6.9)

where the Jacobians ∇fS1xS2
and ∇fS1xS3

are given by

∇fS1xS2
=

∂f
∂S1xS2

∣∣∣∣
S1 x̂S2

=


 − cos S1 φ̂S2 − sin S1 φ̂S2 −(S1 x̂S3 − S1 x̂S2) sin S1 φ̂S2 + (S1 ŷS3 − S1 ŷS2) cos S1 φ̂S2

sin S1 φ̂S2 − cos S1 φ̂S2 −(S1 x̂S3 − S1 x̂S2) cos S1 φ̂S2 − (S1 ŷS3 − S1 ŷS2) sin S1 φ̂S2

0 0 −1




(6.10)

∇fS1xS3
=

∂f
∂S1xS3

∣∣∣∣
S1 x̂S3

=


 cos S1 φ̂S2 sin S1 φ̂S2 0

− sin S1 φ̂S2 cos S1 φ̂S2 0
0 0 1


 (6.11)
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The three coupling manipulation equations can be summarised using vector notation as
follows.

• Coupling summation.
S1xS3 = S1xS2 + RS2xS3 (6.12)

• Coupling inversion.
S2xS1 = R−1(−S1xS2) (6.13)

• Common root coupling.

S2xS3 = R−1(S1xS3 − S1xS2) (6.14)

where R is the rotation matrix

R =


 cos S1 φ̂S2 − sin S1 φ̂S2 0

sin S1 φ̂S2 cos S1 φ̂S2 0
0 0 1




6.2.3 Map Traversal

Traversing a local submap is performed using traditional stochastic SLAM. The size of these
submaps is presumed reasonably small in comparison to the vehicle’s sensing range so that
minor inconsistencies in the map update (due to model non-linearities and biases) do not
accumulate significantly, and can be absorbed by stabilising noise.

When traversing the edge regions of a submap S1, attempts are made to associate
observed data with the adjacent submap S2. For batch association purposes, the pre-
dicted pose of the vehicle is projected into S2 using the common root coupling equation
S2 x̂v = f

(
S1 x̂S2 ,

S1 x̂v

)
as shown in Equation 6.8. This is concatenated with the submap

feature estimates as follows.

S2 x̂a =
[

S2 x̂v
S2 x̂m

]
(6.15)

S2Pa =
[

S2Pv 0
0 S2Pm

]
(6.16)

Batch association is performed using the tracking version of CCDA given in Section 3.3.4.
If an acceptable association set is found, then a new vehicle track is initialised in the second
submap. It is essential that no information is transferred between the two submaps as this
would introduce correlations between them; rather the vehicle pose is initialised with zero
a priori knowledge beyond the given data association information.

The method proposed in this thesis for initialisation uses the insert and observe proce-
dure (see Appendix C), and further details regarding vehicle initialisation are provided in
Appendix C.2. A nominal value S2 x̂v for the vehicle location is the same as in Equation 6.15.
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The prior state for S2 is given by the concatenation of the vehicle pose guess, with infinite
uncertainty,6 and the submap feature estimates.

S2 x̂−
a =

[
S2 x̂v
S2x̂m

]
(6.17)

S2P−
a =

[
αIv 0
0 S2Pm

]
(6.18)

A posterior estimate of the vehicle pose in the second submap is then obtained by applying
the normal observation update equations, as given in Section 2.2.3, for each of the associated
observations from the batch association process.

A word of caution at this point. If both submaps continue to maintain a vehicle track,
it is imperative that no observation information is used in both submaps. That is, if both
submaps contain common features (i.e., features representing the same physical objects),
observations of these features may be used in one or other of the submaps, but not both.
While this information reuse would not be a concern if the submaps were permanently
independent, it is a problem when they are both used to perform coupling estimation in
Section 6.2.5. (Note, since batch data association is performed separately in each submap
using the same observation data set, common features are found when a particular mea-
surement is assigned to a landmark in both submaps.)

An alternative mechanism for vehicle initialisation is presented in [140], where obser-
vations are compiled in a small local map and subsequently applied to the submap using
geometric constraints.

6.2.4 Submap Creation

As the vehicle traverses the boundaries of the existing map, new submaps are created to
represent new regions of the environment. Conventionally, the vehicle pose has been used
to depict the origin of a new submap at its creation. Thus, the new submap S2 is created
as

S2x̂a =
[

S20v
S2 x̂m

]
(6.19)

S2Pa =
[

S20v 0
0 S2Pm

]
(6.20)

and the coupling to its parent submap S1 is given by the estimated vehicle pose S1 x̂v at this
moment. Note, this estimate may be extracted from S1 (as in [29, 30]), or may be retained
in the parent state estimate (as in the CRSF).

In certain applications, it may be desirable to create a new submap with origin offset
from the current vehicle pose. For example, in Figure 6.4 the new submap is offset so that
its axis is aligned with the parent frame and the submap region can be specified by geometric
bounds (i.e., square submaps for efficient region coverage with minimal overlap). The two
operations for offset submap creation are (i) calculation of the coupling estimate S1 x̂S2 (with

6The insert and observe method uses a suitably large number α as an approximation for infinity (see
Appendix C).
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Figure 6.4: Submap creation with offset origin. A rigid body transform
is performed with respect to the vehicle frame to produce a coordinate
origin with a nominal coupling S1xS2 to the parent frame.

uncertainty S1PS2), and (ii) calculation of the augmented estimate S2 x̂a = [S2 x̂T
v , S2 x̂T

m]T

with respect to the offset coordinate frame.
Given the current vehicle pose estimate S1x̂v and a nominal new submap origin S1xS2

with respect to the parent submap, the offset submap frame relative to the vehicle is
found from the common root coupling equation vxS2 = f

(
S1 x̂v,

S1xS2

)
as in Equation 6.8.

Note, vxS2 is a rigid-body extension with respect to the vehicle such that vPS2 = 0.
The coupling estimate is subsequently calculated using a coupling summation equation
S1 x̂S2 = f

(
S1 x̂v,

vxS2

)
as in Equation 6.1, such that the estimated pose of the new submap

is the original nominal value and the coupling uncertainty is found according to Equation 6.2
as follows.

S1PS2 = ∇fS1xv

S1Pv∇fT
S1xv

+ ∇fvxS2

v0S2∇fT
vxS2

= ∇fS1xv

S1Pv∇fT
S1xv

The vehicle pose estimate relative to the new submap frame is found as a coupling
inversion S2 x̂v = f (vx̂S2) as in Equation 6.5, and has zero uncertainty S2Pv = 0. At cre-
ation, the map features are assumed to be uncorrelated to the vehicle and from each other;
thus, feature estimates vx̂i can be independently transformed from the vehicle frame to
the new submap frame using a common root calculation S2 x̂i = f (vx̂S2 ,

vx̂i). The resulting
augmented state estimate S2x̂a is therefore block-diagonal.

Finally, the new submap is connected to other submaps that are adjacent to the parent
submap and possess region boundaries adjacent to the new submap. These couplings are
determined using a common root equation S2 x̂S3 = f

(
S1 x̂S2 ,

S1 x̂S3

)
.

6.2.5 Coupling Convergence

In the course of traversing submap boundary regions, vehicle tracks may be maintained in-
dependently in multiple adjacent submaps (with care that observation information is used
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at most once). The information from these multiple tracks can be used to improve the cou-
pling estimates between submaps without correlating the submaps themselves. Convergence
of the coupling estimates facilitates convergence of the map at a global level.

The method for performing coupling convergence is two stage. First, a new estimate of
the coupling between two submaps is obtained and, second, this estimate is fused with the
prior coupling estimate.

A new coupling estimate between two submaps is found using the insert-and-observe
procedure as follows. First, the two augmented state vectors S1 x̂a and S2 x̂a are concatenated
along with an initial “guess” of the coupling estimate S1 x̂S2 . The coupling guess is assigned
infinite uncertainty as follows.

x̂−
c = [S1 x̂T

S2
, S1 x̂T

v , S1 x̂T
m, S2 x̂T

v , S2x̂T
m]T (6.21)

P−
c =




αI 0 0 0 0
0 S1Pv

S1Pvm 0 0
0 S1PT

vm
S1Pm 0 0

0 0 0 S2Pv
S2Pvm

0 0 0 S2PT
vm

S2Pm


 (6.22)

Second, a constrained estimate of the concatenated state is generated by applying two types
of perfect “virtual” observations. The first of these is that the vehicle in both submaps is
the same, zv = 0 where

ẑv = hv (x̂c) = S1 x̂v − (S1 x̂S2 + RS2 x̂v) (6.23)

and R is the rotation matrix

R =


 cos S1 φ̂S2 − sin S1 φ̂S2 0

sin S1 φ̂S2 cos S1 φ̂S2 0
0 0 1




This constraint has the following innovation and innovation covariance.

ν = zv − ẑv = −hv

(
x̂−

c

)
(6.24)

S = ∇hxcP
−
c ∇hT

xc
(6.25)

where the Jacobian ∇hxc = ∂hv
∂xc

∣∣∣
x̂c

.

The second constraint type arises from the existence of common features between the two
submaps. These are found from batch data association when, for a given set of observations,
the same measurement is assigned to a feature in both maps; (this measurement is then
used to update only one of these features). Thus, for common features S1xi and S2xj , the
constraint is zij = 0 where

ẑij = hij (x̂c) = S1 x̂i − (S1 x̂S2 + RS2 x̂j) (6.26)

Here, S1xS2 refers to just the (x, y) part of the coupling estimate, and R is the matrix

R =
[

cos S1 φ̂S2 − sin S1 φ̂S2

sin S1 φ̂S2 cos S1 φ̂S2

]
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The innovation ν = zij − ẑij and innovation covariance can then be derived, and these
“virtual” observations can be used to produce a posterior estimate of the concatenated
state vector via the normal EKF update equations. From this result, the new coupling
estimate S1 x̂S2 ,

S1PS2 is extracted.
There are three points to note from the above process. First, the value of the initial

“guess” for S1 x̂S2 is simply the prior coupling estimate. Second, the concatenated vector is
formed with copies of the two submaps; these coupling calculations are separate and isolated
from the independent submap SLAM operations. Third, for efficiency, only those features
common to both submaps need to be copied into the concatenated state (non-common
feature exert no influence on the result).

Furthermore, if the two submaps are parent-child and the original coupling estimate is
retained in the parent state estimate (as for the CRSF), then the following concatenated
prior can be used instead of Equation 6.22.

P−
c =




S1PS2
S1PS2v

S1PS2m 0 0
S1PT

S2v
S1Pv

S1Pvm 0 0
S1PT

S2m
S1PT

vm
S1Pm 0 0

0 0 0 S2Pv
S2Pvm

0 0 0 S2PT
vm

S2Pm


 (6.27)

This prior incorporates the initial knowledge of the coupling estimate as retained in the
parent submap. However, it is important to note that the coupling estimate used in
Equation 6.27 is part of the submap state and separate from the coupling estimate ob-
tained from the concatenation process. In other words, there are two versions of coupling
estimate: (i) the estimate contained in the parent submap from the child’s creation, and
(ii) the coupling estimates obtained from constraining the concatenated state. It is also
worth noticing that the advantage of the prior in Equation 6.27 over the insert-and-observe
approach in Equation 6.22 may prove to be marginal as the submaps themselves converge,
and probably does not warrant the added complexity.

Having obtained a new coupling estimate S1 x̂new
S2

, the new estimate is fused with the prior
coupling estimate S1 x̂old

S2
using the covariance intersection [77]. This permits monotonically

convergent estimation when an unknown degree of correlation exists between the prior and
new estimates.7 For notational convenience, let xa = S1xold

S2
and xb = S1xnew

S2
; the posterior

estimate is found from the covariance intersection equations as follows.

Pc =
(
wP−1

a + (1 − w)P−1
b

)−1 (6.28)

x̂c = Pc

(
wP−1

a x̂a + (1 − w)P−1
b x̂b

)
(6.29)

where the scalar variable 0 ≤ w ≤ 1 is chosen to minimise some criterion (e.g., determinant,
trace) of the posterior covariance matrix Pc.

A consequence of the coupling convergence method shown here is that the resulting
coupling estimate is correlated to both submaps and, moreover, to every other coupling

7The covariance intersection is hardly necessary if the coupling estimate involves common feature con-
straints. This tends to produce “comparable” uncertainty estimates, where S1Pold

S2 − S1Pnew
S2 is positive

semi-definite, and the new estimate simply replaces the old. The covariance intersection is most useful when
only vehicle pose constraints are involved.
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connected to either submap. This is a serious issue for the coupling equations given in
Section 6.2.2, which assume uncorrelated coupling estimates. The question of whether
these equations still produce consistent results if the coupling estimates are correlated is
addressed below.

6.2.6 Consequences of Non-independent Couplings

This section investigates the properties of pair-wise correlated8 relative pose estimates,
and is applicable to the coupling equations in Section 6.2.2 and also to the sensor-based
dead reckoning algorithm in Example C.1. The outcome of this investigation suggests that
treating the coupling estimates as independent, when they are actually pair-wise correlated,
produces consistent and conservative results. This is an important finding as it means
coupling equations can be used directly on converging coupling estimates, and indicates
that NCFM SLAM may attain near-optimal convergence limits at a global level.

The general case for correlated information is as follows. Given two independent random
vectors a and b, and a model relating them to a third vector c = f (a,b), the covariance of
the estimate ĉ can be calculated as follows.

Pc = ∇faPa∇fT
a + ∇fbPb∇fT

b (6.30)

where the Jacobians are ∇fa = ∂f
∂a

∣∣
(â,b̂) and ∇fb = ∂f

∂b

∣∣
(â,b̂). If a and b are correlated, how-

ever, Equation 6.30 is invalid and may produce an inconsistent result, although a consistent
estimate can be found using covariance intersection methods.

Pc = ∇fa
Pa

w
∇fT

a + ∇fb
Pb

1 − w
∇fb (6.31)

where w is a scalar between 0 and 1. In particular, if Pa and Pb are each inflated by a
factor of two, their substitution in Equation 6.30 produces a consistent estimate.

A basic extension of this concept is to say that, for a path of pair-wise correlated cou-
plings, a consistent “coupling summation” estimate can be obtained by first inflating each
coupling covariance by two. Clearly, this expansion results in a greatly inflated uncertainty
in the final estimate.

At this point, it is important to remark that ignoring correlations does not necessar-
ily imply inconsistency; the action of ignoring correlations can lead to either inconsistent
(optimistic) estimates or suboptimal (conservative) estimates. Consider the following 1-D
example c = a + b, where the variables a and b possess variances A and B, respectively, and
unknown correlation D. That is, the vector [a, b]T has covariance[

A D
D B

]

The true variance of c, therefore, is C = A + B + 2D while, ignoring correlations, the esti-
mated variance is C = A + B. The difference between the estimated and true variance is

8For a coupling path connecting two coordinate frames, pair-wise correlation means that each coupling
estimate is correlated to its preceding and succeeding coupling estimates only. This is true for any non-closed
path in the NCFM framework.
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Figure 6.5: Coupling correlations. Three submap origins in a global
coordinate frame are shown in the top diagram; the location of a single
landmark is shown also. The three lower diagrams depict estimates of the
landmark relative to each frame (arrow) and its true location (asterisk).
The coupling estimates S1 x̂S2 and S2 x̂S3 are correlated by the error in S2.

−2D, which is positive-semi-definite if D ≤ 0. This means that ignoring correlations will
lead to inconsistent results if D > 0 but will give conservative results if D < 0.9 In the
former case, consistent results can be obtained by inflating A and B by two, but in the
latter case, the original variance values suffice.

It is now shown, by way of a 1-D example, that the correlations occurring in the coupling
equations are always of the conservative variety. Thus, inflation of the coupling estimate
uncertainties is unnecessary.

Example 6.1
One-dimensional coupling summation. This example considers a simple case where three
submaps share the one feature. This might also be interpreted as sensor-based dead reckoning
over three timesteps while observing a single landmark. The result shown here is equally
valid for scenarios with multiple landmarks.

A single landmark L is represented in three submaps as shown in Figure 6.5. The
estimated distances in each submap are S1 x̂L = d1, S2 x̂L = d2 and S3 x̂L = d3. The true
relative distances are d1 + v1, d2 + v2 and d3 + v3, respectively, where v1, v2 and v3 are
independent random variables. The coupling estimates S1 x̂S2 and S2 x̂S3 are given by

S1 x̂S2 = S1 x̂L − S2 x̂L = d1 − d2

S2 x̂S3 = S1 x̂L − S2 x̂L = d2 − d3

while the true couplings are d1 + v1 − d2 − v2 and d2 + v2 − d3 − v3, respectively. Note,
the two estimates are correlated by the error v2 in S2. Coupling summation results in the
following estimated coupling.

S1 x̂S3 = S1 x̂S2 + S2 x̂S3 = d1 − d2 + d2 − d3 = d1 − d3

9In more intuitive terms, if D > 0 then a and b will tend to be either above or below their mean values
together—exacerbating the error in c—while, if D < 0 then a and b will tend to occupy opposite sides of
their means (e.g., a above and b below), and be self-correcting in c.
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The true coupling is

d1 + v1 − d2 − v2 + d2 + v2 − d3 − v3 = d1 + v1 − d3 − v3

Notice that the correlated error v2 cancels out and the summation is self-correcting. If the
couplings were uncorrelated, the summation would have combined the uncertainty of four
random variables—v1, v2, v

′
2, v3—but, since they are correlated, it involves only two.

Another way to explain this example is to say that the vector [S1 x̂L, S2 x̂L, S3 x̂L]T has
covariance

PL =


 S1PL 0 0

0 S2PL 0
0 0 S3PL




The coupling estimates are calculated from this as follows.

[
S1 x̂S2
S2 x̂S3

]
= F


 S1 x̂L

S2 x̂L
S3 x̂L




where F is the transition matrix

F =
[

1 −1 0
0 1 −1

]

The covariance of the coupling estimates, therefore, is obtained as

PS = FPLFT =
[

S1PL + S2PL −S2PL

−S2PL
S2PL + S3PL

]

Notice that the off-diagonals of PS are negative, which means that the coupling summation
S1 x̂S3 = S1 x̂S2 + S2 x̂S3 is conservative if the couplings are treated as uncorrelated. That is,
the uncorrelated estimate covariance S1PL + 2S2PL + S3PL is always greater than the true
correlated covariance S1PL + S3PL.

This example demonstrates that, for 1-D coupling summation, assuming uncorrelated
coupling estimates (i.e., ignoring correlations) will produce a conservative summed estimate.

From the above 1-D example, it is conjectured that coupling summation, assuming
uncorrelated coupling estimates, is conservative also for higher dimensions. This is suggested
empirically by the dead reckoning results in Section 3.4, where the noise between sequential
scans is quite high but the global summed pose is extremely accurate. It appears that the
scan matching errors tend to cancel for each pair of relative pose estimates.

An intuitive argument for the error cancelling properties of correlated coupling estimates
is given by considering the limiting case. In the limit, each submap becomes (internally)
fully correlated, so that its features approach a lower bound with respect to the coordinate
frame, and become perfectly known relative to each other. This may be visualised as a rigid
lattice of features that is still flexible relative to its coordinate origin. A coupling estimate,
derived from common feature constraints between two submaps, defines a transform so that
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the two submaps are perfectly aligned, even though their relative origins are uncertain.
Similarly, a path of coupling estimates is perfectly aligned; they produce a sequence of rigid
lattices connected together by common feature constraints. The locations of the intervening
submap origins are uncertain, but this is irrelevant since the coupling estimates are defined
by the relative feature locations, which are perfectly known.

If this reasoning is correct, then it would appear that the lower bound feature uncertainty
in each submap cancels out for all intermediate submaps in a coupling path, and the global
accuracy of NCFM approaches almost the same lower limit as full SLAM. In other words, the
uncertainty of the intermediate couplings is dependent solely on the rigidity of the connected
submaps, and not the uncertainty of their coordinate origins. Only the coordinate frame
uncertainties of the beginning and end submaps remain relevant.

Therefore, it is suggested that the true accuracy of NCFM converges to near that of
traditional SLAM, but the NCFM covariance estimate will be over-conservative since it
incorporates the uncertainty of each submap origin.

6.3 Cycle Detection within the NCFM Framework

For all SLAM methodologies, the most difficult challenge is cycle detection. This section
presents a complete strategy for robust cycle detection and confirmation within the NCFM
framework, so that loop closure becomes a feasible proposition in extensive environments
with massive accumulated vehicle pose uncertainty.

The process of cycle detection is implemented as a three stage operation.

• First pass detection. A efficient search is performed to find all submaps not adjacent
to the current submap that may be within the vehicle field-of-view (i.e., predicted
submap visibility).

• Second pass detection. Batch data association determines the existence of possible
cycles to any of the candidate submaps.

• Confirmation. Each cycle hypothesis is tracked until satisfying reasonable criteria as
a confirmed cycle. The coupling linkages for the cycle are then added to the map.

This strategy essentially combines the cycle detection mechanisms of topological maps
(i.e., place recognition and rehearsal) with the added restriction of metric pose constraints.
Nevertheless, these checks are insufficient to guarantee against false cycles, and this section
concludes with a discussion of conditions in which cycle detection may fail.

6.3.1 First Pass Detection

First pass search is performed to determine the possible visibility of every submap not
adjacent to the current submap. This search checks if any part of a non-adjacent submap
region intersects with the vehicle field-of-view region, and efficiently culls the number of
submaps valid for the second pass detection phase.
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(a) Vehicle field-of-view (b) Submap region bounds

Figure 6.6: Vehicle and submap visibility regions. The vehicle field-of-
view is semi-circular with radius rv; this region is bounded by a rectan-
gular box. The submap region is bounded by a circle of radius rs.

For each non-adjacent submap Si, the relative pose with respect to the vehicle vxSi

is found via coupling summation along the shortest connecting path.10 The submaps are
checked in breadth-first order radiating from the current submap. This serves the dual
purpose of (i) finding the (approximately) shortest connecting path to each submap, and
(ii) permitting storage of the cumulative coupling sum estimates at each level of the search
tree (i.e., avoiding recalculation for subsequent levels).

The possible visibility test described below assumes that the vehicle field-of-view is
bounded by a rectangular box {(0, rv), (rv, rv), (rv,−rv), (0,−rv)} as shown in Figure 6.6(a),
and the submap region is bounded about its origin by a circle of radius rs, as shown in
Figure 6.6(b).

The first step in calculating visibility is to define the nσ (n-sigma) uncertainty ellipse
of the submap origin with respect to the vehicle. (The value of n sets a threshold on the
uncertainty search-space; typically n equals two or three.) These equations do not involve
the relative orientation vφSi , so let x̂ = [vx̂Si ,

vŷSi ]
T with covariance P. Let the elements

of P be denoted as

P =
[

σ2
x σ2

xy

σ2
xy σ2

y

]
=
[

a d
d b

]
(6.32)

The eigenvalues of P are found from the characteristic equation |P − λI| = 0. That is,
10The path chosen between a submap and the vehicle is not critical, and the most accurate solution would

be to calculate vx̂Si ,
vPSi along all combinations of connecting paths and fuse them using the covariance

intersect. A practical solution is to simply choose the shortest connecting path, which usually corresponds
to the minimum uncertainty path.
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Figure 6.7: Submap visibility region. The inner ellipse represents the
nσ uncertainty ellipse of the submap origin with respect to the vehicle.
This region is extended by the submap radius rs to define the region over
which the submap might be visible.

(a − λ)(b − λ) − d2 = 0, which has two roots

λ =
a + b ±√(a − b)2 + 4d2

2
(6.33)

The eigenvectors corresponding to the principal axes of P are then found as

e =
[

ex

ey

]
=
[

λ + d − b
λ + d − a

]
(6.34)

These eigenvectors are normalised by their 2-norm ||e|| =
√

e2
x + e2

y and scaled by n
√

λ to
produce the principal axes of an nσ ellipse. This ellipse is depicted as the inner ellipse of
Figure 6.7, which is subsequently expanded by the submap radius rs to define the extent
of the region over which the submap is possibly visible with respect to the vehicle. The
principal eigenvectors of this outer ellipse are calculated from the unscaled-eigenvectors in
Equation 6.34 as follows.

es = (n
√

λ + rs)
e

||e|| (6.35)

The two scaled eigenvector es1 and es2 will subsequently be referred to as e1 and e2.
Having defined the elliptical region of possible submap visibility, the test for possible

visibility becomes an intersection test between this ellipse and the vehicle field-of-view
rectangle. The intersection test requires some mathematical preliminaries relating the ellipse
eigenvectors to Cartesian coordinates.[

x
y

]
=
[

e1x cos θ + e2x sin θ
e1y cos θ + e2y sin θ

]
(6.36)
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Figure 6.8: Cartesian ellipse coordinates. The (x, y) coordinates of the
ellipse are obtained as a function of the principal eigenvectors e1, e2 and
the angle θ.

where θ is the angle from the positive axis of e1 in the direction of the positive axis of e2

as shown in Figure 6.8. The two solutions for θ from Equation 6.36 are

θ = arctan
xe2

2x
± e1xe2x

√
kx

xe1xe2x ∓ e2
2x

√
kx

(6.37)

θ = arctan
ye2

2y
± e1ye2y

√
ky

ye1ye2y ∓ e2
2y

√
ky

(6.38)

where kx = e2
1x

+ e2
2x

− x2 and ky = e2
1y

+ e2
2y

− y2. Note, θ is not defined (has imaginary

roots) for kx < 0 or ky < 0; thus, the Cartesian extremities of the ellipse are x = ±
√

e2
1x

+ e2
2x

and y = ±
√

e2
1y

+ e2
2y

.
Note, the location of the ellipse centre relative to the vehicle is x̂, but for these calcula-

tions it is simpler to make the ellipse centre the origin and shift the vehicle by −x̂. Thus,
the ellipse is defined by the eigenvectors e1 and e2, and the rectangle is given by coordinates
{(−x̂, rv − ŷ), (rv − x̂, rv − ŷ), (rv − x̂,−rv − ŷ), (−x̂,−rv − ŷ)}.

The test for ellipse-rectangle intersection is performed in three stages and, if any stage
succeeds, the subsequent stages are not needed. The first is to find whether any line of the
box intersects with the ellipse; the second tests if the box is enclosed by the ellipse; and the
third tests if the ellipse is enclosed by the box.11

1. Box-ellipse intersection test. This test is performed on each line segment of the rect-
angle. Here, the vertical segment {(xp, yp), (xp, yq)}, yp < yq is shown as an example.

11The third test, ellipse-in-box, is typically not required as the size of the submap region is usually greater
than the vehicle field-of-view.
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(a) Check whether the vertical line x = xp intersects the ellipse by satisfying the
criterion x2

p ≤ e2
1x

+ e2
2x

(n.b., use the form y2
p ≤ e2

1y
+ e2

2y
for horizontal lines).

If not, the test fails; repeat test with a different line segment.

(b) Calculate the two solutions θ1 and θ2 for Equation 6.37 where x = xp (n.b., use
Equation 6.38 for horizontal lines).

(c) Calculate y1 and y2 for θ1 and θ2, respectively, using Equation 6.36. These are
the two ellipse intersect points for the line x = xp.

(d) If yp ≤ y1 ≤ yq or yp ≤ y1 ≤ yq, then this test returns true.

2. Box-in-ellipse test. This test involves choosing any corner of the rectangle (xp, yp).

(a) Check the vertical line x = xp intersects the ellipse by satisfying the criterion
x2

p ≤ e2
1x

+ e2
2x

. If not, the test fails.

(b) Perform steps (b) and (c) of the box-ellipse intersection test.

(c) If y1 ≤ yp ≤ y2 then this test returns true.

3. Ellipse-in-box test. This is a trivial point-in-box test which returns true if the ellipse
centre (0, 0) lies within the rectangle bounds.

The non-adjacent submaps that meet the ellipse-rectangle intersection criteria are marked
as potentially visible and are then subjected to the second pass detection process.

6.3.2 Second Pass Detection

The second pass stage of cycle detection performs batch data association within each can-
didate submap. If sufficient associations are obtained between the current observation set
and a submap Si, then a cycle hypothesis is formed. This process is analogous to topological
place recognition.

The expected vehicle pose Sixv with respect to the submap Si is found via coupling
summation. Thus, the augmented submap state for batch association incorporates pose
constraints (though these are not correlated to the map states) as follows.

Si x̂a =
[

Si x̂v
Si x̂m

]
(6.39)

SiPa =
[

SiPv 0
0 SiPm

]
(6.40)

The submap state is associated to the vehicle observation set using the tracking CCDA
algorithm presented in Section 3.3.4. Note, the feature grouping procedure, as discussed in
Section 5.3, is not required for submap cycle detection because correlated feature grouping
is inherent within the NCFM submap structure.

Each successful batch association, including multiple association hypotheses within a
single submap, forms a cycle hypothesis. Each cycle hypothesis is tracked over a spec-
ified period and distance to ascertain its validity (i.e., to ensure it is not an artifact of
environmental symmetry). This phase is termed cycle confirmation.
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6.3.3 Cycle Confirmation

The cycle confirmation stage tracks a set of cycle hypotheses until a single hypothesis
remains and continues for a reasonable time and distance. This process is analogous to
topological rehearsal.

The objective of cycle confirmation is the protect against short-term symmetries in the
environment, where different areas of the environment possess similar structural appearance
over a limited region. A cycle hypothesis is rejected if tracking is lost—if batch association
fails to produce sufficient correspondences as the vehicle moves through the region. When
several cycle possibilities exist, tracking continues until at most one persists. The remaining
hypothesis is accepted if it persists longer than a specified time period and vehicle traversal
distance.

During the confirmation process, SLAM is continued in the current submap and its
adjacencies, including the creation of new submaps. That is, map building and traversal
carry on as though cycle detection were not in progress. However, in the “cycle hypothesis”
submaps, the vehicle pose is tracked separately from the submap state. That is, the submap
state is static and the vehicle performs localisation only as it confirms the cycle validity.
When a cycle is eventually confirmed, the current submap is coupled to the cycle submap
(and some of their neighbouring submaps are also connected). The coupling estimate is
calculated using the coupling convergence mechanism described in Section 6.2.5. It may
be beneficial even to merge the current submap with the cycle submap, using geometric
constraints, if they possess sufficient overlap.

6.3.4 Pathological Symmetries

The cycle detection and confirmation strategy presented above is robust but cannot abso-
lutely guarantee the rejection of false cycles. It is possible that symmetries in the environ-
ment may persist over a large enough area to admit an incorrect validation. This problem
is most likely to occur in highly structured environments.

In general, symmetry-based cycle hypotheses will be rejected because they coexist with
the correct cycle hypothesis, which will eventually become the only surviving hypothesis.
However, there are two possible scenarios where false cycle rejection may fail. First, it may
fail in dynamic environments if distinctive features are obscured by transient objects and the
true hypothesis is rejected—leaving symmetry-based hypotheses unchallenged. Second, it
may fail if the vehicle is exploring a new region of the environment that possesses symmetry
with an old mapped region, and is close enough to this region to satisfy pose constraints.
This second scenario has no “true” cycle and will be accepted if the symmetry is sufficiently
persistent.

Consider, for example, the situation in Figure 6.9, where a vehicle traverses a large
loop in a highly structured corridor environment. At the final position shown, the vehicle is
about to enter a new corridor identical to the first. Because of its large pose uncertainty, the
vehicle forms a cycle hypothesis with the original location (X) and, since the new corridor is
not yet part of the map, the false cycle persists unchallenged until the end of the corridor.
If the cycle confirmation distance is less than the corridor length, the false cycle will be
added to the map.



6.4 Application: Large-scale Outdoor NCFM SLAM 153

Figure 6.9: False cycle detection. This picture signifies a corridor en-
vironment where the robot starts at location X and travels along the
trajectory shown. At the final pose, the true pose (triangle) and vehicle
field of view (semicircle) are depicted, along with the pose uncertainty el-
lipse. The new corridor is structurally identical to the original (adjacent)
corridor.

6.4 Application: Large-scale Outdoor NCFM SLAM

This application demonstrates the basic attributes of NCFM with an implementation of
SLAM in the internal road environment. As a first-cut attempt at NCFM SLAM, this
experiment incorporates two major simplifications to the method described in this chapter.
First, each submap is represented only by the scan of features obtained at its creation,
and remains static thereafter. Second, the coupling estimates between submaps are formed
when a new submap is created or upon a cycle confirmation, and these also remain static
afterwards. Note, as a result of these two restrictions, some rather ad hoc operations are
included in the experimental details below.

The procedures demonstrated in this application are: map traversal and submap tran-
sition, submap creation, and cycle detection and confirmation. Aspects described in this
chapter that are not demonstrated here are: SLAM within local submaps, coupling conver-
gence, and multiple cycle hypotheses per submap.

6.4.1 Implementation Details

This experiment is feature-based, with the details for feature extraction being the same as
given in Section 3.4.1. The vehicle prediction model is the same as in Section 3.4.2 and, if
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tracking is temporarily lost with respect to the local submaps, the vehicle pose estimate is
propagated using sensor-based dead reckoning.

Map traversal is simply a matter of tracking the features of whichever surrounding
submaps are predicted visible, and relying on dead reckoning if none provide a suffi-
cient number of associations. (Tracking may be lost intermittently because the single-scan
submap representations do not tend to cover the environment very evenly.)

A new submap is created once the vehicle moves more than 15 metres from the origin of
the nearest existing submap. The new submap is defined by the features extracted from the
current laser scan, with the vehicle pose as its origin. Coupling estimates are then created
between all submaps with origins closer than 40 metres.

A simple version of cycle detection is performed with each new laser scan. The first-pass
detection does not consider the size of the submap or vehicle view regions, but simply looks
for non-adjacent submaps with origins closer to the vehicle than a fixed NIS threshold. That
is, x̂Px̂ < γ2 where x̂, P represent the (x, y) part of the relative pose estimate vx̂Si ,

vPSi

for submap Si. The second-pass detection stage performs tracking CCDA in each candidate
submap and, for submaps yielding sufficient associations (≥ 7), cycle hypotheses are formed
on the basis of maximum association set (i.e., maximum cliques). Thus, at most one cycle
hypothesis is formed per candidate submap each timestep. These hypotheses are added to
a hypothesis list provided each particular hypothesis does not already exist on the list.

Cycle hypotheses are tracked for a rehearsal period across three submaps. If tracking
is lost, due to insufficient associations, for more than 10 scans in a row, the hypothesis
is deleted. If a hypothesis survives rehearsal, and all other hypotheses are significantly
younger, then the cycle is confirmed and the remaining hypotheses are deleted. Connections
are made between the original cycle submap and the submap that was current when the cycle
was first hypothesised; the later “current” submaps created during the rehearsal period are
removed from the map.

6.4.2 Results

NCFM SLAM is performed over the same trajectory as presented in Section 5.4. The
resultant map is displayed using two different global representations in Figures 6.10 and
6.11. These figures attempt to exhibit the coupling properties of the map, which permit
very accurate pose estimates between closely connected submaps.

In Figure 6.10, the submap locations are shown at their estimated global positions when
first created. It shows the accumulated uncertainty of latter submaps with respect to the
first, even if they a quite close physically. It also depicts the major differences between pre-
dicted and estimated pose following cycle detection and confirmation, which are a primary
source of non-linearity problems for traditional SLAM implementations.

The plot in Figure 6.11 shows exactly the same map, but with the submap locations
estimated from breadth-first coupling summation. Summation along a breadth-first path
means that a shortest path corresponding to an (approximately) minimum uncertainty
estimate S1 x̂Si is obtained. The resulting global map gives a much better indication of its
true structure, and demonstrates the improved certainty of short coupling paths compared
to long circuitous paths.



6.4 Application: Large-scale Outdoor NCFM SLAM 155

0 50 100 150 200
−250

−200

−150

−100

−50

0

50

Figure 6.10: NCFM with submap origins plotted at their original global
location estimates. This plot shows the large discontinuities between the
predicted global pose and the estimated pose after cycle confirmation.
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Figure 6.11: NCFM with submap origins plotted in breadth-first order.
This plot results in an (approximately) minimum uncertainty global map
with respect to the first submap.
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6.5 Summary

This chapter presents the NCFM framework for SLAM in large-scale environments.
Current variants of submap-based stochastic SLAM are reviewed, with particular at-

tention to their consistency during submap transitions. The DSM method, while shown
empirically to give satisfactory results, lacks a theoretical proof of consistency. Also, DSM,
the “two-level landmark” hierarchy, and the RLR, having global base coordinate systems,
fail to address the non-linearity problems incurred by large loop closures. The “hierarchical
local maps” and CRSF methods are both consistent and have similar structure, but CRSF
provides significant advantages in the way it defines its submap couplings. Both methods
are limited by monotonic linkage.

The NCFM framework is presented for SLAM operations of local traversal, submap tran-
sition, and submap creation. The map converges at a local (submap) level via traditional
SLAM and at a global level by monotonic improvement of the coupling estimates. The
consequent correlation between coupling estimates is believed to have an error-canceling
effect, so that NCFM SLAM may even converge to a near-optimal lower limit.

A strategy for robust cycle detection is presented for NCFM. This involves three stages:
first-pass search, second-pass detection, and cycle confirmation. The result is a method for
loop closure that is resistant to all but the most pathological environmental symmetries.

A preliminary demonstration of the NCFM method is presented in a large-scale outdoor
environment with challenging loop closures. Basic implementation is shown for submap
traversal and creation and cycle detection, but stochastic SLAM at a local level and coupling
estimate level remains to be empirically verified.



Chapter 7

Conclusion

This thesis attempts to address the theoretical and practical issues which previously lim-
ited SLAM implementations to small-to-medium scale environments with simple distinct
landmarks. The primary difficulties concerning SLAM in complex large-scale environments
are seen to be

• Reliable data association given large uncertainties in the vehicle position.

• The representation of landmarks that are not suited to simple geometric classification.

• Map management in terms of landmark addition and removal to avoid the long-term
accumulation of clutter in the map.

• Map management in terms of submaps to permit computationally tractable (scalable)
and mathematically consistent SLAM.

• The reliable detection of cycles (loops) in the map and consistent map update on loop
closure.

This thesis presents solutions to these problems and verifies their practical utility through
experimental applications in outdoor environments (i.e., sensor-based dead reckoning, a
priori map localisation, traditional SLAM, submap SLAM).

This chapter summaries the contributions of this thesis and proposes a set of future
directions for completing and extending this work.

7.1 Summary of Contributions

Four primary theoretical contributions are presented in this thesis: the CCDA algorithm,
Gaussian sum scan correlation, mechanisms for feature management, and the NCFM frame-
work. These contributions, and their practical implications, are reviewed below.

7.1.1 Combined Constraint Data Association

The CCDA algorithm considers a set of possible observation-map correspondences as a batch
rather than individually. This method incorporates all available correlation information to
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constrain association, and specifies sets of associations that are mutually compatible. A key
property of CCDA is its ability to produce likely association sets even if the vehicle pose is
entirely unknown.

An application of batch data association is to permit sensor-based dead reckoning, which
estimates the ego-motion of the vehicle without odometry. This is of practical importance in
rugged outdoor environments, where significant wheel-slip can compromise the assumptions
of a kinematic vehicle model.

Contributions

• CCDA provides a solution to the problem of fragile data association, dramatically
reducing reliance on multiple hypotheses tracking for reliability.

• CCDA offers the same constraint properties as the JCBB batch association method,
but additionally permits data association with unknown vehicle pose. This is useful
for initialising a vehicle within an existing map.

7.1.2 Sum of Gaussians Scan Correlation

Scan correlation—the alignment of unprocessed point data sets—is a valuable alternative
to feature-based data association in environments not suited to geometric feature models.
In this thesis, a Gaussian sum representation of point data is shown to facilitate Bayesian
scan correlation. That is, it represents the data so that the ensuing relative pose estimate
is obtained from a justifiable Bayesian likelihood function, derived from a stochastic model
of the sensor uncertainty. The relative pose likelihood function is shown to be given by
cross-correlation of the respective Gaussian sums.

The scan correlation method is demonstrated by applications of maximum-likelihood
sensor-based dead reckoning and particle filter localisation.

Contributions

• Presentation of a representation and means to perform Bayesian scan correlation be-
tween unprocessed point data sets without feature extraction. This approach provides
an accurate and consistent estimate of the relative pose uncertainty and does not in-
volve data association.

• Development of a practical implementation of the scan correlation algorithm using a
Gaussian sum representation, which permits accurate description of the sensor uncer-
tainty and efficient calculation of the relative pose likelihood function.

7.1.3 Feature Management

The first contribution towards feature management is the compilation of useful existing
techniques for feature initialisation and removal, notably the method of constrained initial-
isation in [140]. Two motivations are given for feature removal: control of map density and
deletion of obsolete (non-existent) features.
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Density control reduces computational effort by removing non-essential landmarks from
the map. A measure of feature visibility is introduced as a metric for deciding which features
to keep and which to delete. That is, a feature has greater utility for SLAM if it is observable
from many viewpoints than, say, a more stable feature visible only from a restricted vantage.

Features become obsolete due to changes in the structure of dynamic environments and
the basic criterion for removal occurs when a feature is predicted visible but is not observed.
A practical definition of “predicted visibility” is overlooked in the literature, and this thesis
presents a criterion specifically applicable to a laser sensor.

Contributions

• Presentation of motivations for feature management: to prevent excessive clutter
accumulation and to allow the map to adapt to structural change.

• Development of a mechanism for feature density control (a form of clutter reduction),
based on a feature visibility metric.

• Development of a laser scan specific method for the removal of obsolete features.

7.1.4 Network Coupled Feature Maps

NCFM is a global map management framework that divides the world into a mosaic of
independent local submaps connected by a network of relative pose estimates. Standard
(optimal) stochastic SLAM is performed at a local level and a consistent suboptimal SLAM
is performed at a global level. NCFM is computationally cheap and mathematically stable,
not susceptible to large-scale non-linearity problems. Furthermore, it converges at a global
level, and is conjectured to achieve a near optimal lower bound.

The ability of NCFM to address loop closure is one of its major benefits, and a complete
strategy for cycle detection is presented. Cycle detection is realised by an efficient first-pass
search, a second-pass detection of possible cycles, and finally, loop confirmation and the
insertion of submap couplings.

Contributions

• NCFM effectively solves the problems of efficiency, convergence and non-linearity for
large-scale SLAM.

• NCFM facilitates efficient and reliable cycle detection; it provides a solution to the
loop closure problem.

7.2 Future Research

This section proposes several areas of this research requiring completion and extension.
Furthermore, the contributions in this thesis give scope to numerous applications worthy of
future investigation, and some promising directions are suggested below.
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7.2.1 CCDA Algorithm Extensions

The following extensions are proposed for the CCDA algorithm.

• Implement a version of maximum clique search that stores multiple large cliques. This
enables testing of various ambiguity management methods such as MHT with the k
largest cliques.

• Implement alternative clique search algorithms (as presented in the literature) and
compare their efficiency with the simple randomised search.

• Investigate environmental influences on batch association reliability and minimum ac-
ceptable batch size (i.e., data association “confidence”, as discussed in Section 3.5.2).

• Compare the tracking version of CCDA to JCBB [106] in terms of search efficiency
and constraint action. Test whether a set of associations accepted by CCDA is also
accepted by JCBB for the same χ2 acceptance probability (and vice versa).

• Apply CCDA to different feature types and sensing modalities (esp. vision).

7.2.2 Scan Correlation Applications

Two applications for scan correlation are proposed here. First, in a mining tunnel envi-
ronment, a precise metric location estimate is not particularly advantageous, and this kind
of environment is suited to a simple topological-metric map as follows. The corridor in-
tersections are described by a scan of unprocessed data (or, perhaps a small number of
aligned scans), representing the map nodes. A weaker metric estimate is required between
nodes, and the vehicle pose may be estimated via correlation-based dead reckoning. Place
recognition is then performed by scan correlation with the node template scans.

A second application for scan correlation is stochastic SLAM in environments devoid of
geometric features. The key idea is to describe portions of the environment by clusters of un-
processed data. That is, a scan of data is segmented into clusters representing objects or dis-
tinctive “regions of interest,” and each cluster serves as a static model, or template, for the
object it describes. For each object, the representative data is referenced according to a local
coordinate frame, and the global pose of the local frame xf = (xf , yf , φf ) defines the ob-
ject’s global location. Therefore, stochastic SLAM can be performed as follows. The object
coordinate frame poses are stored in the augmented state vector xa = [xT

v ,xT
f1

, . . . ,xT
fn

]T ,
and each time an object is observed, a likelihood function of its pose relative to the vehicle
is obtained via scan correlation with its template data set. A Gaussian approximation of
this likelihood function is then used to perform an EKF update of the state estimate. As
new objects are observed, new static models are stored and new reference frames are added
to the state. (Note, an object template might be produced from a conglomerate of aligned
data clusters from the first few scans of the object.) The essential advantage of this ap-
plication is that it permits EKF-based SLAM based on point-locations without requiring
geometric feature models.
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7.2.3 Feature Management Extensions

Some future directions for feature management are as follows.

• Implement a version of constrained initialisation for bearing-only or range-only SLAM.
Here, the primary question is: does this method translate to sensors where a point
feature location is not fully defined by a single measurement? (Note, significant work
in this area has been presented in [91].)

• Improve the robustness of constrained initialisation by employing batch association
to test all tentative features at once, and obtain a mutually compatible subset.

• Develop a more accurate and complete utility measure for density control. This would
replace the current, rather crude, metric of “feature visibility.”

• Define more general criteria for the “predicted visibility” of features for obsolete fea-
ture removal. This problem may turn out to be application specific (e.g., models of
occlusion, different sensing properties, etc).

• Implement “partial SLAM,” where all landmarks outside the current field-of-view are
removed, and incorporate GPS information to obtain a fused global estimate.

7.2.4 NCFM SLAM Extensions

Most of the interesting properties of NCFM have not yet been implemented. A full exper-
imental verification of NCFM SLAM is proposed as essential future work. This includes:
local submap SLAM, vehicle transition, submap creation, coupling updates, and cycle de-
tection.

Furthermore, the global consistency and convergence properties of NCFM require the-
oretical confirmation. This involves formal proof of the claims: (i) that treating correlated
edge couplings as though they were independent is consistent (and conservative), and (ii)
that global convergence approaches the same lower limit as full SLAM.

Future work may also investigate the following extensions to NCFM SLAM. First, to
determine whether the conservative covariance estimates obtained from edge coupling sum-
mation may be improved given that the uncertainty of intermediate submap origins is irrel-
evant to a global estimate. And second, to investigate how absolute location information,
such as GPS, might be incorporated into the map update.

7.2.5 Longer Term Developments

The original stochastic SLAM algorithm introduced an uncertainty measure that enabled
consistent map building. With subsequent extensions, including those presented in this
thesis, such as techniques for robust data association and tractable computation, stochastic
SLAM is now possible at a very large scale.

Nevertheless, robust autonomous navigation in unstructured outdoor environments is
far from a solved problem, and some difficult open problems remain. These fall into two
main categories.
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The first category is process modelling. Outdoor SLAM needs to contend with 21
2 -D

and 3-D environments, and rugged terrain. Thus, it is necessary to develop process models
that represent high-speed, non-planar motion and high levels of slip. One possible approach
is to combine kinematic (i.e., encoder-based) models with INS and external-sensor based
dead reckoning methods.

The second category is observation modelling. Scanning range lasers are not well suited
to non-planar environments (although, given a non-planar motion model, improved results
are possible), and alternative sensing and modelling methods are likely to be more effec-
tive. Using sensors better suited to 3-D (e.g., pan-tilt scanning laser, radar, vision), the
key problem is to develop appropriate probabilistic observation models for them. For any
given sensor, this problem includes the development of generic feature models that per-
mit real-time data interpretation, calculation of egomotion and SLAM. Ideally, this would
mean devising a feasible general-purpose landmark model that does require tailoring to new
environments and applications.

The problem of sensor and landmark modelling, particularly for complex sensor infor-
mation like vision, is by far the most difficult challenge for the implementation of general-
purpose SLAM.



Appendix A

Environments

This appendix describes the three environments used for experimental evaluation of the
techniques described in this thesis. Each description contains a photograph of a typical
portion of the environment and an image produced from laser data obtained during exper-
imental trials. The laser-based images were generated by first estimating the global pose
of the laser for each scan (e.g., using SLAM) and then accumulating the unprocessed scan
points into a single global scene. These images give a good impression of the types of objects
visible to the laser sensor, both static and dynamic.

The particular characteristics of each environment that would influence the experimental
results are discussed. These include the predominant types of static features and dynamic
objects, and the quality of the road surface and surrounding terrain. Also noted is the
configuration of the laser, in terms of scan rate and maximum effective range, and the
driving speed of the vehicle. The vehicle speed is included to convey an idea of dynamic
effects, such as roll and pitch, which cause most of the difficulties in interpreting the laser
data.

The first two environments are outdoor regions where the observable landmarks are
almost exclusively tree trunks. This makes (point) feature extraction reasonably straight
forward. Since this thesis is concerned mostly with data association and map management,
this simplification is not considered important and alternative feature models for other
environments are common in the literature (particularly for indoors).

A.1 Urban Parkland

The park environment (see Figure A.1) consists of gently undulating terrain bounded along
one side by a major highway. Much of the region contains trees which provides the main
source of static features for localisation. The road surface is mostly smooth bitumen, al-
though some parts are in disrepair and some of the vehicle trajectory is off-road.

There are three sources of dynamic objects in this environment. The first is the traffic
moving along the adjacent highway, which at times occupies a large portion of the laser
field-of-view. Second, there are a small number of people walking through the park during
testing (although this is a very minor factor). Finally, and most importantly, laser tilt—
caused by vehicle acceleration and irregularities in the ground surface—sometimes results in
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large portions of a scan being corrupted by ground returns. These transient measurements
both occlude good information and give an illusion of moving landscape as the laser cross-
section shifts with subsequent scans. Embankments and other sloping structures have a
similar effect.

The configuration of the scanning laser and indicative vehicle speeds for the trials in
this environment are as follows.

Laser Specifications
Scan rate: 4.7 Hz
Maximum effective range: ∼40 m

Vehicle Speed
Maximum speed: 5.3 m/s (19 km/hr)
Average speed: 2.8 m/s (10 km/hr)
Maximum turn rate: 0.6 rad/s (34 deg/s)

Figure A.1: Park environment.
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A laser-based image for this environment is shown in Figure A.2. The trunks of trees
are easily discernible as small discrete circles, while larger more blurred patches indicate
shrubs (e.g., see coordinates (−46, 5) and (35,−30)).

There are a lot of smeared portions in this picture that are caused by the motion of
dynamic objects. The entire bottom section (from about -35 downward in the y-axis) is due
to moving traffic along the adjacent highway. The set of dots forming an approximate line
from (−48,−3) to (−28,−2) was caused by a person walking across the laser field-of-view
over successive scans. Another fainter person-derived line is shown between (−31, 1) and
(−11, 1). The remaining source of smearing is ground sweeps with the major occurrences
in this picture shown about the regions (−5, 5) and (95, 5). The shifting nature of ground
sweeps is most evident in the latter of these two examples. Other ground sweep interference
occurred during the test run, some more severe than those shown here.

Note that in the upper-middle section of the picture, no stable features are visible. When
the semicircle of the laser field-of-view was directed into this region (usually only for short
periods), data association was obviously impossible and vehicle localisation was forced to
rely solely on the inertial dynamic model. Other regions of sparse feature density exist in
the areas right and left of the region pictured. In these regions, more accurate and reliable
results would be possible with the incorporation of encoder-based odometry.
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Figure A.2: Laser image of park environment. This image depicts all the
laser returns accumulated over the test trajectory shown.
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A.2 Internal Road of a Country Resort

The internal road environment is essentially static with ground sweeps from embankments in
the terrain (and, to a lesser degree, laser tilt) being the only significant source of dynamic
information. As with the park environment, the main source of features here are tree
trunks. However, as is evident in Figure A.3, the density of trees is much greater; making
data association a decidedly greater challenge.

The road is smooth bitumen, and the terrain is either flat or gently sloping, so that
generally the laser scan information is close to ideal. However, there is one section of the
trial run that is off-road over rough terrain and another where, for a short period, no visible
features are available within the laser field-of-view. The off-road section, over which the
vehicle traverses a small loop, is further encumbered by the presence of a large embank-
ment and few stable features, and localisation from laser-only information becomes rather
unreliable (see Section 5.4 for more details). However, in the other regions, where features
are plentiful, the data association methods presented in this thesis perform extremely well.

Laser Specifications
Scan rate: 4.7 Hz
Maximum effective range: ∼50 m

Vehicle Speed
Maximum speed: 9.2 m/s (33 km/hr)
Average speed: 4.7 m/s (17 km/hr)
Maximum turn rate: 0.6 rad/s (34 deg/s)

Figure A.3: Internal road environment.
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The laser image shown in Figure A.4 depicts a region densely covered by trees. In
this region, batch data association, as presented in Chapter 3, is absolutely essential as
individual associations based on vehicle pose would quickly fail. The trunks of trees are
easily discernible as small discrete points in the image, while shrubs and undergrowth appear
as clumps of semi-merged points. The rectangular objects in the scene are small cabins.
The clean straight lines defining these cabins indicate the accuracy of the SLAM algorithm
used to generate this image.
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Figure A.4: Laser image of internal road environment.
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A.3 Underground Mine Tunnel

The underground mine tunnel is substantially different to the previous two environment in
that it possesses no discrete features but is characterised entirely by the texture of its walls
(see Figure A.5). This environment is completely static with no dynamic objects present,
and the road surface is flat and smooth. However, some variation in the perceived wall
texture can occur due to the roll of the vehicle at higher speeds—which shifts the laser scan
cross-section.

Extraction of stable parametric features in this environment is extremely difficult, al-
though some work has been done to find points of maximum curvature using scale-space
methods [94]. On the other hand, the quantity of texture in the wall surface permits very
accurate and reliable scan correlation, which enables accurate laser-based dead reckoning,
and is particularly tenable to place recognition and a topological-metric implementation.

Laser Specifications
Scan rate: 2.3 Hz
Maximum effective range: ∼20 m

Vehicle Speed
Maximum speed: 4.5 m/s (16 km/hr)
Average speed: 3.2 m/s (12 km/hr)
Maximum turn rate: 0.6 rad/s (34 deg/s)

Figure A.5: Mine tunnel environment. Note the smooth road surface
and distinctive wall texture. Coal is extracted from this mine using LHD
(load, haul, dump) vehicles such as the one pictured in the foreground.
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Experiments in the mine were performed using a diesel 4WD vehicle with the laser
attached to the front bumper. The laser image shown in Figure A.6 is compiled using scan
correlation based dead reckoning (i.e., the pose of the laser for each scan is found relative to
the laser pose for the previous scan using the maximum likelihood scan correlation method
presented in Chapter 4). The clarity and definition of the walls in the image demonstrate
the accuracy of this dead reckoning procedure. Note, in the bottom right-hand corner of
the image, the vehicle performs a 3-point turn—accounting for the apparent discontinuity
in the vehicle trajectory.
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Figure A.6: Laser image of mine tunnel.



Appendix B

Kalman Filter Topics

This appendix contains a brief introduction to state-space representations and describes
the basic linear Kalman filter and extended Kalman filter algorithms. Further information
regarding Kalman filters can be found in the following texts [97, 6, 61].

B.1 State-Space

State space concerns the representation of a system in terms of a set of scalar parameters, or
state variables, such that the system is defined by a state vector x = [x1, . . . , xn]T . Usually
the exact condition of the state vector is not known, and there is a degree of uncertainty
to each of the state variables. If the uncertainty has Gaussian distribution, then each
variable can be defined in terms of its mean x̂i and standard deviation σi. Generally, the
magnitude of uncertainty is given by the standard deviation squared (or variance) σ2

i , as in
this form the uncertainties of independent variables can be added. For example, if x1 and
x2 are independent scalar variables with standard deviations σ1 and σ2 respectively, and
x3 = x1 + x2 then σ2

3 = σ2
1 + σ2

2. Therefore, the system x is represented by its mean vector
and covariance matrix.

x̂ =


 x̂1

...
x̂n


 � E[x]

Px =


 σ2

11 · · · σ2
1n

...
. . .

...
σ2

1n · · · σ2
nn


 � E[(x − x̂)(x − x̂)T ]

where E[x] defines the expected value or mean as follows.1

E[x] �
∫ ∞

−∞
xp (x) dx

The off-diagonal terms of Px are called cross-correlations and represent the dependence of
the uncertainty of one variable upon another.

1The function p (x) defines the probability density of x. More information about probability density
functions (PDFs) is provided in Chapter 4 and Appendix D.
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B.1.1 Linear Transformations

If x is transformed to y by a system of linear equations F, then the covariance matrix is
transformed as follows.

ŷ = Fx̂

Py = FPxFT

The addition of two independent state vectors is similar.

x̂3 = Ax̂1 + Bx̂2

P3 = AP1AT + BP2BT

Non-linear transformations, however, present a problem as it is no longer possible to simply
transform the covariance matrix from one space to the other. The usual solution to this
problem is to approximate the covariance transform by linearising the transformation func-
tions. Given a set of non-linear functions f , the linearised Jacobian matrix ∇fx is defined
as the partial derivative of f with respect to x about the point x̂.

y = f (x) =


 f1 (x1, . . . , xn)

...
fm (x1, . . . , xn)




∇fx =
∂f
∂x

∣∣∣∣
x̂

=




∂f1

∂x1
. . . ∂f1

∂xn
...

. . .
...

∂fm

∂x1
. . . ∂fm

∂xn




x̂

Assuming that f is reasonably linear over a small region, the linearised transformation
matrix approximates f for values of x close to x̂. Therefore, the covariance transformation
can be calculated as for the linear case.

Py = ∇fxPx∇fT
x

A problem with the linearised approach is that the transformations introduce a bias into
the covariance estimate, and may incur a significant error for very non-linear functions. An
alternative method that addresses this issue is the unscented transformation [76, 75] which
transforms a set of points through the non-linear function and reconstructs a Gaussian
distribution to encompass these points.

Example B.1
Conversion between polar and Cartesian coordinate systems. A polar measurement p, such
as returned by a range-bearing laser, is often required as a point x in Cartesian space.

p̂ =
[

r̂

θ̂

]

Pp =
[

σ2
rr σ2

rθ

σ2
rθ σ2

θθ

] f−−−−→
x̂ =

[
x̂
ŷ

]
Px
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where the non-linear transform f is given by

x = f (p) =
[

r cos θ
r sin θ

]
The transformed estimate x̂ can be calculated directly from the non-linear function but the
covariance must be determined from the Jacobian.

∇fp =
∂f
∂p

∣∣∣∣
p̂

=
[

cos θ̂ −r̂ sin θ̂

sin θ̂ r̂ cos θ̂

]
Px = ∇fpPp∇fT

p

The inverse transformation from Cartesian to polar coordinates is similar. The function
and its Jacobian are as follows.

p = h (x) =
[ √

x2 + y2

arctan
( y

x

) ]

∇hx =
∂h
∂x

∣∣∣∣
x̂

=

[
x̂√

x̂2+ŷ2

ŷ√
x̂2+ŷ2

−ŷ
x̂2+ŷ2

x̂
x̂2+ŷ2

]

B.2 The Kalman Filter

The Kalman filter is an algorithm for fusing information in state-space. It is applicable to
systems where both the process (state transitions) and observations of the state are linear
and the associated uncertainties are Gaussian. Essentially, it works by a two step cycle, a
prediction step and an update step, to recursively produce a state estimate with minimum
mean squared error (i.e., minimise the trace of the state covariance matrix).

Given a system defined by the state xk (at time k) and modelled by the process

xk+1 = Axk + Buk + qk (B.1)

where uk represents some independent state vector (usually a control input) and qk denotes
Gaussian white noise, the predict step of the Kalman filter operates as follows.

x̂−
k+1 = Ax̂k + Bûk (B.2)

P−
k+1 = APkAT + BUkBT + Qk (B.3)

The − sign indicates that this is a prediction or an a priori state estimate. The matrices
Pk, Uk and Qk are the covariance matrices for xk, uk and qk respectively. If, at time k+1,
an independent observation is made of the state

zk+1 = Hxk+1 + rk+1 (B.4)

where rk+1 represents Gaussian white noise with covariance Rk+1, then an improvement can
be made to the state estimate. That is, the update estimate of xk+1 will be a weighted sum
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of the predicted state and the observed state. The Kalman filter determines the optimal
weighting as follows.

νk+1 = zk+1 − Hx̂−
k+1 (B.5)

Sk+1 = HP−
k+1H

T + Rk+1 (B.6)

Wk+1 = P−
k+1H

TS−1
k+1 (B.7)

The vector νk+1 is the error (or residual) between the predicted and actual observation. This
error is commonly termed the innovation and the matrix Sk+1 represents the innovation
covariance. The optimal weighting Wk+1 is known as the Kalman gain. The updated state
estimate (or a posterior estimate) is then determined.

x̂+
k+1 = x̂−

k+1 + Wk+1νk+1 (B.8)

P+
k+1 = P−

k+1 − Wk+1Sk+1WT
k+1 (B.9)

Notice that the Kalman filter estimates the covariance Pk+1 independent of the value of
the state mean x̂k+1 (i.e., the value of the mean estimate does not affect the covariance
estimate). In fact, for linear systems, it is possible to compute the state covariance off-line.

B.3 The Extended Kalman Filter

Most real systems, and certainly the systems in this thesis, are not governed by linear
equations, and the basic Kalman filter is insufficient for these tasks. To cater for non-linear
estimation problems the extended Kalman filter (EKF) was devised. For example, a state
transition is modelled by a non-linear function f and an observation of the state modelled
by a non-linear function h as follows.

xk+1 = f (xk,uk) + qk (B.10)
zk+1 = h (xk+1) + rk+1 (B.11)

The key attribute of the EKF is to linearise the functions f and h about the point of
the state mean. Therefore, unlike the linear Kalman filter, the state covariance estimate
is no longer independent of the state mean estimate as they are coupled by the Jacobian
calculations. The prediction step becomes

x̂−
k+1 = f (x̂k, ûk) (B.12)

P−
k+1 = ∇fxk

Pk∇fT
xk

+ ∇fuk
Uk∇fT

uk
+ Qk (B.13)

where the Jacobian ∇fxk
is the partial derivative of f with respect to x at the point (x̂k, ûk)

and the Jacobian ∇fuk
is similarly defined for u.

∇fxk
=

∂f
∂xk

∣∣∣∣
(x̂k,ûk)

(B.14)

∇fuk
=

∂f
∂uk

∣∣∣∣
(x̂k,ûk)

(B.15)
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Calculation of the Kalman gain is performed similarly by linearising the observation function
h.

νk+1 = zk+1 − h
(
x̂−

k+1

)
(B.16)

Sk+1 = ∇hxk+1
P−

k+1∇hT
xk+1

+ Rk (B.17)

Wk+1 = P−
k+1∇hT

xk+1
S−1

k+1 (B.18)

where the Jacobian ∇hxk+1
is given by

∇hxk+1
=

∂h
∂xk+1

∣∣∣∣
x̂−

k+1

(B.19)

The state update is then calculated using the normal Kalman update equations B.8 and B.9.
The EKF operates on the assumption that the functions f and h are near-linear so that the
linearised transformations sufficiently approximate the correct covariance transformations.
However, for highly non-linear functions, linearisation may generate inconsistent uncertainty
estimates and a method like the unscented transform might provide more accurate results.
Also, as with the standard linear Kalman filter, the EKF assumes Gaussian uncertainty
distributions for all estimates and large deviations from this ideal may also lead to unreliable
performance.
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Insert and Observe State
Augmentation

An alternative to deriving specialised Jacobians for the initialisation of state variables is the
method of insert and observe, which enables state element initialisation via the EKF update
equations. The method is appropriate for any state augmentation procedure where new
elements are added to an existing state vector. Initialisation is performed by first setting
the means of the inserted elements to arbitrary values and their covariance diagonals to
infinity (i.e., total uncertainty).

x̂aug =
[

x̂old

x̂new

]
(C.1)

Paug =
[

Pold 0
0 ∞Inew

]
(C.2)

Obtaining the correct mean and covariance values for the added elements (including cross-
correlations to the old portion of the state vector) is then simply a matter of applying the
normal observation update equations.

In practice, the added mean elements are initially set to values expected by the new
observation information (i.e., a close initial guess); this prevents linearisation problems
during the EKF update. The initial covariance diagonals are set to a suitably large value
(e.g., σ2 = 1012), as an approximation to infinity. While using non-infinite variances actually
constitutes a reduction in uncertainty without the addition of information, this inconsistency
is extremely small and easily absorbed by the added process and observation stabilising
noise.

C.1 New Feature Initialisation

This example of the insert and observe method is an alternative to the map augmentation
method presented in Section 2.2.4. However, the following approach is not recommended
for feature initialisation in practice, since the direct Jacobian-based method is both more
exact and more efficient.
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Given the observation z = [r, θ]T of a new feature (xi, yi) where the observation is mod-
elled as

ẑi = hi (x̂v, x̂i) =



√

(x̂i − x̂v)
2 + (ŷi − ŷv)

2

arctan
(

ŷi−ŷv

x̂i−x̂v

)
− φ̂v


 (C.3)

the feature is added to the state vector xa with approximately1 infinite uncertainty.

x̂aug =


 x̂a

xv + r cos (θ + φv)
yv + r sin (θ + φv)


 (C.4)

Paug =
[

Pa 0
0 αI

]
(C.5)

The posterior augmented state estimate can then be obtained via the normal SLAM update
equations (i.e., Equations 2.17 to 2.22 from Section 2.2.3).

In the event of long term SLAM, where a huge number of features are initialised by
this method, it is conceivable that the small decrease in vehicle pose uncertainty due to
finite α may accumulate to the point where the estimate becomes inconsistent. To avoid
this problem, a simple modification to the update equations (i.e., Equations 2.21 and 2.22)
may be implemented so that only the new feature portion of the state vector, and only the
new feature block and its off-diagonals of the state covariance matrix, are changed. With
this modification, the information increase is confined to the new feature only and does not
accumulate.

C.2 Vehicle Pose Initialisation in a Partially Known Map

The insert and observe initialisation method is most advantageous when used to perform
an augmentation of the state vector that requires multiple simultaneous observations (i.e.,
a batch observation). Again, the elements to be initialised are simply given approximately
correct nominal values and large uncertainty, and are updated to the correct values using
the observation information.

If a SLAM map has been constructed for a particular environment, the vehicle states
x̂v can be removed from the map in a consistent manner by simply deleting the vehicle
elements from the state vector and deleting the vehicle-correlated rows and columns from
the covariance matrix. This enables the map x̂m to be decoupled from the vehicle pose
estimate.

Supposing the vehicle (or another vehicle) later observes a set of features from the map
using the non-tracking CCDA algorithm (see Section 3.3.3), and it is desired to append the
vehicle pose to the map and continue SLAM map building. An initial guess of the vehicle
pose xguess can be obtained using a batch relative pose estimation technique—such as the
closed-form least-squares algorithm presented in [73, 93]. The augmented state vector is

1A practical approximation to infinity is provided by a large scalar α.
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then constructed as follows.

x̂−
a =

[
x̂guess

x̂m

]
(C.6)

P−
a =

[
αIv 0
0 Pm

]
(C.7)

The batch observation information is subsequently used to update this state estimate to
the proper value (i.e., via Equations 2.17 to 2.22).

x̂+
a =

[
x̂v

x̂m

]
(C.8)

P+
a =

[
Pv Pvm

PT
vm Pm

]
(C.9)

C.3 Relative Pose Estimation

The following technique is a variation on the vehicle pose initialisation example which
enables calculation of the relative pose (and uncertainty) between two scans of feature
points.

To begin, the state vector is constructed with the vehicle at pose x̂v = [0, 0, 0]T , with
zero uncertainty, and an initial map composed of the features from the first scan.2

x̂a =
[

0̂v

x̂m

]
(C.10)

Pa =
[

0 0
0 Pm

]
(C.11)

Notice that each feature x̂i = [x̂i, ŷi]T in the map is not correlated to the vehicle or to any
of the other features, and is derived from the measurement zi = [ri, θi]T as follows.

x̂i = g (zi) =
[

ri cos θi

ri sin θi

]
(C.12)

Pi = ∇gz

[
σ2

r 0
0 σ2

θ

]
∇gT

z (C.13)

where the Jacobian ∇gz is given by

∇gz =
∂g
∂zi

=
[

cos θi −ri sin θi

sin θi ri cos θi

]
(C.14)

The next step is to guess the vehicle pose for the second scan. If there is no a priori
information, this guess might be obtained by first finding the set of feature associations be-
tween the two scans via the non-tracking version of the CCDA algorithm (see Section 3.3.3).

2Equations C.10 and C.11 are also used for initialising the state vector for SLAM.
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Then, as in Section C.2, a guess of the relative pose can be obtained using a simple batch
estimation algorithm, and the pose covariance diagonals are assigned a large uncertainty.

x̂−
a =

[
x̂guess

x̂m

]
(C.15)

P−
a =

[
αIv 0
0 Pm

]
(C.16)

On the other hand, if there exists a priori information about the relative pose (e.g.,
from odometry or dynamic constraints), then the initial guess and uncertainty would be as
follows.

x̂−
a =

[
x̂prior

x̂m

]
(C.17)

P−
a =

[
Pprior 0

0 Pm

]
(C.18)

With this prior estimate, the tracking version of the CCDA algorithm (see Section 3.3.4)
can be applied subsequently—making use of the absolute constraint information.

Having obtained a set of associations between the two scans, a full SLAM update is
performed using Equations 2.17 to 2.22.

x̂+
a =

[
x̂v

x̂m

]
(C.19)

P+
a =

[
Pv Pvm

PT
vm Pm

]
(C.20)

This produces a state estimate where the vehicle and map portions are correlated. If this
method is used to obtain the relative pose between two isolated scans, then the vehicle pose
estimate x̂v and Pv can be extracted directly. However, if this method is used to calculate
the change-in-pose over a sequence of scans (e.g., laser-based dead reckoning), then the map
correlations become an issue, and direct use of Pv may be inconsistent (see the example
below).

Example C.1
Laser-based dead reckoning. Given a sequence of laser scans, the relative pose between the
kth and k+1th scan can be calculated using the method shown above. A naive dead reckoning
implementation would make the change-in-pose estimate, x̂δ and Pδ, equal to the extracted
relative pose estimate x̂v and Pv.

Let the dead reckoning estimate for the pose of the kth scan, be denoted xk = [xk, yk, φk]T ;
the dead reckoning equations for the k + 1th scan are as follows.3

x̂k+1 = f (x̂k, x̂δ) =


 x̂k + x̂δ cos φ̂k − ŷδ sin φ̂k

ŷk + x̂δ sin φ̂k + ŷδ cos φ̂k

φ̂k + φ̂δ




Pk+1 = ∇fxk
Pk∇fT

xk
+ ∇fxδ

Pδ∇fT
xδ

3These equations are a simple variation of the state prediction equations in Section 2.2.2 where the map
portion of the state vector is empty.
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where the Jacobians ∇fxk
and ∇fxδ

are defined as

∇fxk
=

∂f
∂xk

∣∣∣∣
(x̂k,x̂δ)

=


 1 0 −x̂δ sin φ̂k − ŷδ cos φ̂k

0 1 x̂δ cos φ̂k − ŷδ sin φ̂k

0 0 1




∇fxδ
=

∂f
∂xδ

∣∣∣∣
(x̂k,x̂δ)

=


 cos φ̂k − sin φ̂k 0

sin φ̂k cos φ̂k 0
0 0 1




The problem with assigning Pδ = Pv is that it may result in an inconsistent estimate of
Pk+1 because the relative pose estimates are pair-wise correlated (i.e., the change-in-pose
estimate between scans k − 1 and k is correlated to the change-in-pose estimate between
scans k and k + 1). In other words, the information in each scan is used twice, once with
the preceding scan and once with the subsequent scan. The measure used in this thesis to
prevent inconsistent dead reckoning is to expand the change-in-pose uncertainty by two (i.e.,
Pδ = 2Pv), which caters for the worst case condition where the two adjacent change-in-pose
estimates are fully correlated.4

4Ignoring correlations does not necessarily imply an inconsistent estimate and, in the particular case
of sensor-based dead reckoning, the correlations actually tend to produce a self-correcting estimate. Thus,
assigning Pδ = Pv is conservative in most, if not all, circumstances (see Section 6.2.6 for further explanation).
In other words, while uncertainty inflation is necessary in general for functions of variables with unknown
correlations, it is probably not required for the summation of change-in-pose estimates.



Appendix D

Particle Filters

This appendix introduces Bayesian (probabilistic) estimation and describes the particle
filter algorithm as a practical method for implementing recursive Bayesian estimation for
real systems. Particle filtering is an attractive estimation technique for systems with any of
the following properties: (i) governed by non-linear transition models, (ii) observed via non-
linear sensor models, and (iii) possessing arbitrary (non-Gaussian) uncertainty distributions.

D.1 Probability Density Functions

The probabilistic approach to estimation is based on the concept of the probability density
function (PDF) which is used to define the uncertainty distribution of a set of random
variables. In other words a PDF p (x) expresses, for a particular random vector x, the
likelihood that the true state of x lies within a particular region of the state-space X . For
the purposes of this thesis it is sufficient to understand the following PDF properties.1

• A PDF p (x) represents a functional mapping p : x → R for all x ∈ X .

• A PDF p (x) is non-negative for all values of random vector x.

p (x) ≥ 0, ∀x ∈ X

• The area (or volume) under a PDF is one.∫ ∞

−∞
p (x) dx = 1

If there exist two random vectors x and y where the value of x is to some degree
dependent on the value of y, then there exists a conditional PDF p (x|y). The conditional
PDF p (x|y) may be understood as the probability or likelihood of x given a fixed value of
y. If x and y are independent then p (x|y) = p (x).

1Excellent expositions of Bayesian estimation theory can be found in [97, 109, 125, 6].
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D.2 Recursive Bayesian Estimation

This section gives a cursory introduction to Bayesian estimation2 which involves tracking
the PDF of a random vector over time given a model of its incremental change and a means
of observing its actual state. A state vector xk at time k, is assumed to evolve over time as
modelled by the state transition function f .3

xk+1 = f (xk,qk) (D.1)

where qk is an independent noise sequence and the PDF p (qk) is known. An observation
of the state is obtained at discrete intervals such that the measurement zk is modelled by
the function h.

zk = h (xk, rk) (D.2)

where rk is also an independent noise sequence with known PDF.
Assuming that at time k, the PDF p (xk−1|Zk−1) is known4 and an observation zk has

been obtained, p (xk|Zk) can be estimated by a two-step process. The first is a prediction
step to find the prior PDF p (xk|Zk−1).

p (xk|Zk−1) =
∫ ∞

−∞
p (xk|xk−1) p (xk−1|Zk−1) dxk−1 (D.3)

where the p (xk|xk−1) is derived from the state transition model f . It is assumed that
the transition function is a Markov process such that p (xk|{x0, . . . ,xk−1}) is equal to
p (xk|xk−1). That is, the PDF of xk is conditioned by xk−1 only and is independent of
all previous states.

p (xk|xk−1) =
∫ ∞

−∞
δ (xk − f (xk−1,qk−1)) p (qk−1) dqk−1 (D.4)

where δ (·) is the Dirac delta function or impulse function (an infinitely brief pulse with
infinite amplitude and unit area [19]). The second step, the update step, follows from
Bayes theorem that the posterior PDF p (xk|Zk) is given by

p (xk|Zk) =
p (zk|xk) p (xk|Zk−1)∫∞

−∞ p (zk|xk) p (xk|Zk−1) dxk
(D.5)

where the denominator of the equation is simply a scaling factor to normalise the area under
the posterior to one. The PDF p (zk|xk) is defined by the observation model h.

p (zk|xk) =
∫ ∞

−∞
δ (zk − h (xk, rk)) p (rk) drk (D.6)

For the case where the state transition and observation functions, f and h, are linear
and the uncertainty distributions are all Gaussian, then the above equations are equivalent

2Sections D.2 and D.3 are based on [60] which provides an accessible introduction to the particle filter
algorithm.

3The functions f and h may change over time and so should actually be written as fk and hk.
4The conditional PDF p (xk−1|Zk−1) where Zk−1 is the set {z1, . . . , zk−1}, can be interpreted as the PDF

of xk−1 given all the available observation information up to time k − 1.
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to the Kalman filter (see Appendix B for a description of the KF algorithm). If f and
h are almost linear then, for Gaussian PDFs, Equations D.3 to D.6 may be adequately
approximated by the extended Kalman filter. However, for general non-linear systems
with arbitrary distributions, the EKF is unsuitable and it may be very difficult to find an
analytical description of the posterior distribution. An alternative approach is to obtain
an approximate estimate of the posterior PDF using samples. The technique of drawing
state samples from the prior distribution and using these samples (in conjunction with state
transition and observation information) to approximate the posterior is known as particle
filtering.5

D.3 Particle Filtering: Sample Based Estimation

The basic particle filter algorithm is implemented as follows. First, assuming that the
initial PDF p (x0) is known, the algorithm is initialised by drawing n random samples
{x0(1), . . . ,x0(n)} from this distribution. From this point on the conditional PDF of x
is represented entirely by samples and an analytical formulation of the distribution is not
required. The evolution of p (xk|Zk) is computed recursively using a three step process:
prediction, likelihood weighting, and resampling.

1. Prediction is performed by passing each sample from the previous time step xk−1(i)
through the state transition function (Equation D.1).

x−
k (i) = f (xk−1(i),qk−1(i)) (D.7)

where the sample qk−1(i) is drawn6 from the known distribution p (qk−1). The result-
ing set of samples

{
x−

k (1), . . . ,x−
k (n)

}
represents the prior distribution p (xk|Zk−1).

2. Upon the reception of observation zk at time k, a likelihood weighting is calculated
for each prior sample x−

k (i) based on the PDF p
(
zk|x−

k (i)
)

(of Equation D.6). As
both zk and x−

k (i) are specified, the value of p
(
zk|x−

k (i)
)

is scalar and Λk(i) is given
by

Λk(i) =
p
(
zk|x−

k (i)
)∑n

j=1 p
(
zk|x−

k (j)
) (D.8)

That is, the likelihood Λk(i) is proportional to p
(
zk|x−

k (i)
)

and normalised so that
the sum of likelihoods is one.

3. Having assigned a weighting to each prior sample, the posterior p (xk|Zk) is estimated
by resampling from the prior sample set according to their weightings. The resampling
algorithm is as follows. First, a set of cumulative likelihoods {Υk(0), . . . ,Υk(n)} is
calculated.

Υk(i) =
{

0, i = 0∑i
j=1 Λk(j), otherwise

(D.9)

5Particle filters appear in the literature under a variety of guises including Bootstrap filter [60], SIR filter
[114], Monte Carlo filter [79], and Condensation algorithm [74].

6The noise sequence qk is assumed to have known distribution p (qk) at each time step k. It is also
assumed that a random sample may be feasibly drawn from this distribution.
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Each posterior sample x+
k (i) is then found by drawing a random scalar sample ui from

the uniform distribution U(0, 1] and selecting the indicated sample from the the prior
set.

x+
k (i) = x−

k (j), where Υk(j − 1) < ui ≤ Υk(j) (D.10)

The set of samples
{
x+

k (1), . . . ,x+
k (n)

}
then represents the posterior distribution

p (xk|Zk) and the estimation process can be repeated from step 1.

Implementation of step one is trivial. For each sample xk−1(i) of the old posterior
p (xk−1|Zk−1), draw a sample qk−1(i) from the distribution p (qk−1) and pass them through
the state transition function. Steps two and three are less intuitive and the examples
below elaborate on the calculation of the likelihood function p

(
zk|x−

k (i)
)

for step two and
implementation of the resampling phase for step three.

Example D.1
Likelihood weighting calculation. This example is taken from the first example in [60] and
serves to elucidate the calculation of p (zk|xk). Given a one-dimensional observation model

zk = x2
k/20 + rk

where rk is zero-mean Gaussian white noise with variance 1.0, the likelihood function
p (zk|xk) is found from Equation D.6 as follows.

p (zk|xk) =
∫ ∞

−∞
δ

(
zk − x2

k

20
− rk

)
p (rk) drk

This represents, for specific values of zk = zo and xk = xo, the area under the function
resulting from the multiplication of p (rk) with the impulse δ

(
zo − x2

o/20 − rk

)
, where the

impulse is non-zero at rk = zo − x2
o/20 as shown in Figure D.1. In this way, given an

observation zo at time k, the likelihood of each sampled particle x−
k (i) can be calculated.

The likelihood p (zk|xk) can be expressed as a function of zk in sensor-space for a fixed
value of xk = xo (see Figure D.2(a)). Alternatively, for a fixed value of zk = zo, the
likelihood can be expressed as a function of xk in target-space as shown in Figure D.2(b).

For general state-space systems with likelihood function defined by Equation D.6, the
function p (zk|xk = xo) always integrates to one meaning that the likelihood function is a
PDF in sensor-space. However, in target space, the function p (zk = zo|xk) does not in
general integrate to one and so does not represent a PDF. For further information on
likelihood functions, a detailed discussion can be found in [125, pages 33–35].

Example D.2
Resampling from the weighted prior sample set. Let x be a one-dimensional random variable
and let the prior PDF p (xk|Zk−1) be represented by five samples{

x−
k (1) = 6, x−

k (2) = 3, x−
k (3) = 8, x−

k (4) = 5, x−
k (5) = 7

}
with normalised likelihood weightings

{Λk(1) = 0.35, Λk(2) = 0.05, Λk(3) = 0.15, Λk(4) = 0.2, Λk(5) = 0.25}
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Figure D.1: Likelihood evaluation. For fixed values of zk and xk (zo = 5
and xo = 9 in this example), the likelihood is found as the area under
the function obtained from multiplying p (rk) with the impulse function.
Note, this area is simply the value of p (rk) at the location where δ (·) is
non-zero.

(a) p (zk|xk = xo) as a function of zk (b) p (zk = zo|xk) as a function of xk

Figure D.2: Likelihood functions. The likelihood p (zk|xk) for the model
zk = x2

k/20 + rk is shown in (a) as a function of zk with xo = 9 and in
(b) as a function of xk with zo = 5.
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Algorithm D.1: Resample(x−
k , Λk)

Υ1 ← Λ1

for i ← 2 to n
do Υi ← Υi−1 + Λi

for i ← 1 to n
do Υi ← Υi/Υn

U ← UniformRandom(n)
j ← 1
for i ← 1 to n

do




while Υj < ui

do j ← j + 1
x+

k (i) ← x−
k (j)

return (x+
k )

The cumulative likelihoods are therefore

{Υk(0) = 0, Υk(1) = 0.35, Υk(2) = 0.4, Υk(3) = 0.55, Υk(4) = 0.75, Υk(5) = 1}

A scalar value u1 = 0.43 is drawn at random from a uniform distribution U(0, 1]. This
value is greater than Υk(2) and less than Υk(3) so the new sample x+

k (1) is assigned the
value of x−

k (3). Suppose the five random scalars drawn were

{u1 = 0.43, u2 = 0.78, u3 = 0.60, u4 = 0.29, u5 = 0.85}

then the posterior sample set would be as follows.{
x+

k (1) = 8, x+
k (2) = 7, x+

k (3) = 5, x+
k (4) = 6, x+

k (5) = 7
}

D.4 Resampling Implementations

This section presents an implementation of the resampling algorithm. The key component
to this algorithm is the generation of an ordered set of uniform-random numbers in the
range (0, 1], and so three alternative implementations of this module are presented.

The inputs to the resampling algorithm (see Algorithm D.1) are the prior sample
set x−

k =
{
x−

k (1), . . . ,x−
k (n)

}
and their associated (non-normalised) likelihood weight-

ings Λk = {Λk(1), . . . ,Λk(n)}. The algorithm returns the posterior sample set x+
k ={

x+
k (1), . . . ,x+

k (n)
}
.

The function UniformRandom(n) receives the number of samples required and returns
this number of uniform-random samples, in ascending order, from the range (0, 1]. The first
version of this function, shown in Algorithm D.2, performs straight-forward calculation
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Figure D.3: Uniform-random sampling algorithms. The same set of 50
random samples is used in Algorithms D.2 to D.4 to allow comparison of
their distributions (top to bottom, respectively). The first two algorithms
possess identical statistical characteristics, while the third gives regularly
spaced samples with uniform-random jitter in the range (− 1

2n , 1
2n).

Algorithm D.2: UniformRandom(n)

for i ← 1 to n
do ui ← U(0, 1]

Sort(U)
return (U)

Algorithm D.3: UniformRandom(n)

un ← U(0, 1]
un ← u

1/n
n

for i ← n − 1 to 1

do

{
ui ← U(0, 1]
ui ← u

1/i
i ui+1

return (U)

Algorithm D.4: UniformRandom(n)

k ← 1/n
u1 ← k/2
for i ← 2 to n

do
{

ui ← ui−1 + k

ui−1 ← ui−1 + U(−k
2 , k

2 )
un ← un + U(−k

2 , k
2 )

return (U)
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of this set; first calculating a set of n values and later sorting them. The sort routine
means that this implementation has O(n log n) complexity. A faster version with equivalent
results is presented in Algorithm D.3, where the samples are created in order by way of
exponential distributions—thus requiring only O(n) time (this algorithm is also provided
in [44, 111]). Finally, a method known as stratified sampling (see also [79]) is presented in
Algorithm D.4. This algorithm also runs in O(n) time, but tends to give better statistical
results by ensuring that the samples are evenly distributed (i.e., without clustering), with
spacing between samples not greater than 1/n. A pictorial comparison of these algorithms
is shown in Figure D.3.

D.5 Deficiencies of the Particle Filter Algorithm

Particle filter theory states that the sampled representation of posterior approaches the true
posterior PDF as the number of samples approaches infinity. Practical implementations,
however, are limited to a bounded number of samples and, in relation to this issue, the
basic particle filter algorithm suffers from several important weaknesses.

The first of these is that the number of samples n required to obtain reasonable statistical
results must typically be very large (even for state vectors of just one or two variables).
Nevertheless, for many applications, the distribution statistics may not be crucial provided
sample coverage is sufficient to ensure that the target state remains consistently trackable
(i.e., mode tracking). But even this task becomes infeasible for larger state-spaces as the
volume of state-space increases exponentially with the dimension of the state.

A second problem is sample impoverishment where the number of independent samples
decreases over time (i.e., the filter behaves as if using only ne < n samples). This is
apparent from Equation D.10 as clearly some samples from the prior set will be selected
multiple times while others will be lost—resulting in a depletion in information. Sample
impoverishment is countered in [60] by introducing “roughening”—adding Gaussian jitter
to each resampled element x+

k (i)—which seems to effectively eliminate sample dependence.
A third weakness arises when there is insufficient overlap between the prior sample

set and the observation likelihood function p (zk|xk) so that the posterior estimate is very
imprecise. This can happen, for example, if the likelihood function is highly peaked (as
for a very accurate sensor), or if the area covered by the bulk of the likelihood function is
on the outskirts of the prior sample set (as would occur for an outlier observation). The
likelihood coverage problem is difficult to solve and requires directing resampling to regions
where the observation likelihood is significant and weighting the results to maintain the
correct posterior statistics. Methods for tackling this problem can be found in [60, 23, 52,
111, 138, 132].



Appendix E

Volume from Gaussian
Multiplication

The sum of Gaussians cross-correlation operation in Chapter 4 requires evaluation of the
volume1 under the product of two Gaussians. A derivation of the volume equation is
provided here in two sections. The first section shows the equation for the scaled Gaussian
resulting from the multiplication of two Gaussians, and the second section solves for the
volume under this Gaussian.

E.1 Multiplication of Two Gaussians

Let g(x; p̄,P) and g(x; q̄,Q) define two n-dimensional Gaussians

g(x; p̄,P) =
1

(2π)n/2
√|P|exp

(
−1

2
(x − p̄)TP−1(x − p̄)

)
(E.1)

g(x; q̄,Q) =
1

(2π)n/2
√|Q|exp

(
−1

2
(x − q̄)TQ−1(x − q̄)

)
(E.2)

where p̄, P and q̄, Q are their respective means and variances.2 The scaled Gaussian
αg(x; r̄,R) resulting from the multiplication of these two Gaussians is therefore

αg(x; r̄,R) = g(x; p̄,P)g(x; q̄,Q)

=
α

(2π)n/2
√|R|exp

(
−1

2
(x − r̄)TR−1(x − r̄)

)
(E.3)

where r̄ and R are given by

R−1 = P−1 + Q−1 (E.4)

r̄ = R(P−1p̄ + Q−1q̄) (E.5)

and the scaling factor α represents the volume under the function αg(x; r̄,R).
1The term volume is used here to intuitively describe the integral over n-dimensional space.
2The means are n × 1 real vectors and the variances are n × n real positive-definite matrices.
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Proof. The derivation of Equation E.3 is as follows.3 From Equations E.1 and E.2, the
multiplication of g(x; p̄,P) and g(x; q̄,Q) can be expanded to

g(x; p̄,P)g(x; q̄,Q)

=
1

(2π)n
√|P| |Q|exp

(
−1

2
[
(x − p̄)TP−1(x − p̄) + (x − q̄)TQ−1(x − q̄)

])
(E.6)

The next section of the proof concerns only the exponential portion of Equation E.6. For
notational convenience, let A = P−1 and B = Q−1 so that

(x− p̄)TP−1(x− p̄) + (x− q̄)TQ−1(x− q̄) = (x− p̄)TA(x− p̄) + (x− q̄)TB(x− q̄) (E.7)

Notice that (x − p̄)TA(x − p̄) can be expanded using the matrix identity that xTAy = yTAx
if A is real symmetric and xTAy is scalar.

(x − p̄)TA(x − p̄) = xTAx − xTAp̄ − p̄TAx + p̄TAp̄

= xTAx − 2xTAp̄ + p̄TAp̄

Therefore, Equation E.7 becomes

(x − p̄)TA(x − p̄) + (x − q̄)TB(x − q̄)

= xTAx − 2xTAp̄ + p̄TAp̄ + xTBx − 2xTBq̄ + q̄TBq̄

= xT (A + B)x − 2xT (Ap̄ + Bq̄) + p̄TAp̄ + q̄TBq̄

(substituting C = R−1 from Equation E.4)

= xTCx − 2xT (Ap̄ + Bq̄) + p̄TAp̄ + q̄TBq̄

(inserting CC−1)

= xTCx − 2xTCC−1(Ap̄ + Bq̄) + p̄TAp̄ + q̄TBq̄

(substituting r̄ from Equation E.5)

= xTCx − 2xTCr̄ + p̄TAp̄ + q̄TBq̄

(inserting r̄TCr̄ − r̄TCr̄)

= xTCx − 2xTCr̄ + r̄TCr̄ + p̄TAp̄ + q̄TBq̄ − r̄TCr̄︸ ︷︷ ︸
k= (x − r̄)TC(x − r̄) + k

3Thanks to Somajyoti Majumder for his assistance in this derivation. Note, the standard proof for “the
product of two Gaussians is a Gaussian” is rather simpler than this one, but this approach fulfills a secondary
motivation to obtain Equation E.9.
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where k is a scalar constant term. Thus, incorporating this result back into Equation E.6
the multiplication of g(x; p̄,P) and g(x; q̄,Q) can be expressed as

g(x; p̄,P)g(x; q̄,Q) =
1

(2π)n
√|P| |Q|exp

(
−1

2
[
(x − r̄)TR−1(x − r̄) + k

])

=
1

(2π)n
√|P| |Q|exp

(
−k

2

)
exp
(
−1

2
(x − r̄)TR−1(x − r̄)

) (E.8)

which is equivalent to Equation E.3 for α equal to

α =
(2π)n/2

√|R|
(2π)n

√|P| |Q|exp
(
−k

2

)
(E.9)

E.2 Volume from the Multiplication of Two Gaussians

The volume α under the scaled Gaussian resulting from the multiplication of g(x; p̄,P) and
g(x; q̄,Q) is given in Equation E.9 above. This equation expressed in terms of p̄, P, q̄ and
Q is as follows.

α =
1

(2π)n/2
√|P + Q|exp

(
−1

2
(p̄ − q̄)T (P + Q)−1(p̄ − q̄)

)
(E.10)

Proof. The derivation of Equation E.10 from Equation E.9 is demonstrated in two parts.
First, the simplification of √|R|√|P| |Q| =

√|P(P + Q)−1Q|√|P| |Q|
=
√

|P + Q|−1

=
1√|P + Q|

(E.11)

and, second, the simplification of the constant k.

k = p̄TP−1p̄ + q̄TQ−1q̄ − r̄TR−1r̄ (E.12)

The portion r̄TR−1r̄ is expanded as

r̄TR−1r̄ = (P−1p̄ + Q−1q̄)TRTR−1R(P−1p̄ + Q−1q̄)

= (p̄TP−1 + q̄TQ−1)
(
P(P + Q)−1Q

)
(P−1p̄ + Q−1q̄)

= p̄TP−1P(P + Q)−1QP−1p̄

+ q̄TQ−1Q(P + Q)−1PQ−1q̄

+ p̄TP−1P(P + Q)−1QQ−1q̄

+ q̄TQ−1Q(P + Q)−1PP−1p̄

= p̄T (P + Q)−1QP−1p̄ + q̄T (P + Q)−1PQ−1q̄

+ p̄T (P + Q)−1q̄ + q̄T (P + Q)−1p̄
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so that Equation E.12 becomes

k = p̄T
(
P−1 − (P + Q)−1QP−1

)
p̄

+ q̄T
(
Q−1 − (P + Q)−1PQ−1

)
q̄

− p̄T (P + Q)−1q̄ − q̄T (P + Q)−1p̄

Now, P−1 − (P + Q)−1QP−1 can be simplified as follows.

P−1 − (P + Q)−1QP−1 = (P + Q)−1
(
(P + Q)P−1 − QP−1

)
= (P + Q)−1

(
PP−1 + QP−1 − QP−1

)
= (P + Q)−1

Similarly, Q−1 − (P + Q)−1PQ−1 = (P + Q)−1 so that Equation E.12 becomes

k = p̄T (P + Q)−1p̄ + q̄T (P + Q)−1q̄

− p̄T (P + Q)−1q̄ − q̄T (P + Q)−1p̄

= (p̄ − q̄)T (P + Q)−1(p̄ − q̄)

(E.13)

Substituting the results of Equations E.11 and E.13 into Equation E.9 provides the solution
given in Equation E.10.
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