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Abstract: This paper presents HybridSLAM: an approach to SLAM which com-
bines the strengths and avoids the weaknesses of two popular mapping strategies:
FastSLAM and EKF-SLAM. FastSLAM is used as a front-end, producing local maps
which are periodically fused into an EKF-SLAM back-end. The use of FastSLAM
locally avoids linearisation of the vehicle model and provides a high level of robust-
ness to clutter and ambiguous data association. The use of EKF-SLAM globally
allows uncertainty to be remembered over long vehicle trajectories, avoiding Fast-
SLAM’s tendency to become over-confident. Extensive trials in randomly-generated
simulated environments show that HybridSLAM significantly out-performs either
pure approach. The advantages of HybridSLAM are most pronounced in cluttered
environments where either pure approach encounters serious difficulty. In addition,
the HybridSLAM algorithm is experimentally validated in a real urban environment.

1 Introduction

The Simultaneous Localisation and Mapping (SLAM) problem has attracted
immense attention in the mobile robotics literature. The problem involves
building a map while computing a vehicle’s trajectory through that map,
based on noisy measurements of the environment and the vehicle’s odometry.

This paper specifically addresses the problem of feature-based SLAM,
where the environment is modelled as a discrete set of features, each de-
scribed by a number of continuous state variables. The standard solution is
to take a Bayesian approach, explicitly modelling the joint probability distri-
bution over possible vehicle trajectories and maps. There are currently two
popular approaches to modelling this distribution. The first is to linearise and
represent the joint probability with a single high-dimensional Gaussian. This
is the approach taken by EKF-SLAM [8] and its variants [2]. The second is
to use a Rao-Blackwellised particle filter, representing the vehicle’s trajectory
using a set of particles and conditioning the map on the vehicle’s trajectory.
Examples of this approach include FastSLAM [16] and others (e.g. [9]).
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Both approaches have their strengths and weaknesses, and it is not difficult
to produce examples where one or the other will fail. In particular, the EKF
is prone to failure where significant vehicle uncertainty induces linearisation
errors [3], or where significant clutter induces ambiguity in data association.
The latter issue is problematic because the standard EKF formulation requires
that hard data association decisions be made, by selecting the most likely
hypothesis. Once a bad association is made it cannot be un-done and can
cause the filter to fail catastrophically [2].

The probability of making a potentially-catastrophic incorrect decision
can be reduced by using batch association methods. Nearest-neighbour as-
sociation considers each observation in isolation, under the assumption that
landmarks are independent. Joint compatability (e.g. JCBB [11] improves ro-
bustness by simultaneously considering all observations made from a single
pose, but cannot consider relations between observations made from different
poses. Sliding-window methods simultaneously consider all observations made
from poses in a small window of recent history, but can be computationally
intractible without the assumption of landmark independence for multiple
observations from a single pose [12][6].

In contrast to the EKF, FastSLAM does not suffer from linearisation prob-
lems (because it does not linearise the vehicle pose), and is much more robust
in situations of association ambiguity. For data association, each particle is
allowed to make independent decisions, hence FastSLAM can maintain a prob-
ability distribution over all possible associations [16]. As more observations
arrive, particles which made poor association decisions in the past tend to be
removed in the resampling process, hence the majority of particles tend to
converge to the correct set of associations. For the purposes of data associ-
ation, FastSLAM automatically allows information to be integrated between
observations at a single time step (as JCBB does), and between multiple time
steps (as sliding-window methods do). The former occurs due to landmarks
being conditionally-independent given the vehicle path, the latter due to each
particle’s memory of past associations. Furthermore, FastSLAM is simple to
implement relative to complicated batch association algorithms.

The disadvantage of FastSLAM is its inability to maintain particle diver-
sity over long periods of time [4]. The fundamental problem is that the particle
filter is really operating in a very high-dimensional space: the space of vehicle
trajectories (not momentary poses). The number of particles needed is there-
fore exponential in the length of the trajectory. When a smaller number is
used, the filter underestimates the total uncertainty, and eventually becomes
inconsistent. While this may still produce good maps, problems are encoun-
tered when the full uncertainty is required, for example when large loops need
to be closed.

For remembering long-term uncertainty, the EKF is far superior. By using
a continuous (Gaussian) representation, uncertainty does not degrade purely
as a function of trajectory length. Linearisation errors are still a concern [3],
but these are far less severe than FastSLAM’s particle diversity problems.
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This paper presents a hybrid mapping strategy, which combines the
strengths of both approaches. We advocate the use of FastSLAM as a front-
end to an EKF-SLAM back-end. The FastSLAM front-end is used to build
local maps, and is allowed to run for long enough to disambiguate associations.
Before the trajectory length becomes so long that particle diversity becomes
problematic, a single Gaussian is computed from the FastSLAM posterior.
This Gaussian local map is then fused into the global map. At the point of
fusion, a hard decision must be made about the associations between local-
map features and global-map features. However, a large local map can provide
sufficient constraints to make the probability of a bad decision extremely low.
The result is a SLAM algorithm which is robust to linearisation errors and
data association ambiguities on a local scale, and can also close large loops
on a global scale.

The remainder of the paper is structured as follows. Section 2 gives a brief
review of FastSLAM and shows how a single Gaussian can be produced from
a FastSLAM posterior, under the assumption of known associations. This as-
sumption is removed in Section 3, which addresses the problem of producing
a Gaussian posterior given unknown associations. Section 4 describes the al-
gorithm for fusing local sub-maps produced by the front-end into the global
map. Section 5 describes a set of experiments and discusses the results, and
Section 6 concludes.

2 Conversion of Factored FastSLAM Distribution to a

Single Gaussian

The aim of a SLAM algorithm is to compute the posterior

p(v0:t,M|Z0:t,U0:t,v0) (1)

where v0:t = v0, . . . ,vt denotes the path of the vehicle, the map M =
θ1, . . . , θN denotes the positions of a set of landmarks, Z0:t represents the
set of all observations, U0:t denotes the set of control inputs, and v0 denotes
the initial vehicle state. The subscript 0:t indicates a set of variables for all
time-steps up to and including t, while the subscript t is used to indicate the
variable at time-step t. Many SLAM algorithms (including the one described
in this paper) marginalise out past poses, estimating only

p(vt,M|Z0:t,U0:t,v0) (2)

Fusion into a global EKF-SLAM back-end requires the local mapping algo-
rithm to produce this distribution in the form of a single multi-dimensional
Gaussian. This section shows how a distribution of this form can be extracted
from FastSLAM, under the restrictive assumption that the environment con-
tains N uniquely-identifiable landmarks, all of which have been observed at
least once. This assumption will be removed in Section 3.
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2.1 The FastSLAM Posterior as a Gaussian Mixture Model
(GMM)

The FastSLAM algorithm factors distribution 1 as follows [16]:

p(v0:t,M|Z0:t,U0:t,v0)

= p(v0:t|Z0:t,U0:t,v0)
∏

n

p(θn|v0:t,Z0:t,U0:t) (3)

where the first factor represents the vehicle’s path and subsequent factors
represent landmark positions given the vehicle’s path. This factored distribu-
tion is represented as a set of P samples, with the pth particle S
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While it is convenient to represent individual landmark distributions as
isolated low-dimensional Gaussians, each particle can equivalently be repre-
sented using

S
p
t =< w

p
t ,xp

t ,P
p
t > (5)

where xp
t = [vp

t , µ
p
1,t, . . . , µ

p
N,t] denotes the concatenation of the vehicle states

with all landmark states, and Pp
t denotes a block-diagonal covariance matrix

constructed from the vehicle covariance and the covariances of each landmark:

Pp
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p
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. . .

Σ
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N,t








In this case the vehicle covariance Pp
vv,t is zero because each particle has no

uncertainty associated with the vehicle states.
Using this representation, the FastSLAM distribution over vehicle and

map states is a Gaussian Mixture Model (GMM): each particle is a Gaussian
component with weight, mean, and covariance given by Equation 5.

2.2 Conversion to a Single Gaussian

The parameters of a single Gaussian with mean xt and covariance Pt can be
computed from the GMM using a process known as moment matching [5]:

xt =
∑

p

w
p
t x

p
t (6)
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∑
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w
p
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Pp
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t − xt)(x

p
t − xt)

T
]

(7)

In Equation 7, the first term in the square brackets is the covariance of the
particle’s individual map (due to sensor noise), while the second term is due
to the variation between particles’ maps (due to vehicle noise).

3 Conversion using Unknown Associations

This section extends to the more realistic case where landmarks are not
uniquely identifiable. Since FastSLAM particles are free to make data as-
sociation decisions independently, both the number of landmarks and their
ordering may differ between particles. However, since the particles are to be
merged into a single high-dimensional Gaussian distribution (for fusion into
the global map), it is necessary to track the correspondences between land-
marks in different particles’ maps. The aim is to produce a single common set
of features from the particles’ individual sets of features.

While the true set of landmarks is unknown, suppose each landmark in the
environment is assigned a unique index. Each particle can be augmented with a
set of correspondence variables of the form γ

p
i,t, indicating the correspondences

between landmarks in the maps of individual particles and landmarks in the
environment: γ

p
i,t = n indicates that the ith landmark in the pth particle’s

map corresponds to the nth landmark in the environment. Each particle is
therefore of the form:

S
p
t =< w

p
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p
1,t, γ

p
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landmark θ
p
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. . . , µ
p
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p
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p
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︸ ︷︷ ︸

landmark θ
p
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> (8)

Sections 3.1 and 3.2 describe procedures for (a) tracking these correspondence
variables within a particle’s map, and (b) generating a single Gaussian given
a set of particles with non-identical correspondence variables.

3.1 Tracking Correspondences

The correspondences between features are tracked using a simple voting
scheme. Consider a single observation. Each particle can vote to either

1. ignore the observation as spurious,
2. associate the observation with a particular existing map feature, or
3. create a new map feature and associate the observation with this.

Each particle votes in proportion to its weight, and the winner takes all:
a single correspondence variable is computed based on the majority vote. All
particles must use this correspondence variable for features modified or created
by this observation, over-writing any previous correspondence variable.
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This scheme forces the particles to form a consensus about the common
set of features, but allows that consensus to be overturned at a later time
if future information alters the particle weights. In principal it is possible
for particles to disagree wildly about the number of features, but in practice
a large majority tends to form quickly, out-voting a small set of dissenting
particles.

3.2 Producing a Gaussian Given Correspondences

The correspondence variable γ provides a mapping from features in each par-
ticle’s individual map to the common set of features M. Let the function δ

denote the reverse mapping: δt(n, p) = i indicates that the nth feature in the
common set is represented by the ith feature in the pth particle’s map.

Given these variables, each particle can be represented using a weight,
mean, and covariance as in Equation 5 with the mean

xp
t = [vp

t , µ
p

δt(1,p),t, . . . , µ
p

δt(N,p),t] (9)

and the block-diagonal covariance matrix

Pp
t =








Pp
vv,t

Σ
p

δt(1,p),t

. . .

Σ
p

δt(N,p),t








In other words, each particle’s individual map can be represented by a single
multi-dimensional mean and covariance, produced by arranging the individual
map feature states in the order of the common features about which they are a
hypothesis. A Gaussian distribution can then be produced using Equations 6
and 7.

This approach requires that two corner cases be addressed. Firstly, a par-
ticle’s individual map may contain multiple features referring to the same
common feature. In this case, δ simply selects one at random (another al-
ternative would be to use the fusion of the features). Secondly, a common
feature may have no corresponding features in a particular particle’s map. In
this case, the particle is ignored when computing the mean and covariance of
that common feature.

In addition to computing the mean and covariance of the landmarks’ posi-
tions, independent state estimates (such as the probability of existence of each
landmark) can be computed using weighted sums analogous to Equation 6.
Maintaining an estimate of the probability of existence of each feature means
that features which are not generally agreed upon will have a low probability
of existence. These features can be ignored when fusing the local map into
the global map.
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4 Sub-Map Fusion

This paper uses a sub-mapping strategy similar to CLSF [17] and others [14].
Figure 1 illustrates the approach: the filter maintains both a Gaussian global
map and a Gaussian local map. The (uncertain) global coordinate frame of the
local map is stored in the global map. The filter periodically fuses the local
map into the global map to produce a single map in the global coordinate
frame. After fusion, a new local map is started with the vehicle beginning at
the local origin with no uncertainty and no landmarks.

Local Sub−Map
Coordinate Frame

Global coordinate frame

Local
Feature

Global
Feature

Vehicle Pose

Fig. 1. An illustration of the sub-mapping strategy. In this case, the local map is
converted to a Gaussian from a FastSLAM representation, in which the local vehicle
pose is represented using particles.

Map fusion requires two steps:

1. local features are initialised in the global map, and
2. features are associated and fused.

Note that the vehicle pose in the local map is considered to be just another
feature, and hence does not require any special treatment in the procedure
that follows.

Let x−, x+, P−, and P+ refer to the global map mean and covariance
immediately before and after fusion, and xL and PL refer to the local map
mean and covariance. Local features (including the vehicle pose) are initialised
in the global map by augmenting the state and covariances as follows:

x+ =

[
x−

g(v−,xL)

]
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vv∇vgT +∇zgPL∇zg
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where g(v−,xL) transforms the local map into the global coordinate frame,
using v−: the vehicle’s global pose at the time of the previous fusion (now the
origin of the local sub-map).

New features are then associated with old features, using joint compati-
bility [11]. Two features θ1 and θ2 are fused using a zero-noise observation zf

of the difference between features:

zf (θ1, θ2) = θ1 − θ2 (10)

and setting zf = 0. This leaves two identical features, one of which is removed.
Finally, the old global vehicle pose estimate is replaced by the new estimate,
and a new local map is started.

5 Experiments

5.1 Filters

Experiments compared the following filters in simulation:

1. FastSLAM v2.0 [16] (FASTSLAM),
2. The sub-mapping algorithm described in Section 4 with EKF front- and

back-ends (EKF), and
3. The same sub-mapping algorithm with a FastSLAM front-end and an

EKF back-end (HYBRID).

Experiments focussed on the filters’ ability to both manage clutter and close
large loops. This was done by having the filters close a loop of approximately
400m in a simulated environment, with a sensor subject to false alarms and
non-detections. The sensor’s reliability was specified by two parameters:

• α: the probability of detecting a true feature, and
• β: the probability of a visible true feature triggering a false alarm with

uniformly-distributed range and bearing.

In order to be able to ignore spurious features, all three filters maintain an
estimate of the probability of existence of each feature. Let p(ιn,t) denote the
estimated probability of existence of the nth feature at time t. This estimate
can be updated as in a traditional target-detection framework [13], using

p(ιn,t)← p(ιn,t)
α

p(ιn,t)α + (1− p(ιn,t))β
(11)
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where the denominator gives the total probability of making an observation,
either through false-alarm or true feature detection.

The two sub-mapping algorithms only fused features whose probability of
existence exceeded 0.95, while FASTSLAM ran a periodic cull of old unlikely
features. Sub-maps were fused at 10-second intervals. FastSLAM implemen-
tations used 500 particles. Note that while FastSLAM is often implemented
with fewer particles (e.g. 100 [10]), a larger number can be tolerated in our
approach because HYBRID’s local FastSLAM map is always very small. Both
FASTSLAM and the HYBRID front-end used Data Association Sampling
(DAS) [16] for computing correspondences.

5.2 Environment

The experimental environments consisted of 50 randomly-generated simulated
two-dimensional worlds of size 120m×120m, each containing 35 uniformly-
distributed point features, as shown in Figure 2. The vehicle moved at 1m/s
and up to 100◦/s, observing features using a 360◦ range-bearing sensor with
a maximum range of 25m. The vehicle followed a path near the extremities
of the environment, such that one significant loop closure had to be executed.
A test run was considered to have failed if the true vehicle pose remained
more than 10 standard deviations from the filter’s estimate for more than 20
iterations.

SLAM filters were run at the observation frequency of 10Hz. Vehicle linear
and rotational velocity was noisy, perturbed with standard deviations equal
to 0.25ẋ and 0.35θ̇ respectively, where ẋ and θ̇ are commanded linear and
rotational velocities. Observation noise standard deviations were set to 0.05m

and 1◦ in range and bearing respectively. Identical worlds, odometry, and
observations were used for all filters.

5.3 Results

The results are summarised in Table 1. They clearly show that the HYBRID
filter out-performs both FASTSLAM and EKF filters. FASTSLAM’s tendency
to become overconfident meant that it was unable to succeed in a single run
(see the following sections for more detail).

Comparing the two sub-mapping approaches, the benefits of using HY-
BRID versus EKF are apparent with no clutter but most pronounced in high
levels of clutter. While the level of clutter in the extreme case is particularly
high, it is also unrealistically easy to filter because it is truly random. Clutter
in the real world is not independent and identically distributed, but tends to
be correlated, clustered around particular (possibly moving) objects.
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Fig. 2. An example scenario, showing the true vehicle path and landmark positions.
The precise path and landmark locations are randomly generated.

α,β [p(truePositive),p(falsePositive)]
Filter 1.0, 0.00 0.7, 0.02 0.4, 0.04 0.1, 0.06

FASTSLAM 0% 0% 0% 0%
EKF 79% 76% 72% 30%
HYBRID 87% 89% 83% 63%

Table 1. Success rate for each algorithm, evaluated over 100 trials in each case, for
different values of α and β. Failure is defined as the vehicle mean being more than
10 standard deviations from the true vehicle pose for more than 20 iterations.

5.4 Discussion

Failures occurred for a number of reasons. The FASTSLAM failures occurred
due to over-confidence, resulting from an inability to remember uncertainty
over long trajectories [4].

The two sub-mapping algorithms have two common long-term failure
modes, specific to the EKF back-end. Firstly, when sufficient vehicle heading
uncertainty accumulates, linearisation errors can cause the filter to become
over-confident [3]. Secondly, data association errors were sometimes made
when closing the loop. This latter problem could be solved in a variety of
ways, for example by running the local mapper for longer when a loop closure
is imminent. Both problems were exacerbated as the reliability of the sensor
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was decreased, since the total amount of sensor information available to the
filter was reduced, increasing vehicle uncertainty.

The differences between the two sub-mapping filters occurred due to dif-
ferences in short-term mapping in the front-end. Failures in the EKF filter oc-
curred due to spurious observations being associated with landmarks, partic-
ularly during transient periods of high vehicle uncertainty (i.e. during turns).
This is especially problematic when the true feature is not observed simulta-
neously, and therefore JCBB is unable to resolve the ambiguity.

EKF failures also occurred due to local linearisation errors. Local lineari-
sation errors are kept to a minimum because vehicle uncertainty in the local
frame of reference is generally small, since local maps begin with no uncer-
tainty. However local-map uncertainty can be significant, for example if the
vehicle begins a new sub-map immediately prior to making a sharp turn amid
sparse landmarks.

The HYBRID filter is much more robust to both these local sources of
error. The probability of incorporating spurious observations is reduced by
the front-end’s ability to integrate data association information over time.
Vehicle linearisation errors are eliminated because each particle always has
zero vehicle uncertainty.

5.5 Linearisation

The effects of linearisation were analysed in more detail in two additional
experiments in the same simulated environment, both in the absence of clutter
(α = 1.0, β = 0.0). In the first experiment, the vehicle is provided with an
accurate compass, eliminating vehicle linearisation errors. The observation
model is still linearised, however this introduces only very small errors relative
to vehicle non-linearities. Since the Kalman Filter is the optimal estimator in
the linear case, the EKF solution is close to optimal in this case, and therefore
provides a benchmark against which to compare alternative algorithms.

In the absence of vehicle non-linearities and clutter, one would expect
HYBRID and EKF to produce very similar results. The major remaining
difference between the two is statistical noise introduced by the HYBRID’s
FastSLAM front-end, which we minimise by using 5000 particles.

Figure 3 compares the vehicle uncertainty for all three filters, measured
using the trace of the vehicle pose covariance matrix. The figure shows that
HYBRID can correctly track the uncertainty while FASTSLAM quickly be-
comes over-confident, even with 5000 particles.

In a second experiment, vehicle uncertainty was introduced by removing
the compass. Since the vehicle is executing many uncertain turns (including
one sharp turn near the beginning of the trajectory), non-linearity due to vehi-
cle heading uncertainty is problematic. Figure 4 shows the vehicle uncertainty
over the entire run.

In this case, the uncertainties of both sub-mapping solutions are certainly
too small, due to vehicle linearisation issues. However, since the HYBRID so-
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Fig. 3. Vehicle uncertainty over time in a scenario with no vehicle non-linearities.
Uncertainty is measured using the trace of the covariance matrix. In order to produce
a meaningful comparison with FASTSLAM, the sub-mapping algorithms’ estimates
are based on both the local and global maps at every iteration, even though the
maps are only fused on every 100th iteration.

lution avoids vehicle linearisation in local sub-maps, the larger uncertainties
which it reports are closer to the optimal solution. HYBRID is clearly an im-
provement on EKF in this respect. The swift deterioration of the FASTSLAM
estimate is clear in this scenario.

5.6 Live Experiments

The HYBRID filter was used to generate a map in a real urban environment,
using a Segway RMP equipped with a SICK laser, as shown in Figure 5. The
environment was approximately 135m×90m in size, and was mapped over a
3.75km path. The final map consisted of 452 landmarks, including foreground
points, corners, doorways, and 46 retro-reflective strips. Data association was
complicated by the presence of difficult-to-model objects such as bushes and
trees, people occasionally walking through the area, and the tilting nature of
the platform which caused it to make frequent observations of the ground when
accelerating. Observations of the ground result in spurious corner features
from the intersection of the ground with walls. The final map is shown in
Figure 6, with an occupancy-grid overlaid for clarity.
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Fig. 4. Vehicle uncertainty over time in a more realistic scenario, with vehicle non-
linearities. Sub-map fusion causes small drops in uncertainty every 100 iterations.
The large decrease in uncertainty near iteration 4400 is due to the loop closure.

6 Conclusion

This paper presented a hybrid approach to SLAM which combines the
strengths of two popular existing approaches: FastSLAM and EKF-SLAM.
Using EKF-SLAM as a global mapping strategy allows uncertainty to be re-
membered over long vehicle trajectories. Using FastSLAM as a local mapping
strategy minimises observation-rate linearisation errors and provides a signif-
icant level of robustness to clutter and uncertain associations. In experiments
involving a large number of randomly-generated trials, the hybrid mapping
approach was shown to be clearly superior to either pure approach. The ap-
proach was further validated in a live experiment.

One way to view HybridSLAM is as a mixture between pure FastSLAM
and pure EKF-SLAM, with the time between map fusions as the mixing pa-
rameter. Consider the two extremes: if map fusion occurs on every iteration,
HybridSLAM is largely equivalent to EKF-SLAM (with no sub-mapping). If
map fusion never occurs, HybridSLAM is identical to FastSLAM.

We see the following as the main areas in which the algorithm described
in this paper could be improved:
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Fig. 5. The Segway RMP vehicle and the environment

Local-to-Global Interface

The interface between the FastSLAM front-end and the EKF back-end is im-
portant: fusing in a moment of transient ambiguity can result in an incorrect
decision being irreversibly fused into the back-end. This paper performed ex-
periments with a very simple criterion for map fusion (local-map age equal
to 10 seconds), however better strategies are certainly possible and likely to
increase robustness. For example, it may be prudent to delay map fusion when
the vehicle distribution is multi-modal or particularly non-Gaussian, of when
there is significant disagreement about landmark identities. Conversely, it may
be of benefit to fuse sooner if particle diversity begins to drop.

Another option is to re-use information from slightly before and after the
point of map fusion in both temporally-adjacent local maps, for the pur-
poses of data association only. Since uncertainty about data association is not
tracked in the back-end, re-use of information in this way will not lead to
over-confidence. Future work will address these possibilities.

Scalability and Non-Linearities

For simplicity, this presentation showed a monolithic EKF back-end, which is
known to suffer from non-linearities and high computation in large environ-
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Fig. 6. A map of an urban environment produced by the HYBRID filter. Landmarks
are shown as red squares, while the smoothed vehicle path is shown as a blue line.
The occupancy grid map is overlaid for clarity.

ments. In future work, the back end could be replaced by more efficient Gaus-
sian representations such as sparse information form [15] or submap methods
such as ATLAS [7] of NCFM [1]. The submap forms also address long-term
non-linearity.
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